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A Jordan Sobolev Extension Domain

Pekka Koskela, Dachun Yang and Yuan Zhou ∗

Abstract Let 1 < q < 2. In this paper, we construct a Jordan domain Gq ⊂ R2

such that Gq ∈ Ext p if and only if 1 ≤ p < q and R2 \ Gq ∈ Ext s if and only if
q/(q − 1) < s ≤ ∞.

1 Introduction

Let D be a domain in R2, namely, D is a connected open subset of R2. For 1 ≤ p ≤ ∞,
denote by W 1, p(D) the set of all functions in Lp(D) whose first distributional derivatives
lie in Lp(D). For any u ∈ W 1, p(D), the norm of u is given by ‖u‖W 1, p(D) ≡ ‖u‖Lp(D) +
‖∇u‖Lp(D), where ∇u is the distributional gradient of u.

Definition 1.1. Let 1 ≤ p ≤ ∞. A domain D ⊂ R2 is called a domain of class Ext p if
there exists a bounded extension operator Ext : W 1, p(D) → W 1, p(R2), namely, for each
u ∈ W 1, p(D), there exists a function Ext (u) ∈ W 1, p(R2) such that Ext (u)(x) = u(x)
for all x ∈ D and ‖Ext (u)‖W 1, p(R2) ≤ C‖u‖W 1, p(D), where C is a positive constant
independent of u.

For p > 1, one could in fact require above that Ext is linear; see [1, Theorem 5].
In [5], Maz’ya constructed a planar Jordan domain D such that D ∈ Ext p for all

1 ≤ p < 2 but D /∈ Ext p for any 2 ≤ p ≤ ∞. Furthermore the complementary domain
R2 \ D of D satisfies R2 \ D ∈ Ext s exactly when 2 < s ≤ ∞. This shows that the
possibility of W 1,p(D)-extensions depends not only on the structure of the domain D but
also on the exponent p. Motivated by this, for each 1 < q < 2, Romanov [10] further
constructed a planar domain Gq such that Gq ∈ Ext p if and only if 1 ≤ p < q. In this
paper, we establish the following results by generalizing the above two constructions in
[5, 10].

Theorem 1.1. For each 1 < q < 2, there exists a Jordan domain Gq ⊂ R2 such that
Gq ∈ Ext p if and only if 1 ≤ p < q and R2 \Gq ∈ Ext s if and only if q/(q− 1) < s ≤ ∞.
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Our construction is an improvement on the one by Romanov [10] and it partially relies
on his approach. We should point out that the boundary of Gq of Romanov [10] contains a
curve generated by a certain Cantor set. In order to deal with the complementary domain,
we actually simplify the construction from [10] and apply a certain sufficient condition for
extendability from [8].

Finally, we state some conventions. Throughout the whole paper, we denote by C a
positive constant which is independent of the main parameters, but which may vary from
line to line. The symbol A . B or B & A means that A ≤ CB. If A . B and B . A,
we then write A ∼ B. For any measurable set of positive measure E ⊂ R2 and locally
integrable function f , we set –

∫
Ef(x) dx ≡ 1

|E|
∫
E f(x) dx.

2 Proof of Theorem 1.1

Theorem 1.1 follows from Lemmas 2.5, 2.7, 2.10 and 2.11 below. We begin with the
construction of the domain Gq, which is inspired by [10] and [5].

Construction of the domain Gq. Assume 1 < q < 2. Throughout the whole paper, let
a ≡ 21/(q−2) and b ≡ 1 − 2a. Then 0 < a < 1/2 and 0 < b < 1. Denote by I the interval
[0, 1]× {0}.

First we generate a sequence of subintervals,

(2.1) Ĩ ≡ {Ĩk, i
m : m ∈ N ∪ {0}; k = 0, · · · ,m + 1; i = 0, · · · , 2k − 1},

following the idea of the construction of a Cantor set. When m = 0, let Ĩ0, 0
0 be the closed

middle interval of I with length b and Ĩ1, i
0 with i = 0, 1 be the closure of the two intervals

obtained by removing Ĩ0, 0
0 from I and ordered from left to right. When m = 1, let Ĩ0, 0

1

be Ĩ0, 0
0 , Ĩ1, i

1 be the closed middle interval of Ĩ1, i
0 with length ba for i = 1, 2, and Ĩ2, i

1 with
i = 0, 1, 2, 3 be the closure of the four intervals obtained by removing Ĩ0, 0

1 , Ĩ1, 0
1 and Ĩ1, 1

1

from I and ordered from left to right. When m ≥ 2, for k ≤ m− 1 and i = 0, · · · , 2k − 1,
let Ĩk, i

m be Ĩk, i
m−1; for k = m and i = 0, · · · , 2m − 1, let Ĩm, i

m be the closed middle interval
of Ĩm, i

m−1 with length bam; for k = m + 1 and i = 0, · · · , 2m+1 − 1, let Ĩm, i
m be the closure

of the 2m+1 intervals obtained by removing {Ĩk, i
m : k = 0, · · · ,m; i = 0, · · · , 2k− 1} from

