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ON GENERALIZED BOUNDED VARIATION AND
APPROXIMATION OF SDES

RAINER AVIKAINEN

Abstract. We consider upper bounds for the error E|g(X) −
g(X̂)|p in terms of moments of X−X̂, where X and X̂ are random
variables. We extend the results of [3], where g was a function
of bounded variation, to a class of generalized bounded variation
containing functions of polynomial variation. This is obtained by
compensating for the variation by the tail of the distribution of X
and X̂. We apply the results to the approximation of a solution of
a stochastic differential equation at time T by the Euler scheme,
and show that in this particular case, exponential variation of the
function g is also allowed. An application to the multilevel Monte
Carlo method is considered.

1. Introduction

1.1. Background. Suppose that we have a probability space (Ω,F ,P)

and two random variables X, X̂ : Ω→ R. Consider X̂ to be an approx-
imation of X in the Lp-norm. In [3] we computed bounds for the error

E|χ[K,∞)(X) − χ[K,∞)(X̂)|, where K ∈ R, by reducing it to the error∣∣∣∣∣∣X − X̂∣∣∣∣∣∣
p
. This gave us a tool to compute convergence rates γ > 0 for

irregular functionals of stochastic differential equations, i.e. in

||g(XT )− g(Xπ
T )||pp ≤ C |π|γ , (1.1)

where 1 ≤ p < ∞, g ∈ BV , XT is a diffusion, and Xπ
T is an approxi-

mation of XT corresponding to a partition π of the interval [0, T ].
Inequalities of the type (1.1) play an important role in two fields of

financial mathematics. It is an integral part of the multilevel Monte
Carlo method for SDEs, developed by M. B. Giles [11,12], to approxi-
mate the expected payoff of an option with a significant improvement
in the computational complexity of the problem. The inequality (1.1)
is required to determine the complexity of the algorithm for options
with a non-Lipschitz payoff, as the complexity is expressed in terms
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2 R. AVIKAINEN

of the convergence parameter γ. This motivates us to look for opti-
mal values of γ in (1.1). Another application is the Lp-variation of
backward stochastic differential equations with non-Lipschitz terminal
condition, due to C. Geiss, S. Geiss and E. Gobet [8]. When studying
fractional smoothness for BSDEs, convergence rates of certain condi-
tional expectations are needed. In this context the inequality (1.1)
again appears.

Our goal is to extend the convergence results of type (1.1) in [3] to
a larger class of functions, namely functions that are unbounded or
have infinite variation. The starting point is the result in [3], where we
showed that if X has a bounded density fX , then

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ 3 (sup fX)
p
p+1

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ p
p+1

p
(1.2)

for all K ∈ R and all 0 < p < ∞. We also proved optimality of
the power of the Lp-norm on the right hand side of (1.2), i.e. that
the power p/(p+ 1) is the largest possible power in general. However,

additional information about the distribution of X and X̂ enables us
to show estimates better than (1.2). An example is the following result
in [10, Discussion after Proposition 3.5]:

Theorem 1.1. Suppose that X, X̂ ∼ N(0, 1) and (X, X̂) is a Gaussian
random vector, and let p ≥ 2. Then

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ Cp

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣
p

for all K ∈ R.

Therefore it is natural to take as an assumption the statement

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp

p
, (1.3)

where the exponent is given by an unspecified function βp : [1,∞) →
(0,∞), and to show results of the type (1.1) for as large class of func-
tions as possible.

The problem of determining the exponent βp is related to fractional
smoothness. The statement of Theorem 1.1 is equivalent to knowing
the fractional smoothness of the indicator function in terms of Malli-
avin Besov spaces [9]. Taking another class of test random variables

{X, X̂} would result in a changed notion of fractional smoothness, and
a different power of the Lp-norm on the right hand side of (1.3). The
inequality (1.2) with the power p/(p + 1) gives the most general sit-

uation enabling us to take any random variables X and X̂ such that
X has a bounded density. The boundedness assumption of the density
of X is essential, because without it the statement of Equation (1.3)
would contradict itself, unless we replaced the indicator function by a
Lipschitz function. Namely, with the choice X ≡ K and X̂ ≡ K − ε
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for ε > 0, the left hand side of Equation (1.3) does not converge at all

as ε→ 0, but X̂ converges to X in Lp.

1.2. Results. We develop an extension of bounded variation by com-
pensating for the variation of functions by the tail of the distribution
of X and X̂. If the tail behavior is described by a function ϕ : R→ R,
which vanishes at±∞, then we define a space of functions of ϕ-bounded
variation, to be called BVϕ. The space BVϕ is a Banach space, and
its size depends on the decay of the function ϕ, i.e. faster decay of
ϕ allows more compensation and thus more variation for functions in
BVϕ. A function in BVϕ can be represented as an integral of 1/ϕ with
respect to a signed measure, and is by definition left-continuous. The
latter condition can be relaxed by adding jumps, also compensated by
ϕ. This is analogous to the spaces BV and NBV in [17]. If X, X̂ ∈ Lp
and

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣
p
≤ Cp <∞ for all 1 ≤ p <∞, then we show in Lemma

9.1 that the function ϕ decays faster than any polynomial, allowing
polynomial variation for the functions in BVϕ.

Given a function g ∈ BVϕ, and assuming the condition (1.3), we
show in Theorem 6.2 that, if 1 ≤ q <∞ and 0 < θ < 1, then∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣q
q
≤ C(θ, q, g, ϕ)C(p,X)1−θ

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣(1−θ)βp
p

(1.4)

for every 1 ≤ p < ∞. This is a natural extension of [3, Theorem 2.4],
where we showed an analogous result with g ∈ BV and θ = 0. We
also show that Equation (1.4) holds if the left-continuity assumption
of functions in BVϕ is dropped.

By concavity arguments we can further extend the class of functions
we can handle. Suppose that 0 < r ≤ 1 and g = |f |r sgn f for some
f ∈ BV . In Theorem 7.1 we show that, if 0 < q <∞, then∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣q
q
≤ C(r, q, f)C(p,X)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp(rq∧1)

p

for every 1 ≤ p < ∞. This is valid e.g. for functions with frequent
variation on a finite interval, like the function in Example 7.3.

We have sharp convergence results on the space of Lipschitz functions
and BV on a finite interval [a, b], so we can apply the real interpola-
tion method to get sharp convergence rates in the interpolation spaces
(Lip([a, b]), BV ([a, b]))θ,q with parameters 0 < θ < 1 and 1 ≤ q ≤ ∞.
Theorem 8.4 shows that for g in one such space, and random variables

X and X̂ with values in [a, b],∣∣∣∣∣∣g(X)− g(X̂)
∣∣∣∣∣∣
p
≤ C(p,X, θ, q, g)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣1−θ(1− 1
1+p)

p

for every 1 ≤ p <∞. The rate is optimal by Theorem 8.6.
All of the results above can be applied to the approximation of so-

lutions of stochastic differential equations. Let X be a solution of an
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SDE such that XT has a bounded density. Given an approximation
(Xπ

t )t∈[0,T ] of X with

||XT −Xπ
T ||p ≤ Cp |π|γ ,

then using (1.4), we show in Corollary 10.2 that for 1 ≤ q < ∞ and
0 < ε < γ,

||g(XT )− g(Xπ
T )||qq ≤ C(q, γ, ε,X) |π|γ−ε , (1.5)

whenever g is a function of polynomial variation. If Xπ is the Euler
scheme, then in Theorem 11.4 we find estimates for the decay of the
function ϕ that are better than in the general case. This extends the
result (1.5) to functions with variation higher than polynomial. If the
coefficients of the SDE are bounded, then even exponential variation
is possible.

We use our results on the Euler scheme to determine the variance
parameter β in the multilevel Monte Carlo method of Giles [12]. By
Corollary 12.1 we get β = 1/2 − ε for any ε > 0, for functions g with
variation related to the decay of ϕ given in Theorem 11.4. In the case
that g has polynomial variation, Theorem 11.6 provides a logarithmic
expression for ε, i.e., ε = C/(− log |π|)1/3, which converges to zero as
|π| → 0. In Corollary 12.2, we extend the variance estimate (iii’) in [3,
Section 6], shown for functions of bounded variation, to functions of
polynomial variation. Consequently, the complexity result [3, Theorem
6.1] holds for functions of polynomial variation as well.

1.3. Organization of the paper. We start by recalling some pre-
liminary definitions in Section 2. In Section 3 we define the space of
functions of ϕ-bounded variation, BVϕ, and show that it is complete.
By definition the functions in BVϕ are left-continuous, but in Section 4
we extend the class to different types of discontinuity using the idea of
compensating jumps by the tail probabilities. We present an alterna-
tive characterization of the space BVϕ in terms of integrals of 1/ϕ with
respect to signed measures in Section 5. The main convergence result
of type (1.4) is presented in Section 6. In Section 7 we use a simple con-
cavity trick to deal with certain functions for which the compensation
idea of ϕ-bounded variation fails. Section 8 contains another extension
to find sharp convergence rates for functions in the real interpolation
spaces between Lipschitz and BV -functions defined on a finite interval.
In Section 9 we consider a typical situation where the functions in BVϕ
can have polynomial variation. The convergence result of Section 6 is
applied to approximation of stochastic differential equations in Section
10. In Section 11 we recall the Euler scheme and use specific informa-
tion about the scheme to get better convergence results. Finally, we
apply the results concerning the Euler scheme to the multilevel Monte
Carlo method in Section 12.
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2. Preliminaries

Let us first recall a set of definitions, starting with N = {1, 2, . . . }.

Definition 2.1. Let (X,F) be a measurable space. A partition of
F ∈ F is a countable collection {Fi}∞i=1 ⊂ F such that Fi ∩ Fj = ∅ if
i 6= j, and ∪Fi = F .

Definition 2.2 (Signed measure). A signed measure µ on a measurable
space (X,F) is a set function µ : F → R such that

µ(F ) =
∞∑
i=1

µ(Fi)

for all F ∈ F and all partitions {Fi}∞i=1 of F .

Remark 2.3. A signed measure is always finite, i.e. |µ(X)| <∞.

Definition 2.4 (Total variation measure). The total variation measure
|µ| of a signed measure µ is the set function

|µ| : F → [0,∞), |µ|(F ) = sup
∞∑
i=1

|µ(Fi)|,

where the supremum is taken over all partitions {Fi}∞i=1 of F .

Remark 2.5. The total variation measure |µ| is always a finite positive
measure, i.e. |µ|(X) < ∞, see [18, Theorems 6.2 and 6.4]. Moreover,
|µ(F )| ≤ |µ|(F ) for all F ∈ F .

