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QUASIREGULARLY ELLIPTIC LINK COMPLEMENTS

PEKKA PANKKA AND KAI RAJALA

Abstract. We show that the only quasiregularly elliptic link comple-
ments are complements of the unknot and the Hopf link. The proof of
non-existence of other link complements is obtained from a Varopoulos
type theorem for open manifolds.

1. Introduction

This article is motivated by the following result.

Theorem 1.1. There exist a smooth unknot S and a smooth Hopf link H in
S3, and Riemannian metrics gS and gH in S3 \ S and S3 \H, respectively,
so that (S3 \ S, gS) and (S3 \H, gH) are quasiregularly elliptic.

A connected and oriented Riemannian n-manifoldN is said to be quasireg-
ularly elliptic if it receives a non-constant quasiregular mapping from Rn. A
continuous mapping f between oriented Riemannian n-manifolds M and N
is quasiregular if it is a Sobolev mapping in W 1,n

loc (M,N) and satisfies the
distortion inequality

(1.1) |Df |n ≤ KJf a.e. M,

where |Df | is the operator norm of the differential Df and Jf is the Jacobian
determinant of Df .

Recall that a subset X of S3 is a knot if it is homeomorphic to S1, and a
link if it is a disjoint union of finitely many knots. The unknot (flat circle)
and the Hopf link (two flat circles linked once) in Theorem 1.1 are special
cases among all links in S3.

Theorem 1.2. Let L be a link in S3. If there exists a Riemannian metric
g in S3 \ L so that (S3 \ L, g) is quasiregularly elliptic, then L is either an
unknot or a Hopf link.

We find it interesting that Theorem 1.2 can be viewed as an analog to
the classical Picard theorem for analytic functions. In the case of Picard’s
theorem, the non-existence of analytic functions into twice punctured plane
can be traced to the fundamental group π1(C \ {0, 1}), which is a free group
of two generators. The same topological obstruction is present in Theorem
1.2. In Appendix A, we give a direct proof for the classical topological fact
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that the fundamental group of S3 \L contains a free group if L is any other
link than the unknot or the Hopf link.

Theorem 1.2 can be viewed, in light of Theorem 1.1, as a non-Euclidean
Picard type theorem for quasiregular mappings in dimension 3. In the con-
text of Euclidean 3-spaces, Picard’s theorem is due to Rickman. Rickman’s
fundamental result [10] states that quasiregular mappings from Rn to Sn
can omit only finitely many values. In a celeberated construction [11] he
also shows that this result is sharp in dimension 3, since for any finite set of
points {q1, . . . , qd} in S3 there exists a quasiregular mapping from R3 into
S3 omitting exactly those points.

Theorem 1.2 bears similarity to the classification of closed quasiregularly
elliptic manifolds due to Jormakka [7]: all closed quasiregularly elliptic 3-
manifolds are quotients of S3, S2× S1, or S1× S1× S1. A proof of Theorem
1.2 can probably be obtained also along the lines of Jormakka’s path-family
argument.

Theorem 1.2, and parts of Jormakka’s result, can also be viewed in light of
a theorem due to Varopoulos [13, Theorem X.11]: the order of growth of the
fundamental group of a closed quasiregularly elliptic n-manifold is at most
n. Whereas Jormakka’s result follows from Varopoulos’s theorem and the
geometrization conjecture, Theorem 1.2 can be deduced from the following
Varopoulos type theorem for open manifolds.

Theorem 1.3. Let N be a connected and oriented Riemannian n-manifold
without boundary and f : Rn → N a quasiregular mapping. If π1(N) has
order of growth at least d > n then f is constant.

Since the fundamental group of an open manifold need not be finitely
generated, we use the following definition. A group Γ has order of growth at
least d if there exists a finite set S ⊂ Γ and a constant C > 0 so that any ball
of radius r in the subgroup 〈S〉 generated by S has at least Crd elements for
all r ∈ Z+ when 〈S〉 is endowed with the word metric determined by S; see
[4, Section 5B] for the terminology and discussion on the growth of groups.