I and ordered from left to right.
Obviously, Ĩ has the following properties:
(i) for each m ∈ N ∪ {0}, I = ∪m+1

k=0 ∪2k−1
i=0 Ĩk, i

m ;
(ii) |Ĩk, i

m | = bak when k ≤ m and i = 0, · · · , 2k − 1, and |Ĩm+1, i
m | = am+1 when

i = 0, · · · , 2m+1 − 1.
Then we translate and dilate these intervals in Ĩ by setting

Ik, i
m = (1− a)amĨk, i

m + (am+1, 0)

for each Ĩk, i
m ∈ Ĩ. Then we write

(2.2) I ≡ {Ik, i
m : m ∈ N ∪ {0}; k = 0, · · · ,m + 1; i = 0, · · · , 2k − 1}.
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Obviously from (i) and (ii), it is easy to see that
(iii) for each m ∈ N ∪ {0}, [am+1, am]× {0} = ∪m+1

k=0 ∪2k−1
i=0 Ik, i

m ;
(iv) |Ik, i

m | = b(1−a)am+k when k ≤ m and i = 0, · · · , 2k−1, and |Im+1, i
m | = (1−a)a2m+1

when i = 0, · · · , 2m+1 − 1.
For each Ik, i

m ∈ I, denote its upper hat by Γk, i
m , namely,

Γk, i
m ≡ {x = (x1, x2) : dist ((x1, 0), ∂Ik, i

m ) = x2},
where and in what follows, for any set E ⊂ R2 and x ∈ R2, dist (x, E) = inf{|x− y| : y ∈
E}.

We also denote by T k, i
m the closed triangle generated by Γk, i

m and Ik, i
m . For m ∈ N∪{0},

set

Γm ≡
m+1⋃

k=0

2k−1⋃

i=0

Γk, i
m , Tm ≡

m+1⋃

k=0

2k−1⋃

i=0

T k, i
m

and

Γ ≡ {(0, 0)}
⋃( ∞⋃

m=0

Γm

)
, T ≡ {(0, 0)}

⋃( ∞⋃

m=0

Tm

)
.

Then we obtain a Lipschitz curve Γ joining (0, 0) and (1, 0). By abuse of notation, we
always write Γ ≡ {(x1, Γ(x1)) : x1 ∈ [0, 1]}.

The following figure shows the curve Γ0 ∪ Γ1, when a = 1/4.

0 1

0.3

aa2

Let R be the rectangle (−1, 1)× (0, 1) and ϕ : R → R2 such that ϕ(x1, x2) ≡ (x1, x2)
if x1 ≤ 0 and ϕ(x1, x2) ≡ (x1, x2 + x2

1) if x1 > 0. Set (Gq)+ ≡ ϕ(R) \ ϕ(T ) and let (Gq)−
be the reflection of (Gq)+ across the x1- axis. Then define

Gq ≡ (Gq)+
⋃

(Gq)−
⋃

(−1, 0)× {0},
which completes the construction of the domain Gq.

Now we recall the following result, which was established when p > 1 in [11, Theorem
1] and when p = 1 by Lemma 4.9.1 of [12].
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Lemma 2.1. Let 1 ≤ p < ∞ and w be a non-negative function on R2. If there exist
constants s > 1 and C(w, s) > 0 such that for all r > 0 and x ∈ R2,

(2.3) r

(
–
∫

B(x, r)
[w(y)]ps dy

)1/(ps)

≤ C(w, s),

then there exists positive constant C such that for all f ∈ W 1, p(R2), fw ∈ Lp(R2) and
‖fw‖Lp(R2) ≤ C‖f‖W 1, p(R2).

For any c > 0, set 4c ≡ {(x1, x2) : 0 < x1 < c, 0 < x2 < x1}. For any real-valued
function u on R2, define uc(x1, x2) ≡ u(x1, x2)(x2/x1)χ4c . Then we have the following
result; see [10, Lemma 2] and also [6, p. 75]

Lemma 2.2. Let 1 ≤ p < 2. Then there exists constant C such that for all u ∈ W 1, p(R2)
and 0 < c ≤ 1,

‖uc‖W 1, p(4c) ≤ Cc−1‖u‖Lp(4c) + C‖u‖W 1, p(4c).

Similarly to Lemma 3 of [10], we have the following conclusion.

Lemma 2.3. There exists a positive constant C and a sequence of functions, {vm}∞m=0 ⊂
W 1, p(R2), such that vm(x) = 1 if x ∈ Γm and vm(x) = 0 if x1 ≤ 0; moreover,

‖vm‖W 1, p(R2) ≤ Ca(2/p−1)m.

