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1. Introduction

A function f : A→ Rm, A ⊂ Rn, is said to be L-Lipschitz, L ≥ 0, if

(1.1) |f(a)− f(b)| ≤ L |a− b|
for every pair of points a, b ∈ A. We also say that a function is Lipschitz
if it is L-Lipschitz for some L.

The Lipschitz condition as given in (1.1) is a purely metric condi-
tion; it makes sense for functions from one metric space to another.
In these lectures, we concentrate on the theory of Lipschitz functions
in Euclidean spaces. In Section 2, we study extension problems and
Lipschitz retracts. In Section 3, we prove the classical differentiability
theorems of Rademacher and Stepanov. In Section 4, we briefly discuss
Sobolev spaces and Lipschitz behavior; another proof of Rademacher’s
theorem is given there based on the Sobolev embedding. Section 5 is
the most substantial. Therein we carefully develop the basic theory of
flat differential forms of Whitney. In particular, we give a proof of the
fundamental duality between flat chains and flat forms. The Lipschitz
invariance of flat forms is also discussed. In the last section, Section 6,
we discuss some recent developments in geometric analysis, where flat
forms are used in the search for Lipschitz variants of the measurable
Riemann mapping theorem.

Despite the Euclidean framework, the material in these lectures should
be of interest to students of general metric geometry. Many basic re-
sults about Lipschitz functions defined on subsets of Rn are valid in
great generality, with similar proofs. Moreover, fluency in the classical
theory is imperative in analysis and geometry at large.

Lipschitz functions appear nearly everywhere in mathematics. Typ-
ically, the Lipschitz condition is first encountered in the elementary
theory of ordinary differential equations, where it is used in existence
theorems. In the basic courses on real analysis, Lipschitz functions
appear as examples of functions of bounded variation, and it is proved
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that a real-valued Lipschitz function on an open interval is almost ev-
erywhere differentiable. Among more advanced topics, Lipschitz anal-
ysis is extensively used in geometric measure theory, in partial differ-
ential equations, and in nonlinear functional analysis. The Lipschitz
condition is one of the central concepts of metric geometry, both fi-
nite and infinite dimensional. There are also striking applications to
topology. Namely, every topological manifold outside dimension four
admits a unique Lipschitz structure, while such a manifold may have
no smooth or piecewise linear structures or it may have many such.
On a more practical side, questions about Lipschitz functions arise in
image processing and in the study of internet search engines, for ex-
ample. Finally, even when one considers rougher objects, such as func-
tions in various Sobolev spaces or quasiconformal mappings, vestiges
of Lipschitz behavior are commonly found in them, and the theory is
applicable.

In many ways, the Lipschitz condition is more natural, and more
ubiquitous, than say the condition of infinite smoothness. For example,
families of Lipschitz functions are often (pre-)compact, so that Arzelà-
Ascoli type arguments can be applied. Compactness in the smooth
context is typically more complicated.

Some of the preceding issues will be studied in these lectures in more
detail, while others will only briefly be alluded to. Many important
topics are not covered at all.

References to the topics advertized in this introduction include [18],
[50], [17], [80], [20], [59], [16], [25], [63], [5], [67], [64], [47], [73], [62],
[43].

1.1. Notation. Our notation is standard. Euclidean n-space Rn, n ≥
1, is equipped with the distance

|x− y| := (
n∑

i=1

(xi − yi)
2)1/2

unless otherwise stipulated. The Lebesgue n-measure of a measurable
set E ⊂ Rn is denoted by |E|, and integration against Lebesgue mea-
sure by ∫

E

f(x) dx .

Open and closed balls in Rn are denoted by B(x, r) and B(x, r), re-
spectively; here x ∈ Rn and r > 0. If we need to emphasize the
dimension of the underlying space, we write Bn(x, r). We also write
Bn := Bn(0, 1) and Sn−1 := ∂Bn. The closure of a set E ⊂ Rn is E,
and the complement Ec := Rn \ E.
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Other standard or self-explanatory notation will appear.

1.2. Acknowledgements. I thank the organizers of the 14th Jyväs-
kylä Summer School, especially Professors Tero Kilpeläinen and Raimo
Näkki, for inviting me to give these lectures. I am grateful to Eero Saks-
man for many illuminating conversations about the Whitney theory. I
also thank Ole Jacob Broch, Bruce Kleiner, and Peter Lindqvist for
some useful information, and Bruce Hanson, Leonid Kovalev, Seppo
Rickman and Jussi Väisälä for carefully reading the manuscript and
for their comments.

2. Extension

Every Lipschitz function f : A → Rm, A ⊂ Rn, can be extended to
a Lipschitz function F : Rn → Rm. This means that F is Lipschitz
and F |A = f . In this section, we offer three proofs of this fundamental
result, and discuss the related problem of Lipschitz retracts. The devel-
opment of this section reveals the great flexibility afforded by Lipschitz
functions; they can be glued, pasted, and truncated without impairing
the Lipschitz property.

We begin with some preliminaries.

2.1. Distance functions and quasiconvexity. Distance functions
are simple but important examples of Lipschitz functions. The distance
can be taken either to a point x0 ∈ Rn,

(2.1) x 7→ dist(x, x0) := |x− x0| ,

or more generally to a set E ⊂ Rn,

(2.2) x 7→ dist(x,E) := inf{|x− a| : a ∈ E} .

That dist(·, x0) is 1-Lipschitz is a direct consequence of the triangle
inequality. It is similarly straightforward to check from the definitions
that the function dist(·, E) in (2.2) is 1-Lipschitz, but it is worthwhile
to record the following general fact.

Lemma 2.1. Let {fi : i ∈ I} be a collection of L-Lipschitz functions
fi : A→ R, A ⊂ Rn. Then the functions

x 7→ inf
i∈I

fi(x) , x ∈ A ,

and

x 7→ sup
i∈I

fi(x) , x ∈ A ,

are L-Lipschitz on A, if finite at one point.
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The proof of Lemma 2.1 is an easy exercise.
Note that the set E in (2.2) is not assumed to be closed. On the other

hand, we have that dist(x,E) = dist(x,E). Therefore, one typically
considers closed sets E in this connection. More generally, every L-
Lipschitz function f : A → Rm extends to an L-Lipschitz function
defined on the closure A, simply by uniform continuity.

Lipschitz condition (1.1) is global; it requires control over each pair of
points a, b in A. Sometimes we only have local information. There is a
simple but useful lemma which shows that under special circumstances
local information can be turned into global.

A set A ⊂ Rn is said to be C-quasiconvex, C ≥ 1, if every pair of
points a, b ∈ A can be joined by a curve γ in A such that

(2.3) length(γ) ≤ C |a− b| .
We also say that A is quasiconvex if it is C-quasiconvex for some C ≥ 1.
By the length of a curve γ we mean as usual the quantity,

length(γ) := sup
N−1∑
i=0

|γ(ti+1)− γ(ti)| ,

where the supremum is taken over all partitions 0 = t0 < t1 < · · · <
tN = 1 for a curve γ : [0, 1] → Rn.

A function f : A→ Rm is called locally L-Lipschitz if every point in
A has a neighborhood on which f is L-Lipschitz.

Lemma 2.2. If A ⊂ Rn is C-quasiconvex and f : A → Rm is locally
L-Lipschitz, then f is CL-Lipschitz.

We leave the straightforward proof of this lemma to the reader. Now
consider the “slit plane”,

A := {(r, θ) : 0 < r <∞,−π < θ < π} ⊂ R2 ,

in polar coordinates. The function

(r, θ) 7→ (r, θ/2) , A→ R2 ,

is locally 1-Lipschitz, but not globally Lipschitz. This example shows
the relevance of quasiconvexity in the situation of Lemma 2.2.

The distance function in (2.1) can be defined by using the intrinsic
metric of a set. Let A ⊂ Rn be a set such that every pair of points in
A can be joined by a curve of finite length in A. The intrinsic metric
δA in A is defined as

(2.4) δA(a, b) := inf length(γ) ,

where the infimum is taken over all curves γ joining a and b in A.
Expression (2.4) indeed defines a metric in A, and A is quasiconvex



LECTURES ON LIPSCHITZ ANALYSIS 5

if and only if the identity mapping between the two metrics is bi-
Lipschitz. We recall here that a homeomorphism between metric spaces
is bi-Lipschitz if it is Lipschitz and has a Lipschitz inverse.

The function

(2.5) x 7→ distA(x, x0) := δA(x, x0)

is 1-Lipschitz with respect to the intrinsic metric; it is Lipschitz if A
is quasiconvex. We will return to quasiconvexity in connection with
Lipschitz retracts later in this section.

Finally, we say that a curve γ in a set A, joining two points a and b,
is an intrinsic geodesic if length(γ) = δA(a, b).

2.2. Extension theorems. We prove the important extension theo-
rems of McShane-Whitney and Kirszbraun.

Theorem 2.3 (McShane-Whitney extension theorem). Let f : A→ R,
A ⊂ Rn, be an L-Lipschitz function. Then there exists an L-Lipschitz
function F : Rn → R such that F |A = f .

Proof. Because the functions

fa(x) := f(a) + L|x− a| , a ∈ A ,
are L-Lipschitz on Rn, the function

F (x) := inf
a∈A

fa(x) , F : Rn → R ,

is L-Lipschitz by Lemma 2.1. It is obvious that F (a) = f(a) whenever
a ∈ A. �

The extension F in Theorem 2.3 is the largest L-Lipschitz extension
of f in the sense that if G : Rn → R is L-Lipschitz and G|A = f , then
G ≤ F . One can also find the smallest L-Lipschitz extension of f , by
setting

F (x) := sup
a∈A

f(a)− L|x− a| , x ∈ Rn .

Corollary 2.4. Let f : A→ Rm, A ⊂ Rn, be an L-Lipschitz function.
Then there exists an

√
mL-Lipschitz function F : Rn → Rm such that

F |A = f .

Corollary 2.4 follows by applying Theorem 2.3 to the coordinate
functions of f . The multiplicative constant

√
m in the corollary is in

fact redundant, but this is harder to prove.

Theorem 2.5 (Kirszbraun’s theorem). Let f : A → Rm, A ⊂ Rn,
be an L-Lipschitz function. Then there exists an L-Lipschitz function
F : Rn → Rm such that F |A = f .
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Proof. By dividing the function f by L, we may assume that f : A→
Rm is 1-Lipschitz.

To prove the theorem, the following is a key lemma.

Lemma 2.6. If f is an Rm-valued 1-Lipschitz function on a finite set
F ⊂ Rn, and if x ∈ Rn, then there is an extension of f to an Rm-valued
1-Lipschitz function on F ∪ {x}.

To prove Lemma 2.6, we consider in turn the following assertion.

Lemma 2.7. Let {x1, . . . , xk} be a finite collection of points in Rn,
and let {y1, . . . , yk} be a collection of points in Rm such that

(2.6) |yi − yj| ≤ |xi − xj|
for all i, j ∈ {1, . . . , k}. If r1, . . . , rk are positive numbers such that

k⋂
i=1

B(xi, ri) 6= ∅ ,

then
k⋂

i=1

B(yi, ri) 6= ∅ .

Let us first prove Lemma 2.6 by the aid of Lemma 2.7. Indeed, let
F = {x1, . . . , xk} ⊂ Rn, let f : F → Rm be a 1-Lipschitz map, and let
x ∈ Rn. Set ri := |x− xi| and yi := f(xi). By Lemma 2.7, there exists
a point y ∈ Rm such that |y− f(xi)| ≤ |x− xi| for each i. The desired
extension is accomplished by setting f(x) = y. This proves Lemma 2.6
assuming Lemma 2.7.

Now we turn to the proof of Lemma 2.7. Put

G(y) := max
i=1,...,k

|y − yi|
ri

, y ∈ Rm .

Then G : Rm → R is a continuous function (Lipschitz, in fact) with
G(y) → ∞ as |y| → ∞. It follows that G achieves its minimum at a
point w ∈ Rm, and we need to show that G(w) ≤ 1.

Towards a contradiction, assume that G(w) =: λ > 1. Let J denote
those indices j ∈ {1, . . . , k} for which |w − yj| = rjλ. Pick a point

x ∈
⋂
j∈J

B(xj, rj) ,

and consider the following two sets of directions,

D := { xj − x

|xj − x|
: j ∈ J} ⊂ Sn−1 , D′ := { yj − w

|yj − w|
: j ∈ J} ⊂ Sm−1 .
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It is easy to see from the definitions, and from the contrapositive as-
sumption, that the natural map D → D′ strictly decreases distances.
We therefore require the following additional lemma.

Lemma 2.8. Let g : K → Sm−1 be an L-Lipschitz map, L < 1, where
K ⊂ Sn−1 is compact. Then g(K) is contained in an open hemisphere.

Before we prove Lemma 2.8, let us point out how Lemma 2.7 fol-
lows from it. Indeed, the map between directions, D → D′, strictly
decreases the distances, and so is L-Lipschitz for some L < 1 because
the sets in question are finite. It follows that D′ is contained in an open
hemisphere; say D′ ⊂ Sm−1∩{xm > 0}. But then by moving w slightly
in the direction of the mth basis vector em, the value of the function
G decreases, contradicting the fact that G assumes its minimum at w.

It therefore suffices to prove Lemma 2.8. To do so, let C be the
convex hull of g(K) in Bm

. We need to show that C does not contain
the origin. Thus, assume

λ1g(v1) + · · ·+ λkg(vk) = 0

for some vectors vi ∈ K, and for some real numbers λi ∈ [0, 1] such

that
∑k

i=1 λi = 1. Because g is L-Lipschitz with L < 1, we have that

〈g(vi), g(vj)〉 > 〈vi, vj〉
for every i 6= j. Thus, writing bi := λivi, we find

k∑
i=1

〈bj, bi〉 < 0

for each j. But this implies

〈(b1 + · · ·+ bk), (b1 + · · ·+ bk)〉 =
k∑

i,j=1

〈bj, bi〉 < 0 ,

which is absurd.
This completes our proof of Lemma 2.8, and hence that of Lemma

2.6. It remains to indicate how Kirszbraun’s theorem 2.5 follows from
Lemma 2.6.

We use a standard Arzelà-Ascoli type argument. Choose countable
dense sets {a1, a2, . . . } and {b1, b2, . . . } in A and in Rn\A, respectively.
We may assume that both of these sets are infinite. (If Rn \A is finite,
the extension is automatic; if A is finite, the ensuing argument requires
only minor notational modifications.) For each k = 1, 2, . . . , we can
use Lemma 2.6 repeatedly so as to obtain a 1-Lipschitz map

fk : {a1, . . . , ak, b1, . . . , bk} → Rm
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such that fk(ai) = f(ai) for every i = 1, . . . , k. The sequence (fk(b1)) ⊂
Rm is bounded, and hence has a convergent subsequence, say (fk1

j
(b1)).

Similarly, from the mappings corresponding to this subsequence we
can subtract another subsequence, say (fk2

j
), such that the sequence

(fk2
j
(b2)) ⊂ Rm converges. Continuing this way, and finally passing to

the diagonal sequence (gj), gj := fkj
j
, we find that the limit

g(c) := lim
j→∞

gj(c) ∈ Rm

exists for every c ∈ C := {a1, a2, . . . }∪{b1, b2, . . . }. Moreover, g : C →
Rm is 1-Lipschitz, and g(ai) = f(ai) for each i = 1, 2, . . . . Because C
is dense in Rn, and because {a1, a2, . . . } is dense in A, we have that g
extends to a 1-Lipschitz map Rn → Rm as required.

This completes the proof of Kirszbraun’s theorem 2.5. �

Remark 2.9. (a) The crucial lemma in the preceding proof of Kirszbraun’s
theorem was Lemma 2.7. Gromov has asserted [19] an interesting vol-
ume monotonicity property that also can be used to derive Lemma 2.7.
Namely, assume that

B(x1, r1), . . . , B(xk, rk) and B(y1, r1), . . . , B(yk, rk)

are closed balls in Rn, k ≤ n+ 1, such that |yi− yj| ≤ |xi−xj| for each
i, j ∈ {1, . . . , k}. Then

(2.7) |
k⋂

i=1

B(xi, ri)| ≤ |
k⋂

i=1

B(yi, ri)| .

It is easy to see that Lemma 2.7 follows from this assertion, thus pro-
viding another route to Kirszbraun’s theorem.

(b) The preceding proof of Kirszbraun’s theorem 2.5 works the same
when one replaces Rn by an arbitrary separable Hilbert space, and Rm

by an arbitrary finite dimensional Hilbert space. Standard proofs of
Kirszbraun’s theorem typically use Zorn’s lemma (in conjunction with
Lemma 2.7 or a similar auxiliary result). The preceding Arzelà-Ascoli
argument does not work for infinite-dimensional targets.

2.3. Exercises. (a) Let {Bi : i ∈ I} be an arbitrary collection of
closed balls in a Hilbert space with the property that⋂

i∈F

Bi 6= ∅

for every finite subcollection F ⊂ I. Prove that⋂
i∈I

Bi 6= ∅ .
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(Remember that bounded closed convex sets are compact in the weak
topology of a Hilbert space.)

(b) Prove Kirszbraun’s theorem in arbitrary Hilbert spaces.

It is a problem of considerable current research interest to determine
for which metric spaces Kirszbraun’s theorem remains valid. There
are various variants on this theme. One can consider special classes
of source spaces and target spaces, or even special classes of subspaces
from where the extension is desired. Moreover, the Lipschitz constant
may be allowed to change in a controllable manner. It would take us
too far afield to discuss such general developments (references are given
in the Notes to this section), but let us examine a bit further the case
of subsets of Euclidean spaces.

2.4. Lipschitz retracts. A set Y ⊂ Rm is said to have the Lipschitz
extension property with respect to Euclidean spaces, or the Lipschitz
extension property, for short, if for every Lipschitz function f : A →
Y , A ⊂ Rn, extends to a Lipschitz function F : Rn → Y . Note
that we are asking for the mildest form of extension, with no control
of the constants. In applications, a more quantitative requirement is
often necessary. Sets with the Lipschitz extension property can be
characterized as Lipschitz retracts of Euclidean spaces.

A set Y ⊂ Rm is said to be a (Euclidean) Lipschitz retract if there is
a Lipschitz function ρ : Rm → Y such that ρ(y) = y for all y ∈ Y . Such
a function ρ is called a Lipschitz retraction (onto Y ). We also say that
Y is a Lipschitz retract of Rm in this case. Note that if Y is a Lipschitz
retract of some Rm, then it is a Lipschitz retract of every RM containing
Y . Thus the term “Euclidean Lipschitz retract” is appropriate.

A Lipschitz retract is necessarily closed, as it is the preimage of zero
under the continuous map y 7→ ρ(y) − y. Therefore it is no loss of
generality to consider only closed sets in the ensuing discussion.

Proposition 2.10. A closed set Y ⊂ Rm has the Lipschitz extension
property if and only if Y is a Lipschitz retract of Rm.

