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1. Introduction

Let U ¢ RN, N > 2, be a bounded, (quasi)open set, and consider a
problem
—div (a(z, Vu)) = in U,
(afa. Vu) = "
u=gqg on U,

where p is a bounded Radon measure, g € W (RY)NL>*(RY) and the
mapping u — —div (a(z, Vu)) operates on some special set of functions
defined in U, namely W'P(U) (see Definition 3.6), p > 1. The map-
ping u — —div (a(z, Vu)) is assumed to be similar to the p-Laplacian,
—div (|Vu|P~2Vu) (see chapter 2 for a detailed definition of af(-,)).

If p > N, then the solution to this problem is well known. In this
case the space of measures with bounded variation in U is a subset
of the dual space W12 (U), and the existence and uniqueness of the
solution follows from classical results, see [14]. The case 1<p <N is,
however, more complicated, and this is the case we consider here.

The existence of the solution (with zero boundary values) in the class

Wol’q(U)’ q < N]E,p__f), satisfying

/a(x, Vu) -V dr = /go du for every ¢ € C3°(U) ,
U U

was proved in [2] and [3] using a sequence of regular functions approxi-
mating the measure in question. This gives a sequence of solutions for
the easier problem described above, and it was then shown that this
sequence converges to the solution for the original problem. This defi-
nition is, however, valid only in the case p > 2 —1/N, and the solution
may not even belong to the space L'(U) otherwise, see Example 2.16
in [5]. This solution also fails to be unique, as is seen from the example
of Serrin in [15]. Thus, some alternative definition for the solution is
needed.

The fact that the solutions might fall out of the class W, (U) sug-
gests that the base set for solutions needs to be larger than a usual
Sobolev space. It is, however, true that the truncations at level k£ > 0
of the solution obtained by the approximation method belong\ to the
Sobolev space W, P(U). This is the motivation for the base set W»(U)
we use here. The introduction of this special set of functions and also
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the uniqueness problem was considered in [1], where the definition of
entropy solutions is introduced (see also [4] and [12]). In order to ob-
tain the uniqueness of entropy solutions, the so called entropy condition
(see Equation (3.5) in [1]) was introduced.

Entropy solutions, however, only apply to measures that are abso-
lutely continuous with respect to the p-capacity. For general bounded
Radon measures this definition may not be well defined. To overcome
this obstacle, the definition of renormalized solutions was introduced in
[5]. The main idea was to accept a larger set of test functions than the
class C3°(U), which is used in the distributional setting. In [5], they
essentially accept bounded Sobolev functions as test functions and call
the solutions obtained this way renormalized solutions. The existence
(and uniqueness when the measure is absolutely continuous with re-
spect to p-capacity) of these solutions was then shown. Some extra
conditions which assure the uniqueness also for the general bounded
Radon measures were also introduced. However, the general case of
the uniqueness of renormalized solutions with bounded Radon mea-
sure, and, more importantly, the uniqueness of distributional solutions
in the class VVO1 P still remain as open questions. In the special case
p = N the uniqueness problem has been solved in [8], [9] and [6] by
using some additional conditions. In the first two the solution belongs
to the so called grand Sobolev space W, M) and in [6] there are some
additional assumptions on the regularity of the domain as well as on
the regularity of the gradient of the solution.

Here we concentrate on the definition of a renormalized solution
and generalize this definition for quasi open sets and non-homogeneous
boundary values. Using the methods obtained this way, we then show
some special versions of the strong comparison principle for renormal-
ized solutions.

Chapters 2 to 4 are dedicated to introducing all the necessary def-
initions and basic tools to handle the problem (1.1) in a quasi open
setting. In chapter 2 we discuss only basic mathematical concepts,
while in chapters 3 and 4 we cover the properties of quasi open sets,
examine some measure theory and study the fine properties of func-
tions, namely, sets of finite perimeter.

In chapter 5 we define our solution to the problem (1.1) when U is
a quasi open set. This will be called a renormalized solution, and the
definition follows the lead from [5]. In this chapter we also generalize all
the necessary integral and level estimates for the quasi open setting and
nonhomogeneous boundary values. The chapter ends with the existence
and uniqueness proof for renormalized solutions in this setting. While
the quasi openness of the set does not play any major role in this proof
and the boundary condition offers only technical problems, it should
be noticed that this proof uses only the definition of the renormalized
solution. The uniqueness of the renormalized solution in open sets when
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the measure is in M, (€2) is already known (see [5], Remark 2.17), but
the proof relies on the uniqueness proof for entropy solutions (see [1])
and the fact that in this case these two solution classes are actually
one and the same. The uniqueness proof using only the definition has
not been given (without additional restraints, see [5], Remark 10.7, see
also [10]).

Chapter 6 is the main chapter in this work, and here we show the
comparison principle for the renormalized solution when the measure
in question is absolutely continous with respect to the p-capacity. Re-
sults of the same type have already been studied, for example, for so
called entropy solutions, but the methods used here are completely dif-
ferent since here we use only the definition or renormalized solutions.
Although these results do not apply straight away to the case of general
bounded Radon measures, the calculations in Theorem 6.3 are mostly
valid also in the general case. These calculations may thus prove to
be useful also in the study of the problem (1.1) in the case of general
measures.

2. Preliminaries and notations

In this chapter we introduce some important and frequently used
notations and also recall some essential definitions.

In the following, €2 always means an open and bounded subset of
R”Y. On the other hand, U always means a quasi open (see Definition
3.1) and bounded subset of RY.

The function a(-,-) : RY x RY — R" in the problem (1.1) satisfies
the following conditions for some constants 0 < a;,y < 00 :
the function z — a(z, £) is measurable for all ¢ € RY,
the function & — a(z, €) is continuous for almost every z € R”,

(M1) a(z,§)-€ > alg|P for a.e. 2 € RN and V¢ e RY,

(M2) Ja(z,§)| <7v[gP! VEERY,

(M3)  (a(z,§) —a(z,&))- (=) >0 for a.e. z € RY and
VEEERY, £#¢

For any £ C R" we define the p-capacity of E as

cany(E) = inf [ (lr + [VuP) d
IRN

where
FE)={ueW"(R"):0<wu <1, u=1 in an open set containing £} .

There are many other definitions for the p-capacity, see, for example
1.1, in [11]. The choice of the p-capacity is not too important here;
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we only need to know that the sets of zero p-capacity do not change
if the definition changes. Remember also that the p-capacity is an
outer measure (see [7], Theorem 1 in section 4.7). In the following, the
monotonicity of the p-capacity is frequently used, that is, if A C B,
then cap,(A) < cap,(B).

We use notation M, (U) for the space of bounded Radon measures,
and M (U) for the measures 1 € M,,(U) that are absolutely continuous
with respect to the p-capacity. That is, for p € My(U) and E C U we
have p(E) = 0 if cap,(£) = 0. Results obtained in this paper mainly
concern only measures in Mg(U).

When talking about measures, we are usually not interested in those
parts of the set which have zero measures. These zero sets are simply
omitted by saying that the result holds p -almost everywhere (abbre-
viated by p-a.e.), where p is the measure in question. If the measure is
not specified, we assume it is an n-dimensional Lebesgue-measure, £V.
In the case of the (p—)capacity we say quasi everywhere, abbreviated

by q.e.

For k > 0 and s € R, we define a function Tx(s) : R — R by
Ty (s) = max{—k, min{k,s}} ,

in other words, truncation at levels k and —k.

The space of LP-functions in 2, LP(2), is the space of Lebesgue
measurable functions u :  — RY whose LP(Q)-norm

» 1/p
fuller = ( [ 1ul o)
Q
is finite.

Moreover, the space of Sobolev functions, W1?(Q), consists of those
LP(Q)-functions whose first-order weak partial derivatives D;u also be-
long to LP(Q) (see [7], chapter 4). The Sobolev norm of u is defined

by
1/p
fulhp = ([ 1l + 9l dz)™"
Q

where Vu = (Dju, ..., Dyu) is the weak gradient of w. Later on, in
chapter 3, we define these for quasi open sets.

When talking about LP-spaces, we frequently need the concept of
conjugate exponents. We use notations p and p’ for this purpose, that

is, 1/p+1/p = 1.

Constants used in calculations are usually marked by C, or C;, i =
1,2, ..., if the same calculations involve more than one constant. These
constanst are usually different and do not depend on each other in any
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way. If the constant depends on some important feature (say, dimension
N or p or €), then this is noted by subscripts, for example, C..