Proof. Let v0 ∈ W 1, p(R2) such that v0(x) = 0 if x1 ≤ 0 and v0(x) = 1 if 0 ≤ x2 ≤ x1 and
a ≤ |x| ≤ 1. Set vm(x) ≡ v0(a−mx) for m ∈ N. Then vm(x) = 1 if x ∈ Γm and vm(x) = 0
if x1 = 0 for m ∈ N ∪ {0}. Moreover,

‖vm‖p
W 1, p(R2)

. a2m‖v0‖p
Lp(R2)

+ a2m−mp‖∇v0‖p
Lp(R2)

. a2m−mp,

which completes the proof of Lemma 2.3.

Let Rh, d ≡ (0, h) × [0, d] for 0 < d, h ≤ 1. Let E,F ⊂ Rh, d be disjoint continua
connecting the vertical sides of Rh, d. The following result has been proved in [10, Lemma
4].

Lemma 2.4. Let 1 < p ≤ ∞. Then for all u ∈ W 1 p(R2) with u(x) = 1 if x ∈ E and
u(x) = 0 if x ∈ F , ‖u‖W 1 p(R2) ≥ h1/pd1/p−1.

Lemma 2.5. If ∞ ≥ p ≥ q ≡ 2 + loga 2, then Gq /∈ Ext p.

Proof. Assume that Gq ∈ Ext p. Notice that quasi-isometry keeps the space W 1, p(R2)
invariant under the change of the variable. By this and Lemma 2.3, there exists a sequence
of functions, {vm}m∈N∪{0} ⊂ W 1, p(R2), such that vm(x) = 1 if x ∈ ϕ(Γm) and vm(x) = 0 if
x ∈ (Gq)− or x1 ≤ 0; moreover, ‖vm‖p

W 1, p(Gq)
. a(2−p)m, where ϕ is as in the construction

of the domain Gq. Let um be an extension of vm. Then, ‖um‖p
W 1, p(R2)

. a(2−p)m.
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On the other hand, since um(x) = 1 if x ∈ ϕ(Γk, i
m ) and um(x) = 0 if x1 = 0, by Lemma

2.4 and 2a2−p ≥ 1,

‖um‖p
W 1, p(R2)

&
m+1∑

k=0

2k−1∑

i=0

|Ik, i
m ||Ik, i

m |1−p

&
m+1∑

k=0

2ka(2−p)(m+k) & a(2−p)m
m+1∑

k=0

2ka(2−p)k & ma(2−p)m.

This is a contradiction, which completes the proof of Lemma 2.5.

Lemma 2.6. Let 1 ≤ p < q ≡ 2 + loga 2. Set

w ≡
∞∑

m=0

m+1∑

k=0

2k−1∑

i=0

a−(k+m)χ
T k, i

m
.

If 1 < s < 2/p is such that 2a2−sp < 1, then w satisfies (2.3).

Proof. If r ≥ a/2, then for all x ∈ R2, then by 2a2−sp < 1, we have

∫

B(x, r)
[w(y)]sp dy ≤

∞∑

m=0

m+1∑

k=0

2k−1∑

i=0

a−(k+m)sp|T k, i
m |

≤
∞∑

m=0

m+1∑

k=0

2ka(k+m)(2−sp) .
∞∑

m=0

am(2−sp) . 1 . r2−sp.

Similarly, it is easy to see that

∫

B(0, an)
[w(y)]sp dy ≤

∞∑
m=n

m+1∑

k=0

2k−1∑

i=0

a−(k+m)sp|T k, i
m | . an(2−sp).

If r < a/2 and w(y) 6= 0 for all y ∈ B(x, r), then |y| ≤ 1 and |x| < 1 + r. For
1 ≤ |x| < 1 + r, observing that w(y) . 1 for all y ∈ B(x, r), we then have (2.3). Assume
now that an+1 ≤ |x| < an for certain n ∈ N∪{0}. If r ≥ (1− a)an+1/2, similarly to above
computations, then we have

∫

B(x, r)
[w(y)]sp dy ≤

∫

B(0, r+2r/a(1−a))
[w(y)]sp dy . an(2−sp) . r2−sp.

If r < (1− a)a2(n+1)/2, then for all y ∈ B(x, r), w(y) . a−2n, and hence,
∫

B(x, r)
[w(y)]sp dy . a−2nspr2 . r2−sp.
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If (1− a)a2(n+1)/2 ≤ r < (1− a)an+1/2, then (1− a)an+k0+1/2 ≤ r < (1− a)an+k0/2 for
some 1 ≤ k0 ≤ n + 1, and thus B(x, r) contains at most 2k−k0 many of the T k, i

m for each
m = n− 1, n, n + 1 and k ≥ k0, which implies that

∫

B(x, r)
[w(y)]sp dy ≤

n+2∑

k=k0−1

2k−k0a−(n+k)spa2(n+k) . a(2−sp)(n+k0) . r2−sp.

This finishes the proof of Lemma 2.6.

Lemma 2.7. If 1 ≤ p < q ≡ 2 + loga 2, then Gq ∈ Ext p.