Proof. If Y has the Lipschitz extension property, then Y is a Lipschitz
retract of Rm, for the identity function Y → Y must have a Lipschitz
extension to Rm. On the other hand, if ρ : Rm → Y is a Lipschitz
retraction and if f : A → Y , A ⊂ Rn, is a Lipschitz function, then
ρ ◦ F : Rn → Y provides a Lipschitz extension of f , where F : Rn →
Rm is an extension guaranteed by the McShane-Whitney extension
theorem. �
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Every Euclidean Lipschitz retract must be contractible. Indeed, if
ρ : Rm → Y is a retraction, and h : Rm × [0, 1] → Rm is a continuous
deformation of Rm to a point y0 ∈ Y (that is, h(x, 0) = x and h(x, 1) =
y0 for all x ∈ Rm), then

H : Y × [0, 1] → Y , H(y, t) := ρ ◦ h(y, t) ,

provides a required homotopy.
Another basic observation is that every Euclidean Lipschitz retract

Y must be quasiconvex. Indeed, if ρ : Rm → Y is an L-Lipschitz
retraction and if [a, b] is the line segment in Rm connecting two points
a, b ∈ Y , then ρ([a, b]) is a curve in Y joining a and b of length at most
L|a− b|.

It is remarkable that the preceding two obvious necessary conditions
for a retract are also sufficient in dimension m = 2.

Theorem 2.11. A closed set Y in R2 is a Euclidean Lipschitz retract
if and only if Y is contractible and quasiconvex. The statement is
quantitative in the sense that the quasiconvexity constant of the retract
and the Lipschitz constant of the retraction depend only on each other.

I learned this result from Jason Miller, who discovered a proof while
working on an REU-project at the University of Michigan during the
summer of 2004.1 We soon found out that Theorem 2.11 follows from
a more general result of Lang and Schroeder [42]. Namely, every con-
tractible planar continuum is a CAT(0)-space in its intrinsic metric,
and [42, Theorem A] implies that Kirszbraun’s theorem holds for such
target spaces; the identity map Y → Y extends to a map R2 → Y
that is Lipschitz with respect to the intrinsic distance. The presumed
quasiconvexity guarantees that a Lipschitz condition holds also with
respect to the Euclidean metric. See [42] and [10] for the definition
of CAT(0) spaces, and [10, p. 310] for the fact cited here. Further
important extensions of Kirszbraun’s theorem in terms of curvature
conditions can be found in [41].

We will not prove Theorem 2.11 in these notes.
In higher dimensions there is a lack of good geometric criteria for

a set to be a Euclidean Lipschitz retract. The following result due to
Hohti [32] provides an implicit characterization.

Theorem 2.12. Let Y ⊂ Rm be a closed set. Then Y is a Lipschitz
retract of Rm if and only if Y is quasiconvex and there exists a Lipschitz

1REU is a U.S. National Science Foundation funded program Research Experi-
ence for Undergraduates.
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map

(2.8) σ : Y × Y × Y → Y

satisfying

(2.9) σ(a, a, b) = σ(a, b, a) = σ(b, a, a) = a

whenever a, b ∈ Y .

In (2.8), the Lipschitz condition for σ is understood with respect to
the metric of R3m ⊃ Y ×Y ×Y . Condition (2.9) stipulates the existence
of a “center of mass”, that varies in a Lipschitz manner.

Proof of Theorem 2.12. First we prove the necessity. Thus, assume
that Y is a Lipschitz retract. It was observed earlier that Y is quasi-
convex. Moreover, by using the retraction map, it is enough to show
that there is a map σ as required for Y = Rm. If m = 1, then we
choose σ to be the “mid-point map”, i.e., from each given triple of real
numbers σ picks the one that lies in the middle (with respect to the
natural order of R). In higher dimensions, we apply the mid-point map
to the coordinates. It is easy to check that σ thus defined is indeed
Lipschitz; condition (2.9) is automatic.

The sufficiency of trickier to prove. We take this opportunity to
introduce a Whitney decomposition of an open set in Rn.

2.5. Whitney decomposition. A system of dyadic cubes in Rn is the
collection D of cubes consisting of all (closed) cubes Q in Rn that have
sides parallel to the coordinate axes, side length 2k and vertices in the
set 2kZn, k ∈ Z. Thus, D is divided into generations, each consisting
of (essentially) disjoint cubes with side length 2k for a fixed k.

Now suppose that Ω is an open set in Rn. It is possible to single out
a collection WΩ of dyadic cubes Q contained in Ω with the following
properties:

(2.10) WΩ consists of pairwise essentially disjoint cubes;

(2.11)
⋃

Q∈WΩ

Q = Ω;

(2.12) `(Q) ≤ dist(Q,Ωc) ≤ 4
√
n `(Q) ;

(2.13)
6

5
Q ⊂ Ω , c(n)Q ∩ Ωc 6= ∅ .
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Here `(Q) denotes the side length of Q, and λQ, λ > 0, is the cube
with same center as Q and with sides parallel to the coordinate axes
such that `(λQ) = λ`(Q).

Note that (2.13) follows from (2.12); one can choose c(n) = 1+8
√
n.

The collection WΩ as above is called the Whitney decomposition of Ω.
There are various ways to construct a Whitney decomposition for an
open set; the precise choice is immaterial in applications. What really
matters is that each cube in the decomposition is roughly the size of
its distance to the complement of Ω, and that only a fixed number of
cubes overlap, even when slightly expanded.

The reader is invited to construct a Whitney decomposition with the
listed properties as an exercise. Alternatively, one can consult [65, pp.
167-168].

We use the Whitney decomposition to record a characterization for
Euclidean Lipschitz retracts.

2.6. Lipschitz contractibility. A set Y ⊂ Rm is said to have the
property LC(k), k ≥ 1, if for every L > 0 there exists L′ > 0 such that
every L-Lipschitz map f : ∂Q → Y extends to an L′-Lipschitz map
F : Q→ Y , whenever Q ⊂ Rk is a k-dimensional cube.

Note that Y has the property LC(1) if and only if Y is quasiconvex.
It is easy to see (by using the bi-Lipschitz equivalence between cubes

and balls) that Y has the property LC(k) if and only if every Lipschitz
map from a (k−1)-dimensional sphere ∂Bk(x, r) to Y can be extended
to a Lipschitz map from the ball Bk(x, r) to Y ; the Lipschitz constant
of the extension can only depend on the constant of the boundary map,
and the dimension.

The letters LC stand for Lipschitz contractibility.

Proposition 2.13. Let Y ⊂ Rm be a closed set. Then Y is a Lipschitz
retract of Rm if and only if it has the property LC(k) for every 1 ≤ k ≤
m.

Proof. The necessity is immediate. Indeed, if f : ∂Q→ Y is a Lipschitz
map, then f extends to a Lipschitz map F : Q→ Rm by the McShane-
Whitney extension theorem. Thus ρ ◦ F : Q → Y is the required
extension, where ρ : Rm → Y is a Lipschitz retraction onto Y .

To prove the sufficiency, let Ω := Rm \ Y , and fix a Whitney decom-
position WΩ of Ω. Let S0 denote the set of all vertices of all the cubes
in WΩ. Then define a Lipschitz map

f0 : S0 → Y

by choosing for each point v ∈ S0 a point in Y that is closest to v.
It follows from the properties of the Whitney decomposition that f0 is
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Lipschitz with constant L0 that depends only on m. Also note that f0

extends continuously to Y by setting f0(y) = y for y ∈ Y .
Next, let S1 denote the 1-skeleton of the Whitney decomposition;

that is, S1 is the union of all the line segments that are the edges of
the cubes in WΩ. We extend the Lipschitz map f0 to S1 by using the
LC(1) property (i.e. quasiconvexity). This extension is easily seen to
be L1-Lipschitz in S1 with L1 depending only on m and the data in the
LC(1) hypothesis (cf. Lemma 2.2). By continuing in this manner, we
get a sequence of maps

fk : Sk → Y , 1 ≤ k ≤ m,

from the k-skeleton Sk of the Whitney decomposition (the definition
for Sk should be clear) that are Lk-Lipschitz with Lk depending only
on m and the data in the LC(k)-hypothesis. Moreover, each fk extends
continuously to Y by setting fk(y) = y for y ∈ Y .

It follows that fm : Rm → Y is a Lipschitz retraction to Y as re-
quired. This proves Proposition 2.13. �

Remark 2.14. Jason Miller [51] has recently proved that every Lipschitz
map from an n-dimensional sphere Sn, n ≥ 2, into the plane extends

to a Lipschitz map from Bn+1
to R2 with the same image. Moreover,

the Lipschitz constant of the extension depends only on the Lipschitz
constant of the boundary map. This result shows that every set in R2

has the property LC(k), for every k ≥ 3.
Miller’s result is a Lipschitz version of the fact that every planar set

is aspherical, meaning that all the homotopy groups beyond the first
two are trivial for such a set. See [12].

We now continue the proof for the sufficiency part of Theorem 2.12.
Thus, let Y ⊂ Rm be a closed set, and let σ be a map as in (2.8) and
(2.9). We will show, by using σ, that Y has the property LC(k) for
each k ≥ 2. This suffices by Proposition 2.13, as LC(1) is part of the
assumptions.

To this end, we use (as we may) balls rather than cubes. Thus, let
S = ∂B be the boundary of a k-dimensional ball B = B(x, r), k ≥ 2,
and let f : S → Y be a Lipschitz map. In what follows, we consider
various Lipschitz maps without specifying their Lipschitz constants;
none of these constants depend on the ball B.

We may assume that x = 0. Write A := B \ 1
2
B for the (closed)

annulus, and let f1 : A→ S be the standard radial Lipschitz retraction,
i.e., f1 maps every line segment [1

2
s, s] to s ∈ S. Next, denote by S+ and

S− the (closed) upper and lower hemispheres of S. Both hemispheres
are bi-Lipschitz homeomorphic to a (k−1)-dimensional cube, and hence



14 JUHA HEINONEN

are Lipschitz retracts. In particular, there exist Lipschitz maps

f2 : B → S+ , f3 : B → S− ,

such that

f2(
1

2
B) = f3(

1

2
B) = e := (r, 0, . . . , 0) ∈ S+ ∩ S− ,

and that f2|S+ =identity and f3|S− =identity.
The preceding understood, we define a map F : B → Y as follows.

First, we have a map

G : A→ Y × Y × Y , G(x) := (f ◦ f1(x), f ◦ f2(x), f ◦ f3(x)) ,

which may not have a continuous extension to 1
2
B. But upon defining

F := σ ◦G : A→ Y ,

we obtain a map that has a continuous extension to all of B by setting

F (
1

2
B) ≡ σ(f(e)) .

This last assertion readily follows from the properties of σ. Because
F |S = f , and because all the maps in question are Lipschitz (with
constants independent from B), we have established the required LC(k)
property.

This completes the proof of Theorem 2.12.
�

Remark 2.15. It is necessary to assume a priori that Y is quasiconvex
in the sufficiency part of Theorem 2.12. For example, every so called
snowflake arc in R2 admits a Lipschitz map as in (2.8) and (2.9), but
contains no rectifiable curves. More precisely, let f : [0, 1] → R2 be an
embedding that satisfies

(2.14) C−1 |x− y|α ≤ |f(x)− f(y)| ≤ C |x− y|α ,

for all x, y ∈ [0, 1], for some 1
2
< α < 1 and C ≥ 1. (It is not

difficult to construct such embeddings, but see for example [72].) Now
let Y := f([0, 1]), and define

σ : Y × Y × Y → Y

by

σ(a, b, c) := f ◦ σ1(f
−1(a), f−1(b), f−1(c)) ,

where σ1 : [0, 1]3 → [0, 1] is the mid point map mentioned in the
beginning of the proof of Theorem 2.12. It is easy to see that σ is
Lipschitz and satisfies (2.9).
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2.7. Example. Let us define a tree to be a connected and contractible
subset T of Rm that can be written as a union of countably many line
segments,

T =
⋃
i≥1

Ii ,

such that any two segments meet at most at one common end point,
that no point in T belong to more than finitely many of the segments,
and that every pair of points in T can be joined by a finite union of
line segments from the collection {I1, I2, . . . }. Note that under this
definition, T need not be a closed subset of Rm.

Every tree T has its intrinsic metric as defined earlier in Section 2.1,
and every pair of points in T can be joined by a unique (intrinsic)
geodesic. We will now look for a map σ : T × T × T → T that is
Lipschitz in the intrinsic metric and such that (2.9) holds. Indeed, if
a, b, c ∈ T , then the union of the three intrinsic geodesics between the
three points is homeomorphic either to a line segment or to a union of
three segments meeting at a point. In the first case, one of the three
points a, b, c lies in between the other two, and we let σ(a, b, c) to be
that point. In the second case, we let σ(a, b, c) to be the unique meeting
point.

It is easy to check that σ thus defined is Lipschitz in the intrinsic
metric; it is locally uniformly Lipschitz and then a variant of Lemma 2.2
can be used. In particular, if T is quasiconvex as a subset of Rm, then σ
is Lipschitz with respect to the underlying Euclidean metric. Because
the closure of every quasiconvex set in Rm remains quasiconvex, we
conclude that the closure of a quasiconvex tree T in Rm possesses a
Lipschitz map σ : T × T × T → T as in Theorem 2.12. In particular,
we have the following result.

Theorem 2.16. The closure of a quasiconvex tree in Rm is a Euclidean
Lipschitz retract.

It is not difficult to construct quasiconvex trees in Rm, m ≥ 2, whose
closure has Hausdorff dimension larger than m− ε, for any prescribed
ε > 0. Note that although every tree T as defined above has Hausdorff
dimension one always, the closure T may have much larger Hausdorff
dimension. We leave the details as an exercise for the reader.

2.8. Exercises. (a) Construct, for a given m ≥ 2 and 1 ≤ α ≤ m, a
compact Lipschitz retract Y ⊂ Rm such that the Hausdorff dimension
of Y is α.
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(b) Show that every Lipschitz retract Y ⊂ Rm with empty interior
is porous with constant that depends only on m and on the Lipschitz
constant of a retraction ρ : Rm → Y .

(A subset Y of Rm is said to be porous if there exists a constant
c ∈ (0, 1) such that for every y ∈ Y and every r > 0 there exists a
point z ∈ B(y, r) such that B(z, cr) ∩ Y = ∅.)

Then conclude that a Lipschitz retract in Rm either has no interior,
or has Hausdorff dimension strictly less than m (only depending on m
and the Lipschitz constant of the retraction).

(Hint: Use the local degree theory as explained, for example, in [56,
Section I. 4].)

For the definition and properties of Hausdorff measure and dimen-
sion, see [50], and for facts about porosity, see [50, p. 156].

Remark 2.17. That closed quasiconvex trees in Rm, as explained in the
preceding example, are Lipschitz retracts also follows from a more gen-
eral result of Lang and Schroeder [42, Theorem B]. This result asserts
that an arbitrary complete and geodesic metric space, where all trian-
gles are κ-thin for every κ ∈ R, is an absolute Lipschitz retract, i.e.
it satisfies the conclusion of the McShane-Whitney extension theorem
2.3 as a target space with respect to arbitrary metric source spaces.
The proof in [42], albeit still elementary, is more involved than the one
given here for the special case.

2.9. Open problem. Let 2 ≤ n < m and let Y ⊂ Rm be a set
that is homeomorphic to Rn. Assume moreover that Y satisfies the
conditions of n-Ahlfors regularity and linear local contractibility. The
first condition means that Y has Hausdorff dimension n and that the
Hausdorff n-measure Hn on Y satisfies the following: there exists a
constant C ≥ 1 such that

(2.15) C−1 rn ≤ Hn(B(y, r) ∩ Y ) ≤ C rn

for every y ∈ Y and r > 0. The second condition means that there ex-
ists a constant C ≥ 1 such that every set B(y, r)∩Y can be contracted
to a point inside B(y, Cr) ∩ Y , for every y ∈ Y and r > 0.

Is Y then a Euclidean Lipschitz retract?
It is known that under the said assumptions Y need not be bi-

Lipschitz equivalent to Rn if n ≥ 3. Every known example to this
effect is nontrivial [61]. It is not known whether, for n = 2, every such
set Y is bi-Lipschitz equivalent to R2.2

2Added in August 2005. Chris Bishop has recently shown that also for n = 2
such a set Y need not be bi-Lipschitz equivalent to R2.
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See [61], [60], [26], [7] for more information about metric parametriza-
tion problems.

2.10. Another proof for the extension. In this subsection, we out-
line yet another proof for the fact that every L-Lipschitz map f : A→
Rm, A ⊂ Rn, can be extended to an L′-Lipschitz map F : Rn → Rm.
By Kirszbraun’s theorem, we know that one can choose L′ = L. By
the simple McShane-Whitney argument, one obtains L′ =

√
mL. Here

we give a proof where L′ depends only on L and n. In fact, this proof
generalizes for arbitrary Banach space targets.

Thus, let A ⊂ Rn and let f : A → Rm be L-Lipschitz. We may
assume that A is closed. Then consider a Whitney decomposition WΩ

of the complement Ω := Rn \A. There is associated with the Whitney
decomposition a Lipschitz partition of unity {ϕQ : Q ∈ WΩ} with
the following properties. By letting C > 1 denote an appropriate
dimensional constant, not necessarily the same at each occurrence, we
have

(a) 0 ≤ ϕQ ≤ 1 and ϕQ|Q ≥ C−1;
(b) ϕQ is supported in CQ ⊂ Ω;
(c) for every x ∈ Ω we have ϕQ(x) 6= 0 for only at most C cubes Q;
(d) ϕQ is Lipschitz with constant C/`(Q);
(e)

∑
Q∈WΩ

ϕQ ≡ 1.

Now let zQ denote the center of a Whitney cube Q, and pick a point
yQ ∈ A that is closest to zQ in A. Note in particular that |zQ − yQ| ≈
`(Q). Then define

(2.16) F (z) :=
∑

Q∈WΩ

ϕQ(z) f(yQ) , z ∈ Ω .

It is easy to see that F : Ω → Rm is Lipschitz and admits continuous
extension to Rn with F |A = f . We leave the details as an exercise.

2.11. Exercise. Show that a partition of unity as in (a)–(e) above
exists. Then show that the function F given in (2.16) extends contin-
uously to A with F |A = f ; morever, this extension is Lipschitz with
constant L′, where L′ depends only on L and n, and

2.12. Notes to Section 2. The beginning material of the section is
standard and can be found in many texts, e.g. in [17], [18], [50]. Our
proof for Kirszbraun’s theorem 2.5 is somewhat different from the usual
sources; typical proofs, even in finite dimensions, seem to use Zorn’s
lemma (as Peter Lindqvist pointed out to me). I learned the proof of
Lemma 2.7 from Bruce Kleiner; similar arguments can be found in [38,
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Section 4], [42], [41], [20, p. 21]. Recently, there has been much in-
terest in finding sharper versions of the McShane-Whitney-Kirszbraun
results, where the extension is required to have minimal possible Lips-
chitz constant in all subregions; see [2].