3. Quasi topology and Sobolev functions

It is a well known fact that if we have an open set E' and a continuous
function f, then the set f~1(E) is also open. Later on, we are typically
dealing with the situation where the functions are not continuous but
only Sobolev functions. Then, for example, the level sets {u > ¢} which
play an important role in the following, cannot be expected to be open
but only quasi open.

In this section we introduce the notions of quasi open sets and quasi
continuous functions. We also define the class of Sobolev functions in
quasi open sets and then introduce a slightly larger set of functions,
WhP(U), which we use as a base class for solutions of the problem (1.1).
Since quasi openness and quasi continuity are linked to the p-capacity,
we also introduce some necessary tools and definitions concerning ca-
pacity and some important sets. For a deeper understanding of these
so called fine properties of sets, the reader should consult [11], where
most of the definitions and results of this section are from.

We start out this section by defining quasi open sets and quasi con-
tinuous functions:

Definition 3.1. A set U € R” is said to be quasi open if for every ¢ >
0 there exists an open set G such that U UG is open and cap,(G) < ¢.
A function f : U — R is quasi continuous if for every & > 0 there is
an open set G C R such that cap,(G) < € and the restriction f|i\q
is finite valued and continuous.

Remark 3.2. If f : U — RY is quasi continuous, then the level sets
{f < k} and {f > k} are quasi open for every k& € R (see [11],
Theorem 1.4). Observe also that a quasi continous function is finite
quasi everywhere.

Since the class of Sobolev functions, W?(E), is originally defined
only for open sets E, we need to do some modifications concerning the
case where the base set is only quasi open. Difficulties arise especially
in the case when the functions do not vanish on the boundary of the
base set. In this case the notion of a generalized derivative requires
some deeper concern.

Definition 3.3. A family B of quasi open sets is called a quasi covering

of a set E if there exists a countable union B of sets from B such that
cap,(E\B) = 0.
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Definition 3.4. Let U ¢ R” be a quasi open set. Suppose that u is
a restriction to U of some function v € W'?(V), where V .C R is an
open set containing U. Define the fine gradient of u as a restriction of
Vo to U, that is

Vu = (Vo) .

Generalizing this idea, we define F(U) to be the set of functions
u : U — R for which there exists a quasi covering B of U such that
for every B € B there is an open set Vg (containing B) and a function
vp € WHP(Vp) such that u|, = (vp),. The fine gradient of a function
u € F(U) is defined in every B € B by

(VU)‘B = (VUB)|B .

It follows that Vu is defined a.e. on U and it is independent of the
choice of the quasi covering B (see [11], Definition 2.1.).

Definition 3.5. The Sobolev space W1P(U) in the quasi open set U is
defined by

WP (U) = {ue FU) : ||ullip, < oo},

1/p
fulh = ([ 1 + |Vl o)
U

is the (1, p)-norm of w.
The Sobolev space W, ?(U) in the quasi open set U is defined by

where

Wo(U) == {{Ws*(G) : G open, GD U} .

Now we are ready to introduce the class of truncated Sobolev func-
tions, WHP(U), which is the main class of functions from now on when
we are dealing with the solutions of the problem (1.1).

Definition 3.6. For every 1 < p < oo, we define for measurable and
g.e. finite functions u

WY(U) :={u:U =R : Ti(u) € W) for every k > 0} .
Similarly,
WEP(U) :={u:U =R : Ty(u) € WrP(U) for every k > 0} .

Since the function u € /Wl’p(U ) does not necessarily belong to any
normal Sobolev space, we need to define the gradient of u in some ap-
propriate sense. This is done using the same technique as in Definition
3.4:
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Definition 3.7. Let u € /W?l’p(U), where U is quasi open, and B is
a quasi covering of U. For each k > 0 we have Ty(u) € Wh?(U).
Moreover, for each B € B there exists an open set GGg containing B
and a function wy, g € WHP(Gp) such that (Tyu), = (wk,p)|,-

For | > k we have a function w, g € W'?(Gp) such that (Tju), =
(wi,B)|s, and in the set {|u| < k} we have

(wl,B)\B = (Tlu)|3 = (Tk’u)\B = (wk’,B)\B
for every | > k. Now we define v, g := Vwy, g in the set {|u| < k} N B.
In this set we have a.e. equality Vwy p = Vw, p for every [ > k, and
thus we get almost everywhere in B defined function vg by going to
the limit with respect to k.
As in Definition 3.4, we now obtain an a.e. in U defined function v,
which we may say to be the gradient of u € WHP(U), write Vu = v.

Remark 3.8. The function u € /Wl’p(U ) has a cap,-quasi continuous
representation. This can be seen by choosing for each £ > 0 an open
set G}, (containing the infinity points of u) such that cap,(Gy) < 2 ke
and T (u) is continuous in GY. Now the set G := UG}, is open and
cap,(G) < e. Moreover,

GC=nGSCcGY VEk>0.

Now, if 2y € G, we choose k such that u(zy) < k. Then we have
limsup, ., u(z) <k, since otherwise limsup,,_,, Tiu(x) = k, which is
a contradiction. Thus,
lim sup u(x) = limsup Tru(x) = Tpu(z) = u(zo) .
T—T0 T—T0

The same deduction for liminf,_,,, u(z) shows that u is continuous in
G, that is, u is quasi continuous.

In the following we are always considering this quasi continuous ver-
sion of w.

Next we point out some important properties of the level sets of Wie.
functions. These estimates of measure and capacity are well known for
open sets, but the quasi openness imposes some technical details which
we bring forth here.

Lemma 3.9. Let u € W(U) and 1<p<N. Then
cap, (K N{Ju| > k}) -0 as k—
for any compact set K CC U.

Proof. Let € > 0. By Remark 3.8 we know that u is cap,-quasi contin-
uous. Thus there exists an open set V. such that cap,(VZ) < e and u
is continuous on U\V.. Since u is continuous also on K\V. and K\V;
is closed and bounded, we know that there exists k. € R such that
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lu] < k. on K\V.. Moreover, for k > k. we have K N {|u| > k} C V.
so that

cap, (K N{|u| > k}) < cap,(V.) <e for every k > k. .

Lemma 3.10. Ifu € W'»(U), then
HY " ({Ju = 00}) = 0.

Proof. From the definition of /1 (U) it follows that cap,({|ul=0c}) =0,
and thus we have H*({|u| = oo}) = 0 for every s > N — p (see [7],
Theorem 4 in section 4.7). O

Remark 3.11. Notice that the compact set K in Lemma 3.9 is only a
technicality, which can be removed after we define renormalized solu-
tions, see Corollary 5.3. On the other hand, when we use Lemma 3.9 in
chapter 6, the setting is always as in Lemma 3.9, that is, the compact
set K is present.

Finally, we introduce a sort of generalization of Sobolev’s embedding
theorem. We define a set ng’p (U), which is needed to assure that u can
be extended properly to a larger open set €2, and this way we obtain the
right to use the usual version of the Sobolev theorem. Later, when we
introduce renormalized solutions, one should notice that renormalized
solutions (or truncations of them at high levels, to be precise) indeed
fulfill this property. The size of €2 is not important here; we only need
to know that € is bounded and the distance from U to the boundary of
Q) is large enough to assure the existence of ¢ introduced in the lemma.
This lemma is used in Theorem 5.5 for renormalized solutions, but we
state the result already here since this result is true for more general
functions than just renormalized solutions.

Lemma 3.12. Let U C RY be a bounded quasi open set, @ C RN an
open and bounded set, U CC Q, 1 <p < N and
u € ng’p(U) ={ueWh(Q) : u=g qe on Q\U},
for some g € WHP(Q) N L>®(RQ), that is, a function u can be extended
quasi continuously to a bounded function g outside of U.
Then there exists C = Cp, 4 nu > 0 such that
ullow) < CIV(u@)llry — for every q € [1,p7],

where p* = NN——Z and o € C°(Y) such that ¢ =1 on U.

Proof. Let o € C3°(Q) such that ¢ = 1 on U. Now u ¢ € W, P(Q), and
the result follows from the usual Sobolev embedding theorem for ) as
[ull oy < luellzoe) < CIV(uwp)|ore) -

O
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4. Measure theory and fine properties of functions

Level sets {u > t}, t € R, of Sobolev functions play a very important
role in the theory that will be developed in chapter 6. As noted earlier,
these level sets are not open but only quasi open sets. This is, however,
not enough to verify the existence of some important tools, namely,
the Gauss-Green Theorem 4.9. For this purpose we need to study
the so called fine properties of functions, which include definitions of
functions of bounded variation and sets of finite perimeter. Here we
recall only the basic properties of these functions and sets; a more
detailed representation can be found, for example, from [7].