Proof. Notice that quasi-isometries keep the space W 1, p(R2) invariant under the change
of the variable. By this and the symmetry of Gq with respect to x1-axis, we only need
to prove that for any u ∈ W 1, p(R \ T ), there exists a function u ∈ W 1, p(R) such that
u(x) = 0 for almost all x ∈ (0, 1) × {0} and u(x) = u(x) for almost all x ∈ R \ T .
Since the boundary of R \T is Lipschitz, there exists a bounded extension operator Ext :
W 1, p(R \ T ) → W 1, p(R2); see [10, p. 725]. Let v ≡ Ext (u) and T̊ k, i

m be the interior of
T k, i

m . Now we will obtain u by redefining v on T . In fact, applying Lemma 2.2 to v on each
T k, i

m , we obtain a function uk, i
m such that uk, i

m (x) = v(x) for all x ∈ Γk, i
m and uk, i

m (x) = 0
for all x ∈ Ik, i

m , and moreover,

‖uk, i
m ‖p

W 1, p(T̊ k, i
m )

. a−(k+m)p‖v‖p

Lp(T̊ k, i
m )

+ ‖v‖p

W 1, p(T̊ k, i
m )

.

Set

u ≡ uχR\T +
∞∑

m=0

m+1∑

k=0

2k−1∑

i=0

uk, i
m χ

T k, i
m

.

Then

‖u‖p
W 1, p(R)

. ‖u‖p
W 1, p(R\T )

+
∞∑

m=0

m+1∑

k=0

2k−1∑

i=0

‖uk, i
m ‖p

W 1, p(T̊ k, i
m )

. ‖u‖p
W 1, p(R\T )

+
∞∑

m=0

m+1∑

k=0

2k−1∑

i=0

a−(k+m)p‖v‖p

Lp(T̊ k, i
m )

+ ‖v‖p
W 1, p(R2)

. ‖vw‖p
Lp(R2)

+ ‖u‖p
W 1, p(R\T )

,

where

w ≡
∞∑

m=0

m+1∑

k=0

2k−1∑

i=0

a−(k+m)χ
T k, i

m
.

Since 2a2−p < 1, we can find 1 < s < 2/p such that 2a2−sp < 1. By Lemma 2.6, we know
that w satisfies (2.3). Then, by Lemma 2.1, we have that

‖vw‖p
Lp(R2)

. ‖v‖p
W 1, p(R2)

. ‖u‖p
W 1, p(R\T )

,

which further implies that ‖u‖W 1, p(R) . ‖u‖W 1, p(R\T ). This finishes the proof of Lemma
2.7.
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So far, for 1 < q < 2, we have already proved that Gq ∈ Ext p if and only if 1 ≤ p < q.
To prove the extendability properties for the domain R2 \ Gq, we need the following two
auxiliary conclusions.

Lemma 2.8. The mapping ϕ from {x ∈ R2 : 0 ≤ x1 ≤ a} to itself given by ϕ(x1, x2) ≡
(x1, x2 + x2

1) is bi-Lipschitz.

Proof. In fact, since 0 ≤ |x2
1 − y2

1| ≤ 2a|x1 − y1| for all 0 ≤ x1, y1 ≤ a, we have

(1− 2a)|x− y| ≤ |x− y| − |x2
1 − y2

1|
≤ |ϕ(x)− ϕ(y)| ≤ |x− y|+ |x2

1 − y2
1| ≤ (1 + 2a)|x− y|,

which completes the proof of Lemma 2.8.

We always write γ(x, y) ⊂ D for a rectifiable curve joining x and y in a domain D ⊂ R2.
By abuse of notation, we also sometimes use γ to denote γ(x, y). Denote by `(γ) the arc
length of γ, γ(s) the arc length representation of γ, γ(0) = x and γ(`(γ)) = y. If g is a
real-valued function in D, we let

∫

γ(x, y)
g(z) |dz| ≡

∫ `(γ)

0
g(γ(s)) ds

be the line integral of g along γ whenever the integral exists.
A domain D is called a Lip α-extension domain if for any pair of points x, y ∈ D, there

exists a curve γ(x, y) ⊂ D such that

(2.4)
∫

γ(x, y)
[ dist (z, ∂D)]α−1 |dz| ≤ C|x− y|α,

where C is a positive constant independent of x and y; see [4].
Then by [8, Theorem A and Corollary 4.1] and [3, Theorem 5.2], we have the following

conclusion.

Lemma 2.9. Let p > 2.
(i) If D is a simply connected planar domain and D ∈ Ext p, then D is Lip (p−2)/(p−1)-

extension domain.
(ii) If D is Lip (p−2)/(p−1)-extension domain, then D ∈ Ext s for all s > p.

Lemma 2.10. If 1 < q < 2 and 1 ≤ p ≤ q/(q − 1), then R2 \Gq /∈ Ext p.

