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Abstract

Spatial point processes are stochastic models for point patterns, systems of points scattered in
R

d. A point process can be used as a generating stochastic mechanism for additional spatial random
systems such as random tessellations, random fields and random graphs, which are collectively called
secondary structures of point processes. Secondary structures have a role in the statistical analysis of
point processes, e.g. in the form of statistical summaries based on tessellations, and in a method called
regionalisation which bridges point pattern statistics with geostatistics. In this study the objective
is to use geometric graphs together with graph-based summaries in the statistical analysis of small-
scale properties of point patterns. The functional summaries of this study are connectivity function,
cumulative connectivity function and clustering function. The concepts and their estimators are
given, their properties are discussed, and a simulation study is conducted. The simulation experiment
gives evidence that the graph-theoretical summaries are able to detect differences between point
patterns where the second-order statistics such as Ripley’s K or pair-correlation function fail. An R

library has been developed for the computation of the graph-based summaries.
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1 Introduction

Spatial point patterns are statistical data in the form of collections of points, representing locations or
objects in R

d with d ≥ 2, whilst spatial point processes are models for such data. Modern statistical
analysis of point patterns utilises the theory, models and efficient use of simulation of point processes,
see e.g. Møller and Waagepetersen (2003); Illian et al. (2008). This study focuses on the use of graph
theory as model characteristics and data summaries in point process statistics.

In the applications of point process statistics many other techniques are surpassed by the second-
order methods. These consists of Ripley’s K-function (Ripley, 1976) and pair-correlation function (e.g.
Stoyan et al., 1995) which are efficient tools for detecting clustered or regular spacings at a variety of
scales. The second-order analysis is based on pairs of points, and as such restrict their applicability when
specific hypotheses such as alingments of points are under consideration. A well known counter-example
by Baddeley and Silverman (1984) is the Cell model which has the same second-order structure as the
Poisson process, but produces distinctly non-Poisson patterns. To tackle these limitations more elaborate
summaries have been introduced, such as the third-order summary by Schladitz and Baddeley (2000).

Secondary structures of point processes are models where the randomness of the point process is used
to create a new type of random structure through a known mapping. The most common objective is
to employ new stochastic models for various random structures, but dual to that, the underlying point
processes can be studied through the transformed process. An example is to transform a point process
N to a random set X via Minkovski addition of R-discs. Then the the analysis of the random set X by
means of morphological summaries with various values of R gives information on the underlying point
process N . These morphological characteristics, containing the spherical contact distribution function,
has been studied by Mecke and Stoyan (2005). Further examples of the use of secondary structures of
point processes are statistics based on tessellations (Okabe et al. (2000)) and regionalization through
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2 Spatial point processes and graph based statistical features

intensity estimation or mark-sum measure (Stoyan et al. (1995)) which brings the point processes to
geostatistics.

In this study secondary structure of point processes are given by geometric graphs as outlined in
Illian et al. (2008). Geometric graphs are generated from a pattern by means of a neighbourhood re-
lation and then features of the graph are used to study the underlying point process. Three model
characteristics are considered. Connectivity function, which first appeared in Illian et al. (2008), is stud-
ied in detail and a choice of a parameter used in the construction of the graph is suggested. Second, a
new cumulative connectivity function is put forward. Third, the clustering function, based on a graph
theoretical characteristic, is developed and applied to spatial analysis emphasizing the interplay between
statistics of point patterns and graphs.

For the three characteristics considered, estimators are given and a deviation test based simulation
study is conducted to analyse their behaviour. The study points out that the use of graph-based sum-
maries is not without problems but, if correctly constructed, they can surpass the second-order point
process statistics for some important data. Hence graph theoretical summaries should be included into
the toolbox of point process statistics. This in mind, an implementation of the summaries is released
online as a free R package.

The paper is organized as follows. In Section 2 preliminaries of point processes and graphs are
recalled. The graph-based characteristics and their empirical counterparts are presented in Section 3. In
Section 4 the new summaries are studied with a simulation experiment. Section 5 is for discussion.

2 Preliminaries

We write B and Bi for a Borel sets of R
d, d = 2, 3, and ν for the Lebesgue measure. The notation b(x, r)

is used for an open ball centred at x and having radius r > 0, and || · || for the d-dimensional Euclidian
distance.

2.1 Point processes

Let N = {x1, ..., xn} ⊂ R
d, n ∈ N, be a simple, stationary and isotropic point process with intensity

λ > 0. Simple means that duplicate locations are not allowed, stationarity and isotropy imply that
N + s = {xi + s} and rN = {rxi} have the same distribution as N with respect to any s ∈ R

d and
rotation r, respectively. Let x stand for a realisation of N , termed point pattern. Write the cardinality
N(B) := |N ∩ B| for any B. The observation window is assumed to be W := [0, 1]d if not otherwise
stated. If the points xi have marks attached we let M := {[xi; mi]} denote the corresponding marked

point process. We assume that the marks are scalar, mi ∈ R. If especially mi ∈ {1, 2, . . . , k} we call the
process multivariate.

The point process model for complete spatial randomness (CSR) is the Poisson process, characterised
by parameter λ > 0 and the following two features: 1) For any B the integer valued random variable
N(B) is a Poisson distributed random variable with intensity λν(B), 2) For each disjoint pair B1 and B2

the random variables N(B1) and N(B2) are independent. The second property describes the independent
random scattering of the points.

The theory of spatial point processes and various aspects of its application can be found e.g. in
Stoyan et al. (1995), Møller and Waagepetersen (2003), Daley and Vere-Jones (2005) and Illian et al.
(2008).