We start this section by recalling the properties of measures we use
throughout this paper. Remember that the measures we are consider-
ing are bounded Radon measures and absolutely continuous with re-
spect to the p-capacity, write o € Mo(U). This means that po(E) = 0
for any measurable set E C R" such that cap,(E) = 0. It is well known
that measures of this type can be written as a sum of L(2) and L (Q)
functions when 2 is an open set (see [4]). First we show that this is
true also for quasi open sets.

Theorem 4.1. Let U be a quasi open set and g € Mo(U). Then there
exist functions F € LY(U) and G € L (U) such that

/vduoz/dex+/G-Vvdx Vv e WyP(U) N Le(U),
U U U

that is, po = F — div (G) in this sense.

Proof. First we choose some open set V C RY such that U C V and
define a new measure p* in V' by

“(B) = po(E) for any Borel set £ C U
s 1o for any Borel set £ C V\U .

Thus we have pu* € My(V). Now let v € WyP(U) N L=(U). Since
the claim is true for open sets (see [5], Proposition 2.5 or [4], Theorem
2.1), there exist functions /' € L'(V) and G € L (V) for which we
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may calculate

'/de$+/G~Vvdx—/vduo
U U

U

= /dex—l—/G-V’Ud:E—/dem—/G-Vvdm—/vduo

1% 1% V\U V\U U

= /Udﬂo—/vdﬂo
= /vd,uo—l—/vduo—/vd,uo =

U V\U

since v = 0 and Vv = 0 quasi everywhere outside of U. O

Next we introduce the functions of bounded variation and sets of fi-
nite perimeter and one important property that we get from the finite-
ness of the perimeter.

Definition 4.2. Let Q C R" be an open set. A function f € L(Q) is
of bounded variation in ) if

sup{/fdivgp dx @ECSO(Q;]RN), || §1} < 00 . (4.1)

In this case we write f € BV ().

Definition 4.3. An £V-measurable subset £ C R” has finite perime-
ter in Q if x, € BV().

Ezample 4.4. If u € WH(Q), then uw € BV (). This follows from the
integration by parts formula for Sobolev functions since

/fdivgodx:—/Vf-cpde/|Vf|dx<oo.
) Q Q

Moreover, the level set E; := {u > t} of u has finite perimeter for a.e.
t € R. See [7], Theorem 1 in section 5.5 for proof.

Theorem 4.5. Let E C RY be £N-measurable. Then E has locally
finite perimeter if and only if

HY N K NOE) < oo
for every compact set K ¢ RV,

Proof. See [7], Theorem 5.11.1. O
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The main goal of this section is to achieve a Gauss-Green type equal-
ity for sets of finite perimeter. Gauss-Green type inequalities involve
the concept of outer normal on the boundary of the set. Defining this
in the sets of finite perimeter takes some very careful examination of
measure theoretic properties of the boundary sets. Here we only point
out the existence of such an outer normal and use it to obtain the re-
quired results. A complete representation of the theory can be found,
for example, from [7].

Definition 4.6. Let z € RY. We say = € 0,F, the measure theoretic
boundary of E if

LN(B(x,r)NE)

>0

lim sup
r—0

and
LN(B(x,r) N E°)
N

lim sup >0.

r—0

Remark 4.7. Notice that the measure theoretic boundary is a subset of
the usual topological boundary of the set. When we are dealing with
the sets of finite perimeter, it is usually sufficient to consider only those
boundary points that belong to the measure theoretic boundary. Our
setting in chapter 6 is such. That is, we may omit those topological
boundary points that fall out of the measure theoretical boundary (if

any).

Theorem 4.8. For HN'-a.e. x € 0, F there exists a unit vector vg(x)

such that
LN(B(x,r)NEN H*(x))

}«lg(l) rN =0
and V(B . ~
lim (B(z,r) ﬂf NHA(z)) =0,
r—0 r
where

H'(z):={y ¢ RY : vp(z)-(y—2) >0},
H™(z) = {y e R" : vp(z) (y—x) <0}

are half-spaces defined by vg(x). Such a vector is called the measure
theoretic unit outer normal to E at x.

Proof. See [7], sections 5.7 and 5.8. O

Theorem 4.9 (Generalized Gauss-Green Theorem). Let ECR™ have
locally finite perimeter. For HYN ‘-a.e. x € O.F there is a unique
measure theoretic unit outer normal v, (x) such that

/divgpd:t: /g0~l/E dHN 1

E 0.E
for all ¢ € CLRY).
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Proof. See [7], section 5.8, Theorem 1. O

5. Renormalized solutions on quasi open sets

With the proper quasi topological setting introduced, we are now
ready to define our solutions for the problem (1.1). Renormalized so-
lutions have already been introduced, for example, in [5] but only for
open sets and zero boundary values. Here we extend the concept of the
definition for quasi open sets and nonhomogeneous boundary values.
The main purpose for this is to gain some necessary tools for chapter 6
(mainly for Lemma 6.4), but for the sake of completeness we also show
the existence and uniqueness of renormalized solutions in this setting.

It is known that the renormalized solution with zero boundary data
is unique if the right-hand side measure is absolutely continuous with
respect to the p-capacity. This has been shown, for example, in [5]
and it also follows from the uniqueness of entropy solutions shown, for
example, in [1], [4] and [12] since, in this case, these two solution classes
are one and the same (see [5], Remark 2.17). However, in [5], some extra
assumptions on the operator a(x, Vu) (namely, Holder continuity) are
used, and other proofs use the definition of the entropy solution.

The proof shown here differs from the above mentioned ones in such
a way that here we use only the definition of the renormalized solution
and do not make any extra assumptions on the operator a(z, Vu). The
proof also includes the necessary technical modifications generated by
the boundary function g. The quasi openness of the base set does not
play any major role in the proof, since all the necessary adjustments in
the definitions and calculations have already been made in the earlier
chapters.

We start with the definition of renormalized solutions.

Definition 5.1. Let U € R" be a quasi open set, 1 a measure in
Mo(U), 1<p<N and g € WHP(V) N L>*(V) for some open V DD U.
A renormalized solution of the problem (1.1) is a measurable and almost

everywhere finite function u € WLP(U) such that

(1) |VulP~t € L™(U) for every r < N1

/a(agVu)-Vw d:v:/wd,u
(2) i i
u=g ae onU® and u—gewol’p(U)



RENORMALIZED SOLUTIONS ON QUASI OPEN SETS 17

whenever w € WyP(U) N L>®(U) is a function for which there exist
wt w™> € W(U) N L>*(U) such that

—00

{w = wt>® almost everywhere in the set {u > k}
w=w

almost everywhere in the set {u < —k}

for some k£ > 0 and s > N.

One of the most important aspects in the theory of renormalized
solutions is to control the integrals of the gradient of truncated solutions
or, equivalently, integrals of the gradient over the set where the solution
is bounded. The following lemmas introduce these estimates in our
setting. The main difficulty here is generated by the boundary function
g. Otherwise, these proofs would be similar to those in [5] and [1].

Lemma 5.2. Let p € My(U), 1<p<N and u € /Wl’p(U) a renor-
malized solution to (1.1). Then, for every k > 0 we have the gradient
estimate

/|VTk(u)|p e < Ch . (5.1)

Proof. Define h := ||g||z~ and let k£ > 0. Using w := Ty (u — Tj(u)) €
Wy P(U) N L=(U) as a test function in Equation 5.1 (2) (notice that
w =k when v >k + h, w = —k when u < —k — h and

Vu when h <|u| <k+h
0 otherwise

we get

/Tk(u T () dpp = /a(x, V) - VTk(u — Th(u)) dz
= / a(xz,Vu) - Vu dx .