Euclidean Lipschitz retracts have been considered in geometric mea-
sure theory, e.g. in [18], but there are only a few papers that study
them as such. In particular, as mentioned in the text, very few suffi-
cient criteria for a set to be a Euclidean Lipschitz retract are known.
Proposition 2.13 goes back to Almgren [1]. I learned Theorem 2.12 from
Hohti [32] who builds on an earlier work [75]. The example in 2.14 was
known to Hohti [32], who also discusses Lipschitz retracts in more gen-
eral contexts. Papers [41] and [43] contain more information about
Lipschitz extension problem in general settings. See also [5, Chapter
1]. The proof in subsection 2.10 is due to Johnson, Lindenstrauss, and
Schechtman [35].

3. Differentiability

This section is devoted to the proof of the following fundamental
result.

Theorem 3.1 (Rademacher’s theorem). Let Ω ⊂ Rn be open, and let
f : Ω → Rm be Lipschitz. Then f is differentiable at almost every point
in Ω.

Recall that a function f : Ω → Rm, where Ω ⊂ Rn is open, is
differentiable at a ∈ Ω if there exists a linear map L : Rn → Rm such
that

(3.1) lim
x→a

|f(x)− f(a)− L(x− a)|
|x− a|

= 0 .

If such a linear map L exists, it is unique, called the derivative of f
at a, and denoted by Df(a). We also note that f = (f1, . . . , fm) is
differentiable at a if and only if each of the coordinate functions fi are
differentiable at a.

To analyze condition (3.1) more carefully, suppose that f : Ω → R
is a real-valued function, differentiable at a point a ∈ Ω. For t ∈ R,
t 6= 0, consider the functions

(3.2) ft(x) :=
f(a+ tx)− f(a)

t
,

that are defined for all t small enough. Then

(3.3) lim
t→0

|ft(x)− L(x)| = 0
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uniformly in x ∈ Bn. This procedure can be reversed and we conclude
that a function f is differentiable at a point a if and only if the sequence
of renormalized functions (ft) as in (3.2) converges uniformly in Bn to
a linear function as t→ 0.

Assume now that f : Ω → R is L-Lipschitz, and that a ∈ Ω. Then
the family (ft) consists of uniformly bounded L-Lipschitz functions on
Bn (for small enough t). The Arzelà-Ascoli theorem (see e.g. [31, p.
44]) therefore guarantees that there is a subsequence of the sequence
(ft) that converges uniformly to an L-Lipschitz function on Bn. What
Rademacher’s theorem claims, in effect, is that for almost all points a
in Ω this limit is independent of the subsequence, and that the limit
function is linear. It is important to notice the two separate assertions.

To prove Rademacher’s theorem 3.1, we may assume that m = 1.
The proof is based on a reduction to the case where also n = 1. It is
therefore appropriate to recall this special case in some detail.

Theorem 3.2 (Lebesgue). Let f : (a, b) → R be Lipschitz. Then f is
differentiable at almost every point in (a, b).

Proof. The well known theorem of Lebesgue asserts in fact that every
function of bounded variation on an interval is almost everywhere dif-
ferentiable. Lipschitz functions are examples of functions of bounded
variation. The key point in establishing this result is that every func-
tion f : (a, b) → R of bounded variation can be written as a difference
of two increasing functions, namely

(3.4) f(x) = Vf (x)− (Vf (x)− f(x)) ,

with

(3.5) Vf (x) := sup
N∑

i=1

|f(xi+1)− f(xi)| ,

where the supremum is taken over all finite sequences a < x1 < · · · <
xN+1 < x.

Thus, assume that f : [a, b] → R is continuous and increasing (we
may clearly assume that f is defined and continuous on [a, b]). For
x ∈ (a, b), set

D+f(x) := lim sup
h→0

f(x+ h)− f(x)

h

and

D−f(x) := lim inf
h→0

f(x+ h)− f(x)

h
.

We need to show that D+f(x) = D−f(x) ∈ R for almost every x.
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To do so, we use the important Vitali covering theorem. Let I be a
collection of closed intervals in (a, b) with the property that if a point
x belongs to some interval from I, then for every ε > 0 there is an
interval from I containing x and having length less than ε. Under this
assumption, the Vitali covering theorem asserts that there is a pairwise
disjoint subcollection I1 = {I1, I2, . . . } ⊂ I such that

|
⋃
I1

Ii| = |
⋃
I

I| .

By using this covering theorem, and the definitions for D+f and
D−f , it is easy to check the following inequalities:

(3.6) q |Eq| ≤ |f(Eq)| ,
if D+f(x) > q at every x ∈ Eq, and

|f(Ep)| ≤ p |Ep| ,
if D−f(x) < p at every x ∈ Ep. Similarly, we find for the set

Epq := {x : D−f(x) < p < q < D+f(x)}
that

q |Epq| ≤ |f(Epq)| ≤ p |Epq| ,
which implies that |Epq| = 0. It follows that D+f(x) = D−f(x) for
almost every x ∈ (a, b). Because (3.6) implies that

|{x : D+f(x) = ∞}| = 0

(we must have that |f(Eq)| ≤ |f(b)− f(a)| <∞ for every q), the proof
is complete. �

Note that the Lipschitz condition was completely erased from the
preceding proof. Indeed, the result is really a theorem about differenti-
ation of measures; the (one-dimensional) argument with the variation
function enables us to use measure theoretic and covering arguments.

In the proof of the general Rademacher theorem, we need another
important one variable fact; namely, that the fundamental theorem of
calculus holds for Lipschitz functions.

Theorem 3.3. Let f : [a, b] → R be Lipschitz. Then

(3.7) f(b)− f(a) =

∫ b

a

f ′(t) dt .

Theorem 3.3 again is a special case of a more general fact; namely,
(3.7) holds for all absolutely continuous functions. For the proof of The-
orem 3.3, we refer to any of the standard texts in real analysis. Recall
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however that (3.7) does not hold for all functions of bounded variation,
and that not every absolutely continuous function is Lipschitz.

Armed with Theorems 3.2 and 3.3, we will proceed with the proof
of Rademacher’s theorem.

Proof of Theorem 3.1. By using the extension theorems, we may as-
sume for simplicity and without loss of generality that f : Rn → R is
Lipschitz. The proof splits into three parts. First the one-dimensional
result is used to conclude that the partial derivatives ( ∂f

∂xi
) of f exists

almost everywhere. This gives us a candidate for the total derivative,
namely the (almost everywhere defined) formal gradient

(3.8) ∇f(x) := (
∂f

∂x1

, . . . ,
∂f

∂xn

) .

Next, it is shown that all directional derivatives exist almost every-
where, and can be given in terms of the gradient. Finally, by using the
fact that there are only “countably many directions” in Rn, the total
derivative is shown to exist; it is only in this last step that the Lipschitz
condition is seriously used.

We will now carry out these steps. The first claim is a direct conse-
quence of Theorem 3.2. Indeed, for every x, v ∈ Rn, the function

fx,v(t) := f(x+ tv) , t ∈ R ,

is Lipschitz as a function of one real variable, and hence differentiable
at almost every t ∈ R. Keeping now v ∈ Rn fixed, we conclude from
Fubini’s theorem and the preceding remark that

(3.9) Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t

exists for almost every x ∈ Rn. (To be precise here, in order to use
Fubini’s theorem, one has to first show that the set of those points x
for which the limit in (3.9) exists is measurable.) In particular, as

∂f

∂xi

= Dei
f

for each i = 1, . . . , n, where ei is the ith standard basis vector in Rn,
the formal gradient ∇f(x) as given above in (3.8) exists at almost every
x ∈ Rn.

As a second step, we show that for every v ∈ Rn we have

(3.10) Dvf(x) = v · ∇f(x)
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for almost every x ∈ Rn. To do so, fix v = (v1, . . . , vn) ∈ Rn. Then fix
a test function η ∈ C∞

0 (Rn). We have that∫
Rn

Dvf(x) η(x) dx =

∫
Rn

lim
t→0

f(x+ tv)− f(x)

t
η(x) dx

= lim
t→0

∫
Rn

f(x+ tv)− f(x)

t
η(x) dx

= lim
t→0

∫
Rn

−f(x)
η(x)− η(x− tv)

t
dx

= −
∫

Rn

f(x) lim
t→0

η(x)− η(x− tv)

t
dx

= −
∫

Rn

f(x)Dvη(x) dx

= −
n∑

i=1

vi

∫
Rn

f(x)
∂η

∂xi

(x) dx

=
n∑

i=1

vi

∫
Rn

∂f

∂xi

(x) η(x) dx

=

∫
Rn

v · ∇f(x) η(x) dx .

Because η was arbitrary, equality (3.10) holds for almost every x ∈ Rn.
In the above string of equalities, the second and the fourth are valid

by the dominated convergence theorem (by using the Lipschitz condi-
tion in the first case), and the third is valid by change of variables. The
penultimate equality in turn is valid by using the integration by parts
on almost every line parallel to the coordinate axes, which is possible
by Theorem 3.3.

The last step is to prove the original claim. To this end, fix a count-
able dense set of directions in Rn; that is, fix a countable dense set of
vectors (vi) in ∂Bn. By the first two steps, we infer that there is a set
A ⊂ Rn such that |Rn \ A| = 0 and that

(3.11) Dvi
f(a) = vi · ∇f(a)

for every vi and for every a ∈ A, where we also understand that both
sides of (3.11) exist (the gradient ∇f(a) is still understood formally as
in (3.8)). Now fix a ∈ A. For v ∈ ∂Bn and t ∈ R, t 6= 0, set

D(v, t) :=
f(a+ tv)− f(a)

t
− v · ∇f(a) .
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To prove the differentiability of f at a, we need to show thatD(v, t) → 0
as t → 0 independently of v. To do this, fix ε > 0. Then choose an
ε-dense set of vectors v1, . . . , vN from the chosen dense collection of
directions; i.e., for each v ∈ ∂Bn we have that |v − vi| < ε for some
i = 1, . . . , N . We then find that

|D(v, t)−D(vi, t)| ≤ |f(a+ tv)− f(a+ tvi)

t
|+ |(v − vi) · ∇f(a)|

≤ C · |v − vi| < C · ε ,
where C is a constant independent of v, by the Lipschitz assumption.
Because limt→0D(vi, t) = 0 for each vi, we can choose δ > 0 such that

D(vi, t) < ε

for |t| < δ, for each i = 1, . . . , N . By combining the preceding inequal-
itites, we obtain that

|D(v, t)| < C · ε
whenever |t| < δ, where C is independent of v, as required.

This completes the proof of Rademacher’s theorem 3.1. �

We will give a different proof of Rademacher’s theorem in the next
section (Theorem 4.9).

3.1. Stepanov’s theorem. There is a generalization of Rademacher’s
theorem due to Stepanov. The pointwise Lipschitz constant of a func-
tion f : A→ Rm, A ⊂ Rn, is

(3.12) Lipf(x) := lim sup
y→x,y∈A

|f(x)− f(y)|
|x− y|

.

Theorem 3.4 (Stepanov’s theorem). Let Ω ⊂ Rn be open, and let
f : Ω → Rm be a function. Then f is differentiable almost everywhere
in the set

L(f) := {x ∈ Ω : Lipf(x) <∞} .

The following elegant proof is due to Malý [48].

Proof. We may assume that m = 1. Let {B1, B2, . . . } be the countable
collection of all balls contained in Ω such that each Bi has rational cen-
ter and radius, and that f |Bi is bounded. In particular, this collection
covers L(f). Define

ui(x) := inf{u(x) : u is i-Lipschitz with u ≥ f on Bi}
and

vi(x) := sup{v(x) : v is i-Lipschitz with v ≤ f on Bi} .
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Then (see Lemma 2.1) functions ui, vi : Bi → R are i-Lipschitz for each
i, and vi ≤ f |Bi ≤ ui. It is clear that f is differentiable at every point
a, where, for some i, both ui and vi are differentiable with vi(a) = ui(a).
We claim that almost every point in L(f) is such a point.

By Rademacher’s theorem, the set

Z :=
∞⋃
i=1

{x ∈ Bi : either ui or vi is not differentiable at x}

has measure zero. If a ∈ L(f) \ Z, then there is a radius r > 0 such
that

|f(a)− f(x)| ≤ M |a− x|

for all x ∈ B(a, r) and for some M independent of x. Clearly there is
an index i > M such that a ∈ Bi ⊂ B(a, r). In particular,

f(a)− i|a− x| ≤ vi(x) ≤ ui(x) ≤ f(a) + i|a− x|

for x ∈ Bi, which gives the claim. The theorem follows. �

3.2. Differentiability of quasiconformal mappings. The mild hy-
potheses of Stepanov’s theorem makes the theorem valuable in practice.
We next give an example to this effect, by showing that quasiconformal
mappings are almost everywhere differentiable.

Recall that a homeomorphism f : Ω → Ω′ between two domains in
Rn, n ≥ 2, is quasiconformal if

(3.13) sup
a∈Ω

H(a, f) <∞ ,

where

(3.14) H(a, f) := lim sup
r→0

sup
|a−x|=|a−y|=r

|f(a)− f(x)|
|f(a)− f(y)|

.

Quasiconformal mappings need not be Lipschitz (in any nonempty open
set), nevertheless they satisfy the hypotheses of Stepanov’s theorem in
the sense that Lip(f) <∞ almost everywhere.

Theorem 3.5. Quasiconformal mappings are differentiable almost ev-
erywhere.
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Proof. Denote by H the supremum in (3.13). Then, for a ∈ Ω, we have
that

lim sup
x→a

|f(a)− f(x)|
|a− x|

≤ lim sup
x→a

C(n)H
|f(B(a, |a− x|))|1/n

|a− x|

≤ lim sup
x→a

C(n)H
|f(B(a, |a− x|))|1/n

|B(a, |a− x|)|1/n

≤ C(n)Hµf (a)1/n ,

where C(n) is a dimensional constant and µf (a) denotes the almost ev-
erywhere finite Radon-Nikodym derivative between the Lebesgue mea-
sure and its pullback under f . (Note that quasiconformality was used
in the first inequality only.) The assertion now follows from Stepanov’s
theorem. �

3.3. Notes to Section 3. Except perhaps the proof of the Stepanov
theorem 3.4, the material in this section is standard. The proof of the
Rademacher theorem here essentially follows the presentation in [17].
For a more complete discussion of the classical case of one real vari-
able, see e.g. [57, Chapter 8] or [9]. For the theory of quasiconformal
mappings, see [74].

There has been recently a great deal of activity in extending classi-
cal differential analysis to certain (finite dimensional) metric measure
spaces. In particular, a version of Rademacher’s theorem in such a con-
text was given by Cheeger [14]. See also [36]. For a similar extension of
Stepanov’s theorem, see [4]. Differentiability of Lipschitz functions be-
tween infinite dimensional Banach spaces has been a topic of extensive
research for a long time; see e.g. [5].

4. Sobolev spaces

In this section, we discuss Sobolev functions. In general, Sobolev
functions possess less regularity than Lipschitz functions. Nevertheless,
Lipschitz analysis is useful in this context as well. Here we assume as
known the basic definitions and facts in the theory of distributions and
Sobolev spaces.

Let Ω ⊂ Rn be open and let 1 ≤ p ≤ ∞. The Sobolev space W 1,p(Ω)
consists of all real-valued functions u ∈ Lp(Ω) whose distributional
partial derivatives ∂u

∂xi
, i = 1, . . . , n, are also in Lp(Ω).

According to the well known Sobolev embedding theorem, functions
in W 1,p(Ω), p > n, have continuous representatives. We also have
continuity for functions in W 1,1(Ω) for n = 1, and, in all cases, for
p < ∞, these continuous representatives need not be Lipschitz. For



26 JUHA HEINONEN

1 < p ≤ n, there are nowhere continuous functions in W 1,p(Ω). For
example, it is an easy exercise to show that the function

(4.1) u(x) :=
∑

i

2−i|x− qi|−α , α > 0 ,

is in W 1,p(Bn) for p < n/(α+ 1) whenever (qi) is a countable set in Bn,
and that u is nowhere continuous if (qi) is dense in Bn. Similarly, the
function

(4.2) u(x) :=
∑

i

log log
1

|x− qi|

is in W 1,n(Bn(0, e−e)) whenever (qi) is a countable set in Bn(0, e−e).
It is easy to see that the spaces W 1,p(Ω) are Banach spaces with

norm

||u||1,p := ||u||p + ||∇u||p ,
where ∇u = ( ∂u

∂x1
, . . . , ∂u

∂xn
) is the distributional gradient of u.

We recall the standard approximation procedure. If η ∈ C∞
0 (Rn) is

a function with

(4.3)

∫
Rn

η(x) dx = 1 ,

then the convolution

(4.4) uε(x) := u ∗ ηε(x) =

∫
Rn

u(y) ηε(x− y) dy ,

where

(4.5) ηε(x) := ε−nη(x/ε) ,

is C∞-smooth, and uε → u in Lp(Ω), if u ∈ Lp(Ω) and 1 ≤ p <∞. (To
integrate over Rn in (4.4), we set u to be zero outside Ω.)

We also have that uε → u locally uniformly, if u is continuous. More-
over,

∂iuε = u ∗ ∂iηε = ∂iu ∗ ηε ,

if u ∈ W 1,p(Ω). It follows that smooth functions are dense in the
Sobolev space W 1,p(Ω) for 1 ≤ p <∞.

Essentially, W 1,∞(Ω) consists of Lipschitz functions.

Theorem 4.1. The space W 1,∞(Ω) consists of those bounded functions
on Ω that are locally L-Lipschitz (for some L depending on the func-
tion). In particular, if Ω is quasiconvex, then W 1,∞(Ω) consists of all
bounded Lipschitz functions on Ω.
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Proof. Note that the second claim follows from the first and Lemma
2.2. To prove the first claim, assume first that u : Ω → R is locally
L-Lipschitz for some L. Then u is Lipschitz on each line that is parallel
to a coordinate axis. By using integration by parts on such a line (see
Theorem 3.3), and then Fubini’s theorem, we find that∫

Ω

∂u

∂xi

(x) η(x) dx = −
∫

Ω

u(x)
∂η

∂xi

(x) dx

for each test function η ∈ C∞
0 (Ω), and for each i = 1, . . . , n. This

proves that the almost everywhere existing classical gradient of u is
the distributional gradient as well. Moreover, ||∇u||∞ ≤ L by (3.10).

Next, assume that u ∈ W 1,∞(Ω). Fix a ball B with compact closure
in Ω. The convolutions uε converge to u pointwise almost everywhere
in B. Moreover, we have that

||∇uε||∞,B ≤ ||∇u||∞ <∞
for all small enough ε. On the other hand, the functions uε are smooth,
so that

uε(a)− uε(b) =

∫ 1

0

∇uε(b+ t(a− b)) · (a− b) dt ,

and, consequently,

|uε(a)− uε(b)| ≤ ||∇u||∞|a− b| ,
whenever a, b ∈ B. By letting ε→ 0, we find that

(4.6) |u(a)− u(b)| ≤ ||∇u||∞|a− b|
for a, b outside a set of measure zero in B. Obviously, then, u has a
continuous representative for which (4.6) holds everywhere in B. The
theorem follows. �

Remark 4.2. The proof of Theorem 4.1 gives the following: If u ∈
W 1,∞(Ω), then u is locally ||∇u||∞-Lipschitz. Conversely, if u is bounded
and locally L-Lipschitz, then u ∈ W 1,∞(Ω), the distributional gra-
dient of u agrees almost everywhere with the classical gradient, and
||∇u||∞ ≤ L.