Definition 2.6. A measure µ : X → [0,∞] on a measure space (X,F)
is σ-finite, if there exist a partition {Fi} of X such that µ(Fi) < ∞
for all i ∈ N, i.e. the space X can be written as a countable union of
measurable sets of finite measure.

We also recall the definition of functions of bounded variation:

Definition 2.7. Given a function f : R→ R, set

Tf (x) := sup
n∑
j=1

|f(xj)− f(xj−1)|, (2.1)

where the supremum is taken over n and all partitions −∞ < x0 <
x1 < . . . < xn = x, be the total variation function of f . Then we say
that f is a function of bounded variation, f ∈ BV , if

V (f) := lim
x→∞

Tf (x)

is finite, and we call V (f) the (total) variation of f .

Remark 2.8. We will occasionally use the fact that a left-continuous
function f ∈ BV has a unique representation f(x) = c + µ((−∞, x)),
where c ∈ R and µ is a signed measure. Conversely, any signed measure
µ defines a function f(x) = µ((−∞, x)) ∈ BV , which is left-continuous
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and vanishes as x → −∞. Moreover, V (f) = |µ|(R). See Theorems
8.13 and 8.14 in [17].

3. Generalization of Bounded Variation

Our aim in this section is to define functions g that may be of un-
bounded variation on the real line, but have a strong enough bound on
the variation to enable us to show a result of the type∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣q
q
≤ C(p, q, g,X)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp
p
, 1 ≤ p, q <∞,

which is proved for BV -functions in [3, Theorem 2.4] with βp = p
p+1

.

We obtain the bound by compensating for the variation of g by a
function ϕ vanishing at infinity, resulting in a notion of ϕ-bounded
variation. Let us now define such functions rigorously, and show that
the functions of ϕ-bounded variation generate a Banach space.

Definition 3.1 (Bump function). Let ϕ : R → R be a continuous
function such that 0 < ϕ(x) ≤ 1 for all x ∈ R, ϕ(0) = 1, and ϕ
is increasing in (−∞, 0] and decreasing in [0,∞). Then ϕ is called a
bump function.

Definition 3.2. Let M be the set of all set functions

µ : {F ∈ B(R) : F bounded } → R

that can be written as a difference µ = µ1 − µ2 of two non-negative
measures µ1, µ2 : B(R) → [0,∞] such that µi(K) < ∞ for i ∈ {1, 2}
and all compact sets K ⊂ R.

A set function µ ∈M restricted to B(K) is a signed measure for all
compact sets K ⊂ R. It is not necessarily a signed measure on B(R),
because it can be undefined for unbounded sets. However, we now show
that a set function in M has an optimal decomposition corresponding
to the Jordan decomposition of signed measures.

Theorem 3.3. Suppose that µ ∈M. Then there exist a unique decom-
position µ = µ+ − µ−, where µ+, µ− : B(R)→ [0,∞] are non-negative
measures such that µ+(K) < ∞ and µ−(K) < ∞ for all compact sets
K ⊂ R, with the property that µ+(E) ≤ µ1(E) and µ−(E) ≤ µ2(E) for
all other decompositions µ = µ1 − µ2 and all E ∈ B(R).

Proof. Let N ∈ Z. Then µ is a signed measure on the interval [N,N +
1). By the Hahn decomposition theorem [18, Theorem 6.14] there exist
sets AN , BN ∈ B([N,N + 1)) such that AN ∪ BN = [N,N + 1), AN ∩
BN = ∅, and the Jordan decomposition µ|[N,N+1) = µ+

N − µ−N on the
interval [N,N + 1) satisfies

µ+
N(E) = µ(AN ∩ E) and µ−N(E) = −µ(BN ∩ E)
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for E ∈ B([N,N + 1)). We define the sets

A∞ :=
⋃
N∈Z

AN and B∞ :=
⋃
N∈Z

BN ,

which have the properties A∞ ∪ B∞ = R and A∞ ∩ B∞ = ∅. Now we
set

µ+(E) =
∑
N∈Z

µ(AN ∩ E) and µ−(E) =
∑
N∈Z

−µ(BN ∩ E)

for E ∈ B(R). Then µ+ and µ− are non-negative measures on B(R)
that are finite on all compact sets and bounded from above by measures
of any other decomposition µ = µ1 − µ2, since µ ≤ µ1 and

µ+(E) =
∑
N∈Z

µ(AN ∩ E) ≤
∑
N∈Z

µ1(AN ∩ E) ≤ µ1(E)

for all E ∈ B(R). Similarly µ− ≤ µ2, since −µ ≤ µ2. The finiteness
of µ+ and µ− on compact sets now follows from the corresponding
property in the definition of M. We conclude that the measures µ+

and µ− give the Jordan decomposition of µ, and the sets A∞ and B∞

give the Hahn decomposition of R induced by µ. �

Definition 3.4. For µ ∈M, we define

||µ||ϕ =

∫
R

ϕ(x) d|µ|(x),

where |µ| := µ+ + µ− is the σ-finite measure given by the optimal
decomposition of µ in Theorem 3.3. Moreover, we define

Mϕ = {µ ∈M : ||µ||ϕ <∞}.

Remark 3.5. If we restrict µ to B([−N,N ]), then the measure |µ| in
the Definition 3.4 is the total variation measure of µ in the classical
sense.

Lemma 3.6. (Mϕ, ||·||ϕ) is a normed space.

Proof. Let µ ∈ Mϕ. If µ(F ) = 0 for all F ∈ Fb := {F ∈ B(R) :
F bounded }, then obviously ||µ||ϕ = 0. To show the opposite, take F ∈
Fb. Since F is bounded, by the positivity of ϕ the condition ||µ||ϕ = 0

implies that |µ|(F ) = 0. Thus |µ(F )| ≤ |µ|(F ) = 0, so µ(F ) = 0,
and ||·||ϕ is positive definite. Let a ∈ R. Since |aµ|(F ) = |a||µ|(F ),

the homogeneity property ||aµ||ϕ = |a| ||µ||ϕ follows from the properties

of the integral. So does the triangle inequality, since |µ1 + µ2|(F ) ≤
|µ1|(F ) + |µ2|(F ) for µ1, µ2 ∈ Mϕ. Thus we conclude that Mϕ is a
vector space and ||·||ϕ is a norm in Mϕ. �
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Definition 3.7 (The class BVϕ). For any µ ∈ Mϕ, we define the
distribution function related to µ by

gµ(x) =

{
µ([0, x)), for x > 0,

−µ([x, 0)), for x ≤ 0,

where [0, 0) = ∅. We denote the class of all such functions by BVϕ.

Remark 3.8. By definition a function g ∈ BVϕ is left-continuous with
at most countably many jumps, and g(0) = 0. The size of the class
BVϕ depends on the decay of ϕ; we will show in Theorem 3.10 that no
decay for ϕ, i.e., ϕ ≡ 1 leads back to BV . Using the uniqueness of the
signed measure representation of BV functions we can show that there
is one-to-one correspondence between measures in Mϕ and functions
in BVϕ, i.e. for µ1, µ2 ∈Mϕ we have gµ1 = gµ2 if and only if µ1 = µ2.

Theorem 3.9. BVϕ is a Banach space with respect to ||gµ||ϕ := ||µ||ϕ.

Proof. It is easy to see that BVϕ is a vector space, and Lemma 3.6
ensures that ||·||ϕ is a norm. Recall that X is a Banach space if and

only if every absolutely convergent sum of elements of X converges [16,
Theorem III.3]. Let (gµi)∞i=1 ⊂ BVϕ be a sequence that converges
absolutely, i.e.

∑∞
i=1 ||gµi ||ϕ <∞. By definition this is equivalent to

∞∑
i=1

∫
R

ϕ(x) d|µi|(x) <∞. (3.1)

Here (µi)
∞
i=1 is a sequence in Mϕ, and each µi has the representation

µi = µ+
i − µ−i according to Theorem 3.3. For any x > 0 we have

∞∑
i=1

|gµi(x)| =
∞∑
i=1

|µi([0, x))| ≤
∞∑
i=1

|µi|([0, x))

=
∞∑
i=1

∫
[0,x)

d|µi|(z) =
∞∑
i=1

1

ϕ(x)

∫
[0,x)

ϕ(x) d|µi|(z)

≤ 1

ϕ(x)

∞∑
i=1

∫
[0,x)

ϕ(z) d|µi|(z) ≤ 1

ϕ(x)

∞∑
i=1

||gµi ||ϕ <∞,

and for x ≤ 0 we can do a similar computation. This shows that the
sum

∑∞
i=1 g

µi(x) exists for all x ∈ R. Moreover, since µ+
i ≤ |µi| and

µ−i ≤ |µi|, we also get that
∞∑
i=1

µ+
i ([0, x)) <∞ for x > 0, and

∞∑
i=1

µ+
i ([x, 0)) <∞ for x ≤ 0.

Similar results hold for µ−i . We define

µ1 :=
∞∑
i=1

µ+
i and µ2 :=

∞∑
i=1

µ−i .
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Now µ1, µ2 : B(R) → [0,∞] are measures as sums of measures, and
finite on all compact sets. Thus they satisfy the conditions of Definition
3.2 and hence µ := µ1 − µ2 ∈M. For x > 0 we have

µ([0, x)) =
∞∑
i=1

µ+
i ([0, x))−

∞∑
i=1

µ−i ([0, x))

=
∞∑
i=1

(
µ+
i ([0, x))− µ−i ([0, x))

)
=

∞∑
i=1

µi([0, x)) =
∞∑
i=1

gµi(x),

and for x ≤ 0,

µ([x, 0)) = −
∞∑
i=1

gµi(x).

Moreover, the function gµ defined by µ is in BVϕ if the condition∫
R

ϕd|µ| <∞ (3.2)

is satisfied. Because µ = µ1−µ2 is not necessarily the optimal (Jordan)
decomposition of µ, we get by Theorem 3.3 that |µ| ≤ µ1 + µ2. This
implies that∫

R

ϕd|µ| ≤
∫
R

ϕd(µ1 + µ2) =

∫
R

ϕdµ1 +

∫
R

ϕdµ2.

Now ∫
R

ϕdµ1 =

∫
R

ϕd

(
∞∑
i=1

µ+
i

)
=
∞∑
i=1

∫
R

ϕdµ+
i

≤
∞∑
i=1

∫
R

ϕd|µi| <∞,

where the second equality follows from [6, p. 179]. We can do a similar
computation for the integral with respect to µ2. Thus the condition
(3.2) is satisfied, and we conclude that gµ ∈ BVϕ.