{h<|ul<k+h}

Thus,

/a(x, Vu) - Vu dx = / a(z,Vu) - Vu dx + / a(z,Vu) - Vu dx

{Jul<k+h} {Jul<h} {h<|u|<k+h}
< / a(z,Vu) - Vu dx + kp(U) .
{lul<h}
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Using the Holder inequality with the assumption (M2) we then estimate

/ a(z,Vu) - Vu dx < / la(xz, Vu) - Vu| dx

{lul<h} {lul<h}
, 1/p 1/p
§< /\a(z,VU)P’ da:) ( /\Vu|p dx)
{lul<h} {lul<h}
/ 1/p 1/p
S( /\Vu|(p_1)” da:) ( /\Vu|p dx)
{lul<h} {lul<h}

< /|VThu\p dx < C,
U

(5.3)
where C' does not depend on the choice of k since h is a fixed constant.
Combining Equations (5.2) and (5.3) and using (M1), we finally have

/\VTkuP’ dx S/\VTHhu\p dx
U U

1
< o /a(x, VTk+h(u)) VTiin(u) de < Crk
U

since the first integral is increasing with respect to k. U

Now we may rephrase Lemma (3.9) for renormalized solutions with-
out intersecting with the compact set:

Corollary 5.3. Let u € /Wl”’(U) be a renormalized solution and 1<
p<N. Then

cap, ({lul > k}) =0 as k—oo.
Proof. See Remark 2.11 in [5]. O

Corollary 5.4. Let p € My(U), 1<p<N and u € /Wl”’(U) a renor-
malized solution to (1.1). Then we have

1
lim E/\VTk(u)P’ de =0 . (5.4)
U

k—oo

Proof. First we notice that, for i := ||g|| e, we have + T, (u—T},(u)) — 0
p-almost everywhere as k — oo. This is true since cap, ({|u| = co}) = 0

by the definition of Wie (U) and since p is absolutely continuous with
respect to the p-capacity. Thus we have

lim % /Tk(u — Th(w)) dp = 0,
U

k—oo
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and now we can use the proof of Lemma 5.2 with the test function
=Ty (u — Ty, (u)) to obtain our result. O

It is equally important to control the measure of the level sets of
the solution and its gradient. The next lemma gives us estimates for
them, and using these estimates, we can, for example, deduce that
LN({|u] > k}) — 0 as k — oo. Notice that an estimate like this is
already proved for the p-capacity in Lemma 3.9 but only locally. The
estimate given here is global. One should also notice that in this lemma
we have limit p < N, but the result is essentially true also for p = N.
There is only a slight difference in the constants and the power of k,
see [5], Theorem 4.1.

Lemma 5.5. Let u € /Wl”’(U) be a renormalized solution and 1 <p<
N. Then for every k >0

CY({ul > k}) <Gk~ N5 and (5.5)
£V ({|Vul > k}) < Gy

for some Cy and Cy independent of u.

Proof. Let k > 0. Since {|u| > k} = {|T}(u)| > k}, we can calculate

N({Jul > k}) < / ‘T’“,iu” da < / (@)p da

{174 ()>H) v
= k77| Ti(u)

(.

Now let 2 and ¢ € C§°(€2) be as in Lemma 3.12. Using this lemma,
we then have

k—l’

*

p

< Ok @ -

(W7,

From Minkowski’s inequality we get
IV (T3 (w) ) [l o) < 1 Tk(w) Vool o) + llo VTk(u) || o)

and we can continue estimating these terms separately. First,

Q\U

(Te(u) @)

*(U)

since ¢y =1 on U. Secondly,

/wTk wpar)"= ([ 1o vrits \pdaz+/wn u)p dz)'’

QU

< (G5 +y / VT4 ()] dx)
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By combining the above equations and using the estimate (5.1), we
now have

IV (Tilw) @) 1170 < (Ci+ Cs KYP)T < Oy kP

and the claim (5.5) follows. The claim (5.6) follows from (5.5) as in
[1], Lemma 4.2. O

Using the previous lemma, we now get another estimate in the spirit
of Lemma 5.2 and Corollary 5.4. This lemma is specially crafted for
the uniqueness proof of renormalized solutions.

Lemma 5.6. Let 1<p<N, u € Wl’p(U) a renormalized solution and

k> 0. Then
hlim / |[VulP de =0 .

{h<|u|<h+k}

Proof. Let € > 0, k > 0 and p € Mo(U). Here we use the decomposi-
tion yu = F'—div (G) as introduced in Theorem 4.1. Choose h > ||g|| L~
such that

kE+|GP de < e .

{lul>h}
This is possible because of Lemma 5.5 and the absolute continuity of
integrals with respect to the measure since kF + |G|?" € L'(U) by
definition. Now we use a test function w := Ty (u — Tj(u)) € Wy P(U)N
L>(U) with Definition 5.1 (notice that w = k when u > k+h, w = —k
when u < —k — h and

h < <
VT (0 — Ty (u)) = {Vu when h < |u| < k+h

0 otherwise
to get (using (M1)
1
/ |Vu|P doe < — / a(z,Vu) - Vu dx
a
{h<|u|<h+k} {h<|u|<h+k}

_ 1/ (2, V) - VTi(u — Ty (u)) da

1
—/Tku—Th d,LL
(0%

Q

+ / G-VTk(u—Th(u))dx).

{h<|u|<h+k}
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From Young’s inequality we now get

1 )
/|vu\p dr < a( /kF dx+ca,p,p,/|a\p dx—l—%/Wu\p dx),

{h<|u|<h+k} {lu|>h} {h<|u|<h+k} {h<|u|<h+k}

and the choice of h assures that

|VulP de < C'e

{h<|u|<h+k}

where C’ depends on «, p and p'. O

Now we have all the tools we need for the main result in this chap-
ter, the existence and uniqueness of the renormalized solution. The
proof concentrates on the uniqueness part, since the existence part is
obtained with the usual approximation technique.

Theorem 5.7. Let p € My(U) and 1<p<N. There ezists a unique
renormalized solution uw € WP(U) of the problem (1.1).

Proof. The existence of the solution can be shown using the same meth-
ods as for the problem with homogeneous boundary values. Follow-
ing the ideas from [1] (see also [5]), we first approximate the measure
u = F —div (G) with the sequence of measures p, = F,, — div (G,,) €
W-(U), where F € L'(U), G,F,,G, € L"(U) and F, — F in
LY(U), G, — G in L¥ (U). Classical results (see [14], page 177, Exam-
ple 2.3.2) give us a sequence of solutions u,, € WP(U) corresponding
to each p, for Equation (1.1). Notice that u, is also a renormalized
solution for any n since it belongs to W1?(U). Using similar techniques
to those in [1], we then obtain, using the estimation (5.1) and Lemma
5.5 for solutions wu,, that u, — u € /Wl’p(U), Vu, — Vu a.e. and
u, — u locally in measure.
We can, moreover, estimate the limit function u for fixed k > 1:

[{lul >k} =[{lul >k} 0 {[un| >k = 1} + [{[ul > &} 0 {|ua| <k — 1}

N(p—1)
<Ok —1)" "~

N(p—1)

+ {lun —ul =1} == C(k—1)" V>,

from where it follows that w is finite almost everywhere in U.
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For functions w,, it also holds

/ |Vu,|? de = / |Vu,|? dx + / |Vu,|? dx

U {IVu|<1} {IVu|>1}

(e}

< |U| +q/tq—1\{|vu\ >t} dt

1

(5.6) 7 o
<|U]| +C/t(q—1>—Nz(vf) dt < ' < 0o
1

N(p-1)

~—1 > and by using Fatou’s lemma we find that

for every ¢ <

/|VU‘T([)_1) dr < liminf/ |V, |~ do < ¢
U U

for every r < <&=. Thus |Vu[P~" € L"(U). Moreover, u € W4(U) for

every q < %.

Finally, since for the test function w satisfying the conditions re-
quired in Definition 5.1, the term a(z, Vu) - Vw is integrable in U and
since

a(z,Vuy,) - Vw — a(z, Vu) - Vw a.e. in U,

we have by the dominated convergence theorem

/a(x, Vu)-Vw dr = lim [ a(x,Vu,) - Vw dx

U U
= lim | F,wdx+ lim Gn-dex:/wd,u.
U U

This proves the existence of the renormalized solution.

Next we show the uniqueness of the renormalized solution. Let e > 0,
k>0, and uy,uy € W'P(U) be two renormalized solutions. For h > 0
(assume h > max{k, ||g||z~}) we define

Agy=A{x €U :|uy — Th(ua)| <k, |ug| < h, |us| <h},

Ay ={x € U:|uy — Th(ua)| <k, |ug| > h} and

Ay =A{x e U:|uy —Th(ua)| <k, |ug| < h, |us| > h}
and

A=Az €U :|uy—Typ(ur)| <k, |us| <h, |ug| <h},

Al ={z €U :|uy—Typ(ur)| <k, |us| > h} and

Ay ={x €U :|ug— Th(ur)| <k, |us| <h, |uz| > h}.
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Notice that

{z €U :|ug —Th(ug)| <k} =AgUA UA, and
{x €U :|ug—Th(ur)| < k} = AgU A} U A .