2.2 Point process generated geometric graphs

We use graphs to structure point patterns (see e.g. Marchette, 2004). Define a graph to be a dual
G := (V, E) where V is a non-empty, countable set called the node set and E is a set of ordered pairs
{(xi, xj) : xi, xj ∈ V } called the edge set. E can be given by some rule, usually by a relation · ↔ · on V .
We assume ↔ is symmetric and irreflexive. In particular, for V ⊂ R

d and R > 0, define a relation

xi
R↔ xj ⇐⇒ ||xi − xj || ≤ R.

Call the corresponding graph the geometric graph.
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Denote the neighbourhood of xi ∈ V by ne(xi) := {xj ∈ V : xi ↔ xj}. Define a path from x to y as a
set of distinct, subsequently connected nodes {x1, x2, . . . , xk : x ↔ x1, . . . , xk ↔ y}. If there exists a path
between x and y we write x ∼ y. The path relation ∼ divides the graph G into pairwise disconnected
components Cl := {S ⊆ V : ∀xi, xj ∈ S xi ∼ xj}. Write also C(xi) := {xj : xi ∼ xj}, and denote the
components of G by Γ(G) :=

⋃
xi∈V C(xi). The graph is completely connected if |Γ(G)| = 1, meaning

that all node pairs are path connected.
Following Illian et al. (2008) we use graphs as a secondary structure for point processes. Let V = N

be a stationary (marked) point process, and set G(N) := (N, E) to be the new randomly behaving
geometric graph. Note the distinction to the classical Erdős-Rényi random graph (Erdős and Rényi,
1959) in which the edges are independently present with fixed probability p, instead of the complex
dependencies when the connection probability depends on the spatial distribution of the points.

Of great interest in spatial point pattern analysis are the distribution characteristics of other points
with respect to a typical (or randomly chosen) point. An example is the distribution of the typical
distance to the nearest neighbour from any x ∈ N , understood as statistically indistinguishable from the
value of any other x′ ∈ N . Therefore the node level features of a graph G(N) are of interest and one
such feature is the degree of a node xi ∈ N

δ(xi) =
∑

xj∈N

1(xi ↔ xj).

Considering the geometric graph with parameter R > 0, by the stochasticity and stationarity of the
nodes we can write

Eoδ(o) = Eo

∑

x∈N

1(x ∈ b(o, R) \ {o}) = λK(R)

which we call the mean degree characteristic. Here Eo is the Palm-expectation (conditioning o ∈ N), and
K(R) is the celebrated special case of a second order reduced moment measure known as the Ripley’s

K-function (Ripley, 1976, 1977): The graph does indeed describe the point process.
In CSR context mathematical properties of the geometric graphs has been studied at least by Penrose

(2003), and he implies that the dependency of edges leads to analytical difficulties, for example to
problems similar to those of percolation theory. But as the graph is a reasonable extension of a point
pattern data and statistical estimation is possible, we proceed to introduce summaries based on this
setting.

3 Summaries based on the features of graphs

The secondary structure approach proceeds with two options: 1) Mark a point pattern using information
from the graph and study the marked point pattern, or 2) study global topology of the graph. We look
at both approaches in turn.

3.1 Cumulative connectivity function

We define a new point pattern summary by extending the idea of mean degree characteristic to a version
where the edge connectivity is accompanied by the path connectivity as follows:

Definition 1 Let N be a stationary and isotropic point process with intensity λ > 0, and let G(N) be a

graph. Set

CC(r) := λ−1Eo

∑

x∈N\{o}
1(x ∈ b(o, r) ∧ o ∼ x). (1)

Call the function CC(r) cumulative connectivity function.

Since the events {o ∼ x} and {o ≁ x} are mutually exclusive, the cumulative connectivity function
is related to the K-function: If CC(r) denotes the opposite version of CC(r) with ∼ replaced by ≁ in
(1), then

K(r) = CC(r) + CC(r). (2)
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If the graph is completely connected (e.g. geometric graph with R = ∞), then K(r) = CC(r). So
with a suitable graph the connected components represent clusters and the CC(r) describes their typical
structure.

Figure 2 shows the cumulative connectivity function curves for various models, obtained from a
simulation experiment of Section 4. The curve for clustered processes ascend quickly above the Poisson
process curve because the points typically belong to a large cluster. Regularity of the repulsive processes
results in a grid-like connectivity and the curve ascends steadily after the repulsion effect range is passed.

As a cumulative function, small changes of r might not reveal enough details and a function similar
to the derivative of K-function, the pair correlation function, is considered.

3.2 Connectivity function

The connectivity function was first discussed in the book Illian et al. (2008), p. 248. The definition is as
follows:

Definition 2 Let N be a stationary point process. For a given graph G(N), the connectivity function
C(r) is

C(r) := Px,y(x ∼ y | ||x − y|| = r), r ≥ 0. (3)

where Px,y is the 2-point Palm-measure of the process.

As with the CC(r), we generate components in the point pattern using the graph G(N) and look at
the second order features inside the components. The behaviour of the function is depicted in Figure
2(center). The connectivity function is a probability and here C(r) ∈ [0, 1]. The geometric graph has
a minimum connection radius parameter R, so C(r) ≡ 1 for r ≤ R, and if the graph is completely
connected then C(r) ≡ 1 for all r.

For the Poisson process function values start declining immediately when range exceeds R. For
clustered processes with cluster size larger than R an elevated shoulder occurs. Regular processes’ values
decrease initially quicker than Poisson values, but exhibit a small stop in decline when range passes
the initial repulsion effect. This is because paths can be long in regular patterns (imagine a grid), and
furthermore point pairs are abundant just after the repulsion effect range.