The constructions in Theorem 1.1 are based on the existence of covering
maps from R3. Although there is no formal connection, our debt to the
work of Semmes [12] is apparent regarding the construction of Riemannian
metrics gS and gH .

The proof of Theorem 1.3 is a localized version of the original proof of
Varopoulos’ theorem. Since the universal cover Ñ of N need neither be
roughly isometric to 〈S〉 nor have bounded local geometry, we construct a
submanifold X̃ of Ñ satisfying these conditions. Using results of Coulhon
and Saloff-Coste [3] and Kanai [8], we show that X̃ supports a Sobolev
inequality

‖u‖ d
d−1
≤ C‖∇u‖1

for compactly supported Lipschitz functions u on X̃, where C > 0 does not
depend on u. The Sobolev inequality then yields the n-hyperbolicity of Ñ
since d > n.
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2. Proof of Theorem 1.1

We consider first the construction in the case of an unknot. Let R̂3 be
the one-point compactification of R3, and σ : R̂3 → S3 the inverse of the
stereographic projection. Let also Z = {(0, 0)} × R ⊂ R3 and S = σ(Z̄).
We construct a Riemannian metric g in R3 \Z and a quasiregular mapping
f : R3 → (R3 \ Z, g). Then σ ◦ f : R3 → (S3 \ S, (σ−1)∗g) is quasiregular.

The mapping we construct is, in complex notation, (z, t) 7→ (ez, t). For
simplicity, however, we use only real coordinates, and define f : R3 → R3\Z,
f = (f1, f2, f2), by f(x, y, t) = (ex cos y, ex sin y, t).

To construct the metric g, we denote

(2.1) A(r) =

 1 0 0
0 1 0
0 0 r

 .
The metric g is now defined in the standard basis (∂x, ∂y, ∂t) by the matrix
field G : R3 \ Z → R3×3, G(x, y, t) = A(x2 + y2). Thus, in this metric,
(∂x, ∂y, (x2 + y2)∂t) is an orthonormal basis in T(x,y,t)R3.

Since f1(x, y, t)2 + f2(x, y, t)2 = e2x, we have, for p = (x, y, t), that

(Df)tpGf(p)(Df)p = e2xI,

where I is the identity matrix.
Thus

gf(p)((Df)p(v), (Df)p(w)) = 〈Gf(p)(Df)p(v), (Df)p(w)〉
= 〈(Df)tpGf(p)(Df)p(v), w〉 = e2x〈v, w〉

for v, w ∈ TpR3 and p ∈ R3. Hence f : R3 → (R3 \Z, g) is a conformal map.
Especially, f is quasiregular.

The construction of a quasiregular mapping R3 → S3 \H, where H is a
Hopf link, is based on observation that R3 is the universal cover of S3 \H
and that S3 is a union of two solid tori. The construction of the Riemannian
metric and the mapping could be done similarly as in the case of the unknot,
but to avoid technicalities, we proceed more abstractly.

Let S0 = {(x, y, 0) ∈ R3 : x2 + y2 = 4} and S1 = Z. Then H = σ(S0 ∪ Z̄)
is a Hopf link in S3. We denote L = S0 ∪ S1.

Let T = {p ∈ R3 : dist (p, S0) = 1/2}. Then T is a 2-torus and S3 \
σ(T ) consists of two open solid tori in S3. We fix an orientation preserving
diffeomorphism Θ: T ×R→ R3 \L so that Θ(p, 0) = p for p ∈ T . We define
gL to be the push-forward metric in R3 \ L by