Now we choose h. > 0 (depending on k) such that for every h > h.

||vui||l£;(1{h§|ui\§h+k}) <e and HVWHLP({h—kQuﬂgh}) <e and
(5.7)

1 )
! / Fdet L / Gl do < = (5.8)
p

{lui|>h} {luil>h}

for i = 1,2. (Here we again use the decomposition pu = F' — div (G).)
The estimates (5.7) follow from Lemma 5.6 (use the test function 7} (u—
Th—r(u)) to get the last estimate), and the estimate (5.8) follows from
Lemma 5.5.

Next we fix h > h. and notice that Ti(u; — Th(ug)) and Ty (ug —
T (uy)) are admissible test functions for renormalized solutions u; and
ug, respectively. Here wt> = k when u; > k+ h and w™>° = —k when
u; < —k — h. Using these test functions, we get

I::/a(x, Vuy)-VTi(uy —Th(ug)) dx+/a(x, Vug)-VTi(ug—Th(uy)) dx

U U
= /Tk(ul — Th(ug)) du+ /Tk(ug — Th(wy)) du=:J
U U
(5.9)
Since Ay = A) = {|ur —ua| <k, |u1] < h, |ug| < h}, we have
I, ::/a(z, Vuy) - (Vuy — VTh(ug)) dx
——
Ao =u2
+ /a(z, Vug) - (Vug — VTy(uy)) dx (5.10)
A} =u

= /(a(x, Vuy) — a(x, Vuy)) - (Vuy — Vug) dx .

Ao
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Moreover,

L ::/a(x, Vuy) - (Vuy — V Ti(ug)) de

Ay —h
+/a(x,Vu2) - (Vug = VTy(uy)) do
A —h

:/a(a:, Vuy) - Vuy de + /a(x, Vusy) - Vug dx

Ay Al
(M1)
> </ |Vui|P do + / |Vus|? dx) >0
Ay Y

and

Iy ::/a(x, Vuy) - (Vuy — V Ti(ug)) de

As =uz2
+/a(x,Vu2) - (Vug = VTy(uy)) do
——
Al =u1
(1)
> — /a(x, Vuy) - Vug do — /a(x, Vus) - Vuy dx .
Az Al

ThUSI:IQ—l—Il—l—IQ zlo—l—lg
Next we estimate the integral I,. Using Holder’s inequality, we get

/a(x, Vuy) - Vug dx

Ao
1/p' 1/p
< / la(z, Vuy) [P’ da / |Vug|P dx
{(h<lur| <h+k} {h—k<|uz|<h}
1/p 1/p
(M2) ,
< v / |V [P P~V da / |Vus|? dz
{h<|u1r|<h+k} {h—k<|uz|<h}

-1
=Y IVullZo thsiuni<niayy 1VU2lloth—k<iuai<ny) 5

and

/a(a; Vuy) - Vuy dr <y HVU2HZ£;(1{hg|u2|gh+k}) ||VU1HL”({h—kSIu1\Sh}) :
Ay
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Conditions (5.7) now assure that I, > —Ce?, and thus
Ih<I—I,<I+Ce. (5.11)

Now we estimate the integral J in Equation (5.9). Since Ay = A,
we first see that

Jo = /Tk(ul () s+ /Tk(ug ~Th(w)) dp

Ao Al
= /Tk(ul — Us) du+/Tk(u2 —uy) du=0.
————
Ao Ao =—Ty(u1—us2)

Using the decomposition p = F — div(G), we next calculate with
Young’s inequality

Jp = /Tk(ul — Th(ug)) du

Aq
= /FTk(ul — Th(u2)) dx + /G . VTk(Ul - Th(u2)) dz
A1 Al
1 / 1
Aq A1 Ay

(5.12)
In the set A; it holds that

VTk(ul — Th(U2>> == V(Ul — h) = Vu1
h—k<|u| <h+k,

so that by conditions (5.7) and (5.8) we have J; < Cse.
A similar calculation for the set A,, together with the facts that

[VTi(ur = Th(u2))[” = [V(wr = u2) [P < [Vun [P + [V |?
h<|u| <h+k
h—k <|us| <h

in the set A,, gives us

Joy 1= /Tk(ul — Th(u2)) d,LL < 036 .

Ao
Similarly,
J{ = /Tk(UQ — Th(ul)) d,u < 046
A
and

Jy = /Tk(ug — Th(uy)) du < Cse .
Ay
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Combining these estimates, we have

/ To(un—T (u2)) dit / To(ua—Th (u1)) dpt < Coe . (5.13)

{lur =T (u2)|<k}

We still need to integrate over sets U N {|uy
— Th(uy)| > k}. For this we define

— Th(u)| =k, [us] < h, Jug| < R},
— Th(u)| = k, [ua| = h}
— Th(u2)| > Kk, lug| > h}

U N {]uz
By={z€eU:
Bi={zxeU:
By={zeU:

and
By={z€U:
Bl ={xe€U:
By ={xe€U:

First we see that B,
so that

|U1
|uy

|U1

|U2
|U2

|U2

{lug—Tp (u1)|<k}

and

(ul)‘ Zk? |’LL1| <h7 ‘u2| <h} )
Th(ur)| > k, |ur| > h} and
Th(ui)| > k, [us| > h} .

I = /Tk(ul () s+ /Tk(ug ~Th(w)) dp

Bo

By

:/Tk(ul—ug) du+/Tk(u2—u1) dp=20.
———

Bo

Moreover, since

Bl =—Tg(u1—u2)

Tk(ul - Th(UQ)) =4k in Bl U BQ 5
Tk(UQ - Th(ul)) ==xk in B{ U Bé 5
and hence
VTk(ul — Th(u2>> =0 in Bl U B2 and
VTi(ug — Th(uy)) =0 in BjUB;,

— Th(ug)| > k} and

=By ={x €U :|us—ug| > k,|ui| <h, |ug| <h}

thus the condition (5.8), together with calculations preceeding (5.12),

shows that

/ To(ur—Th (1)) dpit

{lur =T (uz)| 2k}

Combining (5.9) —

{luz=Th (u1)| 2k}

(5.11), (5.13) and (5.14), we now have

/ (a(z, Vi) — a(z, Vo)) - (Vug — Vus) da

Ao

<I+C1€2:J—|—Clg2<C§€+C7€+0152.

/ To(ua—Th(wr)) dps < Cre .

(5.14)
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Since this limit does not depend on the choice of h(> h.), and since
Ay converges to {|u; —us| < k} as h — oo, we finally have

(a(z, Vuy) — a(z, Vus)) - (Vuy — Vug) dz <0
{lur—ua|<k}

for any k£ > 0. This implies that Vu; = Vuy almost everywhere in U by
(M3) . Considering the similar boundary conditions for both solutions,
we have uniqueness of the solution in U. O

The last thing in this chapter is an important lemma for the future
references. In chapter 6 we are dealing with renormalized solutions in
an open set ), but we are mainly interested in their behaviour in a
special quasi open subset of 2. The uniqueness proof above holds only
for open sets, and thus we have to replace it with a special version (see
Lemma 6.4) in a way that also holds for quasi open subsets. For this
purpose we need to know that the ”"renormality condition” 5.1 (2) also
holds in quasi open subsets.

Sadly, the proof of the following lemma only holds for measures that
are absolutely continuous with respect to the p-capacity. This is one
of the main reasons why the results obtained in chapter 6 cannot be
generalized straight away for any bounded Radon measures.

Lemma 5.8. If p € My(Q2) and u € /WL”(Q) is a renormalized solu-
tion in ), then it is a renormalized solution also in every quasi open
subset U C ().