For theory of the connectivity function we use the internal marking of the pattern. For a graph
G(N) we have the partitioning Γ(G(N)) to k = 1, 2, . . . components. Label these components from 1
to k with function m : Γ(G(N)) → {1, . . . , k} according to the distance to origin: m(Cr) < m(Cs) if
minxi∈Cr

||xi|| < minxi∈Cs
||xi||. By definition a point xi belongs to only one component so we can

mark the points with unique marks mi = m(C(xi)). Write M = m(Γ(G(N))). We then express the
connectivity function as an unscaled mark correlation function, see e.g. Stoyan and Stoyan (1994), p.
264: Write C(r) as an expectation over marks

C(r) =
∑

m

∑

l

[1(m = l)Po,r(m, l)],

where Po,r(·, ·) is the 2-point Palm joint distribution of marks m, l ∈ M of two points o and r distance r
apart. From the definition of Po,r if follows that

C(r) =
∑

m

∑

l

1(m = l)̺(r, m, l)/̺(r)

where ρ(r) is the second order product density of the process at range r, ρ(r, m, l) further considers
points distance r apart with the marks m and l. Writing ̺∼(r) :=

∑
m

∑
l 1(m = l)̺(r, m, l), the

previous formula simplifies to

C(r) =
̺∼(r)

̺(r)
(4)

whenever the second order product density ̺(r) > 0. The theoretical calculation of Po,r is difficult
because the path connectivity of two points, also known as percolation, is intractable in most cases as
far as we know. In case of the Poisson process, Chandler (1989) derives and Ta et al. (2007) refine a
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recursive version: If Ck(r) denotes the probability of connecting two points x, y distance r apart with a
path of k edges long, it can be written as

Ck(r) =





1(r < R) k = 1,
(1 − exp(−λA(r)) · 1(R < r < 2R) k = 2,

(1 − ∑k−1
i=1 Ci(r))

(
1 − exp(−

∫ r+R

r−R
2Ck−1(x)λxβ(x, r)dx)

)
k ≥ 3.

where A(r) = |b(o, R) ∩ b(r, R)| and β(x, r) = arccos( r2−x2−R2

2rx
). The connectivity function is then

C(r) =
∑∞

k=1 Ck(r). Penrose (2003) studies the asymptotics of connectivity for the Poisson process and
geometric graph, but the results do not implicate a closed form for equation (3).

3.3 Clustering coefficient and clustering function

The clustering coefficient is a topological index for graphs introduced by Watts and Strogatz (1998) in
the study of communication networks. The definition is as follows:

Let G = (V, E) be a given graph with |V | = n < ∞ and recall that δ(x) is the degree of a node at x.
Write for a node o ∈ V

∆o :=
∑

x,y∈ne(o)

1(x ↔ y) and ∆max
o :=

(
δ(o)

2

)
=

1

2

(
δ(o)2 − δ(o))

and set

co :=

{ ∆o

∆max
o

, δ(o) ≥ 2,

0, δ(o) < 2
.

The clustering coefficient c is defined as the average over nodes

c :=
1

n

∑

x∈V

cx.

In words, ∆o is the observed number and ∆max
o the theoretical maximum number of possible connections

amongst the neighbours of a node at o. So the unit of interest in this construction is a triad instead of
a pair as in previous summaries. This tool can be adopted for point process analysis.

Definition 3 Let N be a stationary point process and let ∆o,r, ∆
max
o,r and co,r be as above for the geo-

metric graph G(N) with parameter r. Define

c(r) := Eoco,r.

We call c(r) the clustering function.

Watts and Strogatz (1998) created c to study so called small world networks, in which the path
between two arbitrary nodes of the network is shorter than in an Erdős-Rényi graph. However, in our
study the coefficient has different interpretation as we have several graphs because the connection radius
r varies. The coefficient is a rate of interconnection in the graph, so c(r) could be interpreted as the
internal connectivity around a typical point at scale r.

Obviously c(r) ∈ [0, 1]. Clustered processes’ values increase immediately above Poisson values, due
to high density groups of points leading to large interconnection at small r. The regular processes have
little connections at small r, but as the repulsion effect gaps are passed the values also start to increase.

When r increases the nearby clusters merge and the number of clusters decreases. Finally, all point
pairs connect and the function, as a ratio of functions of edge counts, converges to a single value. The
ratio expected version

c̃(r) :=
Eo∆o,r

Eo∆max
o,r

(5)

can be calculated for the Poisson process analytically: It is in d = 2

c̃(r) = (1 − 3
√

3

4π
)[1 − e−λπr2

(1 + λπr2)]. (6)
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This can be computed as follows: When δ(o) ≥ 2, the numerator equals the T -function of Schladitz and Baddeley
(2000), so

Eo∆o,r =
1

2
Eo

∑

x,y∈b(o,r)

1(x
R↔ y)

= λ2T (r)

= λ2 1

2
π(π − 3

√
3

4
)r4,

and

Eo∆
max
o,r =

1

2
(Eo[δ(o)

2] − λK(r)).

Because N(b(o, r) \ {o}) = δ(o) is by definition Poisson distributed with parameter λπr2, we can use
Slivnyaek’s theorem (see Stoyan et al., 1995) to get

Eo[δ(o)
2] = Varo(δ(o)) + (Eoδ(o))

2

= Var(δ(o)) + (E δ(o))2

= λπr2(λπr2 + 1).

For the Poisson process K(r) = πr2, so the expression

cp :=
(π − 3

√
3

4 )λ2πr4

λπr2(λπr2 + 1) − λπr2
= 1 − 3

√
3

4π
≈ 0.5865

is obtained. Finally, when the constant cp is weighted with the probability of {δ(o) ≥ 2},

Po(δ(o) ≥ 2) = (1 − exp(−λπr2)[1 + λπr2]),

the equation (6) is obtained.

3.4 Estimation

We use nonparametric methods to estimate the summaries statistically for a given point pattern N ,
observed in a window W ⊆ R

d.