(gL)p(v, w) =
〈
(DΘ)−1

p v, (DΘ)−1
p w

〉
,

where v, w ∈ TpR3 and p ∈ T × R.
We fix a diffeomorphism ϕ : S1 × S1 → T and define ϕ̃ : R2 → T to

be the composition of ϕ with the covering map R2 → S1 × S1, (t, s) 7→
(ei2πt, ei2πs). We define ϕ̂ : R3 → T × R by ϕ̂(x, y, t) = (ϕ̃(x, y), t). Since
ϕ is a diffeomorphism and S1 × S1 is compact, ϕ is bilipschitz. Thus ϕ̂ is
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quasiregular. Since Θ: T ×R→ (R3 \L, g) is conformal by construction, we
have that f : R3 → (S3 \H, gH), f = σ ◦Θ ◦ ϕ̂, is quasiregular, where gH is
the push-forward metric of gL under σ.

Remark 2.1. Semmes [12] has constructed topologically interesting metric
spaces whose geometry is controlled in the sense that they are Ahlfors regular
and satisfy Poincaré inequalities. Concerning the examples above, the metric
constructed in S3 \ H can be modified to have controlled geometry. In
contrast, we do not know if S3 \ S has a metric with controlled geometry
such that the resulting space is quasiregularly elliptic. Similarly, we do not
know if the Whitehead manifold, an example also considered by Semmes,
admits a metric as above which makes it quasiregularly elliptic.

3. Proof of Theorem 1.3

Since the quasiregularity of the mapping depends only on the conformal
class of the Riemannian metric on N , we may assume that N is complete,
see e.g. [14]. We denote by g a fixed complete Riemannian metric on N .

3.1. Construction of the submanifold. Since the fundamental group of
N has a order of growth at least d > n, we can fix a finite set S ⊂ π1(N) so
that the subgroup 〈S〉 generated by S has order of growth at least d.

Let x0 ∈ N . We fix loops γs : S1 → N , s ∈ S, so that S = {[γs] : s ∈ S}
and γs(1) = x0 for every s ∈ S.

Since N is complete, we may fix, by Sard’s theorem, a closed ball X in
N so that ∂X is a smooth manifold and loops γs(S1) are contained in the
interior of X.

Let Ñ be the universal cover of N and π : Ñ → N a covering map. We
fix a component X̃ of π−1(X). Then X̃ is a submanifold of Ñ with smooth
boundary ∂X̃ = π−1(∂X). We show first that X̃ is roughly isometric to the
subgroup 〈S〉 with a word metric determined by S. A mapping ϕ : Y → Z
between metric spaces (Y, dY ) and (Z, dZ) is said to be a rough isometry if
there exist constants a ≥ 1, b > 0, and ε > 0 so that

1
a
dY (y, y′)− b ≤ dZ(ϕ(y), ϕ(y′)) ≤ adY (y, y′) + b

for all y, y′ ∈ Y and
dist Z(z, ϕ(Y )) < ε

for all z ∈ Z. Spaces Y and Z is said to be roughly isometric if there exists
a rough isometry Y → Z; see e.g. [8] for more details on rough isometries.

To see that 〈S〉 and X̃ are roughly isometric, we observe that, by com-
pactness of X, the submanifold X̃ and the net P̃ = π−1(x0)∩ X̃ are roughly
isometric. Since P̃ and 〈S〉 are bilipschitz equivalent, also X̃ and 〈S〉 are
roughly isometric.

3.2. Proof of Theorem 1.3. The proof of Theorem 1.3 is based on the
following Sobolev inequality. For the statement, we say that an ε-net P on
a manifold admits a d-dimensional isoperimetric inequality if there exists a
constant C > 0 so that

#Q ≤ C (#∂PQ)d/(d−1)
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for all finite subset Q ⊂ P , where ∂PQ = {p ∈ P \Q : dist (p,Q) ≤ 2ε}; see
[8] for more details.

For the statement of the Sobolev inequality, we denote by Lip0(M̃) the
space of compactly supported Lipschitz functions on M̃ .