Proof. Let u be a renormalized solution in €2 and U a quasi open subset
of €. It is known that w is a renormalized solution in every open
subset V' O U. Now we may calculate for every test function w €

Wo(U) N L*(U)

‘/a(z,Vu)-dem—/wd,u‘
U

U
= /a(a:,Vu)-dea:— /a(a:,Vu)~dex—/wd,u'
v V\U U
= /wdu—/wdu'
v U
= /wdu+/wdu—/wdu‘:0
U V\U U

since w = 0 quasi everywhere on V\U, and thus Vw = 0 quasi every-
where on V\U and fV\U w dp = 0. O
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6. Strong comparison principle

This chapter concentrates on representing a version of the compari-
son principle for renormalized solutions. Most of the (technical) work
is done in Theorem 6.3 and in the following Lemma 6.4. The main re-
sult is, however, rephrased in a stronger form in Theorem 6.7 in order
to cut out some technical details from the proof of 6.3. The end of the
chapter concentrates on finding some a priori conditions to guarantee
the favourable conditions for our comparison principle.

Throughout this chapter, we are considering the open and bounded
set €, measures pi, 3 € Mo(€2) such that ps > pg, and respective

—~

renormalized solutions uy,us € Wy?(Q). We also have to assume an
additional hypothesis on the operator a, namely, the Holder continuity
with respect to &:

la(z, &) — alz, &) < (5] + [E)P2E =&, ifp>2,
|a(z, &) — a(z, &) < 41§ = &P, if p <2

for almost every z in © and for every &, & in RY, where v > 0 is a
constant.

The main theorem roughly states that the difference of two solu-
tions is minimized in the neighbourhood of 9€2. From that we may
deduce that if we have two solutions that do not change order in some
neighbourhood of 0f2, then they keep the same order in the whole €.
Unfortunately, the proof relies on the fact that the measures in ques-
tion are absolutely continuous with respect to the p-capacity, and thus
we cannot use these results straight away to show the uniqueness of
renormalized solutions for any bounded Radon measure.

We start with a technical lemma that introduces some important
sets and tools for the later calculations. Notice that the result 6.1 (2)
is obvious in the whole €2 in the case of the N-dimensional measure.
The main purpose for Lemma 6.1 is to show that this kind of estimates
can be done also for (N — 1)-dimensional measures in proper (N — 1)-
dimensional subsets of €.

Lemma 6.1. Let k > 0, uy,us € W“’(Q) and define
E, = {ZL’ eQ: Tk(UQ)(ZE) — Tk(ul)(a:) < t} .

Then the following are true for almost everyt € R:

(1) Ey has finite perimeter

(2) (a(z, VTi(u2)) — a(z, VTi(w1))) - (VTi(us) — VTi(u1)) > 0 for

HN 1 q.e. x € 0, Fy

(3) (a(z, VTi(us))—alz, VI (w)))- Vg, >0 for HN"g.e. v € ,Ey,
Proof. (1): Let k > 0. Since Ti(u;) € W'?(Q) for ¢ = 1,2, Theorem
1 in section 5.5 from [7] shows that Ej; has finite perimeter for almost
every t € R.

(6.1)
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(2): Let k& > 0 and define
Ap:={z € 0,Ey, : (a(z, VTi(us)) — a(z, VI (w)))-
(VTk(Ug) — VTk(ul)) < O}

We claim that |A;|,—; = 0 for almost every ¢ € R. Assume by contra-
diction that

Ty :=|{t € R:|Aip1 >0}, =a>0,
and define for i = 1,2, 3, ...

1
TZ- = {tGR ‘At|n—1 > ;} .

Now

Uzn=7 and TichcThyc..,
=1

so that

lim [T =|T|=a>0.
This means that there exists ig € N such that |T;,| > a/2 and |A|,,—1 >
1/iy for every t € T;,. From this we get

{z e U (alz, VIi(u2))— a(z, VIi(u1))) - (VTi(uz) —VTi(u1))} < 0|

a
>— >0
210

which is a contradiction because of the assumption (M3).
(3): Let £ > 0 and define

By:={z € 0.Ey, : (a(z, VIi(us2)) — a(z, VT (u1))) - Vp, <0}.

We claim that |By|,—1 = 0 for almost every ¢ € R. Assuming by
contradiction that

IT|y:=[{t € R:|B|n—1 >0}, =b>0
leads us to the same conclusion as before, that is,

s

teR
Since Ty (us) — Ti(u1) € WHP(Q), we know that
o VTk(Ug) - VTk(Ul)
v, =
e | VTi(ug) — VTi(u)]

(see [7], section 5.1, Example 1). From this it follows that we can find
a set D C Uyer By such that |D|, > 0 and

(a(agVTk(ug)) —a(x, VTk(ul))) v,

>c>0.

n

LN ae.

.tk VTk(u2> — VTk(ul)
|VTk(uz) — VT (u1)]

= (a(z, VTi(u2)) — a(z, VT (w1))) >0
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in D by the assumption (M3). This is, however, a contraction because
of the definition of the sets B;. O

Definition 6.2. For § > 0 define a d-neighbourhood ¢, of 99 as
Uy = {x € Q: dist(z,00) <6} .

Theorem 6.3. Let ) be an open and bounded set, 1 < p < N and
f, po € Mo(2) such that ps > py. If the condition (6.1) holds and
uy, Ug are respective renormalized solutions such that us > uy quasi
everywhere in €2, then

ess inf (ug — uy) > ess inf (ug — uy) for a.e. 6 >0 (6.2)
Q
o0

where essential infimums are considered with respect to the p-capacity.

Proof. Let 7 = ess inf (uy — uy) with respect to p-capacity. We may
o0
assume that 7 > 0, otherwise the claim is trivial. Assume by con-

tradiction that there exists a Borel set B C 2 of positive p-capacity
such that us —u; < 7 on B. Choose g € B and t > 0 such that
(ug —up)(xo) <t < 7.
First, define

Et:{UQ—ul <t},

Ey = {Tk(UQ) — Tk(ul) < t} .
Since u; and uy are quasi continuous functions by Remark 3.8, we know
from Remark 3.2 that the set E}; is quasi open. Moreover,

Ey, C By, for I < k E; C Ey, for any k> 0 .
Also notice that
Eg\E; C{x € Q:|u1| > k or |us| > k}

and since cap, ((Udg) N{|us| > k}) — 0 as k — oo by Lemma 3.9, we
deduce that for every € > 0 there is k. > 0 such that

cap, (Upn) N [Eu\E]) < e (6.3)

for every k > k..
Now let € > 0 and choose ky such that

/ (Vi 4 |Vl dHY L < & (6.4)
Ua)CN0x B [{lur|>ko }U{ Jua|>ko}]

where k > kg and v > 0 is the constant from the assumption (M2). This
inequality is true for some H!-positive measured set of real numbers ¢
from the fixed interval T := ((uz — 1) (1), 7) (which is enough for our
purposes, since all the other following requirements are true for almost
every t, and also the integrand is an L'-function for almost every t).
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If not, then the integral above would be greater or equal than ¢ for
almost every t € T'. Since

U @.Bu 0 [{Jua] > ko} U {Juz| > ko}]) € ({Jua] > ko} U {lua| > ko})

and the sets 0, Ey, are disjoint with respect to ¢, we would then have

/ (VP [Vua =Y dHY > T«
Uda)CN [{lur]>ko}U{uz|>ko}]

by Fubini’s theorem. This would be a contradiction for big enough kg

by Lemma 5.5 and the absolute continuity of the integral with respect

to the measure. Notice that the choice of ky does not depend on k.
The second assumption for the choice of kg is that

/ (Va4 [V dHY <= . (6.5)
{ B \ B N0, Upg)C

This is possible because of (6.3) and the proper choice of ¢, .
Now define

Vi i= By N ()¢ CC Q
and notice that Vj, has finite perimeter. The standard mollification of
the characteristic function of Vj, is denoted by Xéko € C(Q). Also
define
po = pg — p1 > 0.
Now we choose ¢ (depending on k) such that

/Xvkod,uo < /X?/kod,UO‘FE (6.6)
Vi Vieo

and

/([a(z, Vug)—a(z, Vuy)|* —[a(z, Vuy)—a(, Vul)])z/vko dHN Y < €.

0. Vi
(6.7)

The first inequality is true since quasi every point from V}, is a Lebesgue
point, and thus the mollification of characteristic function converges al-
most everywhere with respect to the absolutely continuous measure .
The second inequality follows from the L!-convergence of mollification
with the proper choice of ¢ (see Lemma 6.1).

Another standard mollification of a function is denoted by [-]7. Next
we choose 7 (depending on ¢ and thus from kg) such that

' / ([a(z, Vug) — a(z, Vug)]" = [a(z, Vug) — a(z, Vuy)]) fo/ko dzr| < e,

(6.8)
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<e.