Proof. By Theorem 6.4 of [2] for 1 < p ≤ 2, if D is a W 1, p extension domain, then D has
the property LLC(2), namely, there exists a constant c ≥ 1 such that for all z ∈ R2 and
r > 0, any pair of points x, y ∈ D \B(z, r) can be joined in D \B(z, r/c). For p = 1, we
claim that R2 \Gq ∈ Ext 1 implies that Gq is a quasiconvex domain. Assume this for the
moment. Then by [7], Gq is a bounded turning domain, which together with [7, Theorem
4.5] further implies that R2 \Gq has the LLC(2) property.

So for 1 ≤ p ≤ 2, the proof of Lemma 2.10 is reduced to proving that R2 \Gq does not
have the property LLC(2). To see this, obviously, for any fixed positive constant c, we
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always find m large enough such that a2m ≤ (1− a)am/(cN), where N is a fixed positive
constant such that ϕ(Tm+1, 0

m ) ⊂ B((am, 0), Na2m). Thus the pair of points (am+1, 0)
and (am−1, 0), which lie in R2 \Gq but not in B((am, 0), (1− a)am+1), cannot be joined
in (R2 \ Gq) \ B((am, 0), Na2m) and thus not in (R2 \ Gq) \ B((am, 0), (1 − a)am+1/c).
This implies that R2 \ Gq does not have the property LLC(2) and thus R2 \ Gq /∈ Ext p

for any 1 ≤ p ≤ 2.
Now we turn to prove the above claim that R2 \ Gq ∈ Ext 1 implies that Gq is a

quasiconvex domain. To this end, we first observe that for any 1 ≤ p < ∞, R2\Gq ∈ Ext p

implies that E−1 ≡ ({(x1, x2) : x1 > −1}\Gq) ∈ Ext p. In fact, let η be a smooth function
such that 0 ≤ η(x) ≤ 1 and |∇η(x)| ≤ 4 for all x ∈ R2, and η(x) = 0 for x1 ≤ −1 and
η(x) = 1 for x1 ≥ 0. Let S ≡ {(x1, x2) : x1 > −1}\([−1, 0]×[−1, 1])}. If u ∈ W 1, p(E−1),
then uη ∈ W 1, p(R2 \Gq), u(1− η) ∈ W 1, p(S) and

‖uη‖W 1, p(R2\Gq) + ‖u(1− η)‖W 1, p(S) . ‖u‖W 1, p(E−1).

By the assumption R2 \Gq ∈ Ext p, we have that Ext (uη) ∈ W 1, p(R2) and

‖Ext (uη)‖W 1, p(R2) . ‖uη‖W 1, p(R2\Gq) . ‖u‖W 1, p(E−1).

Since S is a uniform domain, u(1 − η) can be extended to the entire R2 (see [2, p. 9]).
The extension, Ext (u(1 − η)), satisfies ‖Ext (u(1 − η))‖W 1, p(R2) . ‖u(1 − η)‖W 1, p(S) .
‖u‖W 1, p(E−1). Obviously Ext (u(1−η))+ Ext (uη) coincides with u on E−1, which implies
E−1 ∈ Ext p. Then an argument similar to but easier than the above shows that E−1 ∩
B(0, 10) ∈ Ext p. Observe that E−1 ∩ B(0, 10) is a bounded, simply connected W 1, 1-
extension domain. Applying [9, Corollary 1.2], we know that the complement domain
of E−1 ∩ B(0, 10) is quasiconvex, which further implies that (E−1){, and thus Gq, is a
quasiconvex domain. This proves the above claim.

For 2 < p ≤ q/(q − 1), since R2 \ Gq ∈ Ext p implies E−1 ∈ Ext p as above, to prove
Lemma 2.10, by Lemma 2.9, it suffices to prove that E−1 is not a Lip α-extension domain
for any 0 < α ≤ 2− q.

To see this, choose N ∈ N, and x = (am, 0) and y = (am−1, 0). Then for any γ(x, y) ⊂
E−1, take γ̃ to be the component of γ ∩ {(z1, z2) : 0 ≤ z1 ≤ a} containing x. Obviously,
[am, am−1] ⊂ {z1 : (z1, z2) ∈ γ̃}, and without loss of generality, we may assume that
z2 ≥ 0 for all (z1, z2) ∈ γ̃. Moreover, for all z ∈ γ̃, by Lemma 2.8,

dist (z, ∂Gq) = dist (z, ϕ(Γ \ Γ0)) ∼ dist (ϕ−1(z), Γ \ Γ0).

Assume that (z1, 0) ∈ T k, i
m . Then

dist (ϕ−1(z), Γ \ Γ0) = dist (ϕ−1(z), Γk, i
m ) ≤ dist ((z1, −z2

1), Γk, i
m ) ≤ a2(m−1) + Γ(z1),

where (z1, Γ(z1)) ∈ Γ. Since 2aα ≥ 2a2−q = 1, we have

∫

γ(x, y)
[ dist (z, ∂Gq)]α−1 |dz| &

∫ am−1

am

[a2(m−1) + Γ(z1)]α−1 dz1
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&
m+1∑

k=0

2k−1∑

i=0

∫ |Ik, i
m |/2

0
[a2m + t]α−1 dt

&
m+1∑

k=0

2k([a2m + ak+m]α − a2mα)

&
m∑

k=0

2kamαakα & mamα & m|x− y|α,

which implies that E−1 is not a Lip α-extension domain. This finishes the proof of Lemma
2.10.