Although Sobolev functions can exhibit rather singular behavior, as
witnessed by the examples in (4.1) and (4.2), there is some regularity
beneath the rough surface. We will next prove the following result.

Theorem 4.3. Let u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then

Ω =
∞⋃
i=1

Ei ∪ Z ,
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where Ei are measurable sets such that u|Ei is i-Lipschitz, and Z has
measure zero.

Theorem 4.3 is an immediate consequence of the following proposi-
tion.

Proposition 4.4. Let u ∈ W 1,p(B), 1 ≤ p ≤ ∞, where B ⊂ Rn is a
ball. Then there exist a measurable function g : B → R and a set of
measure zero Z ⊂ B such that

(4.7) |u(x)− u(y)| ≤ |x− y| (g(x) + g(y))

whenever x, y ∈ B \ Z.

We will show that essentially one can take for g in (4.7) the maximal
function of the gradient of u, cf. Remark 4.6.

Recall that the maximal function of a locally integrable function
f ∈ L1

loc(Rn) is defined as

(4.8) Mf(x) := sup
r>0

∫
B(x,r)

|f(y)| dy ,

where the barred integral sign denotes the mean value over the inte-
gration domain. The well known maximal function theorem of Hardy-
Littlewood-Wiener is one of the fundamental results in analysis. It
states that M maps L1(Rn) to weak-L1(Rn), and Lp(Rn) to Lp(Rn) if
1 < p ≤ ∞. More precisely, we have that

(4.9) |{x : Mf(x) > t}| ≤ C(n)
||f ||1
t

, t > 0 ,

and that

(4.10)

∫
Rn

|Mf(x)|p dx ≤ C(n, p)

∫
Rn

|f(x)|p dx , 1 < p ≤ ∞ .

We will not prove (4.9) and (4.10) here. The standard proof can be
found in many texts, e.g. in [65], [80], [50], [25].

The Riesz potential (of order 1) of a function f is

(4.11) I1(f)(x) :=

∫
Rn

f(y)

|x− y|n−1
dy .

The mapping properties of the Riesz potential are important in proving
the Sobolev embedding theorems, cf. Theorem 4.8. The starting point
is the following pointwise estimate.

Proposition 4.5. Let u ∈ C∞(B) for some ball B ⊂ Rn, and let
x, y ∈ B. Then

(4.12) |u(x)− u(y)| ≤ C(n)
(
I1(|∇u| · χB)(x) + I1(|∇u| · χB)(y)

)
.
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Proof. We have by the fundamental theorem of calculus that

u(x)− u(y) = −
∫ |y−x|

0

d

dt
u(x+ tω) dt

= −
∫ |y−x|

0

∇u(x+ tω) · ω dt ,

where ω = y−x
|y−x| ∈ Sn−1 . Integrating over y then gives

|B|(u(x)− uB) = −
∫

B

∫ |y−x|

0

∇u(x+ tω) · ω dt dy ,

where uB denotes the mean value of u over B. Next, we extend |∇u|
to an integrable function on all of Rn by setting it equal to zero outside
of B, and obtain from the preceding that

|B| |u(x)− uB| ≤
∫

Rn

∫ diam(B)

0

|∇u(x+ tω)| dt dy

=

∫ diam(B)

0

∫
Rn

|∇u(x+ tω)| dy dt

=

∫ diam(B)

0

∫
Sn−1

∫ diam(B)

0

|∇u(x+ tω)| rn−1 dr dω dt

=
(diam(B))n

n

∫ diam(B)

0

∫
Sn−1

|∇u(x+ tω)| dω dt

= C(n) |B|
∫

Sn−1

∫ diam(B)

0

|∇u(x+ tω)| t1−ntn−1dt dω

= C(n) |B|
∫

B

|∇u(y)|
|x− y|n−1

dy .

In conclusion,

|u(x)− uB| ≤ C(n)

∫
B

|∇u(y)|
|x− y|n−1

dy ,

from which (4.12) follows by the triangle inequality. The proposition
is proved. �

Proof of Proposition 4.4. Assume first that u ∈ C∞(B). We use the
definition for the maximal function together with the pointwise esti-
mate (4.12) to achieve (4.7). Thus, fix x, y ∈ B, and assume that x and
y lie in a ball B′ ⊂ B whose diameter does not exceed 2|x− y|. (If this
is not the case, one has to perform a standard “chaining argument”. In
any case, for the purposes of Theorem 4.3, a weaker version of Propo-
sition 4.4 would suffice, where one considers only points x, y ∈ 1

2
B. We
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leave the details here to the reader.) We apply Proposition 4.5 to the
ball B′, and get

I1(|∇u| · χB′)(x) =
∞∑
i=0

∫
B(x,2−idiam(B′))\B(x,2−i−1diam(B′))

|∇u(z)|
|x− z|n−1

dz

≤ C(n)
∞∑
i=1

2−idiam(B′)

∫
B(x,2−idiam(B′))

|∇u(z)| dz

≤ C(n)|x− y|M(|∇u|)(x) ,

as required.
To finish the proof, we use a routine approximation argument to-

gether with (4.9) and (4.10). We leave the details to the reader, and
conclude the proof of Proposition 4.4. �

Remark 4.6. The proof of Proposition 4.4 shows that in (4.7) one can
choose

g(x) := C(n, p)M(|∇u|)(x) ,

for some appropriate constant C(n, p) depending only on n and p.

4.1. Approximate differentiability. A function f : A → Rm, A ⊂
Rn, is said to be approximately differentiable at a ∈ A if there exists a
linear map L : Rn → Rm such that the differential quotient

|f(x)− f(a)− L(x− a)|
|x− a|

, x ∈ A \ {a} ,

has approximate limit zero at a. Recall that a function g : A → R,
A ⊂ Rn, has approximate limit b ∈ R at a ∈ A if

lim
r→0

|B(a, r) ∩ (Rn \ g−1(B(a, ε)))|
|B(a, r)|

= 0

for every ε > 0. The linear map L is called the approximate derivative of
f at a, and denoted by apDf(a). It is easy to see that an approximate
derivative, if it exists, is unique, so the terminology is justified. The
definitions imply that if f is approximately differentiable at a ∈ A,
then a is a point of Lebesgue density of A.

Theorem 4.3 has the following interesting corollary.

Theorem 4.7. Let u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then u is approximately
differentiable almost everywhere.

Proof. Consider ui := u|Ei, where Ei is one of the sets provided by
Theorem 4.3. Then ui can be extended to be a Lipschitz function in all
of Rn. By Rademacher’s theorem, this extension is differentiable almost
everywhere in Ei. Because almost every point of Ei is a Lebesgue
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density point, it is easy to see that the derivative (in the sense of
(3.1)) of the extension of ui is an approximate derivative of u almost
everywhere in Ei. This proves the theorem. �

4.2. Proof of Rademacher’s theorem via Sobolev embedding.
Let us begin with the following Sobolev embedding theorem, cf. Exer-
cise 4.3 (b).

Theorem 4.8. Let u ∈ W 1,p(B), where B ⊂ Rn is a ball, and let
p > n. Then u agrees almost everywhere with a continuous function
such that

(4.13) |u(x)− u(y)| ≤ C(n, p) |x− y|1−n/p||∇u||p,B .

Proof. We use the pointwise estimate (4.12) together with Hölder’s
inequality. Indeed,

I1(|∇u| · χB)(x) ≤ ||∇u||p,B||| · −x|1−n||p/(p−1),B

and a computation gives for the second norm the bound

C(n, p) (diam(B))1−n/p .

Thus, the claim follows for u ∈ C∞(Ω), and the general case follows by
using the convolution approximations. �

4.3. Exercises. (a) Fill in the details in the proofs for Proposition 4.4
and Theorem 4.8.

(b) Prove that I1 maps Lp(Rn) to Lnp/(n−p)(Rn) for 1 < p < n,
and L1(Rn) to weak-Ln/(n−1)(Rn), boundedly. (Hint: Use the maximal
function theorem as in [80, Section 2.8] or [25, Chapter 3], for example.)

The following extension of Rademacher’s theorem is due to Cesari
[13] and Calderón [11].

Theorem 4.9. Let u ∈ W 1,p(Ω) for p > n. Then u is differentiable
almost everywhere in Ω.

Proof. We will show that u is differentiable at every Lp-Lebesgue point
of the gradient ∇u. (The definition for such a point becomes clear from
the ensuing argument.) By basic real analysis, almost every point is
such a point. Indeed, let a be an Lp-Lebesgue point of ∇u, and let

f(x) := u(x)−∇u(a) · x .
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Then f ∈ W 1,p(B(a, r)) for all small enough r > 0, and it follows from
(4.13) that

|u(x)− u(a)−∇u(a) · (x− a)| = |f(a)− f(x)|

≤ C(n, p) |x− a|1−n/p(

∫
B(a,|a−x|)

|∇u(x)−∇u(a)|p dx)1/p

≤ C(n, p) |a− x|(
∫

B(a,|a−x|)
|∇u(x)−∇u(a)|p dx)1/p .

By the Lebesgue point assumption, the last integral average tends to
0 as |a− x| → 0. This proves the differentiability. �

4.4. Notes to Section 4. The material in this section is standard.
For more information about Sobolev spaces, see e.g. [65], [17], [80]. In
[21], Haj lasz took the conclusion (4.7) in Proposition 4.4 as a definition
for Sobolev functions, starting an extensive development of the Sobolev
space theory in general metric measure spaces. See [23], [25], [39], [22],
and the references there. For careful studies on approximate deriva-
tives, see [18] and [17]. Approximate derivatives for Sobolev functions
in general spaces have been studied by Keith [37].

5. Whitney flat forms

The differential of a Lipschitz function f : Rn → R,

(5.1) df(x) :=
∂f

∂x1

(x) dx1 + · · ·+ ∂f

∂xn

(x) dxn ,

is a differential 1-form in Rn with bounded measurable coefficients,

∂f

∂xi

∈ L∞(Rn) .

This is a plain observation in view of the results in previous sections.
There is a deeper connection between Lipschitz functions and dif-

ferential forms with bounded measurable coefficients, which we will
explore in this section. This connection was first realized by Whitney,
who initiated a geometric integration theory in the 1940s [77]. The
theory, which is fully presented in Whitney’s monograph [78], is based
upon geometric objects called flat chains, and their dual objects called
flat cochains. The latter turn out to be identifiable as bounded mea-
surable differential forms with bounded exterior derivative, according
to a result of J. H. Wolfe. Such differential forms are called flat forms;
they are Lipschitz invariant.
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In this section, we present the basic theory of flat forms, including a
proof of Wolfe’s theorem. We begin by reviewing some basic exterior
algebra.

5.1. Exterior algebra. Let V be a real vector space of finite dimen-
sion n. The exterior algebra of V is a graded anticommutative algebra

∧∗V = ∧0V ⊕ ∧1V ⊕ · · · ⊕ ∧nV ⊕ 0⊕ . . . ,

where we have the exterior multiplication

(5.2) v ∧ w ∈ ∧k+lV

satisfying

(5.3) v ∧ w = (−1)klw ∧ v ,
whenever v ∈ ∧kV and w ∈ ∧lV . (Here property (5.2) explains the
term graded and property (5.3) the term anticommutative.) In addition,
we have that

∧0V = R , ∧1V = V .

It follows that if {e1, . . . , en} is a basis of V , then

{ei1 ∧ . . . ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}
is a basis of ∧kV . In particular,

dim ∧k V =

(
n

k

)
.

Elements in ∧kV are called k-vectors of V .
If V ∗ is the dual space of V , we write

∧kV := ∧kV
∗ , ∧∗V := ∧∗V ∗ .

Thus, if {e∗1, . . . , e∗n} is a basis of V ∗, dual to {e1, . . . , en}, then

{e∗i1 ∧ . . . ∧ e
∗
ik

: 1 ≤ i1 < · · · < ik ≤ n}
is a basis of ∧kV . In particular,

∧kV = (∧kV )∗ .

An orientation of a vector space V is an equivalence class of ordered
bases, where two ordered bases are equivalent if they can be trans-
formed to each other by a linear transformation with positive deter-
minant. Alternatively, an orientation of an n-dimensional real vector
space V is a choice of one of the two components of the complement of
0 in the one-dimensional space ∧nV .

Every inner product in V determines an inner product in ∧kV , and
hence in ∧kV . We simply declare

{ei1 ∧ . . . ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}
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to be an orthonormal basis of ∧kV , if {e1, . . . , en} is an orthonormal ba-
sis of V . If V is an inner product space, there is canonical isomorphism
between ∧kV and ∧kV .

The following particular case will be important to us. If V is a k-
dimensional vector subspace of Rn, then it inherits the standard inner
product from Rn. An orientation of V can be signified by a unit k-
vector

v1 ∧ . . . ∧ vk ∈ ∧kV .

Such a k-vector is called a k-direction of V . If {v1, . . . , vk} is any
collection of linearly independent vectors in an oriented k-dimensional
subspace V of Rn, such that v1∧ . . .∧ vk falls in the chosen component
of ∧kV , then

(5.4)
v1 ∧ . . . ∧ vk

|v1 ∧ . . . ∧ vk|
is a k-direction of V . (Here | · | denotes the norm determined by the
inner product.)

More generally, if V is a k-dimensional affine subspace of Rn, then its
orientation is a choice of equivalent k-vectors of the form v1 ∧ . . . ∧ vk,
where {v1, . . . , vk} ⊂ V − a, a ∈ V , is a linearly independent set.
Similarly, a k-direction of V is a unit k-vector v1 ∧ . . . ∧ vk ∈ V − a.

For a more detailed discussion of exterior algebra we refer to [18,
Chapter 1] and [78, Chapter I].

5.2. Mass and comass. If V has an inner product, then, as men-
tioned earlier, there is an associated inner product in each of the spaces
∧kV and ∧kV . We denote the inner product by 〈·, ·〉 and the induced
norm by | · |. (Compare (5.4).) Naturally, these norms in ∧kV and
∧kV are dual norms. In geometric integration theory, a different pair
of dual norms is needed.

We call a k-vector ϕ ∈ ∧kV simple if it can be written as an exterior
product of vectors in V , that is, if

ϕ = v1 ∧ . . . ∧ vk

for some collection of vectors {v1, . . . , vk} ⊂ V . There is a natural
one-to-one correspondence between unit simple k-vectors and oriented
k-dimensional subspaces of V . We define simple k-covectors similarly.
See [18, 1.6.1] or [78, I. 9] for more about the geometry of simple vectors.

The comass of a k-covector ω ∈ ∧kV is defined as

(5.5) ||ω|| := sup{〈ω, ϕ〉 : ϕ ∈ ∧kV is simple and |ϕ| ≤ 1}.
Next, the mass of a k-vector ϕ ∈ ∧kV is defined as

(5.6) ||ϕ|| := sup{〈ω, ϕ〉 : ω ∈ ∧kV and ||ω|| ≤ 1}.
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We have that |ω| = ||ω|| for ω ∈ ∧kV if and only if ω is simple,
and similarly for k-vectors. Both mass and comass are norms, dual to
each other. They are comparable to the norms coming from the inner
product; see [18, 1.8] for more precise statements.

5.3. Differential forms. We denote by {e1, . . . , en} the standard ba-
sis of Rn, and by {dx1, . . . , dxn} the dual basis. A k-vectorfield in an
open set Ω ⊂ Rn is a map

Ω → ∧kRn ,

and a (differential ) k-form in Ω is a map

Ω → ∧kRn .

Notice that 0-vectorfields and 0-forms are simply real-valued functions.
As the target space for vectorfields and forms is a finite dimensional
vector space, we have natural notions of smooth, measurable, etc. vec-
torfields and forms. In this article, differential forms are more im-
portant than vectorfields although the latter will briefly appear. In
the ensuing discussion, we concentrate on forms although much of the
terminology goes over to vectorfields as well.

Thus, a differential k-form in Ω is an expression of the form

(5.7) ω(x) =
∑

ai1...ik(x) dxi1 . . . dxik ,

where the sum is taken over all increasing sequences i1 < · · · < ik of
numbers from {1, . . . , n}. The functions ai1...ik are the coefficients of ω.

Differential k-forms in Ω, with coefficients in a fixed linear function
space, form a vector space in an obvious manner. Moreover, the collec-
tion of all differential forms with coefficients in a fixed linear function
space has the structure of a graded anticommutative algebra, obviously
inherited from ∧∗Rn. The multiplication between generating 1-forms
obeys the rule

dxidxj = −dxjdxi ,

where, as customary, we abbreviate dxidxj := dxi∧dxj. (For arbitrary
forms, we typically write ω ∧ η rather than ω η.)

When one multiplies a k-form with an (n − k)-form, the resulting
n-form,

ω(x) = a(x) dx1 . . . dxn ,
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often called a volume form,3 can be integrated, provided the coefficient
function a ∈ L1(Ω). We write∫

Ω

ω =

∫
Ω

a(x) dx1 . . . dxn =

∫
Ω

a(x) dx .

We denote by

∧k(Ω;F )

the k-forms in Ω with coefficients in a function space F . Note that

∧0(Ω;F ) = F .

We also abuse notation and write ω ∈ F , instead of ω ∈ ∧k(Ω;F ), if
there is no danger of confusion.

For forms with smooth coefficients we have the exterior differential

d : ∧k(Ω;C∞(Ω)) → ∧k+1(Ω;C∞(Ω))

defined by

df :=
n∑

i=1

∂f

∂xi

dxi ,

for k = 0, and

dω(x) =
∑

dai1...ik(x) dxi1 . . . dxik ,

if ω is as in (5.7).
The exterior differential can be extended to forms with locally in-

tegrable coefficients as in the theory of distributions. Thus, let ω ∈
∧k(Ω;L1

loc(Ω)). We say that a (k+ 1)-form α ∈ ∧k+1(Ω;L1
loc(Ω)) is the

distributional exterior differential of ω if∫
Ω

α ∧ η = (−1)k+1

∫
Ω

ω ∧ dη

for every η ∈ ∧n−k−1(Ω;C∞
0 (Ω)). It is easy to see that if a distributional

exterior differential exists, it is unique; therefore we write α =: dω.
The following proposition is a direct consequence of the definition,

and of the fact that ddη = 0 for smooth forms η.

Proposition 5.1. We have that

ddω = 0

in the sense of distributions.

3Sometimes the term “volume form” is reserved for n-forms with nonzero or
positive coefficient.
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5.4. Forms acting on oriented polyhedra. There is fundamental
duality between differential forms and oriented polyhedra of correct
dimension, which is an integrated version of the pointwise duality be-
tween forms and vectorfields. For simplicity, let us assume in this
section that the vectorfields and forms are defined in all of Rn.