Proposition 3.1. Let M be a compact submanifold with boundary of a
Riemannian manifold N , Ñ the universal cover of N , and M̃ a component
of the lift of M in a covering map Ñ → N . If M̃ contains an ε-net P
admitting a d-dimensional isoperimetric inequality for d ≥ n, then there
exists C > 0 so that

(3.1) ‖u‖ d
d−1
≤ C‖∇u‖1

for all u ∈ Lip0(M̃).

We postpone the proof of this proposition to the next section and consider
first the proof of Theorem 1.3.

Proof of Theorem 1.3. Since 〈S〉 has an order of growth at least d > n, it
supports a d-dimensional isoperimetric inequality; see [3, Théorème 1] for a
precise statement. Since P = π−1(x0)∩X̃ is bilipschitz equivalent to 〈S〉, we
have that P supports a d-dimensional isoperimetric inequality by [8, Lemma
4.2]. Thus X̃ admits d-dimensional Sobolev inequality (3.1) by Proposition
3.1.

Since d > n, we have d/(d− 1) < n/(n− 1). Let γ > 1 be so that
γ

γ − 1
d

d− 1
=

n

n− 1
.

We fix a closed ball B ⊂ X̃. Let v ∈ C∞0 (Ñ) be so that v|B ≥ 1 . We
define u = v|X̃. Then, by Proposition 3.1 and Hölder’s inequality,(∫

X̃
|u|γd/(d−1)

)(d−1)/d

≤ C

∫
X̃
|∇|u|γ | ≤ C

∫
X̃
γ|u|γ−1|∇u|

≤ Cγ

(∫
X̃
|u|(γ−1)n/(n−1)

)(n−1)/n(∫
X̃
|∇u|n

)1/n

,

where C > 0 us as in (3.1).
Since γd/(d− 1) = (γ − 1)n/(n− 1) and (d− 1)/d > (n− 1)/n, we have

|B|
d−1

d
−n−1

n ≤
(∫

B
|u|γd/(d−1)

) d−1
d
−n−1

n

≤ Cγ
(∫

X̃
|∇u|n

)1/n

≤ Cγ

(∫
Ñ
|∇v|n

)1/n

Thus the ball B has positive n-capacity with respect to Ñ and hence Ñ is
n-hyperbolic by definition; see e.g. [6].

Since every quasiregular mapping from Rn to N has a lift to Ñ and the
lifted mapping is constant by n-hyperbolicity of Ñ (recall that n-hyperbolic
spaces do not receive non-constant quasiregular mappings from Rn, see [13]),
there are no non-constant quasiregular mappings into N . This completes
the proof. �
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4. A Sobolev inequality

In this section we prove Proposition 3.1. We obtain the Sobolev inequality
by constructing a double of M̃ . Proposition 3.1 follows almost directly from
this construction. The bounded local geometry in the following statement
refers to the standard assumptions that the Ricci curvature is bounded from
below and the manifold has positive injectivity radius; see e.g. condition (*)
in [8, p.394], or [2].

Lemma 4.1. Let M , N , M̃ , and Ñ be as in the statement of Proposi-
tion 3.1. Then there exists L ≥ 1, a connected and complete Riemannian
manifold M̂ with bounded local geometry, and mappings ι : M̃ → M̂ and
π̂ : M̂ → M̂ so that

(i) the mapping ι is an L-bilipschitz embedding, and
(ii) π̂ is a 2-Lipschitz mapping so that π̂|ι(M̃) = id and π̂|(M̂ \ ι(M̃)) is

a local isometry.

Proof. We construct a double MD ofM byMD = (M×{0, 1})/ ∼, where∼ is
the equivalence relation (x, 0) ∼ (x, 1) if x ∈ ∂M . Then MD is an n-manifold
without boundary and there exists an open neighborhood Ω of M in N and
a smooth embedding ψM : Ω → MD, so that ψM (x) = [(x, 0)] for x ∈ M ;
see e.g. [9, Chapter IV §5.]. We denote by πD : MD → MD the projection
[(x, k)] 7→ [(x, 0)] and by σD : MD →MD the reflection [(x, k)] 7→ [(x, 1−k)].
The double M̃D of M̃ is constructed similarly.