3.4.1 Estimators for the functions

Following Illian et al. (2008) p. 249, an estimator for the connectivity function is

Ĉ(r) =
ˆ̺∼(r)

ˆ̺(r)
, (7)

given by the equation (4). The denominator is a translation corrected 2nd order product density estimator
(Stoyan et al., 1995)

ˆ̺(r) =
1

2πr

∑

x 6=y

kh(r − ||x − y||)
ν(Wx ∩ Wy)

and it is modified to

ˆ̺∼(r) =
1

2πr

∑

x 6=y

kh(r − ||x − y||)1(x ∼ y)

ν(Wx ∩ Wy)
. (8)

Here Wx = {z − x : z ∈ W}, and the box kernel for smoothing is kh(t) = 1/2h for |t| < h, 0 otherwise.
The boundary correction used in (8) is an approximation since the graph could connect two points
through an unobserved path outside the window. Hence the estimator (7) is not ratio-unbiased. We
have neglected this problem in our simulation study as it is not clear how the correction should be done.
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For the cumulative connectivity function we suggest an estimator

ĈC(r) = λ̂−2
∑

x 6=y

1(x ∼ y)1(||x − y|| < r)

ν(Wx ∩ Wy)
. (9)

with some intensity estimator λ̂. The formula is derived from the translation corrected estimator of the
K-function.

The clustering function can be estimated using the formula (5) for a given r and N(W ) = n: We
estimate

Eo∆o,r ≈ 1

n

∑

x∈N∩W

∑

y,z∈b(x,r)

1(y
r↔ z),

Eo∆
max
o,r ≈ 1

n

∑

x∈N∩W

1

2
δ(x)(δ(x) − 1).

Minus sampling scheme is used to reduce border effects in estimation of clustering function. As the
estimation of (5) uses the ratio of two quantities which are both affected by the same type of border bias,
based on the experience in estimation of intensities with ratio-based estimator (Illian et al. (2008), p.
193) the bias is reduced. For the numerator in (5), Schladitz and Baddeley (2000) develop two unbiased
estimators based on weighting of the edges close to the border. The first is a three-point version of the
translation correction and the second is analogous to the isotropic correction of K-function estimation
by Ripley (1977). It is a matter of future studies to investigate how these elaborate methods affect the
estimation of c̃(r).

3.4.2 Choosing the graph parameter R

When working with a constant neighbourhood radius the subjective task of fixing its size is crusial.
If the graph is completely connected due to large R, the summaries do not detect any details, and
if R is too small the graph is too sparse and the potential clusters are not separated correctly. We
studied the use of empirical nearest neighbour distribution mean and median as R by comparing manual
cluster selection using visual (subjective) cluster identification and geometric graph clustering. The mean
neareast neighbour distance seems to underestimate the clustering by connecting only a few point pairs,
especially in a visually very clustered realisation. And as the nearest neighbour distribution of clustered
pattern has heavier right tail, the median is less than the mean and the results are even worse.

Using the empirical nearest neighbour distribution in finding a suitable R is also an impractical
choice because the distribution depends on the process. This is a problem especially for the connectivity
function because R is also the distance under which the function is constant. For example, a clustered
process will exhibit smaller nearest neighbour distances than a Poisson process resulting in a smaller
mean value and a different starting point for the function.

However, we want to measure the clustering in the scale of the phenomenon, so a value completely
independent of the data is not desirable. It is justified to estimate some features of the process as a
preliminary step and use them to determine a value for R. The simplest feature to estimate R through
is the intensity λ, and this choice does not depend on the higher order structures of the point pattern.

In the simulation experiment study of Section 4 we have set the value of R to 1/
√

λ. This choise is
based on the following reasoning: For a Poisson process K(r) = πr2, and the mean degree of a node in
a spatial graph with parameter R is Eoδ(o) = λK(R). Selecting R = 1/

√
λ the equation

Eoδ(o) = λK(R) ≡ π

is obtained. The mean degree of a point in a Poisson process becomes constant with respect to R and
λ. Visual inspection of simulation results encourages to use this value, especially over nearest neighbour
distance statistics. Figure 1 illustrates the effect of changing the parameter around R = 1/

√
λ. For

smaller R the value drops to 0 quickly, and for larger R the value stays constant for longer. In CSR
case already 60% larger value hides details by connecting most of the points into a single component.
Clustered patterns are more robust to the choice of R because they have less points between separated
clusters and because even a single point is enough to connect several clusters, resulting in a quick increase
in path-connected point pairs.
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Figure 1: The effect of the graph parameter R. The lines correspond to C(r) when R = a√
λ

with

a = 0.1, 0.2, . . . , 1.9, 2.0, thick line is a = 1.0. Curves estimated from 1000 simulations of Poisson process
and Thomas cluster process.

4 Simulation study

To assess the usefulness of the graph theoretical summaries we studied how they compare to commonly
used summaries in terms of CSR-model hypothesis discrimination power. We chose this test because
CSR hypothesis is a stantard reference model of an early exploratory stage of pattern analysis.

4.1 Compared summaries

In addition to connectivity function C, cumulative connectivity function CC and clustering function c,
we compute Ripley’s K function, pair correlation function g, nearest neighbour distance distribution G,
empty space function F , J function and triplet intensity T . See Table 1 for more details. We leave
Q2-statistics (Grabarnik and Chiu, 2002) off because they need parameter tuning, a task for which best
practise is not yet established.

4.1.1 Estimation

We use the R software. The summaries K, g, G, F and J are estimated using package spatstat

(Baddeley and Turner, 2005). The summaries C, CC, c and T are estimated using a package named
SGCS, written by the author and which is available at CRAN (http://cran.r-project.org).

Calculation is carried out with r ∈ [0, 0.3] discretised to ri = i · 0.3/50, i = 0, ..., 50. If not otherwise
stated, border bias is corrected using reduced sample scheme. Simulation window is [−0.3, 1.3]2 and the
minimum distance from border R⊖ = 0.3.