It remains to show that the sum
∑n

i=1 g
µi converges to the element

gµ as n→∞. This follows from the fact that∣∣∣∣∣
∣∣∣∣∣gµ −

n∑
i=1

gµi

∣∣∣∣∣
∣∣∣∣∣
ϕ

=

∣∣∣∣∣
∣∣∣∣∣µ−

n∑
i=1

µi

∣∣∣∣∣
∣∣∣∣∣
ϕ

=

∣∣∣∣∣
∣∣∣∣∣µ1 − µ2 −

n∑
i=1

µi

∣∣∣∣∣
∣∣∣∣∣
ϕ

=

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=1

µ+
i −

∞∑
i=1

µ−i −
n∑
i=1

(µ+
i − µ−i )

∣∣∣∣∣
∣∣∣∣∣
ϕ

=

∣∣∣∣∣
∣∣∣∣∣
∞∑

i=n+1

µ+
i −

∞∑
i=n+1

µ−i

∣∣∣∣∣
∣∣∣∣∣
ϕ
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=

∫
R

ϕd

∣∣∣∣∣
∞∑

i=n+1

µ+
i −

∞∑
i=n+1

µ−i

∣∣∣∣∣ ≤
∫
R

ϕd

(
∞∑

i=n+1

µ+
i +

∞∑
i=n+1

µ−i

)

=

∫
R

ϕd

(
∞∑

i=n+1

|µi|

)
=

∞∑
i=n+1

∫
R

ϕd|µi| → 0

as n→∞, because the sum on the right hand side converges. �

Let us show that the class BVϕ contains all correctly normalized and
left-continuous functions of bounded variation. Define

A := BV ∩ {g left-continuous and g(0) = 0}.

Theorem 3.10. We have A ⊂ BVϕ for any bump function ϕ. If ϕ ≡ 1,
then A = BVϕ.

Proof. Suppose that g ∈ BV is left-continuous. Then, by Theorems
8.13 and 8.14 in [17], there exist a unique signed measure µ and a
constant c ∈ R such that g(x) = c + µ((−∞, x)). The assumption
g(0) = 0 then implies that c = −µ((−∞, 0)). Thus for x > 0 we have

g(x) = c+ µ((−∞, 0)) + µ([0, x)) = µ([0, x)),

and for x ≤ 0 we have

g(x) = c+ µ((−∞, 0))− µ([x, 0)) = −µ([x, 0)),

which coincides with the measure representation of functions in BVϕ.
Moreover,

||g||ϕ =

∫
R

ϕd|µ| ≤
∫
R

d|µ| = V (g) <∞,

and g ∈ BVϕ.
If ϕ ≡ 1 and gµ ∈ BVϕ for some µ ∈ Mϕ, then there exists M > 0

such that ||gµ||ϕ = |µ|(R) < M. Since µ+(R) + µ−(R) = |µ|(R), we see

that both µ+ and µ− are finite measures, µ is a signed measure on R,
and gµ ∈ BV by Theorems 8.13 and 8.14 in [17].

�

The space BVϕ satisfies the following comparison properties:

Lemma 3.11. Suppose that ϕ and ψ are bump functions. If ϕ ≤ ψ,
then BVψ ⊂ BVϕ. In particular, if g ∈ BVψ, then ||g||ϕ ≤ ||g||ψ.

Proof. Let g ∈ BVψ and let µ ∈Mψ be the measure related to g. Then

||µ||ϕ =

∫
R

ϕ(x) d|µ|(x) ≤
∫
R

ψ(x) d|µ|(x) = ||µ||ψ <∞,

which implies the statement. �
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Remark 3.12. The space BVϕ is not separable, which can be seen by
considering the uncountable set of functions χ(K,∞)/ϕ(K), K ∈ R.
Namely, we can write χ(K,∞)/ϕ(K) = gµK with µK = δ{K}/ϕ(K),
where δ is the Dirac delta. This implies that if K1 6= K2, then
||gµK1 − gµK2 ||ϕ = 2, and it is impossible to find a countable dense
subset.

4. Incorporation of jumps

By definition, functions gµ ∈ BVϕ have only countably many jumps,
are left-continuous, and vanish at the origin. We can relax the latter
two restrictions by adding to the function gµ a constant c ∈ R and a
jump function ∆, which is zero outside a countable set. This extends
the class BVϕ to include functions that have different types of disconti-
nuity, i.e. points of left-continuity, right-continuity and neither left- nor
right-continuity. For example, we can make gµ ∈ BVϕ right-continuous
by choosing

∆(x) =

{
gµ(x+)− gµ(x) for x ∈ A,
0 elsewhere,

where A is the set of points of discontinuity of gµ.

Definition 4.1. Define a set of jump functions

∆ϕ = {∆ν : R→ R | ∆ν(x) = ν({x}), ν ∈M∆
ϕ },

where

M∆
ϕ = {µ ∈Mϕ : µ =

∞∑
i=1

αiδ{xi} with αi, xi ∈ R, xi 6= xj for i 6= j}

This gives us a set of functions that can have non-zero values only in
countably many points (xi)

∞
i=1, and the condition ν ∈M∆

ϕ states that

||∆ν ||ϕ := ||ν||ϕ =
∞∑
i=1

ϕ(xi)|ν({xi})| =
∞∑
i=1

ϕ(xi)|αi| <∞.

We have uniqueness of the decomposition g = c+ gµ + ∆ν :

Theorem 4.2. If c1 + gµ1 + ∆ν1 = c2 + gµ2 + ∆ν2 with c1, c2 ∈ R,
µ1, µ2 ∈Mϕ and ν1, ν2 ∈M∆

ϕ , then c1 = c2, µ1 = µ2 and ν1 = ν2.

Proof. Take two functions g1 and g2 such that gi = ci + gµi + ∆νi ,
i ∈ {1, 2}, and suppose that g1 = g2. Define Ai = supp ∆νi , i ∈ {1, 2}.
Now A1 ∪A2 is countable and ∆νi = 0 in (A1 ∪A2)c. Take a sequence
(xj) ⊂ (A1 ∪ A2)c such that xj ↗ 0 as j → ∞. Since gµi is left-
continuous and gµi(0) = 0, it follows that gi(xj) = ci + gµi(xj)→ ci as
j →∞, and thus c1 = c2. This implies that for x0 ∈ (A1∪A2)c we have
gµ1(x0) = gµ2(x0). Now let x0 ∈ A1 ∪ A2. Again we choose a sequence
(xj) ⊂ (A1 ∪ A2)c such that xj ↗ x0 as j →∞, and by left-continuity
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of gµi we get that gµ1(x0) = gµ2(x0). Thus gµ1 = gµ2 everywhere, and
also ∆ν1 = ∆ν2 . �

Theorem 4.3. BV ⊂ {g = c+gµ+∆ν : c ∈ R, gµ ∈ BVϕ, ∆ν ∈ ∆ϕ}.

Proof. Theorem 3.10 shows that the component gµ covers all g ∈ BV
that are left-continuous and satisfy g(0) = 0. Since the latter condition
can be relaxed by adding a constant c ∈ R, we only need to deal with
the points of discontinuity of g. But if {xi}∞i=1 is the set of these points,
then we can alter the left-continuous part gµ by adding a function ∆ν

with ν(x) =
∑∞

i=1 λiχ{xi}(x), where the coefficients λi are the necessary
changes at the points xi. Then ∆ν ∈ ∆ϕ, since

||∆ν ||ϕ =
∞∑
i=1

ϕ(xi)|ν({xi})| =
∞∑
i=1

ϕ(xi)|λi| ≤
∞∑
i=1

|λi| ≤ V (g),

and any g ∈ BV admits a representation g = c+ gµ + ∆ν . �

5. Alternative characterization of BVϕ

In this chapter we characterize the class BVϕ in a more intuitive way.
Given a bump function ϕ and a signed measure ν, we can generate a
function in BVϕ by computing the integral of 1/ϕ with respect to ν.

Definition 5.1 (Class BV Rϕ). For a bump function ϕ, we denote by
BV Rϕ the class of all functions

g(x) =

{∫
[0,x)

1
ϕ
dν, for x > 0,

−
∫

[x,0)
1
ϕ
dν, for x ≤ 0,

where ν is a signed measure and [0, 0) = ∅.

Theorem 5.2. BVϕ = BV Rϕ.

Proof. Let gµ ∈ BVϕ with µ ∈ Mϕ. Then by Theorem 3.3, µ admits
the Jordan decomposition µ = µ+ − µ− with∫

R

ϕdµ+ +

∫
R

ϕdµ− <∞.

For E ∈ B(R), we define finite measures

ν+(E) =

∫
E

ϕdµ+ and ν−(E) =

∫
E

ϕdµ−,

or dν+ = ϕdµ+ and dν− = ϕdµ−. Hence, for E ∈ B(R), we have

µ+(E) =

∫
E

dµ+ =

∫
E

1

ϕ
ϕdµ+ =

∫
E

1

ϕ
dν+,

and similarly

µ−(E) =

∫
E

1

ϕ
dν−.
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Thus

µ(E) =

∫
E

dµ+ −
∫
E

dµ− =

∫
E

1

ϕ
dν+ −

∫
E

1

ϕ
dν− =

∫
E

1

ϕ
dν

and gµ ∈ BV Rϕ.
The converse follows by similar arguments. Let g ∈ BV Rϕ with the

underlying signed measure ν with Jordan decomposition ν = ν+ − ν−.
We define a set function µ = µ1 − µ2 such that

µ1(E) =

∫
E

1

ϕ
dν+ and µ2(E) =

∫
E

1

ϕ
dν−

for all E ∈ B(R). Then we get

dν+ = ϕdµ1 and dν− = ϕdµ2,

and the finiteness of ν+ and ν− imply that∫
R

ϕd|µ| ≤
∫
R

ϕdµ1 +

∫
R

ϕdµ2 <∞.

Thus µ is in Mϕ and g = gµ ∈ BVϕ. �

Example 5.3. Suppose that ϕ is a continuously differentiable bump
function. Because ϕ ∈ BV , we may choose in Definition 5.1 a signed
measure ν such that ϕ(x) = ν((−∞, x)), in accordance with Remark
2.8. Then by [1, Theorem 7.35] we have dν = ϕ′ dx and g = logϕ ∈
BV Rϕ, and thus logϕ ∈ BVϕ by Theorem 5.2.