Lemma 2.11. If q/(q − 1) < s ≤ ∞, then R2 \Gq ∈ Ext s.

Proof. By Lemma 2.9, it suffices to prove that R2 \ Gq is Lip α-extension domain for all
α > 2− q. Let ϕ−(T \ T0) be the reflection of ϕ(T \ T0) with respect to x1-axis, namely,
ϕ−(T \ T0) ≡ {(x1, −x2) : (x1, x2) ∈ ϕ(T \ T0)} and for m ∈ N ∪ {0}

Em ≡ ϕ(T̊ \ ∪m
n=0Tn) ∪ ϕ−(T̊ \ ∪m

n=0Tn) ∪ {(x1, x2) : |x2| ≤ x2
1, 0 ≤ x1 < am}.

Then Gq∪Em is a Jordan domain with Lipschitz boundary since Γ(z1) is Lipschitz function.
Obviously, R2 \ Gq = E1 ∪ (R2 \ Gq ∪ E2). Then the proof of Lemma 2.11 is reduced to
proving that for any x, y ∈ E1, there exists a curve γ(x, y) ⊂ E1 such that

(2.5)
∫

γ(x, y)
[ dist (z, ϕ(Γ) ∪ ϕ−(Γ))]α−1 |dz| . |x− y|α.

Assuming that (2.5) holds for the moment, we now establish Lemma 2.11. Since
dist (z, ϕ(Γ) ∪ ϕ−(Γ)) = dist (z, ∂Gq) for all z ∈ E1, then for any x, y ∈ E1, there
exists a curve γ(x, y) ⊂ E1 such that

(2.6)
∫

γ(x, y)
[ dist (z, ∂Gq)]α−1 |dz| . |x− y|α.

Obviously, R2 \ Gq ∪ E2 is a uniform domain and thus Lip α-extension domain for all
0 < α ≤ 1; see [4]. Thus for any x, y ∈ R2 \ Gq ∪ E2, there exists a curve γ(x, y) ⊂
R2 \Gq ∪ E2 satisfying (2.6) with dist (x, ∂Gq) replaced by dist (x, ∂(Gq ∪E2)). Observe
that for all x ∈ R2 \ (Gq ∪ E2), dist (x, ∂(Gq ∪ E2)) ≤ dist (x, ∂Gq), which implies that
γ(x, y) ⊂ R2 \ Gq satisfies (2.6). For any x ∈ E1 and y ∈ R2 \ (Gq ∪ E1), assume that
there exists a point w ∈ J ≡ {(a, y2) : (a, y2) ∈ ∂E1} such that

(2.7) |x− y| ∼ |x− w|+ |w − y|.
Then there exist curves γ1(x, w) ⊂ E0 and γ2(w, y) ⊂ R2 \ Gq ∪ E1 satisfying (2.6). Let
γ ≡ γ1 ∪ γ2. Therefore, γ(x, y) ⊂ R2 \ Gq satisfies (2.6). To see (2.7), if y1 ≥ 1, since
|x2| ≤ a2 + ba, then |x1 − y1| > 1− a and

|y − (a, 0)|+ |(a, 0)− x| ≤ |y − x|+ 2|(a, 0)− x| ≤ |x− y|+ 4a . |x− y|,
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which implies (2.7) with w ≡ (a, 0). Set

f(x, y) ≡ |x− y|−1 inf
w∈J

{|x− w|+ |w − y|}.

Obviously, f(x, y) ≥ 1 whenever defined. Moreover, f is continuous on the bounded closed
set

{(x, y) ∈ R4 : x ∈ E1, y ∈ E0 \ E1, |x− y| ≥ a4/4},
which implies f is bounded on this set and thus (2.7) holds for (x, y) in this set. Finally,
if x ∈ E1, y ∈ E0 \ E1 and |x− y| < a4/4, then it is easy to see that (2.7) holds. Thus, so
far, we proved that the claim (2.7) is true, and therefore, except (2.5), we have finished
this proof of Lemma 2.11.

Now we turn to proving the above claim (2.5). Set D ≡ (T \T0)∪{(x1, x2) : 0 ≤ x1 ≤
a, −x2

1 ≤ x2 ≤ 0}. Observe that the union of ϕ(D) and ϕ−(D), the reflection of ϕ(D)
with respect to x1-axis, is just the set E1. Then the claim (2.5) is reduced to proving that
for any x, y ∈ D \ Γ, there exists a curve γ(x, y) ⊂ D such that

(2.8)
∫

γ(x, y)
[ dist (z, Γ)]α−1 |dz| . |x− y|α.