4.1.2 Power computation

We compare the summaries by their power to discriminate a non-CSR model from the CSR model. Write
M0 for CSR model, and M1 for a challenger model. We estimate a deviation test (Illian et al., 2008, p.
457) based power

γ(α) := Pr(HX > H0,α|X ∼ M1)

where H0,α is chosen as the critical threshold value for fixed test size α, i.e. the value such that Pr(HX >
H0,α|X ∼ M0) = α. Then, after fixing α, we can compare the different statistics by their power.

We use as the statistic H the deviations under the M0. For each summary function, say F (r), estimate

F0(r) ≈ F̄ (r) = 1
N

∑N

l=1 FXl
(r) from simulated X1, ..., XN ∼ M0. Then we generate a realisation Y ∼ M1

from the competing model M1, and estimate the model parameters, say θ̂, as if Y were from M0 (just
the λ in CSR model), and also estimate FY (r). Then we compute the deviation

∆ :=

∫ rmax

rmin

|F̄ (r) − FY (r)|βdr,
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where [rmin, rmax] is the range of parameter r and β is a priori fixed parameter defining the norm. We
shall use β = 2 which gives the L2-norm used in Cramér-von-Mises statistics. We also compute the
deviation using β = ∞ i.e. maximum of absolute difference ∆′ = max |F̄ (r) − FY (r)|.

After this we simulate X1, ..., XK ∼ M0(θ̂X) and compute FXi
(r) for each simulation, and using these

values we compute the deviations under M0

∆i :=

∫ rmax

rmin

|F̄0(r) − FXi
(r)|βdr, i = 1, ..., K,

and also with the max-norm ∆′
i. Now, under M0 the deviations ∆i, ∆

′
i, ∆, ∆′ have discrete uniform

distribution, so we can compute

p̂ := Pr(∆ > ∆0,α|M0) =
1 +

∑K

i=1 1(∆i > ∆)

1 + K
.

We repeat the above procedure for several Y1, ..., Yn ∼ M1, and get p̂1, ..., p̂n. From these we estimate
the power:

γ(α) ≈
∑n

k=1 1(p̂k < α)

n

for each model and each summary.

4.2 Models for spatial point patterns

We use the following models to check the ends of regular-clustered axis (all models are assumed stationary
and isotropic):

• Matern type II hardcore model, HC in short (Matérn, 1986)

• Poisson-Gaussian cluster model or Thomas model (Thomas, 1949)

And then the problematic mixture of clustered and regular behaviour,

• Cell model (Baddeley and Silverman, 1984).

Other models are

• Line segments-Cox process: stationary clustering in alignments (Illian et al., 2008, p. 383)

• Random intrusion model, RIM: We develop a process similar to the HC model but with additional
’intruders’.

Short description of each model and the chosen parameters follows, and are also summarised in Table 2.

4.2.1 Matérn type II hardcore model, HC in short

This is a thinned process: Start with Poisson realisation N0 with intensity λ0, mark the points indepen-
dently m(xi) ∼ U(0, 1), and then N := {xi ∈ N0 : ∀xj ∈ N0 ∩ b(xi, h) s.t. m(xj) < m(xi)}.

The parameter h is chosen to be the maximum range on which the pattern can hold a wanted
intensity. This is given by the thinned process intensity formula λ = (1 − exp(−λ0πh2))/(πh2). From
this λ0 = − log(1 − λπh2)/(πh2), and the condition for maximum h comes from the requirement for the
term inside log to be positive. For λ = (50, 100, 200) this leads to the choises h = (0.07, 0.05, 0.03).

4.2.2 Poisson-Gaussian cluster process i.e. Thomas-process

Start with Poisson process N0 with intensity κ, and for each xi ∈ N0, create a normally distributed
cluster of points xj ∼ N(xi, σ

2I). We need two parameters: intensity of mother points κ and dispersion
length σ. The number of daughters per cluster is then µ = λ/κ. Next table shows the parameter
configurations we used.

Type Parameters

Few, large κ = 4, σ = c(0.08, 0.09, 0.10), µ = λ/κ
Many, small κ = 20, σ = c(0.03, 0.04, 0.05), µ = λ/κ
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The model has 6 versions of which we use the (κ = 20, σ = 0.04) and (κ = 4, σ = 0.09) in comparisons to
other models: The other versions were used to check that the two main classes don’t vary much within.
The first model with only few but large clusters will be referred to as Thomas1 and the second with
many small clusters as Thomas2 in the results.

4.2.3 Cell process

This is a model with n × n cells, each cell having independently 0, 1 or 10 points with probability
1/10, 8/9, 1/90, respectively, uniformly scattered within each cell. Mean number of points is 1 per cell,
so we set the cell division per edge to be ⌊

√
λ|W |⌋.

4.2.4 Line-segment Cox process

We generate a Poisson line segment process S =
⋃

l Sl with line length fixed to µ and mean line intensity
λS . Then we sample Poisson(λfµ) points {xil} uniformly from each line, and the resulting x = ∪l ∪i xil

is the realisation, with mean intensity λ = λS · λf · µ. We fix λf = 10 and try two situations, short
segments µ = 0.1 and long segments µ = 0.4, referred to as Segments1 and Segments2, respectively.

4.2.5 Random intrusion model, RIM

Define a process such that 1) N0 is a realisation of the HC process with intensity λ0 2) For each xi ∈ N0,
with probability p generate a neighbouring ’intruder’ point distributed as N(xi, σ

2I). This is similar
to Poisson cluster models except the ground process is now a hard core model. The starting intensity
is calculated as λ0 = λ/(1 + p). We use a version with σ = 0.01, i.e. intruders are close-by. The few
intruders case, p = 0.05, is referred to as RIM1 and many intruders case, p = 0.2, as RIM2.

