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Abstract. Suppose that X is a metric measure space that is Ahlfors Q-regular on small scales
and supports a Q-Poincaré inequality, Q > 1. We show that if a mapping has an upper gradient
in the Lorentz space LQ,1(X), then it satisfies the Rado-Reichelderfer condition, and hence
possesses a variety of desirable mapping properties, including continuity, Lusin’s condition N,
and the a.e. finiteness of the Lipschitz constant. These results are sharp.

1. Introduction

Let Ω ⊆ Rn and m ∈ N. If n = 1, then each mapping in the Sobolev space W 1,1(Ω; Rm) has a
representative that is absolutely continuous and differentiable almost everywhere. However, when
n ≥ 2, mappings in the space W 1,n(Ω; Rm) may fail to have these properties [Ser61, Section 9],
[MM95, Section 5]. Hence, in this case, the Lebesgue space Ln is not an appropriate n-dimensional
analogue of L1. The correct generalization is given by the Lorentz spaces, which arise naturally
in the theory of interpolation of operators and refine the Lebesgue spaces. The requirement that
the weak gradient of mapping in W 1,n(Rn) lie in the Lorentz space Ln,1(Rn) ⊆ Ln(Ω) is known to
be a sharp condition guaranteeing the Rado-Reichelderfer condition, and consequently, a variety
of desirable mapping properties, including continuity, Lusin’s condition N, and differentiability
almost everywhere [Ste81], [KKM99].

Recent developments in the study of Sobolev mappings between Heisenberg groups motivate
the generalization of the above principle to the setting of abstract measure metric spaces [HT08],
[WZ09]. Our main result, stated below, accomplishes this. Precise descriptions of the Rado-
Reichelderfer condition and Lusin’s condition N are given in Section 3.

Theorem 1.1. Assume that (X, d, µ) is a complete and doubling metric measure space that sup-
ports a Q-Poincaré inequality, Q > 1, and is Ahlfors Q-regular at small scales. Let Y be a
separable metric space, and suppose that f ∈ L1

loc(X;Y ) is continuous and has an upper gradient
g ∈ LQ,1(X). Then f that satisfies the Q-Rado-Reichelderfer condition with a weight that depends
only on the constants associated to the assumptions and g. Consequently, the mapping f satisfies
Lusin’s condition N and satisfies Lip f(x) <∞ for almost every x ∈ X.

Theorem 1.1 has already been used to prove the non-existence of highly regular continuous
surjections between certain metric spaces [WZ09, Theorem 1.4]. In turn, corresponding existence
results show that the assumption of a Q-Poincaré inequality in Theorem 1.1 cannot be replaced
by the assumption of a (Q+ ε)-Poincaré inequality for any ε > 0 [WZ09, Theorem 1.5], and that
the space LQ,1(X) cannot be replaced with a larger Lorentz space LQ,q(X) for any q > 1.

Results of Romanov establish the Q-absolute continuity of mappings as in Theorem 1.1, see
[Rom08, Theorem 2]. A Sobolev-Lorentz embedding theorem has recently been achieved by
Ranjbar-Motlagh in a similar setting [RM09]. We also note that a version of Theorem 1.1 conclud-
ing Lusin’s condition N under a weaker Poincaré inequality assumption but stronger regularity
assumption has recently been established by Marola and Ziemer [MZ08].

Our results nearly follow, with a small amount of extra work, from the proofs of the results of
Romanov and Ranjbar-Motlagh mentioned above. A difference between this paper and the existing
literature is that our interpretation of the Rado-Reichelderfer condition employs the “dyadic” cube
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structure of metric spaces. This simplifies some proofs and allows us to more easily conclude Lusin’s
condition N. The difficulty in dealing with cubes rather than balls is overcome by the technical
Lemma 5.4, which allows us to replace the ball on the right-hand side of the Poincaré inequality
with an arbitrarily small ball at the cost of passing to a maximal function.

A sketch of the proof of Theorem 1.1 is as follows. We first show that certain maximal function
operators are bounded on the Lorentz space LQ,1(X). We note that in the presence of a suitable
Poincaré inequality, the result of applying such a maximal function to an upper gradient of a
mapping yields a so-called Haj lasz upper gradient, which satisfies a 1-Poincaré inequality with the
original mapping. This implies a pointwise bound on the oscillation of the mapping by the Riesz
potential of the Haj lasz upper gradient. The result then follows from imitating the proof in the
Euclidean setting.