In fact, assume that (2.8) holds for the moment. Then for any x, y ∈ ϕ(D \ Γ), there
exists a curve γ(ϕ−1(x), ϕ−1(y)) ⊂ D satisfying (2.8). Since ϕ is bi-Lipschitz, the curve
ϕ(γ)(x, y) ⊂ ϕ(D \ Γ) also satisfies (2.5). A similar argument applies to any x, y ∈
ϕ−(D \ Γ). For any x ∈ ϕ(D \ Γ) and y ∈ ϕ−(D \ Γ), letting w be the intersection of the
x1-axis and the line joining x and y, we have that w ∈ E1 and |x− y| ∼ |x−w|+ |w− y|.
Applying similar arguments to x, w and w, y, we obtain the curves γ1(x, w) ⊂ E0 and
γ2(w, y) ⊂ E0 satisfying (2.5). Taking γ ≡ γ1 ∪ γ2 gives the desired result.

To prove (2.8), we consider three cases.
Case 1. x, y ∈ Dk, i

m ≡ T k, i
m ∪ {(x1, x2) : (x1, 0) ∈ T k, i

m , −x2
1 ≤ x2 ≤ 0} for m ∈ N.

It suffices to verify that if x1 = y1 or x2 = y2, then there exists γ(x, y) ⊂ D satisfying
(2.8). In fact, assume this for the moment. In general, we assume that xi 6= yi for i = 1, 2,
and we may further assume that x1 < y1 without loss of generality. If x2 < y2, then
let z ≡ (y1, x2), and if x2 > y2 ≥ −x2

1, then let z ≡ (x1, y2). Obviously, z ∈ Dk, i
m and

|x− y| ∼ |x− z|+ |z − y|. Moreover, by the choices of z and the assumptions, there exist
curves γ1 and γ2 such that γ1(x, z) ⊂ D and γ2(z, y) ⊂ D satisfy (2.8), respectively. Taking
γ ≡ γ1 ∪ γ2, we know that γ(x, y) ⊂ D satisfies (2.8). If y2 < −x2

1, then let z ≡ (x1,−x2
1)

and u ≡ (y1, −x2
1). Obviously, z, u ∈ Dk, i

m and |x − y| ∼ |x − z| + |z − u| + |u − y|.
Moreover, by the choices of z and u and the assumptions, there exist curves γ1, γ2 and γ3

such that γ1(x, z) ⊂ D, γ2(z, u) ⊂ D and γ3(u, y) ⊂ D satisfy (2.8), respectively. Taking
γ ≡ γ1 ∪ γ2 ∪ γ3, we have that γ(x, y) ⊂ D satisfies (2.8).

Now assume that x1 = y1 or x2 = y2. If x1 = y1, taking γ to be the line segment joining
x and y, we have that γ(x, y) ⊂ Dk, i

m . Since

(2.9) dist (z, Γ) = dist (z, Γk, i
m ) ∼ Γ(z1)− z2
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for all z with (z1, 0) ∈ T k, i
m and z2 < Γ(z1) = Γ(x1), we have

∫

γ
[ dist (z, Γ)]α−1 |dz| ∼

∫

γ
[Γ(x1)− z2]α−1 |dz|

.
∫ |x2−y2|

0
tα−1 dt . |x2 − y2|α ∼ |x− y|α.

If x2 = y2, taking γ to be the line segment joining x and y, we have that γ(x, y) ⊂ Dk, i
m .

Moreover, we have
∫

γ
[ dist (z, Γ)]α−1 |dz| ∼

∫

γ
[Γ(z1)− x2]α−1 |dz|

.
∫ |x1−y1|

0
tα−1 dt . |x1 − y1|α ∼ |x− y|α.

Case 2. x ∈ Dk, i
m and y ∈ D`, j

n , where T `, j
n is adjacent to T k, i

m . Let {(w1, 0)} =
T k, i

m ∩ T `, j
n and assume that x1 < y1.

If x2 < 0, letting u ≡ (y1, x2) and w ≡ (w1, x2), then |x−y| ∼ |x−w|+ |w−u|+ |u−y|.
By Case 1, there exists curve γ1(x, w) ⊂ D, γ2(w, u) ⊂ D and γ3(u, y) ⊂ D satisfying
(2.8), respectively. Taking γ ≡ γ1 ∪ γ2 ∪ γ3, we know that γ(x, y) ⊂ D satisfies (2.8).

If x2 ≥ 0 and y2 ≥ 0, noticing that x2 ≤ w1 − x1 and y2 ≤ y1 − w1, and letting
u ≡ (x1, −c), w = (w1, −c) and z ≡ (y1, −c), where 0 < c ≤ min{x2, y2, x2

1}, we
conclude that

|x2 + c|+ |y2 + c| ≤ 2|y1 − w1|+ 2|x1 − w1| ∼ |x1 − y1|,

which implies that

|x− y| ∼ |x− u|+ |u− w|+ |w − z|+ |z − y| ∼ |x1 − y1|.