/[( la(z, Vug)—a(x, Vuy)]") = [a(z, Vus)—a(z, vul)ﬂ vy, dHY!

0.V

(6.9)
The first one follows from the L!-convergence of mollification. Since
the n-sequence ([a(z, Vus) — a(z, Vul)]”)5 is uniformly bounded and
equicontinuous for any fixed (small) £, we have uniform convergence by
Arzela-Ascoli’s theorem, and thus the second assumption is possible.
Now we start our calculation noticing that since us > uy +7 > uy +1
q.e. in Uy, we have cap,(E; Nf),) = 0, and thus

po(Ee) = (e 1)) < ol B, 01 0oo)) = [ s, diin (610

Vio

because of the fact that E; C Ey, . Using (6.6), the definition of the
renormalized solution and the non-negativity of the measure and the
mollification, we may now calculate

/XVkO dpgy < /Xéko dpog+e = /[a(a:, VuQ)—a(x,Vul)]-Vxﬁ/ko dz+e .
Vi Q Q

(6.11)
Then we continue using (6.8)
/[a(x, Vuy) — a(x, Vuy)] - Vxéko dr + €
0
< /[a(x, Vuy) — a(x, Vuy)]" - Vxﬁ/ko dx + 2¢e (6.12)
0

= — /div ([a(z, Vug) — a(z, Vuy)]") X%ko dx + 2¢
Q

since by Theorem 4.9 (we may assume that ) has finite perimeter by
considering a slightly smaller set) and the fact that Xf/k = 0 on 012,
0

we have

/div ([a(z, Vus) — a(z, Vuy)]" X%’ﬂo) dx

= [ la(e V) =l Tl v 17 =0
o0
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Using Fubini’s theorem with the fact that dist(V%,, Q) > ¢ > 0, we
may, furthermore, calculate (assuming £ < 0)

- /div (la(z, Vuz) — a(z, Vui)]") X i dx + 2¢

Q
= — / div <([a(937VuQ) - a(x,Vul)]”)g) dx + 2¢ (6.13)
Vi
= — /([G(ZE, Vuy) — a(z, Vul)]”)fl/vko dHN !+ 2e .
2. Vi

by Theorem 4.9.
Now we use (6.9) to obtain

- / ([a(z, Vus) — a(z, Vul)]”)gyvko dHN ! 4 2¢

0V,

[ [(fae. V) - atar, Y)Y’

94 Vi
— [a(z, Vus) — a(x,vul)]f] vy, dHYD(6.14)

— /[a(x, Vuy) — a(x, Vuy))* Wi, dHN ™!+ 2¢
0. Vi

<= /[a(x7Vu2) — a(z, V)¢ Wi, dHN ! + 3¢ .
0.V

Moreover, using (6.7), we have

- /[a(a:, Vuy) — a(z, Vuy))* Wi, dHN ™ + 3¢

V)
" (6.15)

< — /[a(a:, Vug) — az, Vui )| vy, dHN !+ 4e .

0 Viy

Finally, since VTj(u;) — Vu; by definition (HY"1-a.e. for a.e. t from
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which the integration set 0, Vi, depends) and a(z, VT (u)) is continuous
with respect to VT (u), we can choose k > ko such that

— a(z, Vug) — alz, Vur)] vy, dHN 1+ 4e
[a( o

0% Vi
" (6.16)

< - /[a(ﬂf, VTI{:('UQ)) - (Z(.T, VTk(Ul))] I/Vko dHN_l + 5e .
0« Vi

Next, we want to modify our integration set from 0,V;, to 0.V} :=
O.(Eye N (U),)°). To this end we first write

OV = [6,,)° N O Eyyy] U [Eg, N 0 (1)
Vi = [

Q

Q C]

)¢ N 0. Ew] U [Ey N O.(),)] -

First notice that since k > kg, we have E;, C Ey, C Ey,, and thus

‘ / [a(z, VTi(u2)) — a(x, VTi(ur))] vy, dHN

Etgy MO« (ugﬂ )¢

_ / (a2, VTi(un)) — alz, VTi(un))] vy, dHY

Eend. Uda)C
:\ [l VTi) — ot VTiun) oy, d
(Bt \Eek) 0. Upg)C
< / IV Tk(2) P + VT ()P0 dHY < &
(Beio \E)NDs Upa)C

by the assumption (M2) and (6.5).
Next we see that

(Z/{gg “N 0. B, N {Jua] < ko, Jua| < ko}
= ),)° N 8. Ey. N {|ur| < ko, |ua| < Ko}
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so that we only need to compare the difference in the set
{Jug| > ko} U {|ua| > ko}. The requirement (6.4) now gives us

[ ol VIu) ~ ala, VT3 ) g, art*

Upa) no. Elk,

= Vi)~ afe VT ) a1

(ugg)cﬂa*Em

< ‘ / la(x, VT (u2)) — a(x, VT (u1))] vy, dHN
Upo)C N0u By [{[u|>ko}U{|uz|>ko}]

| ol VTu(u) = ol TTu(a))] g,

Uda)C N0 By [{Ju1|>ko}U{|uz|>ko}]

+

IN

v (|Vur [P 4+ [ Vug|P ) dHN !
Ox Eygg N [{|u1|>ko}U{|uz|>ko}]

+ / v (|Vur [P 4 Vg [P ) dHN !

s By [{Ju1]>ko}U{|uz|>ko}]
< 2¢.

(IT)
Using the estimates (I) and (II), we can now continue from (6.16) to
get

~ [lae. V()  ale VTu(ur))] i, dHY T 52
8*Vk0
< = / [CL(I, VTk(UQ)) - a(m, VTk(U1))] Z dHN-!
Etkma*(Uggz)c

— [ o VTitw) — o VT ) g a5

U)C MO By,
(6.17)
Now we want to show that
HN N ( By, NOU)y)Y) — 0 ask — oo (*)

To obtain this, we first calculate
HN (B, N 0L (U)g)C)
— HY (B, 1 0. () (A)
+HYTH(Bu\E) N 0. (Uga)©) - (B)
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Since capp(l/{gg)c N Ey\E;) — 0 as k — oo and HN 1 (0, (U)g)¢) <

oo (6-neighbourhood has finite perimeter), we instantly get (B) — 0
from the absolute continuity of the H¥~!-measure with respect to the
p-capacity.
Now we only have to show that (A) = 0, and this follows by using
a smaller J-neighbourhood if necessary. The claim is actually true for
almost every 0 < 0" < d, since if thereisaset £ = {0’ : ' <4, (A) > 0}
with positive H!-measure, we find by using arguments similar to those
in Lemma 6.1 that |E; Ntfg|,, > 0. This is, however, a contradiction
with the original assumption us > u; almost everywhere in Ugﬂ.

Finally, by the assumption (M2), we may estimate for every k

la(x, VT (ug))—a(x, VTi(uy))] Wi,

<|a(@, VTi(uz)) | +|a(z, VTi(u1)))|

< A(IVT(uz) P~ 4 [V () [P71)
< 7(\Vuz\p_1+ |Vu1\p_1)

HN-a.e. in Q. Again, by the arguments of Lemma 6.1 (see also argu-
ments used to show Equation (A)), by choosing a smaller d-neighbour-
hood if necessary, we may assume that this estimate is valid H¥ '-a.e.
in the set Ey, N 0.(U)g)C. This dominating function belongs to L'(Q)
(with respect to H¥ ! for a.e. §) by the definition of renormalized func-
tions, so that by the absolute continuity of integrals, (*) and Lemma
6.1 we have

_ / (0, VTi(us)) — a, VTy(wr))] vy, dHY

Eund.Ug)C

- / [a(z, VTi(u2)) — a(x, VTi(uy))] vy, dHY ! + 8¢

Up)© NdwEy
< 9e
(6.18)
for every k large enough.