In Section 2 we discuss the general metric setting and set notation. In Section 3 we define the
Rado-Reichelderfer condition and explore some of its consequences. Section 4 gives background
information on Lorentz spaces and establishes results on the boundedness of maximal function
operators. In Section 5 we improve the Q-Poincaré inequality to a 1-Poincaré inequality by passing
to a maximal function, and discuss a key technical trick. Section 6 shows how the previous sections
allow Euclidean techniques to be employed and completes the proof of Theorem 1.1.

This paper constitutes a portion of the second author’s dissertation, directed by Pekka Koskela.
We are grateful to him for his support and many excellent conversations.

2. The metric setting

Given a metric space (X, d), we denote the ball of radius r > 0 centered at a point x ∈ X by

B(x, r) = {z ∈ X : d(x, z) < r}.

Given an open ball B = B(x, r) and a parameter λ > 0, we set λB = B(x, λr).
A metric measure space is a triple (X, d, µ) where (X, d) is a metric space and µ is a measure

on X. For our purposes, a measure is a nonnegative countably subadditive set function defined
on all subsets of a measure space taking the value zero on the empty set. We further assume that
measures are Borel inner and outer regular.

Let (X, d, µ) be a metric measure space and let Y be a separable metric space. We say that
a mapping f : X → Y is in L1

loc(X;Y ) if there is a point y0 ∈ Y such that the function x 7→
dY (f(x), y0) is locally integrable. A simple computation shows that if f ∈ L1

loc(X;Y ) and T : Y →
R is a Lipschitz function, then T ◦ f ∈ L1

loc(X).
The metric measure space (X, d, µ) is doubling if balls have finite and positive measure and

there is a constant C ≥ 1 such µ(2B) ≤ Cµ(B) for any open ball B in X. It follows from the
definitions that if (X, d, µ) is a doubling metric measure space, then the metric space (X, d) enjoys
the following property, also called doubling : there is a number n ∈ N such that any ball in X of
radius r > 0 can be covered by at most n balls of radius r/2. It is easy to see that a doubling
metric space is complete if and only if it is proper, i.e., closed and bounded sets are compact.

Each metric space carries a structure analogous to that of dyadic cubes in Euclidean space
[DS97, Section 5.5], [Chr90, Theorem 11].

Theorem 2.1. Let c, s > 0 satisfy c + s < 1/4, and let (X, d, µ) be a doubling metric measure
space. Then for each i ∈ Z there exists a countable collection Qi of open subsets of X such that

(i) if I ∈ Qi and J ∈ Qj where i ≤ j, then J ⊆ I or J ∩ I = ∅, and the latter possibility holds
if i = j.

(ii) if i < j, then for any J ∈ Qj there is a unique I ∈ Qi with J ⊆ I.
(iii) for each I ∈ Qi, there is a point zI ∈ X such that

B(zI , cs
i) ⊆ I ⊆ B(zI , 3si),

(iv) for each i ∈ Z,

µ(X\{x ∈ I : I ∈ Qi}) = 0,
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The collection Q =
⋃

i∈ZQi is called a cube structure on X. An individual open set I in some
Qi is said to be a cube. As the constants c and s are independent of the metric space X, for the
remainder of the paper we always assume that c = 1/16 = s.

Our main motivation for employing a cube structure is that it provides arbitrarily fine “nearly
disjoint” covers.

Proposition 2.2. Let (X, d, µ) be a doubling metric measure space, and let Q be a cube structure
on X. Then for each i ∈ Z,

X = {x ∈ I : I ∈ Qi}.

Proof. Fix i ∈ N and let x ∈ X. Consider the collection

C = {I ∈ Qi : I ∩B(x, 1) 6= ∅}.