Consider first the case k = 1. Let ω be a smooth 1-form, and let [a, b]
be an oriented line segment in Rn. Here by an oriented line segment
we mean an orientation in the affine line determined by the two points
a, b ∈ Rn as explained in the end of Section 5.1. The notation [a, b]
moreover signifies that the orientation is given by the unit vector

va,b :=
b− a

|b− a|
.

Now we can let ω “act” on [a, b] by integration:

(5.8) 〈ω, [a, b]〉 :=

∫
[a,b]

ω :=

∫ |b−a|

0

〈ω(a+ tva,b), va,b〉 dt .

Notice the obvious sign change,

〈ω, [a, b]〉 = −〈ω, [b, a]〉 ,
as well as the fundamental theorem of calculus, or Stokes’s theorem,

〈df, [a, b]〉 = f(b)− f(a) , f ∈ C∞(Rn) .

Naturally, we can interpret (5.8) as [a, b] acting on smooth 1-forms.
In this interpretation, the action is clearly linear. We will later see how
the action of ω on oriented line segments can be thought of as a linear
action as well.

Consider now the case k = 2. Let ω be a smooth 2-form, and let v1

and v2 be two linearly independent vectors in Rn. Then v1 and v2, in
this order, determine an oriented two-dimensional subspace V of Rn,
and we have the corresponding k-direction

v1 ∧ v2

|v1 ∧ v2|
.

If P is any 2-simplex such that its translate P − p ⊂ V for some (all)
p ∈ P , then we can think of P being oriented as V is, and define the
“action” of ω on P by

(5.9) 〈ω, P 〉 :=

∫
P

ω :=

∫
P

〈ω(x),
v1 ∧ v2

|v1 ∧ v2|
〉 dH2(x) ,

where H2 is the Hausdorff 2-measure (area measure) on P .
Keeping P fixed, we have a linear action on forms in (5.9). The

linearity of the action on P will be studied in the next subsection.
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It is now clear how to continue for forms and simplexes of higher
degree and dimension. We leave the details to the reader.

Remark 5.2. (a) The action of forms as described above can be ex-
tended to more general oriented rectifiable sets, in particular to smooth
manifolds. For example, consider a bounded subset M of Rn of fi-
nite Hausdorff k-measure that possesses an approximate tangent plane
at Hk-almost every point. We can measurably orient these tangent
planes by choosing a k-direction, then pair each choice with a smooth
form, and finally integrate the outcome over M by using the Hausdorff
measure.

This procedure, as before, can also be thought of as M acting linearly
on smooth forms. In fact, such an M is an example of a rectifiable cur-
rent. We will discuss currents later in these lectures. See [18, Chapter
4] for a thorough exposition of these ideas.

(b) Initially, in his book, Whitney defines the integration of a con-
tinuous form over an oriented simplex somewhat differently by using
essentially Riemann integration [78, Chapter III]. Later, in [78, Chapter
IX, Section 5], when only measurable forms are discussed, an approach
based on the Lebesgue theory is taken.

5.5. Flat forms. We can equip differential forms with various norms,
or topologies, depending on our goals. Standard choices are various Lp

and Sobolev norms, or locally convex topologies as in the distribution
theory. In geometric measure theory, the flat norm is a pivotal concept.
To avoid certain technical issues, we only consider globally defined flat
forms.

A k-form ω in Rn is called flat if ω ∈ L∞(Rn) and if also dω ∈ L∞(Rn)
in the sense of distributions. The vector space of flat k-forms in Rn is
denoted by Fk(Rn). It is a Banach space under the flat norm

(5.10) ||ω||[ := max{||ω||∞, ||dω||∞} .
Here and later the L∞-norm ||α||∞ for a form α stands for the L∞-norm
of the pointwise comass,

(5.11) ||α|| := ess supx∈Rn ||α(x)|| , α(x) ∈ ∧k(Rn) .

Remark 5.3. (a) We could have used any of the standard equivalent
norms in the finite dimensional space ∧k(Rn) when defining flat forms.
From an analytic point of view this makes little difference. The comass,
as defined in (5.5), is the most suitable in the present geometric context
as we will see.

(b) Obviously, one can consider the Banach space of flat forms de-
fined in a given open set Ω ⊂ Rn.
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Later we will give a fundamental description of the analytically de-
scribed space of flat k-forms as the dual Banach space of a geometrically
described space of flat k-chains.

One can also show that Lipschitz maps pull back flat forms to flat
forms. Let us next see why such an assertion is not trivial. Thus, let
f : Rn → Rm be Lipschitz and let ω = a1dx1 + · · · + amdxm be a flat
1-form in Rm. If ω is smooth, its pullback is well defined,

(5.12) f ∗ω(x) := a1(f(x))df1 + · · ·+ am(f(x))dfm ,

and is obviously a flat 1-form in Rn. But if ω only has bounded measur-
able coefficients, the expression in (5.12) is easily meaningless a priori.
Namely, f can map a set of positive measure to a point, where the val-
ues of the coefficients ai are not well defined. To counter this example,
one may argue that at such points the differential dfi must vanish, and
we can set f ∗ω(x) = 0. In a sense, this is true, but in order to make
everything precise, we need to understand the dual space nature of flat
forms.

Before we discuss flat chains, I want to present another hallmark
of flat forms. If [a, b] is an oriented line segment in Rn, then a line
integration of a sort,

(5.13)

∫
[a,b]

ω ,

can be defined for all flat 1-forms ω. This is surprising because lines
in Rn, n ≥ 2, have measure zero, and a priori there is no well defined
trace of a flat 1-form on a given line segment. As in the case of Lip-
schitz pullback, the integration (5.13) has to be understood through
appropriate duality.

5.6. Flat chains. We describe the space of flat k-chains; this space
will be shown to be a predual of the space of flat k-forms. We continue
to consider global objects only, and begin with chains of small degree.

A polyhedral 0-chain in Rn is a finite real linear combination of points.
The mass of a 0-chain

(5.14) σ =
N∑

i=1

λiai , λi ∈ R , ai ∈ Rn ,

is

|σ| :=
N∑

i=1

|λi| .
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Here it is assumed that there are no multiple appearances among the
points ai in (5.14). Two 0-chains can be added in a natural manner,
and so we obtain a vector space.

The description of polyhedral 1-chains is slightly more complicated.
Consider a formal linear combination

(5.15) σ =
N∑

i=1

λi[ai, bi] , λi ∈ R ,

of oriented line segments [ai, bi] ⊂ Rn. First we break each of the line
segments [ai, bi] into line segments [ai1 , bi1 ], . . . , [aik , bik ], keeping with
the orientation, such that the total collection of new line segments
{[aij , bij ]} has the property that any two segments from the collection
either coincide as sets or meet at most at one point. Then we replace
each of the summand in (5.15) by

k∑
j=1

λi[aij , bij ]

to get another formal linear combination σ′. In this combination, we
add up the coefficients in front of each two similarly oriented coinciding
line segments. Moreover, we stipulate that

(5.16) λ[a, b] = −λ[b, a]

so that any two oppositely oriented coinciding line segments with same
coefficient will cancel each other. At the end, we can assume that any
two line segments from the expression making up σ′ meet at most at
one point. Such a new combination σ′ is called a refinement of σ.

The preceding understood, a polyhedral 1-chain is an equivalence
class of expressions σ as in (5.15), with two expressions identified should
they have a common refinement.

Polyhedral 1-chains form a real vector space in an obvious manner.
We define polyhedral 2-chains similarly. These are equivalence classes

of formal real linear combinations of oriented 2-simplexes in Rn, where
we identify two combinations if they can be refined so as to agree,
keeping with the rule that a change in the orientation of a simplex
changes the sign of the associated coefficient. We leave it to the reader
to make this definition more rigorous.

Finally, polyhedral k-chains in Rn for each k ≤ n can be defined in a
similar manner.

An oriented 2-simplex in Rn can be signified by [a, b, c] for three
points a, b, c ∈ Rn not lying on a line. As a set it is the convex hull of
the three points, and the orientation is determined by the given order.
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Analogous notation can be used for an oriented k-simplex, k ≥ 1.
There is no orientation for 0-chains.

As is customary, we will speak of a polyhedral chain in connection
with expressions like in (5.15), without referring to the full equivalence
class. The mass of a general polyhedral k-chain σ =

∑
i λiσi is defined

as

(5.17) |σ| :=
∑

i

|λi||σi| ,

where |σi| stands for the k-dimensional area (Lebesgue measure) of
a k-simplex σi. In addition, it is understood in (5.17) that in the
expression for σ the k-simplexes σi meet only along lower dimensional
parts; according to the rules of equivalence, this can be assumed.

The boundary of a polyhedral k-chain is a polyhedral (k − 1)-chain,
defined in the usual way. For example,

∂[a, b] = b− a ,

and

∂[a, b, c] = [a, b] + [b, c] + [c, a] = [a, b]− [a, c] + [b, c] .

We have that ∂∂σ = 0.
The flat norm of a polyhedral k-chain σ is defined as

(5.18) |σ|[ := inf{|σ − ∂τ |+ |τ |} ,

where the infimum is taken over all polyhedral (k + 1)-chains τ in Rn.
We observe that for every (k + 1)-chain τ ,

|∂σ|[ ≤ |∂σ − ∂(σ − ∂τ)|+ |σ − ∂τ | ≤ |σ − ∂τ |+ |τ | ,

which gives that

(5.19) |∂σ|[ ≤ |σ|[ .

It is instructive to study the flat norm in low degrees. Let σ be a
polyhedral 0-chain. If σ is presented just by one point (with a weight),
then the flat norm agrees with the mass. This is true also if σ = a+ b
for a, b ∈ Rn (cf. Exercise 5.7 (b)). But if σ = a− b for a, b ∈ Rn, then

|σ|[ ≤ |a− b− ∂[a, b]|+ |a− b| = |a− b| ,

which is less than the mass if |a− b| < 2. It is in fact easy to see that

(5.20) |σ|[ = min{|a− b|, 2}

if σ = a− b.
Next, consider a polyhedral 1-chain σ. If σ is presented by just a

single line segment (with a weight), then the flat norm and the mass
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agree. If there are two line segments involved, then their mutual loca-
tion becomes relevant. For example, the flat norm of the 2-chain

σ := [0, e1] + [e1 + εe2, εe2] , ε > 0 ,

in R2 is at most 3ε.

5.7. Exercise. (a) Let σ = [e, 0]+[0, e′] for two unit vectors e, e′. Show
that |σ|[ = |σ| = 2 if and only if e = −e′.

(b) Suppose that σ1, . . . , σN are similarly oriented disjoint k-simplexes
in a k-dimensional affine subspace of Rn. Prove that

|σ| = |σ|[
if

σ =
N∑

i=1

λiσi , λi ≥ 0 .

The precise value of the flat norm of a general 1-chain σ as in the pre-
ceding exercise 5.7 (a) seems difficult to determine. See the comment
in [78, Example 5 (a), p. 158]. I do not know if anyone has studied
the general question of determining flat norms for various standard
polyhedral chains.

Nevertheless, the flat norm is always positive for a nontrivial chain.

Proposition 5.4. The flat norm is a norm.

To prove the proposition, it suffices to show that |σ|[ > 0 whenever
σ is a nontrivial polyhedral k-chain; the rest is routine. To do this,
however, is not an entirely trivial matter. We will prove Proposition
5.4 later after we have discussed currents in the next subsection.

The vector space of polyhedral k-chains equipped with the flat norm
is called the space of polyhedral flat k-chains in Rn, and denoted by
Pk(Rn). The completion of this normed space is the Banach space of
flat k-chains in Rn, denoted by Fk(Rn).

Despite the relative simplicity of its definition, the members in Fk(Rn)
do not lend themselves to easy description. There are moreover some
surprising examples.

5.8. Exercise. Show that every Jordan curve in R2 can be viewed as
a flat 1-chain. (Hint: Every Jordan region can be exhausted by Jordan
regions with polygonal boundary. Here by a Jordan curve we mean a
topological circle, and a Jordan region in R2 is the bounded component
of the complement of a Jordan curve.)
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The following fundamental duality was proved by J. H. Wolfe in his
Harvard thesis in 1948 (see [78, p. viii]).

Theorem 5.5. The space Fk(Rn) of flat k-forms is the Banach space
dual of the space Fk(Rn) flat k-chains.

We emphasize that Theorem 5.5 asserts that the identification of
Fk(Rn) as the dual space of Fk(Rn) is isometric; the flat norm agrees
with the dual norm. Also recall that the comass is used in the definition
for the flat norm in Fk(Rn), cf. (5.11).

Remark 5.6. (a) Whitney’s presentation of Wolfe’s theorem in [78] does
not involve the language of distributional derivatives. Presumably, the
same is true for Wolfe’s proof. (Note that L. Schwartz’s treatise [58]
appeared two years after Wolfe finished his thesis.) Flat forms were
defined somewhat differently, but equivalently, in [78, Chapter IX].

(b) We could have considered flat chains in an arbitrary open subset
Ω of Rn. In this case, the definition requires some technical modifica-
tions, which I do not want to go into here. See [78, Chapter VIII].

We will prove the duality by viewing the flat chains as currents.

5.9. Flat chains as currents. The theory of currents is an extension
of the theory of distributions; currents act on forms of any given degree.
More precisely, denote by

Dk(Rn)

the vector space of smooth compactly supported k-forms in Rn (the
test forms). A k-dimensional current is a linear map

T : Dk(Rn) → R
satisfying a continuity condition analogous to that of distributions: for
every compact set K ⊂ Rn there exist a constant C ≥ 0 and an integer
N ≥ 0 such that

(5.21) |T (ω)| ≤ C max
|α|≤N

||∂αω||∞

for every ω ∈ Dk(Rn) with support in K. The maximum in (5.21) is
taken over all partial derivatives of the components of ω up to order
N . When k = 0, we have that

D0(Rn) = C∞
0 (Rn) ,

so that 0-dimensional currents are precisely the Schwartz distributions.
The smallest integer N that works for every compact set in the defi-
nition (5.21) is called the order of a current; the order is infinite if no
such integer exists.
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We denote the vector space of k-dimensional currents on Rn by

Dk(Rn) .

Note that neither the space Dk(Rn) of test forms nor the space Dk(Rn)
of currents has a canonical norm. (They have a natural structure of a
topological vector space, but we will not go into this.) However, both
spaces can be normed in various ways depending on what applications
one has in mind. We will consider one such norming, pertaining to the
theory of flat forms.

Thus, we equip Dk(Rn) with the flat norm (5.10), and denote the
resulting normed space by Fk(Rn). The dual space of this normed
space is a Banach space when normed by the dual norm, also called
a flat norm. (Recall that the dual of every normed space is complete
under the dual norm.) We denote the dual space by

Fk(Rn) := Fk(Rn)∗ .

Thus,

(5.22) ||T ||[ := sup{|T (ω)| : ||ω||[ ≤ 1}
for T ∈ Fk(Rn). It is clear that every element in the dual space Fk(Rn)
is a current (of order one); the members of Fk(Rn) are called flat k-
currents.

Note here that the space Fk(Rn) of smooth forms equipped with the
flat norm is not a Banach space; it is not complete in the flat norm.
We do not bother to understand the completion of Fk(Rn), but view
this space as an auxiliary tool. Its dual space Fk(Rn) is a huge Banach
space that provides us a stage for our play.

The key fact is that the space of flat k-chains sits isometrically in
Fk(Rn).

Proposition 5.7. We have a canonical isometric embedding

(5.23) Fk(Rn) ⊂ Fk(Rn) .

The meaning of the term “canonical” in the preceding statement
requires an explanation. Indeed, each polyhedral chain has a natural
interpretation as a current, and it is this action that determines the iso-
metric embedding for the dense set of polyhedral chains. A polyhedral
k-chain

σ =
N∑

i=1

λiσi

acts on test forms ω ∈ Dk(Rn) by integration; each simplex σi in a
representation of σ is oriented, so that integration is well defined, and
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independent of the representation. This was explained in subsection
5.4. We write

〈ω, σ〉 :=
N∑

i=1

λi

∫
σi

ω ,

and note that the Stokes theorem holds in this context; namely,

(5.24) 〈ω, ∂τ〉 = 〈dω, τ〉
for all polyhedral (k + 1)-chains τ and for all test forms ω ∈ Dk(Rn).

5.10. Exercise. Prove (5.24).

The preceding understood, we first prove one half of the statement
in Proposition 5.7.

Lemma 5.8. Let σ be a polyhedral k-chain in Rn and let ω ∈ Fk(Rn).
Then

(5.25) |〈ω, σ〉| ≤ |σ|[ · ||ω||[ .
In particular, the dual norm of σ as an element of Fk(Rn) does not
exceed its flat norm.

Proof. Let τ be a polyhedral (k+ 1)-chain in Rn. Then it follows from
the definitions (5.10) and (5.11), and from the Stokes theorem (5.24),
that

〈ω, σ〉 = 〈ω, σ − ∂τ〉+ 〈ω, ∂τ〉
≤ |σ − ∂τ | · ||ω||∞ + |τ | · ||dω||∞
≤ (|σ − ∂τ |+ |τ |) · ||ω||[ .

By taking the infimum over all τ , we obtain (5.25) and the proposition
follows. �

We need some further results in order to prove that the dual norm of
a polyhedral chain bounds its flat norm. Notice that this then suffices
for the isometric inclusion (5.23), because polyhedral chains are dense
in Fk(Rn) by definition, and because Fk(Rn) is a Banach space.

However, armed with Lemma 5.8, we can prove Proposition 5.4.

Proof of Proposition 5.4. Assume that a polyhedral k-chain

σ =
N∑

i=1

λiσi

is represented by a sum of oriented k-simplexes σi that meet (at most)
along lower dimensional sides. By (5.25), it suffices to exhibit a smooth
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compactly supported form ω in Rn such that 〈ω, σ〉 6= 0. To this end,
fix ε positive and small, say much smaller than the diameter of any of
the sides of the σi’s. Then we write

σ = σε + σ̂ε ,

where σ̂ε denotes an ε-neighborhood of the boundary of σ, within σ,
and σε := σ − σ̂ε. Note that

σε =
N∑

i=1

λiσi,ε

is a k-chain made up of simplexes that have pairwise positive distance.
We can therefore find a smooth compactly supported k-form ωε such
that ωε takes on a constant value on each σε,i such that

〈ωε, λiσε,i〉 = |λi| · |σi,ε| .
This can be done so that ||ω||∞ ≤ 1. Thus,

〈ωε, σε〉 = |σε| ≥ |σ| − C(σ) · ε ,
where C(σ) > 0 depends only on σ. Because also

|〈ωε, σ̂ε〉| ≤ C(σ) · ε ,
we find that

〈ωε, σ〉 = 〈ωε, σε〉+ 〈ωε, σ̂ε〉
≥ |σ| − C(σ) · ε+ 〈ωε, σ̂ε〉
≥ |σ| − C(σ) · ε− C(σ) · ε .