6. Convergence results

Let X and X̂ be random variables defined on a common probability

space. We define a bump function ϕX,X̂ that connects the random
variables with their tail behavior. Then, assuming that the rate βp > 0
in the error

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp

p

is known, we find convergence rates γp for the error∣∣∣∣∣∣g(X)− g(X̂)
∣∣∣∣∣∣q
q
≤ C(p, q, g,X, X̂)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣γp
p
,

for functions g in the class BVϕX,X̂ associated with the function ϕX,X̂ .
We can apply the above principle together with results giving the

value of βp. We may use [3, Theorem 2.4] to show that the optimal

power is βp = p/(p + 1) for random variables X and X̂ such that X
has a bounded density, or take advantage of a setting with additional
information about X and X̂, such as Gaussianity as in Theorem 1.1,
to obtain better powers βp.
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Definition 6.1. Take two continuous and strictly positive functions
ϕ+ : (0,∞)→ (0, 1] and ϕ− : (−∞, 0]→ (0, 1] with the properties that
ϕ+ is decreasing and ϕ+(0) = 1, ϕ− is increasing and ϕ−(0) = 1,

P(X ≥ K) ∨P(X̂ ≥ K) ≤ ϕ+(K) for K > 0

and

P(X ≤ K) ∨P(X̂ ≤ K) ≤ ϕ−(K) for K ≤ 0.

Then we define a bump function ϕX,X̂ : R→ (0, 1] by

ϕX,X̂(K) :=

{
ϕ+(K) if K > 0,

ϕ−(K) if K ≤ 0.

The main result of this section is the following convergence theorem:

Theorem 6.2. Let 1 ≤ p ≤ ∞ and βp > 0. Suppose that X and X̂
are random variables that satisfy

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp

p

for all K ∈ R. Suppose that 0 < θ < 1 and consider the bump function

ϕX,X̂ . If 1 ≤ q <∞ and g ∈ BV
(ϕX,X̂)

θ
q
, then∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣q
q
≤ 2θ ||g||q

(ϕX,X̂)
θ
q
C(p,X)1−θ

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣(1−θ)βp
p

. (6.1)

Remark 6.3. Theorem 6.2 is an extension of [3, Theorem 2.4], which
considers the case θ = 0 and βp = p/(p + 1). The intuition given by
plugging θ = 0 into Equation (6.1) is correct for the class BV1, which is
a subspace of BV by Theorem 3.10. The statement is formally proved
for all functions in BV in [3, Theorem 2.4].

Proof of Theorem 6.2. Let g ∈ BVϕX,X̂ and let µ be the set function
associated with g, i.e. g = gµ. We use the optimal decomposition
µ = µ+ − µ− given by Theorem 3.3. Now

gµ(x)χ(0,∞)(x) = µ([0, x))χ(0,∞)(x)

=
(
µ+([0, x))− µ−([0, x))

)
χ(0,∞)(x)

=

∫
[0,x)

χ(0,∞)(x) dµ+(z)−
∫

[0,x)

χ(0,∞)(x) dµ−(z)

=

∫
[0,∞)

χ(z,∞)(x) dµ+(z)−
∫

[0,∞)

χ(z,∞)(x) dµ−(z),

and similarly

gµ(x)χ(−∞,0](x) = −µ([x, 0))χ(−∞,0](x)

= −
(∫

(−∞,0)

χ(−∞,z](x) dµ+(z)−
∫

(−∞,0)

χ(−∞,z](x) dµ−(z)

)
.
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Thus we can use these representations to get that∣∣∣∣∣∣gµ(X)− gµ(X̂)
∣∣∣∣∣∣
q
≤
∣∣∣∣∣∣gµ(X)χ(0,∞)(X)− gµ(X̂)χ(0,∞)(X̂)

∣∣∣∣∣∣
q

+
∣∣∣∣∣∣gµ(X)χ(−∞,0](X)− gµ(X̂)χ(−∞,0](X̂)

∣∣∣∣∣∣
q

≤
∣∣∣∣∣∣∣∣∫

[0,∞)

|χ(z,∞)(X)− χ(z,∞)(X̂)| dµ+(z)

∣∣∣∣∣∣∣∣
q

+

∣∣∣∣∣∣∣∣∫
[0,∞)

|χ(z,∞)(X)− χ(z,∞)(X̂)| dµ−(z)

∣∣∣∣∣∣∣∣
q

+

∣∣∣∣∣∣∣∣∫
(−∞,0)

|χ(−∞,z](X)− χ(−∞,z](X̂)| dµ+(z)

∣∣∣∣∣∣∣∣
q

+

∣∣∣∣∣∣∣∣∫
(−∞,0)

|χ(−∞,z](X)− χ(−∞,z](X̂)| dµ−(z)

∣∣∣∣∣∣∣∣
q

.

For the first term we have∣∣∣∣∣∣∣∣∫
[0,∞)

|χ(z,∞)(X)− χ(z,∞)(X̂)| dµ+(z)

∣∣∣∣∣∣∣∣
q

≤
∫

[0,∞)

∣∣∣∣∣∣χ(z,∞)(X)− χ(z,∞)(X̂)
∣∣∣∣∣∣
q
dµ+(z),

and similarly for the other three terms. Let us now look for an upper
bound for the Lq-norm in the integrand. Denote by ψ(X, X̂) the error
given in the assumption, i.e.

ψ(X, X̂) := C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp

p

and notice that a ∧ b ≤ a1−θbθ for any a, b ≥ 0 and 0 < θ < 1. Since

E|χ[K,∞)(X)− χ[K,∞)(X̂)| = P(X ≥ K, X̂ < K) +P(X < K, X̂ ≥ K)

≤ 2(P(X ≥ K) ∨P(X̂ ≥ K)),

it follows that, for K > 0 and 0 < θ < 1,

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ ψ(X, X̂) ∧ 2
[
P(X ≥ K) ∨P(X̂ ≥ K)

]
≤ ψ(X, X̂)1−θ2θ

[
P(X ≥ K)∨P(X̂ ≥ K)

]θ
≤ 2θψ(X, X̂)1−θϕ+(K)θ.

In a similar way we get for K ≤ 0 that

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ 2θψ(X, X̂)1−θϕ−(K)θ,

so we write for K ∈ R,

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ 2θψ(X, X̂)1−θϕX,X̂(K)θ.
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This gives an estimate for
∣∣∣∣∣∣χ[z,∞)(X)− χ[z,∞)(X̂)

∣∣∣∣∣∣
q
, which in turn im-

plies the needed estimate for the function χ(z,∞) by writing χ(z,∞) =
limε→0 χ[z+ε,∞) and using the dominated convergence theorem. More-
over, we get the same estimate for the function χ(−∞,z] by looking at
the complement of the interval (z,∞). Therefore,∣∣∣∣∣∣gµ(X)− gµ(X̂)

∣∣∣∣∣∣
q

≤
∫

[0,∞)

∣∣∣∣∣∣χ(z,∞)(X)− χ(z,∞)(X̂)
∣∣∣∣∣∣
q
d(µ+ + µ−)(z)

+

∫
(−∞,0)

∣∣∣∣∣∣χ(−∞,z](X)− χ(−∞,z](X̂)
∣∣∣∣∣∣
q
d(µ+ + µ−)(z)

≤
∫
R

2
θ
qψ(X, X̂)

1−θ
q ϕX,X̂(z)

θ
q d|µ|(z)

≤ 2
θ
q

∫
R

C(p,X)
1−θ
q

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ (1−θ)βpq

p
ϕX,X̂(z)

θ
q d|µ|(z)

≤2
θ
qC(p,X)

1−θ
q

∫
R

ϕX,X̂(z)
θ
q d|µ|(z)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ (1−θ)βpq

p

= 2
θ
qC(p,X)

1−θ
q ||g||

(ϕX,X̂)
θ
q

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ (1−θ)βpq

p
,

which gives the assertion. �

Similar result holds for the jump functions defined in Section 4:

Lemma 6.4. Let 1 ≤ q < ∞, 0 < θ < 1, and ∆ν ∈ ∆
(ϕX,X̂)

θ
q

with

ν ∈M∆

(ϕX,X̂)
θ
q
. Under the assumptions of Theorem 6.2,

∣∣∣∣∣∣∆ν(X)−∆ν(X̂)
∣∣∣∣∣∣q
q
≤ 2q+θ ||∆ν ||q

(ϕX,X̂)
θ
q
C(p,X)1−θ

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣(1−θ)βp
p

.

Proof. First, note that the function ∆ν can be written in the form

∆ν(x) =

∫
{x}

dν =

∫
{x}

χ(−∞,z](x)− χ(−∞,z)(x) dν(z).

Then by arguments similar to those employed in the proof of Theorem
6.2, ∣∣∣∣∣∣∆ν(X)−∆ν(X̂)

∣∣∣∣∣∣
q

≤
∫
R

∣∣∣∣∣∣χ(−∞,z](X)− χ(−∞,z](X̂)
∣∣∣∣∣∣
q
d(ν+ + ν−)(z)

+

∫
R

∣∣∣∣∣∣χ(−∞,z)(X)− χ(−∞,z)(X̂)
∣∣∣∣∣∣
q
d(ν+ + ν−)(z)



ON GENERALIZED BV AND APPROXIMATION OF SDES 17

≤ 2 · 2
θ
qC(p,X)

1−θ
q

∫
R

ϕX,X̂(z)
θ
q d|ν|(z)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ (1−θ)βpq

p

≤ 2
q+θ
q C(p,X)

1−θ
q ||∆ν ||

(ϕX,X̂)
θ
q

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ (1−θ)βpq

p
.

�

Now Theorem 6.2, Lemma 6.4, and Minkowski’s inequality imply the
following result for not necessarily left-continuous functions.

Corollary 6.5. Let 1 ≤ q < ∞ and 0 < θ < 1. If g = c + gµ + ∆ν,
where c ∈ R, gµ ∈ BV

(ϕX,X̂)
θ
q
, and ∆ν ∈ ∆

(ϕX,X̂)
θ
q
, then under the

assumptions of Theorem 6.2,∣∣∣∣∣∣g(X)− g(X̂)
∣∣∣∣∣∣q
q
≤ 2q+θ(||gµ||

(ϕX,X̂)
θ
q

+ ||∆ν ||
(ϕX,X̂)

θ
q
)q

·C(p,X)1−θ
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣(1−θ)βp

p
.

7. Extension for fine variations

The functions in the space BVϕ have bounded variation on a com-
pact set. By simple concavity arguments, we show a result similar to
Theorem 6.2 for certain functions that have variation that is small in
amplitude, but so frequent that the function has unbounded variation
on a compact set. We give an example of such a function in Example
7.3.

Let X and X̂ be random variables on the same probability space.
For 0 < r ≤ 1, we define the set

BV r := {gr,f : R→ R : gr,f = |f |r sgn f, f ∈ BV },
where sgn is the signum function.

Theorem 7.1. Let 1 ≤ p ≤ ∞, βp > 0, 0 < r ≤ 1, and gr,f ∈ BV r.