By Theorem 2.1 (i), cubes of the same generation do not intersect. Hence, Theorem 2.1 (iii)
implies that the collection

{B(zI , cs
i) : I ∈ C}

is a collection of pairwise disjoint balls, each of which is contained in B(x, 5). The doubling
condition now shows that C must consist of finitely many cubes. However, by Theorem 2.1 (iv)
and the fact that balls in X are assumed to have positive measure, for every integer n ≥ 1, the
ball B(x, 1/n) intersects some cube In ∈ Qi. Hence {In}n∈N ⊆ C, and so there is some cube I ∈ C
which intersects arbitrarily small balls centered at x. It follows that x ∈ I. �

Doubling metric spaces are precisely those that have finite Assouad dimension [Hei01, Chap-
ter 10]. However, this notion of dimension is not uniform; a doubling metric space may have some
parts or scales where the space appears to be of lower dimension than is actually the case. To
prevent this, we employ a stronger notion of dimension. A metric measure space (X, d, µ) is said
to be Ahlfors Q-regular at scales below r0 > 0 if there is a constant C ≥ 1 such that if x ∈ X and
0 < r < r0, then

rQ

C
≤ µ(B(x, r)) ≤ CrQ.

If the threshold radius is unimportant, we say that (X, d, µ) is Ahlfors Q-regular at small scales.
Let f : X → Y be a mapping between metric spaces. An upper gradient of f is a Borel function

g : X → [0,∞] such that for each rectifiable path γ : [0, 1] → X,

dY (f(γ(0)), f(γ(1))) ≤
∫

γ

g ds.

If X contains no rectifiable curves, then the constant function with value 0 is an upper gradient
of any mapping. If f is locally Lipschitz, then the local Lipschitz constant of f , defined by

Lip(f)(x) = lim inf
r→0

sup
y∈B(x,r)

dY (f(x), f(y))
r

,

is an upper gradient of f [Che99, Proposition 1.11]. The concept of an upper gradient was
introduced by Heinonen and Koskela [HK98], and substantial literature indicates that is a suitable
analogue of the weak gradient of a mapping between open sets in Euclidean space [HKST01].

A key idea in theory of analysis on metric spaces is to measure the plentitude of curves in a given
space. Fundamental work has resulted in an analytic condition which guarantees the presence of
“many” rectifiable curves in a metric space [HK98]. Let p ≥ 1, and let f and g be measurable
functions on a metric measure space (X, d, µ). The pair (f, g) satisfies a p-Poincaré inequality
with constant C > 0 and dilation factor σ > 0 if for each ball B in X,

(2.1) −
∫

B

|f − fB | dµ ≤ C(diamB)(−
∫

σB

gp dµ)
1
p .

For a set E ⊂ X with 0 < µ(E) <∞, we use the notation

fE := −
∫

E

f dµ :=
1

µ(E)

∫
f dµ.
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The space (X, d, µ) supports a p-Poincaré inequality if there is a constant C > 0 and a dilation
factor σ > 0 such that for each measurable function f on X and each upper gradient g of f , the
pair (f, g) satisfies a p-Poincaré inequality with constant C and dilation factor σ.

A deep theorem of Keith and Zhong states that the Poincaré inequality is an open condition
[KZ08, Theorem 1.0.1].

Theorem 2.3. Let p > 1 and let (X, d, µ) be a complete and doubling metric measure space
that supports a p-Poincaré inequality with constant C and dilation factor σ. Then there exists
1 ≤ q < p such that (X, d, µ) supports a q-Poincaré inequality, with constant and dilation factor
depending only on doubling constant and the constant C and dilation factor σ of the original
Poincaré inequality.

We note that a doubling metric measure space (X, d, µ) that supports a p-Poincaré inequality
for some p ≥ 1 is connected in a strong sense [Kor07].

For convenience, for the remainder of the paper we will consider only spaces with the following
properties.

Standing Assumption 2.4. Let (X, d, µ) be a doubling metric measure space that is locally compact,
connected, and equipped with a cube structure Q.

3. The Rado-Reichelderfer condition and its consequences

Let Y be a separable metric space. As mentioned in the introduction, the condition that
a mapping f : X → Y have an upper gradient in the Lorentz space LQ,1(X) implies that the
mapping satisfies several desirable properties. Many of these are implied by the following Rado-
Reichelderfer condition, which is analogous to the original version [RR55].

Definition 3.1. Let Q > 1. A mapping f : X → Y satisfies the Q-Rado-Reichelderfer condition
with respect to Q if there is a non-negative function Θ ∈ L1

loc(X) and a scale r0 > 0 such that for
any cube I ∈ Q with compact closure in X and diameter less than r0,

(diam f(I))Q ≤
∫

I

Θ dµ.

The reason for employing cubes instead of balls in the Rado-Reichelderfer condition, as was
done in [KKM99], is to obtain Lusin’s condition N in the general metric setting.