This finishes the task, provided ε > 0 is chosen small enough, depend-
ing on σ only. The proposition follows. �

5.11. Discussion. Before we continue, it is worthwhile to pause and
review the situation. Recall that our main goal is to prove Theorem
5.5. In symbols, this is

(5.26) Fk(Rn)∗ = Fk(Rn) ,

which by the basic Banach space theory implies that

(5.27) Fk(Rn) ⊂ Fk(Rn)∗

isometrically. Now the space Fk(Rn) of smooth compactly supported
k-forms with the flat norm is clearly a subspace of Fk(Rn), so has a
bigger dual. Therefore, by (5.27), we should have

(5.28) Fk(Rn) ⊂ Fk(Rn)∗ = Fk(Rn)
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continuously embedded. En route to our main goal, we will first Propo-
sition 5.7 which asserts that (5.28) holds isometrically.

5.12. Flat cochains. We are in pursuit of a concrete description of
the dual space of polyhedral flat chains. To that end, it is necessary to
study this space first as an abstract entity.

Following Whitney [78], we call the elements in the dual space Pk(Rn)∗

flat k-cochains, and denote them by capital letters X, Y, . . . . Cochains
come equipped with the dual norm,

(5.29) |X|[ := sup
|σ|[≤1

〈X, σ〉 .

We also have the comass of a cochain defined by

(5.30) |X| := sup
|σ|≤1

〈X, σ〉 .

Because |σ|[ ≤ |σ|, we have that

|X| ≤ |X|[ .

The coboundary of a k-cochain X is a (k + 1)-cochain dX defined by

〈dX, σ〉 := 〈X, ∂σ〉 , σ ∈ Pk+1(Rn) .

The coboundary is indeed a cochain, because

|〈dX, σ〉| ≤ |X|[ · |∂σ|[ ≤ |X|[ · |σ|[
by (5.19). It follows that

|dX| ≤ |dX|[ ≤ |X|[ .

Proposition 5.9. For a flat cochain X we have that

(5.31) |X|[ = max{|X|, |dX|} .

Proof. By the discussion preceding the proposition, we only have to
prove that the left hand side of (5.31) does not exceed the right hand
side. For this, fix a polyhedral k-chain σ, and then a polyhedral (k+1)-
chain τ . We get

|〈X, σ〉| ≤ |〈X, σ − ∂τ〉|+ |〈X, ∂τ〉|
≤ |X| · |σ − ∂τ |+ |dX| · |τ |
≤ max{|X|, |dX|} · (|σ − ∂τ |+ |τ |) ,

and by taking the infimum over all chains τ , we obtain the desired
inequality. The proposition follows. �

We next show that the mass for cochains can be localized.
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Proposition 5.10. For every k-cochain X we have that

(5.32) |X| = sup〈X, σ〉 ,

where the supremum is taken over all (oriented) k-simplexes σ with
|σ| ≤ 1.

Proof. We only have to show that the right hand side of (5.32) is at
least |X|. To this end, fix ε > 0, and suppose that the right hand side

in (5.32) is less than |X|− ε. Let σ =
∑N

i=1 λiσi be a k-chain such that
|σ| = 1 and that

|X| − ε < 〈X, σ〉 .
Then

|X| − ε < |〈X, σ〉| ≤
N∑

i=1

|λi| · |〈X, σi〉|

≤
N∑

i=1

|λi| · |σi| · (|X| − ε) = |X| − ε ,

which is absurd. This proves the proposition. �

From the preceding proof we obtain the following corollary.

Corollary 5.11. The mass of a k-cochain X is the supremum of the
values

〈X, σ〉
|σ|

,

where σ runs through k-simplexes of diameter less than any prescribed
number.

The corollary together with Proposition 5.9 expresses the important
fact that the flat norm of a cochain is locally determined, thus antici-
pating the identification of every cochain as a differential form.

5.13. Smooth cochains. Every smooth differential k-form ω with
bounded flat norm determines a k-cochain in a natural way, as ex-
plained in subsection 5.4. We call such cochains smooth.

The discussion in 5.4 is equally valid for forms with continuous co-
efficients. With a slight underuse of terminology, we call a cochain X
continuous if the action of both X and dX on polyhedral chains is given
by continuous differential forms. The proof of Lemma 5.8 gives that
the dual norm |ω|[ of a continuous cochain ω does not exceed its flat
norm ||ω||[. We will prove later in Lemma 5.21 that in fact |ω|[ = ||ω||[
for continuous cochains.
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5.14. The end point cases. We prove Theorem 5.5 for the values
k = 0 and k = n.

Theorem 5.12. The space of flat 0-cochains can be identified with the
Banach space of bounded real-valued Lipschitz functions on Rn equipped
with the norm

(5.33) ||f ||L := max{||f ||∞,Lip(f)} .

Here

Lip(f) := sup
x 6=y

|f(x)− f(y)|
|x− y|

denotes the best Lipschitz constant of f .
Note that the content of Theorem 5.12 agrees with Theorem 5.5, by

the results in previous sections. See, in particular, Remark 4.2, and
observe that the comass and the Euclidean norm agree for 1-forms.

Proof. Let X be a 0-cochain; obviously X can be thought of as a point-
wise defined function on Rn. By Proposition 5.10, we have that

|X| = sup
a∈Rn

|〈X, a〉| = ||X||∞

and that

|dX| = sup
|a−b|≤1

|〈dX, [a, b]〉| = sup
|a−b|≤1

|〈X, b〉 − 〈X, a〉| = Lip(X) .

The preceding reasoning can be inverted, and we have that every
bounded Lipschitz function determines a 0-cochain. The correspon-
dence is bijective and isometric. (Note that the convexity of Rn has
been used here, cf. Lemma 2.2.) The theorem follows. �

Remark 5.13. Bounded Lipschitz functions on a metric space equipped
with a norm as in (5.33) form a Banach algebra, that is also a dual
Banach space. Such Lipschitz algebras play an interesting role in recent
developments in analysis on metric spaces. See [76].

Theorem 5.14. The space of flat n-cochains can be identified with the
Banach space L∞(Rn).

Note, again, that Theorem 5.14 is in agreement with Theorem 5.5.

Proof. A polyhedral n-chain is a nothing but a function that is sup-
ported in a finite collection of n-simplexes; the flat norm agrees with
the L1-norm of the function. Therefore, the dual space is L∞(Rn) by
basic real analysis. �
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5.15. L1-flat chains. Polyhedral chains are rather discrete objects;
they can be thought of as finite valued functions supported on sim-
plexes, with orientation regarded. Next we describe another Banach
space, whose members are more diffused chains. This space ultimately
will be shown to agree with the space Fk(Rn) of flat k-chains.

Let

Gk(Rn) := ∧k(Rn;L1(Rn))⊕ ∧k+1(Rn;L1(Rn)) ,

equipped with the L1-norm,

||(ϕ, ψ)||1 := ||ϕ||L1(Rn) + ||ψ||L1(Rn) ,

where the L1-norm is taken with respect to the pointwise mass norm
for each of the multivectors as defined in (5.6).

We define the divergence divψ of a locally integrable (k+1)-vectorfield
ψ to be a locally integrable k-vectorfield that satisfies

(5.34)

∫
Rn

〈ω, divψ〉 dx = −
∫

Rn

〈dω, ψ〉 dx

for every smooth compactly supported k-form ω. It is easy to see that
such a vector field divψ, if exists, is unique. It is also easy to see,
by using convolution approximations as defined in (4.4), that (5.34)
holds in the following two more general instances: ω is a flat form of
compact support, or ω is an arbitrary flat form and both ψ and divψ
are integrable .

Now consider the space

Ek(Rn) := {(ϕ, ψ) ∈ Gk(Rn) : ϕ = divψ} .
It is evident that Ek(Rn) is a closed subspace of Gk(Rn). We call the
quotient Banach space

Gk(Rn) := Gk(Rn)/Ek(Rn)

the space of integrable k-chains. The terminology will become clear
later.

The members of Gk(Rn) naturally act on flat k-forms via

(5.35) 〈(ϕ, ψ), ω〉 :=

∫
Rn

〈ω, ϕ〉 dx+

∫
Rn

〈dω, ψ〉 dx .

By the duality of mass and comass (see 5.2), we have that

(5.36) |〈(ϕ, ψ), ω〉| ≤ ||(ϕ, ψ)||1 · ||ω||[ ,
which implies that Gk(Rn) embeds continuously to the dual of flat
k-forms. In particular,

Gk(Rn) ⊂ Fk(Rn) = Fk(Rn)∗ ,
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where we recall Fk(Rn) is the space of smooth compactly supported
flat k-forms; its dual Fk(Rn) is the space of flat k-currents.

The next proposition identifies the space of flat k-forms Fk(Rn) as
the dual of the quotient space Gk(Rn), and provides an analog of Propo-
sition 5.7 integrable chains.

Proposition 5.15. We have a canonical isometry

(5.37) Gk(Rn)∗ = Fk(Rn) .

Moreover,

(5.38) Gk(Rn) ⊂ Fk(Rn)

isometrically.

For the proof, we recall the following simple functional analytic fact.

Lemma 5.16. Let W be a closed subspace of a Banach space V and
let

W⊥ := {v∗ ∈ V ∗ : 〈v∗, w〉 = 0 for all w ∈ W} ,
where V ∗ denotes the dual Banach space and 〈v∗, w〉 the dual action.
Then we have

(5.39) (V/W )∗ = W⊥

canonically and isometrically.

The proof of Lemma 5.16 is left as an exercise to the reader.

Proof of Proposition 5.15. Fix k and denote for short V := Gk(Rn).
Then by basic real analysis, and by the duality of mass and comass,

V ∗ = ∧k(Rn;L∞(Rn))⊕ ∧k+1(Rn;L∞(Rn)) ,

isometrically when the latter is equipped with the norm

||(ω, η)||∞ := max{||ω||∞, ||η||∞} .

Equality (5.37) now follows from Lemma 5.16, provided we can show
that

(5.40) W⊥ = Fk(Rn) ,

where W := Ek(Rn). To see this, let (ω, η) ∈ V ∗ be such that∫
Rn

〈ω, divψ〉 dx+

∫
Rn

〈η, ψ〉 dx = 0

for every (divψ, ψ) ∈ W . By unraveling the various definitions, we
obtain that η = dω in the sense of distributions. On the other hand,
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if ω ∈ Fk(Rn) ⊂ V ∗, then by the remarks made after (5.34) we have
that ∫

Rn

〈ω, divψ〉 dx+

∫
Rn

〈dω, ψ〉 dx = 0

for every (divψ, ψ) ∈ Ek(Rn). Thus (5.40) holds.
Finally, to prove (5.38), we first observe that

Gk(Rn) ⊂ Gk(Rn)∗∗ = Fk(Rn)∗ ,

where the first inclusion is canonical and isometric by the basic Banach
space theory, and the second equality follows from (5.37). Because
Fk(Rn) ⊂ Fk(Rn), we have, therefore, an inclusion

Gk(Rn) ⊂ Fk(Rn)∗ = Fk(Rn) .

We claim that this inclusion is isometric as well. Indeed, given T ∈
Gk(Rn) and ω ∈ Fk(Rn), we use standard approximation arguments,
also alluded to in the first part of this proof, and find a sequence (ωi) ⊂
Fk(Rn) such that

lim
i→∞

〈T, ωi〉 = 〈T, ω〉 .

In other words, Fk(Rn) is dense in Fk(Rn) in the weak topology deter-
mined by Gk(Rn) ⊂ Fk(Rn)∗. We obtain (5.38) from these remarks, by
standard functional analytic arguments. The proof of the proposition
is thereby complete. �

Remember that our goal is to identify the space Fk(Rn) of flat k-
chains as a predual of the space Fk(Rn) of flat k-forms. Proposition
5.15 identifies Gk(Rn) as a predual of Fk(Rn). What we will do next,
is to show that the spaces Fk(Rn) and Gk(Rn) are identical as Banach
spaces, when considered as subspaces of Fk(Rn) = Fk(Rn)∗. Note that
the (canonical and isometric) inclusions,

(5.41) Fk(Rn) ⊂ Fk(Rn)∗ , Gk(Rn) ⊂ Fk(Rn)∗ ,

follow from Propositions 5.7 and 5.15, respectively. (We still have not
verified Proposition 5.7, but this is done momentarily.)

Proposition 5.17.

Fk(Rn) = Gk(Rn) .

Notice that Theorem 5.5 follows from Proposition 5.17, in view of
the preceding remarks.

We break the proof of Proposition 5.17 into two separate proposi-
tions. After the first proposition, we will prove Proposition 5.7.
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Proposition 5.18. Given any ξ ∈ Gk(Rn), and given any ε > 0, there
exists a polyhedral k-chain σ such that

(5.42) sup
|〈ω, ξ − σ〉|
||ω||[

< ε ,

where the supremum is taken over all forms ω ∈ Fk(Rn). In particular,
flat k-chains are dense in Gk(Rn) ⊂ Fk(Rn) with respect to the dual
norm.

Proof. Fix ξ ∈ Gk(Rn). By the density of smooth compactly supported
vectorfields in Gk(Rn), we can assume that ξ can be represented by
a pair (ϕ, ψ) of smooth vectorfields of compact support. By further
subtracting (divψ, ψ), we can assume that ξ = (ϕ, 0) consists of a
single smooth k-vectorfield of compact support, with the action

〈ϕ, ω〉 =

∫
Rn

〈ϕ, ω〉 dx

for ω ∈ Fk(Rn). With a slight abuse of notation, we identify ϕ with
ξ, and show that ϕ can be approximated in Fk(Rn)∗ by polyhedral
k-chains.

To this end, fix ε > 0. We choose a dyadic decomposition of Rn into
small enough cubes such that ϕ is essentially constant in each of the
cubes; in particular, we assume that for each such dyadic cube Q,

(5.43) ||ϕ|Q− ϕQ||∞ < ε

for some k-vector field ϕQ that is constant in Q and zero outside of Q.
In (5.43), ϕ|Q is the restriction of ϕ to Q, and we use the sup-norm of
the pointwise mass for the k-vectors as defined in (5.6). It is clearly no
loss of generality to assume that the side length `(Q) for cubes in the
chosen dyadic decomposition is less than ε. We fix such a cube, and
assume that

ϕQ = ei1 ∧ · · · ∧ eik · χQ .

In general, ϕQ is a linear combination of such basic vectors, but the
proof will show that this simplifying assumption is of no consequence.

Let Qk be the k-dimensional face of Q that is parallel to the subspace
determined by ei1 ∧ · · · ∧ eik , and oriented accordingly, and let Qn−k be
the complementary face, so that

Q = Qk ×Qn−k .

Next, for q ∈ Qn−k let P (q) = Qk × q be an oriented k-cube that is
parallel to Qk, with the same orientation. Define

(5.44) σ := |Qn−k|P (q0) ,
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where q0 is the center of Qn−k.
We compare the action of σ on smooth k-forms to that of ϕ. Thus,

for ω ∈ Fk(Rn), we have that

(5.45) |〈ω, σ − ϕ〉| ≤ |〈ω, σ − ϕQ〉|+ |〈ω, ϕQ − ϕ〉| .

The second term in (5.45) admits an estimate

(5.46) |〈ω, ϕQ − ϕ〉| ≤ ε · |Q| · ||ω||[ + |
∫

Rn\Q
〈ω, ϕ〉 dx| .

To estimate the first term in (5.45), we find first that

〈ω, σ〉 =

∫
Qn−k

〈ω, P (q0)〉 dq ,

where we think of P (q0) as a constant function from Qn−k to k-chains.
It follows that

(5.47) |〈ω, σ − ϕQ〉| = |
∫

Qn−k

〈ω, P (q0)− P (q)〉 dq | .

We have from estimate (5.50) below that

|P (q0)− P (q)|[ ≤ (
√
n `(Q)) · (|Q|+ |∂Q|) ,

so that (5.47) and Lemma 5.8 give

|〈ω, σ − ϕQ〉| ≤ (
√
n `(Q)) · (|Q|+ |∂Q|) · ||ω||[ · |Qn−k| .

Combining this with (5.45) and (5.46), and with the fact that `(Q) < ε,
we obtain

|〈ω, σ − ϕ〉| ≤ ε · (
√
n · (|Q|+ |∂Q|) · |Qn−k|+ |Q|) · ||ω||[

+ |
∫

Rn\Q
〈ω, ϕ〉 dx| .

By performing a similar approximation in each cube Q, and by form-
ing a sum of all the k-chains as in (5.44), we obtain a k-chain σ with
the property that

|〈ω, σ − ϕ〉| ≤ ε · C · ||ω||[ ,

where C > 0 depends only on ϕ. This completes the proof of Proposi-
tion 5.18. �

Proposition 5.18 allows us, finally, to prove Proposition 5.7. There
is one more ingredient that is required. This is discussed in the next
subsection.
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5.16. Smoothening of cochains. It is a standard fact in the theory
of distributions that every distribution can be approximated by smooth
functions in the weak topology. This goes over to currents; for every
k-dimensional current T there exists a sequence of smooth k-forms ωε,
ε > 0, such that

T (ω) = lim
ε→0

〈ωε, ω〉 ,

where

〈ωε, ω〉 :=

∫
Rn

〈ωε, ω〉 dx .

A similar approximation procedure holds for cochains. Recall the
terminology from 5.13.

Proposition 5.19. Let X ∈ Fk(Rn) be a flat k-cochain. Then there
exists a sequence of smooth k-cochains ωε, ε > 0, such that

(5.48) lim
ε→0

〈ωε, σ〉 = 〈X, σ〉

for every polyhedral k-chain σ. Moreover,

(5.49) |ωε|[ ≤ |X|[ .

We require a translation operator

Tv : Pk(Rn) → Pk(Rn) , v ∈ Rn ,

defined as follows: for an oriented k-simplex σ, Tvσ is a similarly ori-
ented simplex that is the translation of σ by the vector v; for a general
polyhedral chain Tv is defined by linearity. Obviously, Tv is a linear
isometry of polyhedral chains. Moreover,

(5.50) |Tvσ − σ|[ ≤ |v| · (|σ|+ |∂σ|)

for all polyhedral chains σ.

5.17. Exercise. Prove estimate (5.50).

We now discuss the proof for Proposition 5.19. Let ηε be a bump
function as in (4.5). For a given k-cochain X, we define a new k-cochain
Xε by

(5.51) 〈Xε, σ〉 :=

∫
Rn

〈X,Tyσ〉 ηε(y) dy

for a polyhedral k-chain σ. It is clear from the properties of ηε (see
(4.3)) that Xε is a cochain with

(5.52) |Xε|[ ≤ |X|[ .
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Moreover, because Tv commutes with the boundary operator, we also
have that

(5.53) dXε = (dX)ε .