Thus, there exist curves γ1(x, u) ⊂ D, γ2(u, w) ⊂ D, γ3(w, z) ⊂ D and γ4(z, y) ⊂ D
satisfying (2.8), respectively. Taking γ ≡ γ1 ∪ γ2 ∪ γ3 ∪ γ4, we know that γ(x, y) ⊂ D
satisfies (2.8).

If x2 ≥ 0 and −x2
1 ≤ y2 < 0, then similarly to the proof for the case x1 < 0, we obtain

a curve γ(x, y) ⊂ D that satisfies (2.8).
If x2 ≥ 0 and −x2

1 > y2 ≥ −y2
1, letting u ≡ (y1, −x2

1), and z ≡ (x1, −x−2
1 ), we have

that |x−y| = |x−z|+ |z−u|+ |u−y|. Since there exist curves γ1(x, z) ⊂ D, γ1(z, u) ⊂ D
and γ3(u, y) ⊂ D satisfying (2.8), respectively, taking γ ≡ γ1 ∪ γ2 ∪ γ3 gives the desired
curve.

Case 3. x ∈ Dk, i
m and y ∈ D`, j

n , where T `, j
n is not the one adjacent to T k, i

m . We may
assume that x1 < y1 without loss of generality.

Let (u1, 0) be the right endpoint of Ik, i
m and (z1, 0) be the left endpoint of I`, j

n . Then
−x2

1 ≤ x2 ≤ u1 − x1 and −y2
1 ≤ y2 ≤ y1 − z1. Since x2

1 + y2
1 . a2m + a2n . |u1 − z1| .

|x1 − y1|, we know that |x2 − y2| . |x1 − y1|, which implies that |x − y| ∼ |x1 − y1| and
|x− (u1, 0)|+ |(u1, 0)− (z1, 0)|+ |(z1, 0)− y| . |x− y|.
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Let γ2 be the line segment joining the pair of points u = (u1, −x2
1) and z = (z1, −x2

1).
Then we claim that

(2.10)
∫

γ2

[ dist (v, Γ)]α−1 dv . |u1 − z1|α.

Assume that (2.10) holds for the moment. Then by Case 1, there exist curves γ1(x, u) ⊂ D
and γ3(z, y) ⊂ D satisfying (2.8), respectively. Thus the curve γ ≡ γ1∪γ2∪γ3 is as desired.

Now we show (2.10). If m = n, let |Ik0, i0
m | be the largest for the subintervals from

our construction contained in γ̃2 ≡ γ2 + (0, x2
1). Then |u1 − z1| ∼ am+k0 and γ̃2 ⊂

∪m+1
k=k0

∪2k−k0

j=1 I
k, ij
m . Since dist (v, Γ) ∼ Γ(v1) for all v ∈ Ik, i

m , by Case 1, we have
∫

Ik, i
m

[ dist (v, Γ)]α−1 dv . aα(m+k).

Thus, by 2aα < 1, i. e. α > − loga 2 = 2− q, we have
∫

γ2

[ dist (v, Γ)]α−1 dv ≤
∫

γ2

[ dist (v, Γ)]α−1 dv

.
m+1∑

k=k0

2k−k0aα(m+k)

. aα(m+k0)
m−k0+1∑

k=0

2kaαk . aα(m+k0) . |u1 − z1|α.

If m = n + 1, then |u1 − z1| = |am − u1| + |am − z1|, and thus, by the above estimate
in the case m = n,

∫

γ2

[ dist (v, Γ)]α−1 dv ≤
∫

eγ2

[ dist (v, Γ)]α−1 dv

.
(∫

eγ2∩(an, an]
+

∫

eγ2∩[an, an−1]

)
[ dist (v, Γ)]α−1 dv

. |am − u1|α + |z1 − am|α . |u1 − z1|α.

Similarly, if m ≥ n + 2, then |u1 − z1| ∼ an, and thus
∫

γ2

[ dist (v, Γ)]α−1 dv .
m∑

m′=n

∫

eγ2∩[am′ , am′−1]
[ dist (v, Γ)]α−1 dv

.
m∑

m′=n

am′α . anα . |u1 − z1|α.

This shows (2.10) and finishes the proof of Lemma 2.11.
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[7] R. Näkki and J. Väisälä, John disks, Exposition. Math. 9 (1991), 3-43.
[8] P. Koskela, Extensions and imbeddings, J. Funct. Anal. 159 (1998), 369–383.
[9] P. Koskela, M. Miranda Jr., and N. Shanmugalingam, Geometric properties of planar

BV -extension domains, Submitted.
[10] A. S. Romanov, On the extension of functions that belong to Sobolev spaces, Sibirsk.

Mat. Zh. 34 (1993), 149-152, translation in Siberian Math. J. 34 (1993), 723-726.
[11] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Eu-

clidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
[12] W. P. Ziemer, Weakly Differentiable Functions. Sobolev spaces and functions of

bounded variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York,
1989.

Pekka Koskela
Department of Mathematics and Statistics, P. O. Box 35 (MaD), FI-40014, University of
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