Definition 3.2. Let Q > 0. A mapping f : X → Y satisfies Lusin’s condition NQ if every set
E ⊆ X satisfying µ(E) = 0 also satisfies HQ(f(E)) = 0.

Lusin’s condition N is of great importance in analysis, as it implies the validity of a change of
variables formula.

Theorem 3.3. If f : X → Y is a continuous mapping that satisfies the Q-Rado-Reichelderfer
condition with respect to some cube structure Q, then f satisfies Lusin’s condition NQ.

Proof. Suppose that E ⊆ X satisfies µ(E) = 0. Since X is doubling, it is separable. This and the
assumption of local compactness imply that we may find a countable open cover {Un} of E such
that each set Un has compact closure. By the countable subadditivity of HQ, we may assume that
E itself is contained in an open set U with compact closure. Moreover, as µ is always assumed
to be Borel outer regular, for any ε > 0 we may find a smaller open set Uε ⊆ U that satisfies
µ(Uε) < ε. As f is continuous, it is uniformly continuous on Uε. Hence we may find δ > 0 such
that if I ⊆ Uε has diameter less than δ, then f(I) has diameter less than ε. We may assume that
δ < min{ε, r0}.

By Proposition 2.2 and Theorem 2.1, for each x ∈ E, we may find a cube Ix ∈ Q with x ∈ Ix
that is so small that Ix ⊆ Uε and diam(Ix) < δ. Using Theorem 2.1 (i) and the fact that the entire
cube structure Q contains only countably many cubes, we may find a countable cover {In}n∈N of
E by closures of cubes that are contained in Uε and have diameter less than δ, and such that the
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collection {In}n∈N is pairwise disjoint. Now, {f(In)}n∈N is a cover of f(E) by sets of diameter
less than ε, and so by the continuity of f we see that

HQ,ε(f(E)) ≤
∑
n∈N

(
diam f(In)

)Q
=
∑
n∈N

(diam f(In))Q
.

Applying the Rado-Reichelderfer condition and using the disjointness of the collection {In}n∈N,
we see that

HQ,ε(f(E)) ≤
∑

n

∫
In

Θ dµ ≤
∫

Uε

Θ dµ.

As Θ ∈ L1(U), letting ε tend to 0 shows that HQ(f(E)) = 0. �

In appropriate circumstances, the Rado-Reichelderfer condition also implies that the mapping
in question has finite Lipschitz constant almost everywhere. Combined with a Stepanov-type
theorem, this has implications for differentiability [Che99], [BRZ04].

Proposition 3.4. Assume that (X, d, µ) is Ahlfors Q-regular at small scales. If f : X → Y
satisfies the Q-Rado-Reichelderfer condition, then Lip f(x) <∞ for almost every x ∈ X.

Proof. By Theorem 2.1 (iv), we may find a set N ⊆ X of measure zero such that if x ∈ X\N ,
then for every i ∈ N, there is a cube I ∈ Qi containing x.

Let r0 > 0 be the scale below which both the Ahlfors regularity condition and the Q-Rado-
Reichelderfer condition hold. Let x ∈ X\N and 0 < r < csr0/6, and choose i ∈ N such that
csi+1 ≤ r < csi. Let I ∈ Qi be the cube containing x. Then diam I ≤ 6si < r0, and so
I ⊆ B(x, 7si). Thus,

diam f(B(x, r))
r

≤ diam f(I)
r

≤ 1
r

(∫
I

Θ dµ

)1/Q

≤

(
(csi+1)−Q

∫
B(x,7si)

Θ dµ

)1/Q

≤ 7C1/Q

cs

(
−
∫

B(x,7si)

Θ dµ

)1/Q

,

where C is the constant from the Ahlfors regularity condition. As s < 1 and i tends to infinity as
r tends to 0, the Lebesgue Differentiation Theorem now yields that for almost every x ∈ X\N

Lip f(x) ≤ 7C1/Q

cs
Θ(x).

Since Θ ∈ L1(X), it is finite almost everywhere. �

4. Maximal function operators on Lorentz spaces

In this section, we show that certain maximal function operators are bounded on appropriate
Lorentz spaces. The main tool is the Marcinkiewicz Interpolation theorem. We begin with a
review of the basics facts regarding Lorentz spaces.