Next, by (5.50),

|〈Xε −X, σ〉| = |
∫

Rn

〈X,Tyσ − σ〉 ηε(y) dy|

≤ |X|[ (|σ|+ |∂σ|)
∫

Rn

|y| ηε(y) dy

≤ |X|[ (|σ|+ |∂σ|) · C · ε ,

where C > 0 only depends on the size of the support of η. It follows
that

lim
ε→0

〈Xε, σ〉 = 〈X, σ〉

for all polyhedral k-chains σ.
The preceding understood, it only suffices to show that Xε is a

smooth cochain. We outline a proof of this, and refer to Whitney’s
book [78] for the details. The concept of a sharp cochain is used here.

Following [78, V. 7], we define the Lipschitz constant of a k-cochain
X by

(5.54) L(X) := sup
〈X,Tvσ − σ〉

|σ| |v|
,

where the supremum is taken over all polyhedral k-chains σ and their
translations by a nonzero vector v. (By an argument similar to that in
Proposition 5.10, one can show that the supremum in (5.54) is attained
over oriented simplexes and their translations [78, p. 161].) The sharp
norm of a k-cochain X is

(5.55) |X|] := max{|X|[, (k + 1)L(X)} ,

and a cochain is called sharp if it has finite sharp norm. (See Remark
5.20 below.) Thus, sharp cochains are flat, but the converse is not true
in general. Whitney shows in [78, V. Theorem 10A] that to each sharp
k-cochain X there corresponds a unique differential k-form ωX with
Lipschitz continuous coefficients such that the action of X on polyhe-
dral chains correspond to integral action of ωX as explained in 5.4. The
proof of this claim is elementary, albeit a bit technical, using the def-
initions and standard Riemann sum type approximation for integrals.
See [78, pp. 167–170] for the details.
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Now we can easily show that the cochains Xε as defined in (5.51) are
sharp. Indeed,

|〈Xε, Tvσ − σ〉| = |
∫

Rn

〈X,Ty+vσ − Tyσ〉 ηε(y) dy|

= |
∫

Rn

〈X,Tyσ〉 (ηε(y − v)− ηε(y)) dy|

≤ |X| |σ|
∫

Rn

|ηε(y − v)− ηε(y)| dy

≤ C |X| |σ| |v|
where C > 0 depends only on ηε.

Accepting the fact that each sharp cochain corresponds to a con-
tinuous differential form, we obtain from the preceding that Xε is a
continuous cochain as defined in 5.13. (Here we need (5.53) as well.)

One can show that Xε is smooth for every cochain X, but essentially
this requires Wolfe’s theorem. Indeed, there is a representation

(5.56) ωXε(x) =

∫
Rn

ηε(x− y)ωX(y) dy ,

where ωX is the bounded form associated with a cochain X, and ωXε is
the continuous form associated with the continuous cochain Xε. For-
mula (5.56) is proved in [78, p. 261].

To avoid this circular argument, we can prove Proposition 5.19 by
approximating each continuous form ωXε by convolutions. These con-
volutions are smooth and converge to ωXε locally uniformly.

This discussion completes the proof of Proposition 5.19.

Remark 5.20. Whitney defines sharp cochains as continuous functionals
on the space of polyhedral chains with respect to a sharp norm on
chains; the sharp norm is a weaker norm than the flat norm. Thus, in
effect, the expression in (5.55) should be regarded as a theorem, akin
to Proposition 5.9, rather than a definition. We will not discuss the
sharp norm on chains here.

Next we verify the following lemma. Recall the terminology from
5.13.

Lemma 5.21. Let ω be a continuous k-cochain. Then

(5.57) |ω|[ = ||ω||[ ,
where we have the dual norm on the left and the flat norm on the right.

Proof. The inequality |ω|[ ≤ ||ω||[ was pointed out in 5.13. To prove
the reverse in equality, let ε > 0. By the duality L∞ = (L1)∗ (with
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respect to mass and comass), and by the density of smooth functions
in L1, we can pick a smooth compactly supported k-vectorfield ϕ in Rn

such that ||ϕ||1 ≤ 1 and that

||ω||[ ≤
∫

Rn

〈ω, ϕ〉 dx+ ε .

On the other hand, by Proposition 5.18, we can find a polyhedral k-
chain σ such that the dual norm of σ in Fk(Rn) does not exceed 1 + ε
and such that

|
∫

Rn

〈ω, ϕ〉 dx− 〈ω, σ〉| < ε ||ω||[ .

Combining the last two inequalities, we obtain

||ω||[ ≤ ε+ ε ||ω||[ + |ω|[|σ|[ ≤ ε+ ε ||ω||[ + |ω|[ (1 + ε) .

The claim follows by letting ε→ 0. �

Proof of Proposition 5.7. By Lemma 5.8, it suffices to prove that the
flat norm of a polyhedral k-chain σ does not exceed its dual norm. To
this end, we first observe that

|σ|[ = sup
|X|[≤1

|〈X, σ〉| ,

by standard functional analysis. By Proposition 5.19, the preceding
supremum is achieved over a sequence of smooth cochains. Obviously,
because σ is fixed, we can assume these smooth cochains are compactly
supported. We have |ω|[ = ||ω||[ for such cochains by Lemma 5.21, so
that

|σ|[ = sup
||ω||[≤1

|〈ω, σ〉| .

The right hand side of the last inequality is precisely the dual norm of
σ in Fk(Rn) = (Fk(Rn))∗, and the proof of Proposition 5.7 is thereby
complete. �

We turn back to the proof of Proposition 5.17. The following is a
converse to Proposition 5.18.

Proposition 5.22. Given any polyhedral k-chain σ in Rn, and given
any ε > 0, there exists a k-vectorfield ϕ ∈ ∧k(Rn;L1(Rn)) such that

|σ − ϕ|[ < ε .

In particular,

(5.58) Fk(Rn) ⊂ Gk(Rn) .
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Proof. It is enough to consider the case where σ is a single oriented
k-simplex. Now such a chain is a limit in the flat norm of a linear com-
bination of oriented k-cubes, so we can in fact assume (for notational
simplicity) that σ consists of a single oriented k-cube Qk. As a further
reduction, we assume that Qk is parallel to the first k-coordinate axes,
and oriented by e1 ∧ · · · ∧ ek.

The preceding understood, fix ε > 0. Let q0 ∈ Qk be the center of
the cube, and let Qn−k be an (n − k)-cube that is orthogonal to Qk,
also centered at q0, and of side length ε. For each q ∈ Qn−k let P (q)
denote the k-cube that is parallel to Qk, similarly oriented, and meets
Qn−k orthogonally at q. By (5.50), we have that

(5.59) |P (q)− σ|[ ≤ ε (|Qk|+ |∂Qk|) .

Define a k-vectorfield ϕ by

ϕ :=
1

|Qn−k|
· e1 ∧ · · · ∧ ek · χQk×Qn−k .

Then, for every smooth compactly supported k-form ω, we have that

|〈ϕ− σ, ω〉| =
1

|Qn−k|
|
∫

Qn−k

〈P (q)− σ, ω〉 dq|

≤ |P (q)− σ|[ · ||ω||[ ≤ C ε ||ω||[ ,

where, by (5.59), C > 0 depends only on σ. (In the preceding equal-
ity, we interpret σ as a constant covector on Qn−k, similarly to the
discussion before (5.47).)

This completes the proof of Proposition 5.22. �

Proposition 5.17 now follows from Propositions 5.18 and 5.22. As
remarked after the statement of Proposition 5.17, this also accomplishes
the proof of our main result, Theorem 5.5.

Remark 5.23. We have now shown that every k-cochain X corresponds
to a unique bounded measurable form ωX with bounded exterior de-
rivative dωX (in the sense of distributions). Conversely, given any such
flat form ω, there is a corresponding cochain Xω. The concrete action
of a flat form ω on polyhedral chains can be given by using smoothing.
Indeed, if ωε = ω ∗ ηε denotes the convolution of a flat k-form ω, then

(5.60) 〈ω, σ〉 := 〈Xω, σ〉 = lim
ε→0

〈ωε, σ〉 ,

where the action 〈ωε, σ〉 makes sense as integration as explained in 5.4.
Equality (5.60) follows from the discussion in this section by standard
arguments.
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5.18. Lipschitz invariance of flat chains. We finish this long sec-
tion by discussing the important Lipschitz invariance of flat chains. For
simplicity, we consider globally defined flat forms and mappings. As
should be clear by now, this entails no essential loss of generality.

Theorem 5.24. Let ω be a flat k-form in Rm and let f : Rn → Rm be
a Lipschitz map. Then f ∗ω is a flat k-form in Rn.

The statement of the theorem requires an explanation. If

ω(y) =
∑

I

ωI(y)dyI

is a flat k-form as in the theorem, then the natural definition for f ∗ω
would be

(5.61) f ∗ω(x) :=
∑

I

ω(f(x))dfI(x) ,

where
dfI := dfi1 ∧ . . . ∧ dfik , I = (i1, . . . , ik) .

The problem with (5.61) is that the coefficients ωI of ω are only func-
tions in L∞, so that ωI(f(x)) may be undefined for x in a set of positive
measure in Rn.

In trying to understand f ∗ω by way of duality, the natural definition
for f ∗ω would be as a linear functional,

(5.62) 〈f ∗ω, σ〉 := 〈ω, f∗σ〉 .
The problem with this definition in turn is that we need to show that
a natural pushforward f∗σ exists as a flat k-chain for every polyhedral
k-chain σ in Rn.

Both of the above problems can be overcome, so that we have two
approaches to Theorem 5.24.

In the first case, one first shows that ω has a well defined action
on all k-directions at every point. Such a result can be viewed as a
sharpening of Theorem 5.5. It follows that if df has rank at least k at
a point x,then f ∗ω(x) can be defined as in (5.61). On the other hand,
if the rank is less than k, then dfI = 0 for every I = (i1, . . . , ik), and
we set f ∗ω(x) = 0 in this case.

In the second case, one shows that f∗σ is a flat k-chain by invoking
Rademacher’s theorem: σ can be thought of as a region in Rk, so that
f is almost everywhere differentiable on σ with respect to the Haus-
dorff k-measure. The differentials of f can be used to find polyhedral
approximations in the flat norm to the image of σ under f .

It would take us too far afield to fully discuss the outlined two ap-
proaches. We refer to [78, Chapter X], or [18, Chapter 4] for the details.
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Remark 5.25. An important consequence of Theorem 5.24 is that flat
forms can be defined on Lipschitz manifolds. We obtain a differential
complex (see Lemma 5.1) whose cohomology agrees with singular co-
homology of the manifold akin to the de Rham theory. Whitney hints
at such a result in his works on geometric integration theory, but it
seems that it is nowhere explicitely stated in his book. In [78, p. viii],
Whitney promises to return to “Lipschitz spaces” in a “separate mem-
oir”, but apparently this never happened. In any event, that the de
Rham theorem holds in the Lipschitz context follows by standard sheaf
theoretic arguments by using the local Poincaré lemma. See e.g. [71].

5.19. Notes to Section 5. The proof of Wolfe’s theorem 5.5 in this
section essentially follows the argument in Whitney’s book. Some
streamlining was achieved by using the functional analytic framework
and the language of distributions and currents. A similar approach
was taken by Federer in his book, except that the argument there is
embedded in a more general discussion of various types of currents. See
[18, 4.1.19].

Whitney’s theory has been used in topology, for example in explain-
ing Novikov’s theorem about topological invariance of rational Pon-
tryagin classes. See [70].

Recently, Harrison has presented an interesting modification of Whit-
ney’s theory. See [24].

6. Locally standard Lipschitz structures

This last section surveys some recent results and open problems in
geometric analysis related to Lipschitz functions, where also flat forms
play an important role. The format of this section is somewhat different
from the previous sections, as we will not prove much, and will take
many mathematical concepts as known. The discussion is in large part
inspired by Dennis Sullivan’s talk at a conference held in memory of
Lars Ahlfors at Stanford University in 1997 [66].

6.1. Locally standard smooth structures. A smooth manifold M
can be equipped with various geometric structures. One such structure
is a conformal structure, which can be defined as an understanding of
what is meant by a round ball in each tangent space. More precisely,
a conformal structure on a manifold is a smoothly varying assignment
of equivalence classes of inner products attached with each tangent
space TpM , p ∈ M , where two inner products are equivalent if one is
a real multiple of the other. Thus, in a conformal structure we can
say what a ball in each tangent space is, but cannot specify its size.
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A Riemannian structure is obtained from a conformal structure when
we fix a representative in each equivalence class of inner products, in a
smoothly varying way. In a Riemannian manifold, we can speak about
the size of objects, and informally one can say that a Riemannian
structure is a conformal structure plus volume.

Every diffeomorphism from a region in Mn into Rn induces a con-
formal or a Riemannian structure in the region by pulling back the
standard structure from Rn. With respect to this pullback structure
such a diffeomorphism is a conformal map, or an isometry, as the case
may be.

Conversely, if a conformal or a Riemannian structure on M is given,
one can ask whether it arises locally as a pullback of the standard
structure of Rn by some diffeomorphism, where by locally we mean that
every point in M has a neighborhood where the structure agrees with
a pullback structure. If this is the case, we say that such a structure
on M is locally standard. In particular, with respect to locally stan-
dard conformal or Riemannian structures, M is locally conformally or
isometrically equivalent to a patch in Rn.

Consider as an example first the case when the dimension ofM is one,
and M has a Riemannian structure. Now M is nothing but a smooth
curve locally, and thus there exists a smooth arc length parametrization
that gives a local isometry between M and an interval in R. Thus, every
Riemannian structure on a 1-manifold is locally standard.

The preceding assertion is not true in dimensions above one. There is
an obstruction qua curvature of the structure. Indeed, for a Riemannian
n-manifold to be locally isometric to a patch in Rn, its Riemannian
curvature tensor must vanish identically, and in every dimension at
least two there are Riemannian manifolds with non-zero curvature. On
the other hand, by a fundamental theorem in Riemannian geometry,
the curvature tensor provides the only obstruction in this case. Thus,
a Riemannian manifold is locally standard if and only if the condition
R ≡ 0 is fulfilled, where R is the associated Riemannian curvature
tensor.

For conformal structures there is another fundamental theorem, go-
ing back to cartography and Gauss (see Remark 6.1), stating that ev-
ery conformal structure on a smooth 2-manifold is locally standard. In
particular, every smooth Riemannian 2-manifold is locally conformally
equivalent to a patch in R2, although typically it is not isometrically so.
Thus, as is the case for Riemannian structures on 1-manifolds, there is
no obstruction in dimension two for a conformal structure to be locally
standard.
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See [79, Theorems 2.4.11 and 2.5.14] for the proofs of the above cited
facts from geometry.

We cannot expect conformal structures to be locally standard beyond
dimension two; several obstructions emerge. For example, in dimen-
sions above three a necessary and sufficient condition for a Riemannian
manifold to be locally conformally equivalent to Rn is that the so called
Weyl component, or the Weyl-Schouten tensor, of the curvature tensor
vanishes. See, for example, Lafontaine’s lectures in [40].

6.2. Measurable conformal structures. Both conformal and Rie-
mannian structures allow for a weaker formulation; it is not necessary to
have them smooth. The distribution of inner products in the definition
of these structures could be asked to be only measurable, for example.
Measurability, or some such requirement, makes sense by interpreting
a distribution of inner products as a section of the vector bundle of
symmetric bilinear 2-forms on the manifold; this is a map between two
smooth manifolds. Our problems are eventually local, so that M could
just as well be an open set in Rn, in which case the phrases “measur-
able distribution of inner products” and “almost everywhere” have an
obvious meaning.

A measurable conformal structure on M can be said to be locally
standard if every point in M has a neighborhood together with an al-
most everywhere differentiable homeomorphism from the neighborhood
onto an open set in Rn such that, at almost every point, the tangent
map is conformal from the given inner product to the standard Eu-
clidean inner product. In a more picturesque language, a measurable
conformal structure is locally standard if locally there exists a home-
omorphism into Rn that takes, at almost every point, infinitesimal
balls as determined by the given structure to infinitesimal round balls
in Rn. In practice, it is necessary to require more regularity from the
homeomorphism in the preceding definition, e.g. a membership in some
Sobolev class.

The celebrated measurable Riemann mapping theorem, first proved
by Morrey in 1938 [53], gives that every measurable conformal struc-
ture on a 2-manifold is locally standard, provided the defining circles
on tangent spaces have uniformly bounded eccentricity when measured
against some fixed background smooth Riemannian metric.

The condition on eccentricity in Morrey’s theorem is clearly indepen-
dent of the chosen metric. To explain this theorem in analytic terms,
let us assume, as we may by the smooth result mentioned earlier, that
M = Ω is an open subset of R2. Then a measurable conformal struc-
ture on Ω can be viewed as a measurable field of ellipsoids on Ω. The
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eccentricity of the ellipsoid that is attached with a point z ∈ Ω is by
definition the ratio of the lengths of its major and minor axes. In this
way, we arrive at the following partial differential equation, known as
the Beltrami equation,

(6.1) ∂f(z) = µ(z)∂f(z) ,

where

∂ :=
1

2
(
∂

∂x
− i

∂

∂y
) , ∂ :=

1

2
(
∂

∂x
+ i

∂

∂y
)

for a complex valued function f : Ω → C. The function µ(z) is a
measurable complex-valued function, measuring the eccentricity and
the direction of the axes of an ellipse at a point z. We stipulate the
condition

(6.2) ||µ||∞ < 1

for the bounded eccentricity. For a nonsmooth µ equation (6.1) has to
be understood in the sense of distributions.

Morrey proved that homeomorphic solutions to equation (6.1) exist
in the Sobolev space W 1,2

loc , and that they are unique up to postcompos-
ing by conformal mapping. One can show that every homeomorphic
solution f to (6.1) is almost everywhere differentiable, and by working
out the analytic details, as already Gauss did for smooth mappings, we
find that f pulls back the standard conformal structure to the given
measurable structure in the sense discussed earlier.

Equation (6.1) expresses more than just the conformality of the so-
lution between the two structures. One can also prescribe the infini-
tesimal rotation of the mapping. Moreover, as was proved by Bojarski
in 1955 [8], every homeomorphic solution to (6.1) belongs to W 1,2+ε

loc for
some ε > 0 depending only on the L∞-norm of µ. This extra degree of
smoothness is crucial for many applications of the Beltrami equation.

Homeomorphic solutions to the Beltrami equation (6.1) are called
quasiconformal mappings. The theory of quasiconformal mappings,
extensively developed during the last fifty years, has applications that
extend far beyond what can be discussed here. We refer to [46] for
a complete account of the early years, and to [45] and [34] for recent
developments.

Remark 6.1. (a) Morrey’s theorem in the smooth context is often cred-
ited to Gauss, but this seems an exaggeration as far as a rigorous proof
is concerned. It is probably true that Gauss was the first to speak of
isothermal coordinates, and that he also was the first to realize that
such coordinates can be found for every smooth surface.
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(b) One can relax condition (6.2) and still obtain the existence of
homeomorphisms that pull back the standard conformal structure to
that determined by µ. Such results were considered by Lehto already
in the 1960s [44]. A paper by David [15] triggered an extensive devel-
opment in this direction. See [34] and the references there.