4.2.6 Estimated mean curves

Figure 2 depicts the mean curves for the graph theoretical summaries on the presented models, estimated
from 10000 simulations. Cumulative connectivity function values are as expected for clustered Thomas1
and Segments1 above and for repulsive HC and RIM1 below CSR line. The Cell model values are at
first identical to CSR values, but the relative regularity outside the small clusters forces the values below
CSR curve after the cell size is reached at r ≈ 0.1. Connectivity function values for Segments1 are
below Thomas1 since two different segments can be almost parallel at a certain distance, contributing
many path-disconnected pairs and lower values. The points in the small clusters of Cell model pair with
non-path-connected points on the regular part, so the function value declines quick and the regularity
induced nudge is well below those of HC and RIM1. The clustering function separates the clustered and
repulsive models effectively, leaving the Cell model between. The short range behaviour of the curve
is similar to that of clustered models, but after the small clusters are passed neighbour count increases
more than triangle count and the curve levels below CSR curve, afterwhich it describes the major part
of the model much like the regular models’ curves.

4.3 Results

The emphasis of our analysis is on the graph based summaries. We simulate each model inside a window
[−0.3, 1.3]2 1000 times, and compute the power of a test for the CSR hypothesis using size α = 0.05.
The range parameter r is sectioned into three distance classes, as some summaries are focused on short
range features and are not good at longer ranges. The analysis is based on the values listed in Table
3 and depicted in Figure 3. Additionally, we comment on the pointwise envelopes which we omit from
this paper (available online?). We report here the values when λ = 100 and the norm is the integral
norm with β = 2. Differences to λ = 50, 200 and to the max-norm are reported in Appendix B. Finally,
we will refer to Thomas1&2 as isotropically clustered, Segments1&2 as aligned clustered and the rest as
non-clustered or regular.
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Figure 2: Estimated C, CC and c for models described in section 4, estimated from 10000 simulation.

4.3.1 Short range: r ∈ [0 − 0.1]

The power of C is low for all models with maximum 0.3 for Cell model. For the cluster models C has 0
power. This is likely because of the fixed R = 1/

√
λ ≈ 0.1 range under which the function is constant

(varies between realisations).

CC has better power, but in all cases less than K, even for the Cell model in which K has power
≈ 0.6. This is surprising as the theoretical K values in Cell and CSR are identical. Simulations show
that CSR pointwise envelopes are contained in Cell model envelopes, so a likely reason for the power is
detection of high variability exhibited by Cell model. Nevertheless CC is better than C but is generally
poorer than others.

With the exception of the Cell model, K, g, G, F and J all have power > 0.9 so they are good in
detecting deviation from CSR at short range. Clustering function c and triplet intensity T function are
good with power > 0.9 for all except models RIM1&2 for which the T function stalls with powers 0.7
and 0.3 while c retains powers 0.9 and 0.8. The triangle count is possibly not low enough for T to work,
whereas c factors in the hard core effect through small neighbour counts. For Cell model c has power
0.6 whilst T has power 1.0: The T envelopes contain CSR values completely so the model gives bigger
variance to T , making the power good, whereas c has less variation and the power is poorer. Even though
the c envelopes show the Cell structure, they are covered by the CSR envelopes.

4.3.2 Medium range: r ∈ (0.1 − 0.2]

C is a little better at this range, but power is > 0.5 only for isotropically clustered Thomas1&2 with 0.8
and 1.0. Third largest improvement is for the aligned cluster model Segments2, from 0.0 to 0.3. The
clustered nature of these models is captured, but other summaries still do better. The envelopes imply
that the variability for CSR is too large, probably due to the underlying component-giving graph.

CC is worse among all the models considered, power dropping from > 0.5 down to 0 for both HC and
RIM1, and from > 0.7 down to 0.2 for RIM2 and Segments1. Segments2 stays above 0.6. K function
also loses power, but only slightly, and is better than CC for all models with only two big drops: For
Cell (from 0.6 to 0.3) and RIM1 (from 1.0 to 0.7). Why CC is poor has the same argument as for C:
Envelopes get big due to the variability in the graph structure.

The c function stays good, being 0.7 for cell process and ≥ 0.9 for other models. This summary
is overall best for non-clustered models, followed by K-function and further away T -function. In c the
graph is calculated for each r so it differs from C and CC, resulting in a better picture of the graph-based
topology of the pattern than just the one snapshot analysed by C and CC.
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4.3.3 Long range: r ∈ (0.2 − 0.3]

C performs poorly again, only Thomas2 being 1.0, second best 0.3 for HC. CC is also worse than for
medium range, only Thomas1&2 having power over 0.5. But c function triumphs: It beats the other
summaries in all alternatives, being lowest 0.5 for Cell model, and second lowest at 0.8 for Segments2,
when the second best summary for the same model is K with power only 0.3. It is actually odd
that c works so well for the non-clustered models when the other summaries clearly don’t. Maybe the
interconnection of the graph at high ranges carries more information than previously assumed.

4.3.4 Conclusions for the whole range

Based on the limited selection of models in the study, C is not a good summary for finding evidence
agains CSR hypothesis. The fixed graph structure must be bringing more uncertainty to the summary
than is of benefit. The same applies to CC, especially at the medium range the variability increases and
the envelopes fan out clearly more than in K function.

On the other hand c is very good, and for medium and long range it is best for all models, and
for short range only RIM2 gives it some trouble (power still 0.8). The added information about the
local intensity throught the neighbourhood size gives it more power when compared to the T function.
Especially in the non-clustered models where the hardcore distances are present, c is much better than
T .

The K function is also very good, in short and medium ranges it is in Top 3 and mostly in Top 2. At
long ranges it is also one of the best, but the power drops for non-clustered models much below 0.5 (like
all other summary except c). The pair correlation g is good at short ranges, but on longer ranges it’s
performance is mediocre, power being 0 for non-clustered models, excellent for Thomas2 and between
0.3-0.8 for less clustered models.