Suppose that X and X̂ are random variables that satisfy

E|χ[K,∞)(X)− χ[K,∞)(X̂)| ≤ C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp

p

for all K ∈ R, and suppose X has a bounded density fX . If 0 < q <∞,
then ∣∣∣∣∣∣gr,f (X)− gr,f (X̂)

∣∣∣∣∣∣q
q
≤ 32qV (f)rq∨1C(p,X)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp(rq∧1)

p
.

Proof. For 0 < r ≤ 1 and x, y ≥ 0, we have

|xr − yr| ≤ |x− y|r,
because the function xr, x ≥ 0, is increasing and concave. Similarly
for x, y ≤ 0 we get

||x|r − |y|r| ≤ |x− y|r.
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If xy < 0, then

||x|r sgnx− |y|r sgn y| ≤ |x|r + |y|r ≤ 2|x− y|r. (7.1)

Thus we see that Equation (7.1) holds for all x, y ∈ R. By the assump-
tion and [3, Proof of Theorem 2.4], if f ∈ BV then∣∣∣∣∣∣f(X)− f(X̂)

∣∣∣∣∣∣q
q
≤ 3qV (g)qC(p,X)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp
p
. (7.2)

Thus,∣∣∣∣∣∣gr,f (X)− gr,f (X̂)
∣∣∣∣∣∣q
q
≤

∣∣∣∣∣∣2|f(X)− f(X̂)|r
∣∣∣∣∣∣q
q

= 2q
∣∣∣∣∣∣f(X)− f(X̂)

∣∣∣∣∣∣rq
rq

≤ 2q
∣∣∣∣∣∣f(X)− f(X̂)

∣∣∣∣∣∣(rq∨1)(rq∧1)

rq∨1

≤ 32qV (f)rq∨1C(p,X)
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣βp(rq∧1)

p
,

as desired. �

Remark 7.2. If we only know that X and X̂ are random variables such
that X has a bounded density, then the optimal power in Equation
(7.2) is βp = p/(p+ 1) by [3, Theorem 2.4].

Example 7.3. Let 0 < r < 1 and define a function g : R→ R such that

g(1/k) =
(−1)k

k

for k = 1, 2, . . . , and g(0) = 0. Elsewhere on the interval [0, 1] we de-
fine g by linear interpolation, and outside [0, 1] by continuous constant
extension. Then g /∈ BV , because

V (g) ≥
∞∑
k=1

1

k
=∞,

but f := |g|1/r sgn g ∈ BV , since 1/r > 1 and

V (f) ≤
∞∑
k=1

2

k1/r
<∞.

Therefore gr,f = g ∈ BV r and the result of Theorem 7.1 holds for gr,f .

For r = 1 the spaces BV r and BV are equal. By Example 7.3 we see
that BV r is not included in BV for 0 < r < 1. However, the converse
is true by the following theorem. Hence BV is a nontrivial subspace of
BV r for 0 < r < 1.

Theorem 7.4. Let 0 < r ≤ 1. Then BV ⊂ BV r.
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Proof. The case r = 1 is trivial, so let us consider 0 < r < 1. Take
g ∈ BV such that g ≥ 0. We wish to represent g as g = |f |r sgn f
for some f ∈ BV . The condition g ≥ 0 requires that f ≥ 0, and the
representation simplifies to g = f r. Therefore the function f = g1/r

gives the correct representation. Moreover, f ∈ BV by the mean value
theorem, since

N∑
i=0

|g(xi)
1/r − g(xi−1)1/r| =

N∑
i=0

1

r
ξ

1
r
−1|g(xi)− g(xi−1)|

for a partition −∞ < x0 < · · · < xN < ∞ and some value ξ ∈
[min(g(xi), g(xi−1)),max(g(xi), g(xi−1))] ⊂ [0, supx∈R g(x)]. This im-
plies that

V (f) ≤ 1

r

(
sup
x∈R

g(x)

) 1
r
−1

V (g) <∞.

Thus g = f r ∈ BV r.
If g has values in the reals, then we write g = g+ − g−, where

g+ = max(0, g) and g− = max(0,−g) are the positive and negative
parts of g. It it easy to see that both parts are in BV . Now by the
first part of the proof the functions g+ and g− are in BV r and have
the representations g+ = (f+)r = |f+|r sgn f+ with f+ ∈ BV and
g− = (f−)r = |f−|r sgn f− with f− ∈ BV . Then also f+ − f− ∈ BV .
For all x ∈ R at least one of g+ and g−, and respectively of f+ and f−, is
always zero. Thus, due to the pointwise nature of the representation,
we have g = g+ − g− = |f+|r sgn f+ + | − f−|r sgn(−f−) = |f+ −
f−|r sgn(f+ − f−) ∈ BV r.

�

Remark 7.5. We may also define

BV r
ϕ := {gr,f : R→ R : gr,f = |f |r sgn f, f ∈ BVϕ},

where ϕ is a bump function. This could be a subject for further inves-
tigation.

8. Interpolation between Lipschitz and BV

Let Lip([a, b]) be the space of Lipschitz functions on the interval
[a, b], a < b, and BV ([a, b]) the space of functions of bounded variation
on [a, b]. It is known that

Lemma 8.1.

(i) Lip([a, b]) is a Banach space with respect to

||f ||Lip = ||f ||∞ ∨ sup
x,y∈[a,b]

x 6=y

|f(x)− f(y)|
|x− y|

.
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(ii) BV ([a, b]) is a Banach space with respect to

||f ||BV = |f(a)|+ V (f).

Remark 8.2. If we continuously extend a function g ∈ BV ([a, b]) to be
constant outside the interval [a, b], then the extension is a function in
BV (R) defined in Definition 2.7, and has the same variation as g.

We also have Lip([a, b]) ⊂ BV ([a, b]), so that the spaces Lip([a, b])
and BV ([a, b]) form an interpolation couple. We may use the real
interpolation method described in [5] to improve the convergence re-
sults for functions in the interpolation spaces (Lip([a, b]), BV ([a, b]))θ,q
equipped with the norm ||·||θ,q. Let us first recall the definition.

Definition 8.3. The K-functional related to the spaces Lip([a, b]) and
BV ([a, b]) is

K(g, t;Lip([a, b]), BV ([a, b]))

= inf{||g1||Lip+t ||g2||BV : g = g1 + g2, g1 ∈ Lip([a, b]), g2 ∈ BV ([a, b])}.
Then for 0 < θ < 1 and 1 ≤ q ≤ ∞, the interpolation space is

(Lip([a, b]), BV ([a, b]))θ,q = {g ∈ BV ([a, b]) : ||g||θ,q <∞},
where for 1 ≤ q <∞ the norm is defined by

||g||θ,q =

(∫ ∞
0

[
t−θK(g, t;Lip([a, b]), BV ([a, b]))

]q dt
t

) 1
q

,

and for q =∞,

||g||θ,∞ = sup
t>0

t−θK(g, t;Lip([a, b]), BV ([a, b])).

Theorem 8.4. Let 1 ≤ p < ∞, 0 < θ < 1 and 1 ≤ q ≤ ∞. Suppose
that X and X̂ are random variables with values in [a, b], and that X
has a bounded density fX . Then∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣
p
≤
(

31+1/p (sup fX)
1

1+p

)θ
||g||θ,q

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣1−θ(1− 1
1+p)

p

for g ∈ (Lip([a, b]), BV ([a, b]))θ,q.

Proof. By the Lipschitz property, if g ∈ Lip([a, b]) then∣∣∣∣∣∣g(X)− g(X̂)
∣∣∣∣∣∣
p
≤
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣

p
||g||Lip .

On the other hand, by [3, Theorem 2.4 (i) with q = p], if g ∈ BV ([a, b])
then ∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣
p
≤ 31+1/p (sup fX)

1
1+p

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣ 1
1+p

p
||g||BV .

We define a linear operator T : BV ([a, b])→ Lp by

Tg = g(X)− g(X̂).
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The results above show that T is bounded and thus an admissible
operator. Then by the interpolation theorem [5, Theorem V.1.12] we
get for g ∈ (Lip([a, b]), BV ([a, b]))θ,q that∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣
p
≤
(

31+1/p (sup fX)
1

1+p

)θ ∣∣∣∣∣∣X − X̂∣∣∣∣∣∣1−θ+ θ
1+p

p
||g||θ,q ,

which gives the assertion. �

Theorem 8.5. Let 0 < α < 1 and g : [0, 1] → R, g(x) = xα. Then
g ∈ (Lip([0, 1]), BV ([0, 1]))1−α,∞.

Proof. We simplify the notation of the K-functional by omitting the
spaces. By definition,

||g||(Lip([0,1]),BV ([0,1]))θ,∞
= sup

t>0
t−θK(g, t)

for 0 < θ < 1. Then by choosing g2 = g ∈ BV ([0, 1]), we have

K(g, t) ≤ t ||g||BV ,
so that

sup
0<t≤1

t−θK(g, t) ≤ ||g||BV sup
0<t≤1

t1−θ <∞

for all 0 < θ < 1. Therefore to conclude that g is in the interpolation
space (Lip([0, 1]), BV ([0, 1]))1−α,∞, we need to show that

sup
t>1

t−(1−α)K(g, t) <∞.

Let x0 ∈ (0, 1]. We can write g = g1 + g2, where

g1(x) =

{
0, 0 ≤ x ≤ x0

g(x)− g(x0), x0 < x ≤ 1

and

g2(x) =

{
g(x), 0 ≤ x ≤ x0

g(x0), x0 < x ≤ 1.

Obviously g1 ∈ Lip([0, 1]) and g2 ∈ BV ([0, 1]). Now

||g1||Lip + t ||g2||BV = ||g1||∞∨ sup
x,y∈[0,1]

x6=y

|g1(x)− g1(y)|
|x− y|

+ t(g2(0) + V (g2))

= (1− xα0 ) ∨ αxα−1
0 + txα0 .

There exists mα ∈ (0, 1) such that αxα−1
0 > (1−xα0 ) for all x0 ∈ (0,mα).

In particular, for t > 1 we can choose x0 = mα/t ∈ (0,mα), so that

||g1||Lip + t ||g2||BV = αxα−1
0 + txα0 = xα−1

0 (α + tx0)

= (mα/t)
α−1(α +mα).

This implies

K(g, t) ≤ α +mα

m1−α
α

t1−α
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for t > 1, and thus

sup
t>1

t−(1−α)K(g, t) ≤ α +mα

m1−α
α

<∞.