We fix a Riemannian metric gD on MD so that σD is a local isometry,
that is, σD∗gD = gD.

Since M is compact, there exists a constant L ≥ 1 so that
1
L2
g ≤ gD ≤ L2g

as tensors on M ⊂ MD. Here g is the Riemannian metric fixed in the
beginning of this section. Since σD is a local isometry, we have that the
standard embedding ιD : M → MD is L-bilipschitz. By the choice of gD,
the projection πD is a local isometry on MD \M .

By construction of the double, M̃D is a covering space of MD and M̃D →
MD, [(x̃, k)] 7→ [(π(x̃), k)], is a covering map. We denote by g̃ and g̃D
the lifts of Riemannian metrics g and gD on M̃ and M̃D, respectively. We
denote also by ι̃D : M̃ → M̃D and by π̃D : M̃D → M̃D the lifts of ιD and
πD, respectively. Then ι̃D is an L-bilipschitz embedding and π̃D is an local
isometry in M̃D \ M̃ . Thus we may take M̂ = M̃D, ι = ι̃D and π̂ = π̃D.
This concludes the proof. �

Proof of Proposition 3.1. Let M̂ be a manifold as in Lemma 4.1. We denote
M0 = ι(M) and M1 = M̂ \M0. We show first that M̂ and M0 are roughly
isometric.

Let x̂ ∈ M̂ . SinceM is compact there exists y ∈ ∂M̃ so that d(π̂(x̂), ι(y)) ≤
2 diamM . Let ŷ = ι(y). Since ŷ ∈ ∂M1, we have that d(x̂, ŷ) ≤ Ld(π̂(x), ŷ) ≤
2LdiamM . Since also d(π̂(x̂), x̂) ≤ d(π̂(x̂), ŷ) + d(ŷ, x̂) ≤ 4LdiamX, we
have that π̂ is a rough isometry. Thus M̂ and M0 are roughly isometric.

Let P be an ε-net on M̃ admitting a d-dimensional isoperimetric inequal-
ity. Then ι(P ) is bilipschitz equivalent to P and roughly equivalent to M̂ .



QUASIREGULARLY ELLIPTIC LINK COMPLEMENTS 7

Since ι(P ) supports a d-dimensional isoperimetric inequality by [8, Lemma
4.2] and M̂ has locally bounded geometry, we have by [8, Lemma 4.5] that
M̂ supports d-dimensional Sobolev inequality, that is, there exists C > 0 so
that

(4.1) ‖v‖d/(d−1) ≤ C‖∇v‖1

for all v ∈ C∞0 (M̂).
Let u ∈ Lip0(M̃). Then v = u◦ ι−1 ◦ π̂ is a compactly supported Lipschitz

function on M̂ . By the density of smooth functions, we have that

‖v‖d/(d−1) ≤ C‖∇v‖1,

where C is the constant in (4.1). Since ι−1 and π̂ are L-Lipschitz and π̂ = id
on ι(M̃), we have that(∫

M̃
|u|d/(d−1) dHn

)(d−1)/d

≤
(
Ln
∫
M̂
|v|d/(d−1) dHn

)(d−1)/d

≤ C ′
∫
M̂
|∇v| dHn ≤ C ′

∫
M̃
|∇u| dHn,

where C ′ = C ′(C,L, n). This concludes the proof. �

Appendix A

The purpose of this appendix is to give a direct proof for the well-known
fact that π1(S3 \ L) contains a free group if L is a link that is neither the
unknot nor the Hopf link. In the following proof, our considerations are in
the PL category.

Lemma A.1. Let L be a link in S3. Then either L is an unknot, a Hopf
link, or π1(S3 \ L) contains a free group.