The F , G and J functions are good at short range, but useless for non-clustered at longer ranges,
where the clearly isotropically clustered models are still easy for F whereas G and J stall.

5 Discussion

We studied three spatial point pattern summaries based on an imposed spatial graph structure. Two of
these, cumulative connectivity function and clustering function, are new in point process context, and
we analysed further the properties of the connectivity function introduced by Illian et al. (2008), p. 248.

The spatial graph based enrichment of point pattern analysis is similar to the methods based on
random fields or tesselations, and is one of the approaches discussed by Illian et al. (2008). A graph
classifies the points into components based on the edge relation. These components are then used as
conditioning events in the summaries, resulting in second order descriptions inside the components.
The added conditioning brings along theoretical problems, as the pathwise connectivity of two points
is still one of the difficult open analytical questions in mathematical sciences. Also, the components
come from a fixed parameter graph and are as such subject to depate. We discussed how to choose
the parameter reasonably and in a way that comparisons of the values are possible. In addition, the
clustering coefficient of conventional graph theory was converted to the spatial setting and modified
to be a functional summary of the topology of a point pattern. It does not have a fixed component
structure in which to measure two point correlations, but instead measures the relative connectivity
strength of the points in neighbourhoods at different connection radii. Finally, a theoretical formula for
the ratio unbiased version of clustering function for CSR model was presented, and the estimation of the
summaries discussed.

After the introduction of the summaries we executed a simulation study where we compared the
summaries power to discriminate various models from complete spatial randomness. We challenged
the most common spatial summaries such as Ripley’s K-function, nearest neighbour distribution and
Baddeley’s and van Lieshout’s J-function on models including clustered and hardcore as well as some
more complicated models.

The study showed that conditioning on a single geometric graph to emulate cluster structure results
in high variation and does not lead to proper discrimination power. Connectivity function performs
especially poorly on short ranges due to a inbuild blind area, and the improvement on longer ranges,
which on some models is large, does not lead to a specifically good summary. Cumulative connectivity
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function does a little better but also falls behind the renowned summaries. An marginal victory for both
is of course on longer ranges and over the short range summaries, such as the nearest neighbour distance,
where they have naturally little or no power at all.

But interestingly the clustering function, developed in graph theory, is the best summary in this
study. It has a high power on all models, the difficult Cell model included, and is on long range and
non-clustered models virtually supreme. The combination of second and third order moments seems to
be an effective way to discriminate models, but similar to the J-function, this combining comes with the
downside of interpretability. It is difficult to establish a spatial phenomenon to a certain value of the
summary. To fully exploit the power of the summary the inter- or intra-connectivity of a point pattern
on a certain ’scale’ needs a proper spatial interpretation.

Further benefits of the approach is under study. The framework is suitable for more connection
between graph theory and spatial statistics. For example, the definition of neighbourhood is simply a
matter of changing the edge rule of the graph. A parameter free graph similar to Delauney triangulation
could be used to find natural neighbourhoods e.g. in inhomogeneous forest plots or epidemiological case
studies. Instead of the rigid geometric graph, adapted graphs for the clustering could help gain a more
details of the pattern’s nature.
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A Tables and Figures

Table 1: Summaries computed in the simulation study.
Functional Symbol Description

Ripley’s 1 K Number of r-pairs with o as vertex.
Pair correlation2 g Prob. a point at range r from o is λg(r)dodr
Nearest neigh. dist.3 G Dist. of range from o ∈ N to nearest neighbour.
Empty space4 F Dist. of range from o ∈ W to nearest point in N .
J-function5 J Ratio of G and F .
Triplet intensity6 T N. of triangles with o ∈ N as vertex.
Connectivity7 C Prob. of r-pair points are in same component.
Cumul. connectivity CC N. of r-pairs that are also path-connected.
Clustering function c Portion of 2-connected neighbours of o.

References: 1. Ripley (1976), 2.Stoyan and Stoyan (1994), 3.Diggle (1979), 4. Ripley (1977) 5. van Lieshout and Baddeley (1996), 6.
Schladitz and Baddeley (2000), 7. Illian et al. (2008).

Table 2: Models and free variables after intensity fixes others.
Model Shorthand Parameters
Poisson CSR -
Matern type II hard-core HC -
Poisson-Gaussian cluster: Few Big Thomas1 κ = 4, σ = 0.09
Poisson-Gaussian cluster: Many Small Thomas2 κ = 20, σ = 0.04
Regular-cluster Cell model Cell -
Segment-Cox: Short segments Segments1 fiber length µ = 0.1
Segment-Cox: Long segments Segments2 fiber length µ = 0.4
Random intrusion: few intruders RIM1 p = 0.05, σ = 0.05
Random intrusion: many intruders RIM2 p = 0.2, σ = 0.05
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Figure 3: Separation power estimated from significant deviation-tests against the CSR-values. Individual
test size α = 0.05, intensity of patterns λ = 100, integral-norm. Three r-ranges, [0, 0.1], [0.11, 0.2] and
[0.21, 0.3] are presented separately from top to bottom. In each plot, horizontal lines correspond to
considered models, and symbols on each line correspond to different summaries. The more on the right
the symbol is, the higher is the corresponding summary’s estimated power.

B Other results

B.1 Differences with λ = 200 trial

To counter the effect of change in the ranges which affects especially nearest neighbour and empty space
estimation, we scale the ranges by putting λK(r) fixed for CSR, so the ranges become scaled with√

100/200 leading roughly to test [0, 0.07] for small, [0.07, 0.14] for medium and [0.14, 0.21] for large
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Table 3: Separation power estimated from significant deviation-tests against the CSR-values. In-
dividual test size α = 0.05, intensity of patterns λ = 100, integral-norm. Three r-ranges,
[0, 0.1]/[0.11, 0.2]/[0.21, 0.3].