�

Theorem 8.6. Let 1 ≤ p <∞. The convergence rate 1− θ
(

1− 1
1+p

)
in Theorem 8.4 is optimal, i.e., if∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣
p
≤ C(p,X, θ, q, g)

∣∣∣∣∣∣X − X̂∣∣∣∣∣∣r
p

for all random variables, parameter values, and functions g considered

in Theorem 8.4, then r ≤ 1− θ
(

1− 1
1+p

)
.

Proof. Suppose that Ω = [0, 1], P is the Lebesgue measure on [0, 1],
and 0 < γ < 1. We choose the random variables X(x) = x and

X̂(x) =

{
0, x ≤ γ,

x, x > γ

for x ∈ Ω. Note that X has a bounded density. We know that
g(x) = xα is in the interpolation space (Lip([0, 1]), BV ([0, 1]))1−α,∞
by Theorem 8.5. Now we have∣∣∣∣∣∣g(X)− g(X̂)

∣∣∣∣∣∣p
p

=

∫ γ

0

xαp dx =
γαp+1

αp+ 1

and ∣∣∣∣∣∣X − X̂∣∣∣∣∣∣p
p

=

∫ γ

0

xp dx =
γp+1

p+ 1
.

This shows that the exponent of γ on the left-hand side of Theorem
8.4 is (αp+ 1)/p, whereas on the right-hand side it is, since θ = 1− α,

p+ 1

p

(
1− (1− α)

(
1− 1

1 + p

))
=

1 + αp

p
.

Since the exponents coincide, the rate is optimal. �

Remark 8.7. Theorems 8.4 and 8.6 also imply that the parameter 1−α
in Theorem 8.5 is optimal, i.e. it cannot be decreased.

9. Polynomial variation and BVϕ

We show that if the random variables X and X̂ are in Lp for all

1 ≤ p < ∞, then the function ϕX,X̂ can be chosen in such a way that
it does not depend on X̂, and it decays faster than any polynomial, i.e.

ϕX,X̂(x) = o(x−q) for all 1 ≤ q < ∞. If ϕ satisfies this property, then
we show that BVϕ contains all functions with polynomial variation.
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Lemma 9.1. Suppose that X and X̂ are random variables such that
X ∈

⋂
p∈[1,∞) Lp, and suppose there exists C = (Cp)p∈[1,∞) ⊂ (0,∞)

such that
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣

p
≤ Cp for all p ∈ [1,∞). Then we can choose the

function ϕX,X̂ such that ϕX,X̂ = ϕXC , where the function ϕXC is a bump
function that decays faster than any polynomial.

Proof. The triangle inequality gives that X̂ ∈ Lp and∣∣∣∣∣∣X̂∣∣∣∣∣∣
p
≤
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣

p
+ ||X||p ≤ Cp + ||X||p .

Thus by Chebychev’s inequality we have for all λ > 0 that

P(|X| ≥ λ) ≤ E|X|
p

λp

and

P(|X̂| ≥ λ) ≤ E|X̂|
p

λp
≤

(Cp + ||X||p)p

λp
.

So we have a polynomial tail estimate for X and X̂ that depends only
on the constants Cp of the Lp-estimates, not directly on X̂. This implies
that

P(|X| ≥ λ) ∨P(|X̂| ≥ λ) ≤ inf
p∈N

(Cp ∨ p+ ||X||p)p

λp
∧ 1 =: ϕXC (λ)

for λ > 0. For λ < 0, we define ϕXC (λ) := ϕXC (|λ|) and ϕXC (0) := 1.
The function ϕXC is continuous, because Cp ∨ p + ||X||p → ∞ as p →
∞. Indeed, let x0 ∈ R. Then on the interval [−|x0| − 1, |x0| + 1],
only finitely many functions in the infimum contribute, i.e. are less
than one. They are all continuous in λ, and the infimum over a finite
number of continuous functions is continuous, in particular at x0. By
similar reasoning we see that ϕXC is strictly positive. It also satisfies the
monotonicity properties of a bump function, and by definition decays
faster than any polynomial. �

Definition 9.2. For µ ∈M, define

J (µ) = {x ∈ R | µ({x}) 6= 0}.
Moreover, we denote the continuous part of µ by µc = µ|(R\J (µ)) and
the jump part of µ by µJ = µ|J (µ).

Remark 9.3. If ϕ is a bump function and µ ∈Mϕ, Definition 9.2 gives
a decomposition of any gµ ∈ BVϕ into a continuous part gµc and a
jump part gµJ , and the set J (µ) is countable.

Theorem 9.4. Suppose that µ ∈M, and ϕ is a bump function that de-
cays faster than any polynomial. Then gµ ∈ BVϕ if there exist constants
s, C > 0 such that d|µc| ≤ C(1 + |x|s) dx and

∑
x∈J(µ) ϕ(x)|µ({x})| <

∞.



24 R. AVIKAINEN

Proof. Since ϕ decays faster than any polynomial, we have

ϕ(x) ≤ C̃|x|−(s+2) ∧ 1,

and

||g||ϕ =

∫
R

ϕd|µ| =
∫
R

ϕd|µc + µJ |

≤
∫
R

ϕ(z)C(1 + |z|s) dz +

∫
R

ϕ(z)|µ(z)| dδJ (µ)(z)

≤ CC̃

∫
R

(|z|−(s+2) ∧ 1)(1 + |z|s) dz +
∑
x∈J(µ)

ϕ(x)|µ({x})| <∞.

This implies that g ∈ BVϕ. �

Example 9.5. Suppose g ∈ C1, g(0) = 0, and the derivative satisfies
|g′(x)| ≤ C(1 + |x|s) for some s > 0. By the fundamental theorem of
calculus we can write g = gµc , where dµc(x) = g′(x) dx. If ϕ is a bump
function that decays faster than any polynomial, then Theorem 9.4
implies that g ∈ BVϕ. Moreover, we can add jumps to function g by
defining another signed measure µ = µc+µJ , where µJ =

∑∞
i=1 αiδ{xi},

with αi, xi ∈ R and xi 6= xj for i 6= j, satisfies the assumption of
Theorem 9.4.

Example 9.6. For any s ≥ 1, the function

g(x) =
∞∑
k=0

ksχ]k,k+1](x)

is in BVϕ, where ϕ is a bump function that decays faster than any
polynomial. Namely, if we define

µ =
∞∑
k=1

(ks − (k − 1)s)δ{k},

then we see that g = gµ, J (µ) = N, and∑
x∈J(µ)

ϕ(x)|µ({x})| ≤
∞∑
k=1

C̃k−(s+2)(ks − (k − 1)s) <∞.

10. Stochastic Differential Equations

We recall the setting of [3], i.e. we fix a terminal time T > 0 and
suppose that (Wt)t∈[0,T ] is a standard one-dimensional Brownian motion
defined on a complete filtered probability space (Ω,F ,P, (Ft)t∈[0,T ]),
where the filtration is the augmentation of the natural filtration of W
and F = FT . We consider a diffusion process X, which is a solution to{

dXt = σ(t,Xt) dWt + b(t,Xt) dt,

X0 = x0

(10.1)
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with x0 ∈ R and continuous coefficients σ, b : [0, T ] × R → R. We
assume that for f ∈ {σ, b} there exist constants CT and α ≥ 1

2
such

that

(i) |f(t, x)− f(t, y)| ≤ CT |x− y|,
(ii) |f(t, x)− f(s, x)| ≤ CT (1 + |x|)|t− s|α.

Assumptions (i) and (ii) imply the existence of a unique adapted strong
solution X of the SDE (10.1), see e.g. [14]. Moreover, we assume that

(iii) XT has a bounded density.

Remark 10.1. There are known sufficient conditions for the assumption
(iii), e.g. uniform ellipticity of the SDE. See [3, Remark 4.1] for details.

Now we can formulate a Corollary corresponding to [3, Corollary 4.2]
for the function class defined in Section 3.

Corollary 10.2. Suppose that X is the solution of (10.1), and XT has
a bounded density. Let γ > 0, and let Xπ

T be an approximation of XT

such that, for all 1 ≤ p <∞, there exist constants Cp > 0 with

||XT −Xπ
T ||p ≤ Cp |π|γ .

Then for any 1 ≤ q < ∞ and 0 < ε < γ, we have for θ = ε
2γ−ε , ϕ

XT
C

according to Lemma 9.1, and g ∈ BV“
ϕ
XT
C

”θ/q , that

||g(XT )− g(Xπ
T )||qq ≤ 3

(
C1/θ sup fXT

)1− ε
γ ||g||q“

ϕ
XT
C

” θ
q
|π|γ−ε .

Proof. By [2, Lemma A.2] we have that XT ∈
⋂
p∈[1,∞) Lp, so by Lemma

9.1 we can choose ϕXT ,X
π
T = ϕXTC , where ϕXTC is a bump function with

decay faster than any polynomial. By [3, Lemma 3.4] we have∣∣∣∣χ[K,∞)(XT )− χ[K,∞)(X
π
T )
∣∣∣∣

1
≤ 3(sup fXT )

p
p+1 ||XT −Xπ

T ||
p
p+1
p ,

so by Theorem 6.2, for any p ∈ [1,∞) and θ ∈ (0, 1),

||g(XT )− g(Xπ
T )||qq

≤ 2θ31−θ(sup fXT )
p(1−θ)
p+1 ||g||q

(ϕ
XT ,X

π
T )

θ
q
||XT −Xπ

T ||
p(1−θ)
p+1

p

≤ 3(sup fXT )
p(1−θ)
p+1 ||g||q

(ϕ
XT
C )

θ
q
C

p(1−θ)
p+1

p |π|
γp(1−θ)
p+1 .

Let 0 < ε < γ. Choose p = 2γ
ε
− 1 and let θ = 1/p. Note that p > 1

since ε < γ. Then

p(1− θ)
p+ 1

=
p− 1

p+ 1
= 1− ε

γ

and thus for all g ∈ BV“
ϕ
XT
C

”θ/q ,
||g(XT )− g(Xπ

T )||qq ≤ 3
(
C1/θ sup fXT

)1− ε
γ ||g||q

(ϕ
XT
C )

θ
q
|π|γ−ε .
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�

Remark 10.3. As the bump function ϕXTC decays faster than any poly-
nomial, Theorem 9.4 implies that Corollary 10.2 is valid for functions
with polynomial variation.

Remark 10.4. In Corollary 10.2 the function ϕXT ,X
π
T depends on the

distribution of Xπ
T and is replaced by the uniform bound ϕXTC . However,

when considering the convergence rate we are looking at partitions with
small mesh size. If approximating random variables Xπ

T corresponding
to partitions with large mesh size had heavy tailed distributions, the
use of the uniform bound could unnecessarily narrow down the class of
functions. Therefore in such a case it would be better to take a more
delicate approach and study the result

||g(XT )− g(Xπ
T )||qq ≤ 3

(
C1/θ sup fXT

)1− ε
γ ||g||q“

ϕ
XT ,X

π
T

” θ
q
|π|γ−ε .