From Equations (6.10) to (6.18) we now conclude po(E;) < 9e for
any € > 0, and for the positive measure this means po(E;) = 0, that
is 41 = po in E;. From the construction of E; we also know that
(ug —uy)(x) =t on 0,F; . From the following Lemma 6.4 (see also
Remark 6.5) we now obtain that us = w; + ¢ in E;, and this is a
contradiction with the fact that xy € E;. O

Lemma 6.4. Let 1<p<N, U C 2 be a quasi open set, s, 1 € Mo(£2)
such that ps > pq in Q and py = py in U. If the condition (6.1) holds
and uy,uy € WHP(Q) are two renormalized solutions for Equation (1.1)

respective to measures 1 and pg such that ug = u+C quasi everywhere
i OU, then us = u; + C a.e. inU.
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Remark 6.5. The difference between Theorem 5.7 and Lemma 6.4 is
that here we do not need to assume anything special about the regu-
larity of the functions on the boundary of U. We only need to know
that the solutions agree quasi everywhere on OU. In Theorem 5.7 we
need to know that the boundary value ¢ is bounded, and thus we can-
not apply the uniqueness proof directly for the set U even though wus
and u are solutions also in the set U by Lemma 5.8. In Lemma 6.4 we,
however, need to assume the Holder continuity (6.1) for the operator
a. This is not needed in Theorem 5.7.

Proof of lemma 6.4: Define

0, if |s| > 2n

h,(s) =
(s) { 1, if |[s| <n

continuously such that |kl (s)] = 1/n when n < |s| < 2n. Now let
k > 0 and consider a function

w(x) := hp(uy)hy(ue) T (ug —uy — C) .

Obviously, w(z) € L*(U) and w(z) = 0 when |u;| > 2n, i = 1,2. We
also have Ty (ug — uy) € WP(U) (see Remarks 10.5 and 10.7 from [5]
and Lemma 5.4) so that Ty (uy — uy — C) € Wy P(U), and thus w(z) is
an admissible test function for renormalized solutions.

We now use w(z) as a test function in Definition 5.1 for both solutions
u1, us and subtract the equations to obtain

L+ 1+ I

= / (a(a:, Vug) — a(z, Vul)) - VTi(ug — uy — C) hy(ug) hy(uy) do
U

+ / (a(z, Vus) — a(z, Vuy)) - Vug hiy (us) hy(ur) T (ue — ug — C) da

U
+/ a(z, Vus) — a(z, Vug)) - Vg hy(us) b, (u)) T (us — uy — C) dx

U
/w — ) =0.
U

Since (a(x,Vug) — a(z, Vuy)) - VIi(ug — uy — C) > 0 by (M3) and
0 < hy(u2)hn(u1) — 1 almost everywhere as n — oo, we have

/ (az, Vus) — a(z, Vuy)) - VIi(ug — uy — C) da < |I| + |15
U
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by Fatou’s lemma. If we now show that |I5| + |I3] — 0 as n — oo, we
then have

(a(z, Vug) — a(z, Vuy)) - (Vup — Vuy) do =0
Un{|uzg—u1—C|<k}

for every k > 0. It follows from (M3) that Vuy = Vu; almost every-
where in U, and the boundary condition then implies the result.

Because of symmetry we only need to show that lim,, ., |I5] = 0. To
show this we use the condition (6.1). For p > 2, we may calculate

k

| < 28 / (V| + [Vaa )72 Vs — Vs || Vs de

n
{”S|U2|§2”
|ui|<2n
vk
n
{”S|U2|§2”
|ui|<2n

IA

(|Vug| + |Vu )P~ HVuy — Vuy| do

<2 [0vusl v wuly )7 (5 [ 190 - Vo ar)’

n<|uz|<2n n<|uz|<2n
"z} "z}
1 A .
< 7]{:(5 / 27(|Vual? + [V |P) dz)p <ﬁ / |Vuy — Vuy [P dx)p
{nS\W\S?n {né\uﬂé?n
|ui|<2n |ui|<2n

by using Holder’s inequality in the third inequality.
From the proof of Corollary 5.4 (using a test function 75, (u—Tyu)),
we get
1
lim — / |Vu;|P de =0, i=12.
n—oo N,

|u2\§2n}
|ui|<2n

From this we also get

1 1 1
— / |[Vuy — Vu [P de < — / |Vuy|P do + — / |Vus|? do — 0
n n n
[rspual<on) {lur]<2n} {luzi<2n}
lui|<2n

as n — 00. Thus we have lim,, . |I5| = 0.
In the case p < 2 we use the second inequality from (6.1) to calculate

k
<2 [ (usl - V) V) ds

n<|uz|<2n
{ \7U|1|2§‘En }
1 o1 -
<~k <— |Vug — Vuy [P dx) <— |Vuy P dx) ,
n n
{né\u2|§2n {”S|“2|§2n
|ui|<2n |u1|<2n
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and the result follows as before. O

Remark 6.6. In Theorem 6.3 we assume that ws > wu; in €. This
assumption can be relaxed. The only place where this assumption was
used was at the beginning of the proof, where we must have 7 > 0. To
obtain this we only need to assume that ug > u; in ¢, for some ¢ > 0.
Then we have us > u; in 2 by Theorem 6.3.

Notice that here the case 7 = 0 is not trivial as it was in Theorem
6.3. If 7 = 0, we have to consider the function us + ¢ > wu; to obtain
7 > 0, and the result follows when ¢ — 0.

On the other hand, if

ess inf (ug —uy) =: C' <0,
019

we may then consider functions us := us + C' and wu; for which the
essential infimum in the boundary is non-negative, and the claim again
follows.

With these observations we may rephrase Theorem 6.3 in the follow-
ing form:

Theorem 6.7. Let ) be an open and bounded set, 1 < p < N and
1, po € Mo(QQ) such that ps > pq. If the condition (6.1) holds and
w1, Ug are respective renormalized solutions, then

ess inf (ug — uy) > ess inf (ug — uq) fora.e. §>0,
@ o0
where essential infimums are considered with respect to the p-capacity.

Next we want to find some a priori conditions which would be suffi-
cient to satisfy the assumptions of Theorem 6.3.

Lemma 6.8. Let Q) be an open and bounded set, 1<p<N and p, ps €
M () such that ps > py in Q and define pg = po — p1. Let uy, uy be
renormalized solutions corresponding to measures py and po. If there
erists a set U C Q such that dist(U,0) > 6 for some 6 > 0 and
pa(E) > pi(E) for every E C U with cap,(E) > 0, then uy > u
Lo-everywhere in U.

Proof. Define for k,t > 0
Zr={x €U : Ti(ug) = Tp(u1)}
Z={zeU:uy=wu}
Ey ={z € U :|Tx(u2) — Tx(u1)| < t}

and fix any open ball B C U. Following the ideas from the proof of
Theorem 6.3 we define

fo = fto — 1 >0 and Vi, := Ey, "B CC .
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As in Theorem 6.3, we use X?/k € C5°(Q) as a test function to get
0

/[a(a@VTk(ug)) —a(z, VT (uy))] fo/ dr = /Xf, dug .

Since Z C Zy, C Ey,, we again have

/Xéko dpg > po(Egy N B) —e > puo(ZNB) —¢
Q

for any € > 0. Following the proof of Theorem 6.3 (replacing (¢,)¢
with B), we eventually get

uo(ZNB) < — / la(z, VTi(ug)) — a(z, VIk(uy))] v, dHY ™+ 8¢ .
Bu,nOB

Since Ey, O Eg. D Z;, for s <t and MysoFy, = Zy, we have

_ / a2, VT (s)) — a(w, VTk(ur))] v, dHN?

E,NOB

— — / la(x, VTi(u2)) — a(x, VTi(u))] v, dHN !

as t — 0. Using Corollary 3.7 from [13], we find out that for appropri-
ately chosen balls B C € it holds

VTi(uz) = VTi(uq) HN"Lae. on theset Z,NOB

(otherwise, we would get a contradiction, as in Lemma 6.1). From this
it follows that the last integral is zero so that pg(Z N B) < 9¢ for any
B C Q. Since py is a positive measure and the result holds for arbitrary
e > 0, we may conclude that 1o(Z) = 0. O

As a corollary of Lemma 6.8 we now get a version of the strong
comparison principle:

Corollary 6.9. Let Q be an open and bounded set, 1 <p < N, and
fi, fa € Mo(QQ) such that py > py in Q. Let uy, uy be renormalized
solutions corresponding to measures py and ps. If there exists a o-
neighbourhood U, of O such that us(E) > pi(E) for every E C U
such that cap,(E) > 0, then uy > u; quasi everywhere in Q.

Proof. The result follows from Theorem 6.7 and Lemma 6.8 by choosing
U = o \Usq where € < §, and then letting ¢ — 0. From Lemma 6.8
we now obtain that uy > u; everywhere in U, with the exception of
the set where po = py. This set, however, has zero capacity according
to our assumption, and the claim follows from Theorem 6.7 (see also
Remark 6.6). O
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