K g F G J

Cell 0.6/0.3/0.1 0.5/0.0/0.0 0.9/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0
HC 1.0/0.9/0.1 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0
RIM1 1.0/0.7/0.1 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0
RIM2 1.0/0.9/0.2 1.0/0.0/0.0 0.9/0.0/0.0 1.0/0.0/0.0 1.0/0.0/0.0
Segments1 1.0/0.9/0.5 1.0/0.3/0.3 1.0/0.9/0.0 1.0/0.2/0.1 1.0/0.0/0.0
Segments2 1.0/1.0/1.0 1.0/0.8/0.5 1.0/1.0/0.3 1.0/0.2/0.1 1.0/0.0/0.0
Thomas1 1.0/1.0/1.0 1.0/0.8/0.6 1.0/1.0/0.8 1.0/0.0/0.1 1.0/0.0/0.0
Thomas2 1.0/1.0/1.0 1.0/1.0/1.0 1.0/1.0/1.0 1.0/0.1/0.1 1.0/0.0/0.0

T C CC c

Cell 1.0/0.5/0.2 0.3/0.3/0.1 0.5/0.2/0.1 0.6/0.7/0.5
HC 1.0/0.3/0.0 0.0/0.1/0.3 0.9/0.0/0.0 1.0/1.0/1.0
RIM1 0.7/0.2/0.0 0.1/0.1/0.2 0.6/0.0/0.0 0.9/1.0/0.9
RIM2 0.3/0.2/0.1 0.2/0.4/0.1 0.8/0.2/0.1 0.8/0.9/0.8
Segments1 0.9/0.6/0.4 0.0/0.1/0.1 0.7/0.2/0.1 1.0/1.0/0.9
Segments2 1.0/0.9/0.8 0.0/0.3/0.2 0.9/0.7/0.5 1.0/1.0/1.0
Thomas1 1.0/1.0/0.9 0.0/0.6/0.3 1.0/0.8/0.5 1.0/1.0/1.0
Thomas2 1.0/1.0/1.0 0.0/1.0/1.0 0.9/0.9/0.9 1.0/1.0/1.0

ranges. Note that even though the parameters of HC (min. distance) and Cell (min. dist + cluster
radius) scale with λ the dispersion σ of Thomas1&2 and RIM1&2 does not. So in the latter models the
clusters are relatively larger for the higher intensity models even after scaling.

Short range: We see improvement in power of C for clustered models, Thomas1&2 rises from 0 to
0.7 and Segments2 from 0 to 0.3. For Cell model the power is not increased but C drops 0.2 digits.
Other models show better power for all summaries. In conclusion C benefits greatly from the increased
accuracy, others improve a bit.

Medium range: C gains 0.4 points of power for Thomas1, and there are some minor improvements
of size 0.1-0.2 for CC and c. G function gains 0.1-0.3 power, but F almost 1.0 for regular models: The
regularity stabilises F to 1 for ranges above ≈ 0.1, and in our CSR simulation the maximum envelope
reaches 1 only after range ≈0.14, as the CSR model allows for small amount of highly isolated points.
Of others, T function power jumps from 0.2 to 0.9 for RIM1, and others gain a little more power.

Long ranges: C gains again power for Thomas1, from 0.3 to 0.8, not much change in other models.
CC gains 0.1–0.2 power on all models, no big jumps. c is still best with slightly improved (+0.2) power
for Cell model, staying above of even K function which gains 0.7 for RIM1 and ≈ 0.1 for others.

B.2 Differences with λ = 50 trial

The ranges used here where [0.0.14] and [0.0.14, 0.28]. We skip the long distance as it goes above our
original rmax.

Short range: C drops below 0.1 for all models. CC loses power too, especially with HC and RIM2
power drop from 0.9 and 0.8 to 0.3 and 0.2. c stalls for RIM2, 0.8 to 0.2, but behaves well on others
not like it’s best rival T , which drops from 1.0, 0.7 and 0.3 well below 0.1 for HC, RIM1 and RIM2
respectively, and from 1.0 to 0.5 for Cell. F also stalls with Cell model, drop from 0.9 to 0.1, and with
RIM2, from 0.9 to 0.2. Also, J loses power for Segments2, drop from 1.0 to 0.3. K, G and g change less
than 0.1 if any.

Medium range: C loses power on all models except HC (stays at 0.1). CC also loses power, drops
are 0.1-0.3 points. All summaries crash on RIM2, but c still stays atop with 0.3 power. The c also stays
unchanged for HC when K and T drop from 0.9 and 0.4 to 0.4 and 0.1. Overall, slight loss of power is
visible on all summaries on all models, least on c.
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B.3 Differences between norms

Here’s a short rundown of the differences between the norms.
Short range: The C-function has more power with the max-norm, especially the clustered segments

and Thomas process power rises from ∼0 upto 0.5 (Thomas2). The J-function for both Segments1&2
drop from ≈1 to 0.15 and 0.6 with max-norm. The CC also has less power with max-norm, only
Thomas1&2 don’t suffer. The c-function improves from ∼0.8 to ∼0.9 for RIM2. Other values do not
change more than 0.05.

Medium range: K-function has lower power with max-norm for HC, RIM1&2, change ∼ -0.3. C-
function improves for RIM1 from ∼0.4 to ∼0.6, but c declines from 0.9 to 0.7. c is also on all other
models ∼ -0.05 worse with max-norm. Other summaries stay pretty much the same.

Long range: No noticable changes.
Conclusion: The change of norm has an influence on the new summaries at short ranges. The influence

is small but favourable for C and c, and negative for CC. C benefits most on the cluster models. The
biggest drops in power of CC are for non-clustered processes (Cell, HC, RIM).
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