11. Euler Scheme

In the case of the Euler scheme we use specific moment estimates to
improve the result of Lemma 9.1 for the decay of the function ϕXT ,X

E
T .

We now bound it from above by explicit bump functions that do not
depend on XE

T . Before showing this in the main result of this sec-
tion, Theorem 11.4, let us recall the definition and a classical moment
inequality.

Definition 11.1 (Euler scheme). Let XE be the Euler scheme relative
to π, i.e. XE

0 = x0, and for i = 0, . . . , n− 1,

XE
ti+1

= XE
ti

+ σ(ti, X
E
ti

)(Wti+1
−Wti) + b(ti, X

E
ti

)(ti+1 − ti).
Given the values at the partition points, we also define the Euler scheme
in continuous time by setting

XE
t = XE

tk
+ σ(tk, X

E
tk

)(Wt −Wtk) + b(tk, X
E
tk

)(t− tk)
for t ∈ (tk, tk+1).

Lemma 11.2. If the assumptions (i) and (ii) in Section 10 hold, and
1 ≤ p <∞, then there exists M(x0, T, CT , α) > 0 such that∣∣∣∣∣∣∣∣sup

t≤T
|XE

t |
∣∣∣∣∣∣∣∣
p

≤ eMp

and ∣∣∣∣∣∣∣∣sup
t≤T
|Xt −XE

t |
∣∣∣∣∣∣∣∣
p

≤ eMp |π|
1
2 .

Proof. The result is proved in [7, pp. 275-276] without writing ex-
plicitly the dependence of the upper bound on p. We get the explicit
constant using the proof of [2, Theorem A.1] and [2, Lemma A.2], and
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the optimal constant in the Burkholder–Davis–Gundy inequality given
in [4]. �

Remark 11.3. In [3] we used a moment estimate similar to Lemma

11.2, but with the constant eMp2 . As kindly remarked by Andreas
Neuenkirch, we can drop the square in the constant by using the results
in [4]. Consequently, the power of the logarithm in the convergence rate
given in [3, Theorem 5.4] can be slightly improved.

Theorem 11.4. We may choose the function ϕXT ,X
E
T in a way that

ϕXT ,X
E
T ≤ ϕXTE , where ϕXTE is a function such that

(i) if the functions σ and b are bounded, i.e. |σ|, |b| < MB, we have
for z0 = |x0|+MBT that

ϕXTE (z) =

e−
(|z|−z0)2

2M2
B
T if |z| > z0,

1 if |z| ≤ z0.

(ii) if the functions σ and b are Lipschitz, then for z0 = e3M we
have

ϕXTE (z) =

{
|z|− 2

9M
log(1+|z|−z0) if |z| > z0,

1 if |z| ≤ z0,

where M = M(x0, T, CT , α) > 0.

Proof. (i) We consider the Euler approximation with n time nodes in
the integral form

XE
t = x0 +

∫ t

0

n−1∑
k=0

σ(tk, X
E
tk

)χ(tk,tk+1](s) dWs

+

∫ t

0

n−1∑
k=0

b(tk, X
E
tk

)χ(tk,tk+1](s) ds, t ∈ [0, T ] a.s.

Following the techniques used in [13] and [15], let us denote

Lu :=
n−1∑
k=0

σ(tk, X
E
tk

)χ(tk,tk+1](u).

Then by the boundedness of σ and the Novikov condition,

Mt := eα
R t
0 Lu dWu−α

2

2

R t
0 L

2
u du

is a martingale for any α > 0, and EMt = 1. Thus by Chebychev’s
inequality we have for λ > 1 that

P

(
eα
R T
0 Lu dWu−α

2

2

R T
0 L2

u du ≥ λ
)
≤ 1

λ
.
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Taking logarithms shows that

P

(
α

∫ T

0

Lu dWu −
α2

2

∫ T

0

L2
u du ≥ λ

)
≤ e−λ

for λ > 0. Since ∫ T

0

L2
u du ≤M2

BT,

we get

P

(∫ T

0

Lu dWu ≥
λ

α
+
αM2

BT

2

)
≤ e−λ,

which we can reparametrize as

P

(∫ T

0

Lu dWu ≥ λ

)
≤ e

α2M2
BT

2
−λα,

when λ > αM2
BT/2. Now we may choose α = λ/(M2

BT ) to get

P

(∫ T

0

Lu dWu ≥ λ

)
≤ e

− λ2

2M2
B
T

for λ > 0. A similar proof with L̃u = −Lu shows that

P

(∫ T

0

Lu dWu ≤ λ

)
≤ e

− λ2

2M2
B
T

for λ < 0. Therefore, for λ > x0 +MBT ,

P
(
XE
T ≥ λ

)
≤ P

(
x0 +

∫ T

0

Lu dWu +MBT ≥ λ

)
≤ e

− (λ−(x0+MBT ))2

2M2
B
T ,

and for λ < x0 −MBT ,

P
(
XE
T ≤ λ

)
≤ P

(
x0 +

∫ T

0

Lu dWu −MBT ≤ λ

)
≤ e

− (λ−(x0−MBT ))2

2M2
B
T .

Obviously a similar proof works for the random variable XT instead of
XE
T , so we get an upper bound for ϕXT ,X

E
T . Moreover, we choose the

upper bound to be one on the interval [x0 −MBT, x0 + MBT ] to get
that

ϕXTE (z) =


e
− (z−(x0+MBT ))2

2M2
B
T if z > x0 +MBT,

e
− (z−(x0−MBT ))2

2M2
B
T if z < x0 −MBT,

1 elsewhere.

By extending the set where ϕXTE (z) = 1 to |z| < |x0|+MBT =: z0 and
making the corresponding shift in the function gives the assertion.
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(ii) If σ and b are Lipschitz, then we know from Lemma 11.2 that∣∣∣∣XE
T

∣∣∣∣
p
≤ eMp,

where the constant M > 0 depends on x0, T , CT , and α. Now by
Chebychev’s inequality we have for λ > 0 that

P(|XE
T | ≥ λ) ≤ E|X

E
T |p

λp
≤ eMp2

λp
.

Choose 3Mp = log λ for λ ≥ λ0 = e3M . This gives

p =
log λ

3M
,

and thus for λ ≥ λ0 we get

P(|XE
T | ≥ λ) =

e
1
3
p log λ

λp
= λ−

2
3
p = λ−

2
9M

log λ.

Again the same proof works for the term P(|XT | ≥ λ) because of [2,
Lemma A.2]. Thus we get an upper bound

ϕXTE (z) =

{
|z|− 2

9M
log |z| if |z| > z0,

1 if |z| ≤ z0,

where for z0 = e3M . To get a bump function, we again adjust the
function to be continuous by making a shift in the exponent. �

Example 11.5. Let c > 0, 0 < θ < 1, 0 < q <∞, and suppose that the
functions σ and b are bounded. Then Theorem 11.4 implies that the
functions

g1(x) =
∞∑
k=0

eck
γ

χ]k,k+1](x)

and
g2(x) = ec|x|

γ − 1

are in BV“
ϕ
XT
E

” θ
q

for any 0 < γ < 2. Indeed, g1 can be represented

using the measure

µ1 = δ{0} +
∞∑
k=1

(eck
γ − ec(k−1)γ )δ{k},

which satisfies g = gµ1 and

||gµ1||“
ϕ
XT
E

” θ
q
≤

∞∑
k=0

eck
γ

(
e
− (k−z0)2θ

2M2
B
Tq ∧ 1

)
<∞.

Since g2 is not differentiable at zero, define g̃(x) := g′2(x) if x 6= 0 and
g̃(0) := 0. By choosing a signed measure dµ(z) = g̃(z) dz, we see that
the representation g2 = gµ holds, and

||µ||“
ϕ
XT
E

” θ
q

=

∫
R

(
ϕXTE (z)

) θ
q |g̃(z)| dz
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=

∫
R

(
e
− (|z|−z0)2θ

2M2
B
Tq ∧ 1

)
ec|z|

γ

cγ|z|γ−1 dz <∞,

because the singularity at zero for 0 < γ < 1 is not too strong.

Theorem 11.6. Suppose that the coefficients σ and b of the SDE (10.1)
are bounded, and XT has a bounded density. Let g : R → R be a
function with a representation g = gµ, where µ ∈ M such that there
exists s ∈ {0, 1, 2, . . . } with∫

R

ϕd|µ| ≤
∫
R

ϕ(x)|x|s dx

for all bump functions ϕ. Then for any 1 ≤ q < ∞ there exists m ∈
(0, 1) such that∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣q
q
≤ 3 (sup fXT ∨ 1) |π|

1
2
− 2+M

(− log|π|)1/3

for |π| < m and M > 0 taken from Lemma 11.2.

Proof. By Corollary 10.2, Lemma 11.2, and Lemma 3.11, for 0 < ε <
1/2 = γ, Cp = eMp2 , and g ∈ BV“

ϕ
XT
E

”ε/q , it holds that

∣∣∣∣g(XT )− g(XE
T )
∣∣∣∣q
q
≤ 3

(
eM( 1−ε

ε )
2

sup fXT

)1−2ε

||g||q“
ϕ
XT
E

” ε
q(1−ε)

|π|
1
2
−ε

≤ 3
(
e
M
ε2 sup fXT ∨ 1

)
||g||q“

ϕ
XT
E

” ε
q
|π|

1
2
−ε ,

(11.1)

since ε
q(1−ε) >

ε
q

implies
(
ϕXTE

) ε
q(1−ε) ≤

(
ϕXTE

) ε
q . Now we choose

ε = (− log |π|)−1/3

for |π| < e−8. Then

e
M
ε2 = eM(− log|π|)2/3 = e(− log|π|)M(− log|π|)−1/3

= |π|−
M

(− log|π|)1/3 ,

and obviously

e
M
ε2 sup fXT ∨ 1 ≤ e

M
ε2 (sup fXT ∨ 1).

Hence∣∣∣∣g(XT )− g(XE
T )
∣∣∣∣q
q
≤ 3 (sup fXT ∨ 1) ||g||q“

ϕ
XT
E

” 1

q(− log|π|)1/3
|π|

1
2
− 1+M

(− log|π|)1/3 .