There is no direct analog of the measurable Riemann mapping theo-
rem in dimensions higher than two. That is, one cannot at will distrib-
ute a measurable ellipsoid field with uniformly bounded eccentricity in
a region in Rn, n ≥ 3, and expect this to be a pullback distribution
under a homeomorphism. Analytically one sees this from the asso-
ciated partial differential equation which becomes overdetermined in
dimensions higher than two. Geometrically, the lack of such a theo-
rem reflects the lack of nontrivial conformal mappings in space. Recall
that according to the Liouville theorem every conformal mapping in a
domain in Rn, n ≥ 3, is a restriction of a Möbius transformation. See
[34] for more discussion on this topic.

It is however unknown if an extra integrability condition attached
with a measurable conformal structure would yield a positive existence
result. The term “integrability condition” in this connection was used
by Sullivan in his lecture [66]. The vanishing of the Riemannian cur-
vature tensor, R ≡ 0, is an example of such a condition; it guarantees
that a structure is locally standard. Similar remark holds for condition
(6.2) in dimension two. Sullivan also viewed the Darboux theorem in
symplectic geometry in this light. Recall that a symplectic manifold
is a smooth even dimensional manifold together with a nondegenerate
closed 2-form on the manifold. The Darboux theorem asserts that lo-
cally every such form is a pullback of the standard symplectic form
ω0 =

∑n
i=1 dxi ∧ dyi of R2n under a diffeomorphism. Now one could

consider more generally pairs (M2n, ω), where ω is a nondegenerate
2-form on M , and conclude that there is an integrability condition,
namely dω = 0, which implies that (M,ω) is locally equivalent to
(R2n, ω0). Sullivan raised the interesting question whether there is a
measurable formulation of this integrability condition and Darboux’s
theorem, by using flat forms for example. For an introduction to sym-
plectic geometry, see e.g. [3].

It is not clear what kind of integrability conditions one should be
looking for in the case of measurable conformal structures in dimensions
higher than two. For example, it is not known if there are measurable
analogs of the Weyl-Schouten tensor mentioned earlier at the end of
subsection 6.1. In the next subsection, we will discuss some possible
integrability conditions for measurable Riemannian metrics.
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6.3. Measurable Riemannian structures. A measurable Riemann-
ian structure on a smooth manifold makes sense, as described in the
beginning of the previous subsection. To say that such a structure is
locally standard is to say that locally there exists an almost every-
where differentiable homeomorphism (preferrably in some appropriate
Sobolev class) onto an open set in Rn such that the tangent map of this
homeomorphism induces almost everywhere an isometric isomorphism
between the given inner product and the standard inner product in Rn.

To see what kind of integrability conditions one might have in this
case, we consider a measurable Riemannian structure in an open subset
Ω of Rn. Such a structure is determined by a measurable map from Ω
into the Lie group GL(n,R) of linearly independent frames, each frame
representing an orthonormal basis in the inner product. By using the
canonical isomorphism between Rn = TxRn and T ∗x Rn, we can think of
such a measurable structure as a map

ρ : Ω → ∧1(Rn)× · · · × ∧1(Rn) ,

where on the right we have an n-fold product of 1-forms. Thus,

ρ = (ρ1, . . . , ρn)

is an n-tuple of 1-forms. It is natural to stipulate that each form ρi is
a flat 1-form in Ω. The measurable Riemannian volume form in such
a situation would be the bounded flat n-form

ρ1 ∧ . . . ∧ ρn .

It is further natural to stipulate that this “volume form” is nondegen-
erate and has one sign; that is, we require that the form ρ1 ∧ . . . ∧ ρn

lies in a fixed component of ∧n(Rn) \ {0} almost everywhere. We next
strengthen this requirement to a uniform distance from the origin.

Definition 6.2. A Cartan-Whitney presentation in Ω is an n-tuple
ρ = (ρ1, . . . , ρn) of flat 1-forms such that

(6.3) essinf ∗ (ρ1 ∧ . . . ∧ ρn) > 0 ,

where the Hodge star ∗ renders the canonical isomorphism between
∧n(Rn) and R.

Thus, a Cartan-Whitney presentation can be viewed as a measurable
(Whitney flat) coframe at almost every point, such that the associated
volume form is uniformly bounded and bounded away from zero.

When is a Cartan-Whitney presentation locally standard? The as-
sumption that the forms be flat, together with (6.3), suggests that we
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should be looking for bi-Lipschitz homeomorphisms, and being locally
standard means that

ρi = f ∗(dxi) = dfi

for all i = 1, . . . , n, for some bi-Lipschitz map f . Note that if ρ is
locally standard, then necessarily

dρ = ddf = 0 .

We call a Cartan-Whitney presentation closed if dρ = 0. It turns out
that the preceding obvious necessary condition is almost sufficient, as
we will soon see (Theorem 6.3).

Before this, let us discuss an interesting idea that was put forward by
Sullivan in his 1997 lecture. Namely, suppose that a Cartan-Whitney
presentation ρ in Ω is given. It is a purely algebraic fact that there
exists a skew-symmetric matrix θ of 1-forms such that the equality

(6.4) dρ = θ ∧ ρ
holds. More precisely, at almost every point x there is a skew-symmetric
matrix θ(x) with entries 1-forms such that dρ(x) = θ(x) ∧ ρ(x). (See
[52, p. 302].) If the Cartan-Whitney presentation ρ is smooth, the
matrix θ is the connection matrix associated with the Levi-Civita con-
nection of the metric. Further, in the smooth case, the Riemannian
curvature tensor R is a matrix of 2-forms,

(6.5) R = dθ − θ ∧ θ .
Now we could stipulate that, given a Cartan-Whitney presentation ρ,
the unique matrix θ in (6.4) is also made of flat forms. In particular, an
exterior differential dθ can be formed in the sense of distributions. This
stipulation understood, we can define the curvature R of the Cartan-
Whitney presentation ρ by the formula (6.5).

In subsection 6.1, we discussed how there is just one obstruction for
a smooth Riemannian structure to be locally standard, the vanishing of
the Riemannian curvature tensor. Is there an analog of this result in the
measurable context by using formula (6.5)? As Sullivan observed, the
curvature associated with every closed Cartan-Whitney presentation
vanishes. Moreover, he proved the following result in [68].

Theorem 6.3. Every closed Cartan-Whitney presentation in an open
set in Rn, n ≥ 2, is locally standard outside a closed exceptional set of
measure zero and of topological dimension at most n − 2. The excep-
tional set can really occur.

The proof of Theorem 6.3 relies on two major mathematical ideas.
First, there is the theory of flat forms and duality, as developed in Sec-
tion 5. Second, there is a theory of quasiregular mappings initiated by
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Reshetnyak in the 1960s. We will discuss the latter theory momentarily.
Before that, let us consider an example showing that an exceptional set
of topological codimension two, as allowed in the theorem, can really
appear.

The k-times winding map, k ≥ 2,

(6.6) w : Rn → Rn , w(r, θ, z) := (r, kθ, z) ,

in cylindrical coordinates, is a Lipschitz map with the property that

(6.7) detDw = k

almost everywhere. The mapping w is a local homeomorphism outside
the (n − 2)-dimensional subspace Bw := {r = 0} in Rn. Near every
point of Bw we have a k-to-one map. The set Bw is called the branch
set of w. The pullback forms

(6.8) ρi := w∗(dxi) = dwi , i = 1, . . . n ,

constitute a Cartan-Whitney presentation in Rn, because of (6.7). This
presentation cannot be locally standard at points in Bw.

The curvature R associated with the presentation ρ = (ρ1, . . . , ρn)
in (6.8) is zero, as explained earlier. In this example, there is (to quote
Sullivan) “new kind of curvature”, resting on the branch set of the
winding map.

The winding map is a particular example of a mapping of bounded
length distortion.

6.4. BLD-mappings. A Lipschitz mapping f : Ω → Rn, where Ω ⊂
Rn, n ≥ 2, is open, is said to be a BLD-mapping, or a mapping of
bounded length distortion, if

(6.9) essinf detDf > 0 .

BLD-mappings form a subclass of quasiregular mappings4 that were
alluded to earlier. As such, BLD-mappings were first studied by Martio
and Väisälä [49], who gave several equivalent definitions for this class of
mappings. In particular, they showed that the analytic condition (6.9),
together with the Lipschitz condition, imply that BLD-maps preserve
the lengths of paths up to a multiplicative error. Conversely, such
length preserving property characterizes BLD-maps among discrete,
open, and sensepreserving maps.5

4We forgo the definition for general quasiregular mappings here as it is not
needed; see [55], [56].

5Instead of a global Lipschitz requirement, Martio and Väisälä used a uniform
local Lipschitz condition. For local considerations, as in these notes, the difference
is immaterial. See also [29].
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Recall that a continuous mapping between topological spaces is open
if it maps open sets to open sets, and discrete if the preimage of every
point consists of isolated points.

The following fundamental theorem is due to Reshetnyak [54], [55].

Theorem 6.4. Every BLD-mapping is an open and discrete mapping
that is locally bi-Lipschitz outside a closed set of measure zero and of
topological dimension at most n− 2.

Proof of Theorem 6.3. Let ρ be a closed Cartan-Whitney presentation
in Ω. Pick a point p ∈ Ω and r > 0 such that B(p, r) ⊂ Ω. Define

(6.10) Fp(x) := 〈ρ, [p, x]〉

for x ∈ B(p, r), where the right hand side denotes the duality between
flat 1-forms and oriented polyhedral 1-chains, proved in Section 5.6

Moreover, we apply the duality to the components of ρ = (ρ1, . . . , ρn).
We claim that the function Fp : B(p, r) → Rn is Lipschitz. Indeed,

|Fp(x)− Fp(y)| = |〈ρ, [p, x]− [p, y]〉|
≤ |〈ρ, [p, x] + [x, y]− [p, y]〉|+ |〈ρ, [x, y]〉|
= |〈dρ, [p, x, y]〉|+ |〈ρ, [x, y]〉|
≤ 0 + ||ρ||∞ · |x− y| ,

so that Fp is L-Lipschitz in B(p, r) for L = ||ρ||∞, where

||ρ||∞ := max
i=1,...,n

||ρi||∞ .

Next we show that condition (6.9) holds. For this, observe that

〈dFp − ρ, [x, y]〉 = 〈ρ, [p, y]− [p, x]− [x, y]〉
= 〈ρ, [p, y] + [y, x] + [x, p]〉
= 〈dρ, [p, y, x]〉 = 0

whenever [x, y] ⊂ B(p, r) is a line segment. This implies that dFp = ρ,
by the theory of flat chains and forms as given in Section 5. Hence
(6.9) is automatically satisfied.

It follows that Fp : B(p, r) → Rn is a BLD-mapping. Because Fp is
a locally bi-Lipschitz map outside a closed set BFp of measure zero and
topological dimension at most n− 2 (Theorem 6.4), we have that ρ is
locally standard in the complement of BFp . The theorem follows. �

6The fact that the forms here are not globally defined as required by the theory
in Section 5 is of no consequence, for one can always multiply by a smooth cut-off
function, for example.
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There is an analog of Theorem 6.3 for general, not necessarily closed
Cartan-Whitney presentations. In a sense, this result is more satisfac-
tory than Theorem 6.3, as it may be difficult to verify whether a given
flat form is closed. But the conclusion has to be weaker, as locally
standard forms have to be closed. The following theorem is again due
to Sullivan [68] (with a simpler proof in [30]).

Theorem 6.5. Let ρ be a Cartan-Whitney presentation in an open set
Ω in Rn, n ≥ 2. Then for every point p ∈ Ω there exists r0 > 0 and a
BLD-mapping Fp : B(p, r0) → Rn such that

(6.11) ||dFp − ρ||∞,B(p,r) ≤ ||dρ||∞,B(p,r) · r
for all r < r0. The BLD-data of Fp depends only on n and the flat
norm of ρ.

Proof. Fix p ∈ Ω, assume that B(p, r0) ⊂ Ω, and define Fp as in (6.10)
for x ∈ B(p, r0). A computation as in the proof of Theorem 6.3, using
the elementary estimate

(6.12) |[p, x, y]| ≤ max{|p− x|, |p− y|} · |x− y|
for the area of the triangle [p, x, y], yields that Fp is L-Lipschitz for
L = max{||ρ||∞, r0 · ||dρ||∞}. Moreover,

(6.13) 〈dFp − ρ, [x, y]〉 = 〈dρ, [p, y, x]〉 .
For x 6= p and |y − x| << |x − p|, we use again estimate (6.12) and
obtain from (6.13) that

(6.14) ||dFp − ρ||∞,B(p,r) ≤ ||dρ||∞,B(p,r) · r , r < r0 .

(Here we also use the fact that the flat norm is determined locally, cf.
Corollary 5.11.)

It is now clear from (6.14) that upon choosing r0 small enough, we
obtain that (6.9) holds for Fp, so that Fp is a BLD-map. with constants
depending only on n and the constants associated with ρ. Moreover,
(6.11) holds. The proof is complete. �

It follows from Theorem 6.5 that every Cartan-Whitney presentation
is asymptotically, near every point p, a pullback of the standard presen-
tation under a BLD-map. Such a BLD-map can branch at p, preventing
us from concluding that ρ is “asymptotically locally standard”. In the
next subsection, we discuss an additional hypothesis that guarantees
there is no branching at p. Interestingly, it is still true that an arbi-
trary Cartan-Whitney presentation is asymptotically locally standard
outside an exceptional set as in Theorem 6.3. The following result is
due to Keith and myself (it is proved in a more general context in [27]).
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Theorem 6.6. Let ρ be a Cartan-Whitney presentation in an open set
Ω in Rn, n ≥ 2. Then there exists a closed set E ⊂ Ω of measure zero
and of topological dimension at most n− 2 such that the mappings Fp

as in (6.10) are bi-Lipschitz near every p ∈ Ω \ E.

Proof. Fix p ∈ Ω, and let r0 and Fp be as in the proof of Theorem 6.5.
In particular, Fp is a BLD-map. Fix 0 < ε < r0 and q ∈ B(p, ε) such
that Fp is a local homeomorphism near q; that is, we pick q outside the
branch set of Fp. (Here we do not exclude the possibility that q = p.)
We consider two families of rescaled maps,

(Fp)q,r(x) :=
Fp(q + rx)− Fp(q)

r
,

(Fq)q,r(x) :=
Fq(q + rx)− Fq(q)

r
=

Fq(q + rx)

r
,

for x ∈ Rn, |x| < 1, and r > 0 small enough so that the maps are
defined. Then, for all small enough r > 0, the maps (Fp)q,r, (Fq)q,r

are uniformly BLD-maps in the unit ball Bn of Rn, taking the origin
to itself. By standard Arzelà-Ascoli type arguments, we can choose
a sequence of numbers (ri) converging to zero such that both (Fp)q,ri

and (Fq)q,ri
converge uniformly to BLD-maps Gp and Gq, respectively,

defined in Bn. Because Fp is a local homeomorphism near q, the map
Gp is bi-Lipschitz. On the other hand, one easily obtains from the
definitions for the maps Fp and Fq, given in (6.10), and from the Stokes
theorem as in the proof of Theorem 6.5, that

(6.15) |(Fq)q,ri
(x)− (Fp)q,ri

(x)| ≤ 2 ||ρ||[ |x| |p− q| ,
for all ri > 0 small enough.

Every BLD-map f , in addition to being Lipschitz, satisfies the fol-
lowing uniform lower bound for local squeezing,

(6.16) lim inf
y→x

|f(x)− f(y)|
|x− y|

≥ c > 0 ,

for every x in the domain of f , where c > 0 depends only on the
BLD-data of f [49, Corollary 2.13]. By combining (6.15) and (6.16),
we obtain that the maps Gp and Gq have a common local degree at
0, provided that ε > 0 is small enough, depending only on n and
the flat norm of ρ. It follows that Gq is a local homeomorphism at
q. Because (Fq)q,ri

converges to Gq locally uniformly, we must have
(by the basic degree theory) that also (Fq)q,ri

, and hence Fq is a local
homeomorphism at q.

The assertion of the theorem now follows from the basic properties
of BLD-mappings (as in Theorem 6.4), by covering Ω by balls of the
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form B(p, ε) as in the preceding, and observing that the property “Fq

is a local homeomorphism at q” is an open condition. The proof is
complete. �

6.5. A Sobolev condition that removes branching. It is an in-
teresting open problem to describe a bi-Lipschitz invariant hypothesis
on a Cartan-Whitney presentation that would imply that the maps Fp

as defined in the proofs of Theorems 6.3 and 6.5 are local homeomor-
phisms at p.

The following sufficient condition was given in [27].

Theorem 6.7. Let ρ be a Cartan-Whitney presentation in an open set
Ω in Rn, n ≥ 2. Assume that ρ ∈ W 1,2

loc (Ω). Then for every point p ∈ Ω
there exists r0 > 0 and a bi-Lipschitz mapping Fp : B(p, r0) → Rn such
that

(6.17) ||dFp − ρ||∞,B(p,r) ≤ ||dρ||∞,B(p,r) · r
for all r < r0. The bi-Lipschitz constant of Fp depends only on n and
the flat norm of ρ.

We will not prove Theorem 6.7 in these notes, but refer to [27]. For
an earlier result, where ρ was assumed to be closed, see [28].

By the hypothesis ρ ∈ W 1,2
loc (Ω) in Theorem 6.7, we understand that

the components of ρ as vector-valued functions belong to the local
Sobolev space.

One can rephrase Theorem 6.7 by saying that Cartan-Whitney pre-
sentations in the Sobolev space W 1,2 are asymptotically locally standard.
The Sobolev condition provides, therefore, a sought after integrability
condition that guarantees that a given Cartan-Whitney presentation is
locally standard, at least asymptotically; if the forms in question are
in addition closed, then they are locally standard as required by our
earlier discussion.

Interestingly, the imposed Sobolev condition in Theorem 6.7 is sharp.
A straightforward computation shows that the pullback presentation
under the winding map (6.6) is in the Sobolev space W 1,2−ε for every
ε > 0 near points on the branch set Bw. Unfortunately, the Sobolev
condition in Theorem 6.7 is not bi-Lipschitz invariant.

Remark 6.8. Theorems 6.5 and 6.7 were proved in [30], [27] in a more
general context than that of Euclidean spaces. In this way, there are
applications to the problem of finding bi-Lipschitz parametrizations of
metric spaces by Euclidean spaces, and to the smoothability of Lips-
chitz manifolds. For more discussion of these problems, and for refer-
ences, see [68], [29], [30], [26], [27].
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6.6. Notes to Section 6. The idea of looking for locally standard
measurable structures in a Riemannian context, as discussed in this
section, is due to Sullivan [66]. See also [68], [69]. Measurable Rie-
mannian metrics in the context of quasiconformal geometry have been
studied in [33], [6]. Cartan-Whitney presentations have been studied
in [30], [29], [27]. The text in this section contains references to the
related classical literature.
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