Proof. Suppose first that L is a knot. By the structure theorem [1, Theorem
4.6], [π1(S3\L), π1(S3\L)] contains a free group if L is not an unknot. Thus
if L is a knot then it is either an unknot or π1(S3 \L) contains a free group.

Suppose now that L is not a knot. We may assume that one of the circles,
say S, in L is an unknot. Indeed, since π1(S3 \L)→ π1(S3 \S) is surjective,
we may apply the structure theorem for commutator subgroups again.

Let T be a solid torus that is a regular neighborhood of S so that L∩T =
S. Since S is an unknot, T ′ = S3 \ intT is a solid torus. Let L′ = L \ S and
let V ′ be a union of disjoint tori that are regular neighborhoods of circles
in L′. Then π1(S3 \ L) = π1(T ′ \ L′) = π1(T ′ \ V ′). It suffices to show that
either L is a Hopf link or π1(T ′ \ L′) contains a free group.

Let C = ∂B2 × {1} ⊂ ∂(B2 × S1) = ∂T ′ and let D be a PL-disk in T ′ so
that ∂D = C and that the number of intersections D ∩ L′ is minimal. Let
P ′ = D ∩ L′. By minimality assumption and [5, 6.1], we have that

ker(π1(D \ P ′)→ π1(T ′ \ L′)) = 1.

Indeed, suppose that the kernel is non-trivial, then ker(π1(D\V ′)→ π1(T ′ \
V ′)) 6= 1 and there exists an embedded diskD′ ⊂ T ′\V ′ so that ∂D′ = D′∩D
and ∂D′ is not contractible in D. Then there exists a disk D′′ ⊂ D ∪ D′
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so that D′′ has a smaller number of intersections with L′ than D. This
contradicts the minimality of D.

It suffices now to consider π1(D \ P ′). If D ∩ P ′ contains at least two
points, then π1(D \ P ′) contains a free group. Suppose that D ∩ P ′ is a
point. Then either L′ is a circle or L′ contains a circle, say S′, that does not
meet D. In the latter case, S∪S′ is an unlink in S3. In this case, π1(S3 \L)
contains a free group.

We have now reduced our considerations to the case that L consists of
two unknotted circles S and S′ so that S′ is contained in a torus T ′ that
is a complement of the regular neighborhood of S and that there exists a
disk DS so that ∂DS = S and DS ∩ S′ is a point. The disk DS is obtained
by attaching an annulus to D. We show that, under these assumptions, L
is a Hopf link. More precisely, let γ = ∂B2 × {1} = ∂T . We show that L
and S ∪ γ are isotopic by finding an embedded annulus A ⊂ S3 \ S so that
∂A = γ∪S′. Then S′ and γ are isotopic in a regular neighborhood of A and
L is isotopic to a Hopf link S ∪ γ.

Since DS ∩L′ is a point, we may fix a regular neighborhood, i.e. a 3-cell,
B of DS so that B ∩L′ is a closed unknotted arc in B and ∂B ∩L′ consists
of two points. Moreover, we may choose B so that T ⊂ B and T ∩ ∂B is an
annulus. By an unknotted arc, we mean that (B,B ∩ L′) is homeomorphic
to (B3, {0} × [−1, 1]). We denote by γ′ the arc γ ∩B.

We now fix a circle S′′ in S3 such that γ ⊂ S′′, S′′ \B = L′ \B, S′′ ∩B ⊂
∂B, and S′′ is isotopic to L′ in S3. Since S′′ and L′ are isotopic and L′ is
unknotted in S3, there exists a disk ω so that ∂ω = S′′ and ω ∩ intB = ∅.
Let A ⊂ S3 \ intT be an annulus so that ω ⊂ A, A ∩B ⊂ B \ intT , and ∂A
consists of L′ and γ. Then L′ is isotopic to γ in S3 \ S. Hence L is isotopic
to a Hopf link S ∪ γ. �
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