Let us write ϕ|π| :=
(
ϕXTE

) 1

q(− log|π|)1/3 =
(
ϕXTE

) ε
q for convenience. By

Lemma 11.7 we have

||g||ϕ|π| ≤ Cε−r = C(− log |π|)r/3
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for r = (1 + s)/2 and C = C(x0, s,MB, T, q), with MB from Theorem
11.4 (i), and thus g ∈ BVϕ|π| for any mesh size |π| < e−8. Moreover,
for any 1 ≤ q <∞ there exists m = m(x0, s,MB, T, q) > 0 such that

||g||q
ϕ|π|
|π|

1

(− log|π|)1/3 ≤ Cqe
log(− log|π|)

qr
3 +

log|π|
(− log|π|)1/3

≤ Cqe
qr
3

log(− log|π|)−(− log|π|)2/3

≤ 1

for |π| < m, and we get

||g||q
ϕ|π|
|π|

1
2
− 1+M

(− log|π|)1/3 ≤ ||g||q
ϕ|π|
|π|

1

(− log|π|)1/3 |π|
1
2
− 2+M

(− log|π|)1/3

≤ |π|
1
2
− 2+M

(− log|π|)1/3

for |π| < m, which proves the statement. �

Lemma 11.7. Suppose that g is a function satisfying the assumption
of Theorem 11.6. Then g ∈ BV“

ϕ
XT
E

” ε
q

for any 0 < ε < 1 and q > 0,

and
||g||“

ϕ
XT
E

” ε
q
≤ Cε−r

for r = (1 + s)/2 and a constant C = C(x0, s,MB, T, q) > 0.

Proof. By assumption the function g can be written using a measure
µ ∈M such that

||g||“
ϕ
XT
E

” ε
q

=

∫
R

(
ϕXTE

) ε
q d|µ| ≤

∫
R

(
ϕXTE

) ε
q (x)|x|s dx,

where s ∈ {0, 1, 2, . . . }, and by symmetry it is sufficient to integrate
over the positive reals. Now by Theorem 11.4 (i) we get∫ ∞

0

(
ϕXTE

) ε
q (x)xs dx =

∫ z0

0

xs dx+

∫ ∞
z0

e
− (x−z0)2ε

2M2
B
Tq xs dx,

where the integral from 0 to z0 is finite. If s ≥ 1, then for the other
integral we get∫ ∞

z0

e
− (x−z0)2ε

2M2
B
Tq xs dx =

∫ ∞
0

e
− x2ε

2M2
B
Tq (x+ z0)s dx

≤ 2s−1

∫ ∞
0

e
− x2ε

2M2
B
Tq (xs + zs0) dx

= 2s−1

(
1

ε
1+s
2

∫ ∞
0

e
− x2

2M2
B
Tqxs dx+

zs0

ε
1
2

∫ ∞
0

e
− x2

2M2
B
Tq dx

)
≤ C̃(z0, s,MB, T, q)ε

− 1+s
2 .

The case s = 0 is similar. Thus we have

||g||“
ϕ
XT
E

” ε
q
≤ Cε−r
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for r = (1+s)/2 and C = C(x0, s,MB, T, q), as z0 = z0(x0,MB, T ). �

12. Application to the Multilevel Monte Carlo Method

We can directly apply the results of this paper to extend the results
of [3, Section 6] concerning the multilevel Monte Carlo method of Giles
[12], with the Euler scheme as the underlying discretization. Take
M ≥ 2 and L ≥ 0, and consider timesteps hl = T/M l with 0 ≤ l ≤ L.

We denote by XE,hl
T the Euler scheme related to the partition of the

interval [0, T ] using the timestep hl. Then we write the telescoping sum

Eg(XE,hL
T ) = Eg(XE,h0

T ) +
L∑
l=1

E[g(XE,hl
T )− g(X

E,hl−1

T )].

We estimate Eg(XE,h0

T ) with

Ŷ0 =
1

N0

N0∑
i=1

g(XE,h0

T (i)),

and each of the summands E[g(XE,hl
T )− g(X

E,hl−1

T )] with

Ŷl =
1

Nl

Nl∑
i=1

[g(XE,hl
T (i))− g(X

E,hl−1

T (i))],

where for each i we use the simulated Brownian motion path with
step size hl to compute the path with step size hl−1 by summing up
the additional increments of the finer partition. By construction, the

estimators Ŷl are independent. Then we approximate Eg(XT ) by the
combined estimator

Ŷ =
L∑
l=0

Ŷl.

The complexity of the multilevel method is given in [12, Theorem 3.1]
in terms of two parameters, a weak convergence parameter α, and a
variance parameter β. The latter can be deduced from our strong con-
vergence results. Let us choose T = 1 for simplicity. As an immediate
consequence of Corollary 10.2 for q = 2 and Theorem 11.4 we get the
following:

Corollary 12.1. Let 0 < ε < 1/2. Then for θ = ε/(1 − ε) and
g ∈ BV“

ϕ
XT
E

”θ/2, the variance parameter β in [12, Theorem 3.1] satisfies

β = 1/2− ε.

In the setting of Theorem 11.6, we show that the variance property
(iii’) in [3, Section 6] is again satisfied, and thus the result [3, Theo-
rem 6.1] extends from functions of bounded variation to functions of
polynomial variation.
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Corollary 12.2. Suppose g is a function satisfying the assumption of

Theorem 11.6. Then the variance of the multilevel estimator Ŷl satisfies

V ar(Ŷl) ≤ cN−1
l M

− l
2

+ A l

((l logM)∨B)1/3

for l = 0, 1, 2, . . . , where c, A,B > 0 are constants independent of l.

For the convenience of the reader, we recall the proof of [3, Theorem
6.1] with minor modifications caused by the extension.

Proof of Corollary 12.2. Let 1 ≤ p < ∞ and T = 1. By Theorem
11.6, there exists a constant m = m(x0, g,MB, T, p) ∈ (0, 1), where the
parameter MB is from Theorem 11.4 (i), such that∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣p
p
≤ C1(X,T ) |π|

1
2
−C2(x0,T,CT ,α)

(− log|π|)1/3

for |π| < m. On the other hand, Corollary 10.2 applied for the Euler
scheme implies that, for any 0 < δ < 1/2,∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣p
p
≤ C3(p, T,X, g, δ) |π|

1
2
−δ

for all mesh sizes |π| > 0. Note that the assumption g ∈ BV“
ϕ
XT
E

”θ/q
in Corollary 10.2, with θ = δ/(1− δ), is satisfied by Lemma 11.7. We
choose

δ =
C2(x0, T, CT , α)

(− logm)1/3
.

As |π| ≤ m implies − log |π| ≥ − logm =: m0, this implies that for all
mesh sizes |π| > 0,∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣p
p
≤ C5(p, T,X, g, x0, CT , α,MB) |π|

1
2
− C2(x0,T,CT ,α)

(− log|π|∨m0)1/3 .

By definition, |π| = hl = M−l. We plug this into the above estimate
and get∣∣∣∣g(XT )− g(XE

T )
∣∣∣∣p
p
≤ C5(M−l)

1
2
− C2(x0,T,CT ,α)

(l logM∨m0)1/3 =: ψ(l). (12.1)

Let us now assume that V (Ŷl) = N−1
l Vl, where Vl is the variance of a

single sample. Then by Minkowski’s inequality, for l ≥ 1,

Vl = V (P̂l − P̂l−1) ≤
(√

V (P̂l − P ) +

√
V (P̂l−1 − P )

)2

,

where both of the variance terms on the right hand side can be bounded
from above by ψ(l). First,

V (P̂l − P ) ≤ E(P̂l − P )2 ≤ ψ(l),

where we apply the result (12.1) for p = 2. Similarly, V (P̂l−1 − P ) ≤
ψ(l− 1), but here we would like to have ψ(l) instead of ψ(l− 1). Now

ψ(l − 1) = C5(M−l+1)
1
2
− C2

((l−1) logM∨m0)1/3
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= C5(M−l)
1
2
− C2

((l−1) logM∨m0)1/3M
1
2
− C2

((l−1) logM∨m0)1/3

≤ C5(M−l)
1
2
− C2

((l logM−logM)∨m0)1/3 ·M

≤ C6(p, T,X, g, x0, CT , α,MB,M)(M−l)

1
2
− C2

(l logM2 ∨m0)
1/3

,

where the last inequality follows from the fact that for l ≥ 2,

l logM − logM ≥ l
logM

2
,

and for l = 1 we can increase the constant C6 if (logM)/2 ≥ m0,
and otherwise we could use m0 in the estimate. Collecting the above
results, we get that

Vl ≤ C7(p, T,X, g, x0, CT , α,MB,M)(M−l)

1
2
− C2

(l logM2 ∨m0)
1/3

.

Note that by adjusting the constant C7, the term V0 := V (P̂0) also
satisfies the above estimate. Indeed, we have

V (P̂0) ≤ EP̂ 2
0 = Eg(XE,h0

T )2 = Eg(x0 + σ(0, x0)WT + b(0, x0)T )2.

Thus it suffices to show that Eg(c1 + c2W1)2 <∞ for c1, c2 ∈ R. Now,

Eg(c1 + c2W1)2 =
1√
2π

∫
R

g(c1 + c2x)2e−
x2

2 dx

=
1

c2

√
2π

∫
R

g(x)2e
− (x−c1)2

2c22 dx

=
1

c2

√
2π

∫
R

(
g(x)e

− (x−c1)2

6c22

)2

e
− (x−c1)2

6c22 dx.

For x > 0 we get∣∣∣∣∣g(x)e
− (x−c1)2

6c22

∣∣∣∣∣ =

∣∣∣∣∣
∫

[0,x)

dµ(z) e
− (x−c1)2

6c22

∣∣∣∣∣
≤

∫
[0,x)

e
− (x−c1)2

6c22 d|µ|(z)

The function e
− (x−c1)2

6c22 can be bounded from above by a bump function
Φ̃(x) that has exponential decay, and∫

[0,x)

e
− (x−c1)2

6c22 d|µ|(z) ≤
∫

[0,x)

Φ̃(x) d|µ|(z)

≤
∫

[0,x)

Φ̃(z) d|µ|(z)

≤
∫

[0,∞)

Φ̃(z) d|µ|(z).
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The proof for x ≤ 0 is similar. Therefore, by assumption we have for
some s ∈ {0, 1, 2, . . . } that∣∣∣∣∣g(x)e

− (x−c1)2

6c22

∣∣∣∣∣ ≤
∫
R

Φ̃(z) d|µ|(z) ≤
∫
R

Φ̃(z)|z|s dz <∞,

which immediately implies that Eg(c1 + c2W1)2 <∞.
Returning to our variance estimate, we have

V (Ŷl) = N−1
l Vl ≤ C7N

−1
l

(
M−l) 1

2
− C2

(l logM2 ∨m0)
1/3

.

We adjust the constants to get the statement. �
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