4.1. Lorentz spaces. We denote by M the collection of all extended real-valued µ-measurable
functions on X. Let M0 be the class of functions in M that are finite µ-almost everywhere.

Given f ∈M0(X), we define the distribution function ωf : [0,∞) → [0,∞] of f by

ωf (α) = µ({x ∈ X : |f(x)| > α}).
The non-increasing rearrangement f∗ : [0,∞) → [0,∞] of f is given by

f∗(t) = inf{α ≥ 0 : ωf (α) ≤ t}.
It is a useful exercise to show that given 0 < s < µ(X) and 0 < t <∞,

(4.1) s < f∗(t) ⇐⇒ ω(s) > t.
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Let 1 ≤ Q ≤ ∞ and 0 < q ≤ ∞. The (Q, q)-Lorentz class consists of those functions f ∈M0(X)
such that the quantity

‖f‖Q,q :=


(
∫∞
0

(t1/Qf∗(t))q dt
t )1/q, 0 < q <∞,

sup0<t<∞{t1/Qf∗(t)}, Q <∞ and q = ∞,

f∗(0), Q = ∞ = q

is finite.
If 1 ≤ q ≤ Q, then ||·||Q,q defines a semi-norm on the (Q, q)-Lorentz class, and the corresponding

normed space (LQ,q(X), || · ||Q,q) is a Banach space, which we refer to as the (Q, q)-Lorentz space
[BS88, Theorem IV.4.3]. Without these restrictions on Q and q, the functional f → ||f ||Q,q is
not always a semi-norm, though it is always equivalent to a semi-norm on the (Q, q)-Lorentz class
that defines a Banach space [BS88, Theorem IV.4.6].

Remark 4.1. It follows from the definitions that if f, g ∈M0(X) satisfy f ≤ g almost everywhere,
then ||f ||Q,q ≤ ||g||Q,q whenever the latter is finite.

The following statement collects the relationships between the various Lorentz spaces [BS88,
Proposition IV.4.2] .

Proposition 4.2. Let 1 ≤ Q ≤ ∞ and 0 < q ≤ r ≤ ∞. Then there is a quantity C > 0 depending
only on Q, q, and r, such that for all f ∈M0(X),

‖f‖Q,r ≤ C ‖f‖Q,q .

That is, the (Q, q)-Lorentz class is a subset of the (Q, r)-Lorentz class, quantitatively.

Combined with Proposition 4.2, the following result shows how the Lorentz classes refine the
Lebesgue classes. It follows easily from [BS88, Proposition II.1.8].

Proposition 4.3. Let 1 ≤ Q ≤ ∞ and let f ∈ M0(X). Then f ∈ LQ,Q(X) if and only if
f ∈ LQ(X), and

‖f‖Q,Q = ‖f‖Q .

Given 1 ≤ Q < ∞ and 0 < r ≤ Q, a function f ∈ M0(X) is in LQ(X) if and only if |f |r is in
LQ/r(X). An analogous result holds for Lorentz classes.

Proposition 4.4. Let 1 ≤ Q ≤ ∞, 0 < q ≤ ∞, and 0 < r ≤ Q. If f ∈M0(X), then f ∈ LQ,q(X)
if and only if |f |r ∈ L

Q
r , q

r (X), and

‖|f |r‖Q
r , q

r
= ‖f‖r

Q,q .

Proposition 4.4 follows quickly from the following lemma, which states that we may interchange
exponents and the non-increasing rearrangement.

Lemma 4.5. Let f ∈M0(X), and let 0 < r <∞. Then for all t ∈ [0,∞),

(|f |r)∗(t) = (f∗)r(t).

Proof. We calculate

(|f |r)∗(t) = inf{α ≥ 0 : µ|f |r (α) ≤ t} = inf{α ≥ 0 : µ{x ∈ X : |f(x)|r > α} ≤ t}

= inf{α ≥ 0 : µ{x ∈ X : |f(x)| > α1/r} ≤ t} = inf{βr : µ{x ∈ X : |f(x)| > β} ≤ t}
= (inf{β : µ{x ∈ X : |f(x)| > β} ≤ t})r = (f∗(t))r,

as desired. �
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4.2. Maximal function theorems for Lorentz spaces on metric spaces. We establish the
boundedness of the Hardy-Littlewood maximal function on Lorentz spaces on X. Our proof of this
result basically follows the proof of the classical maximal function theorems in Euclidean space
given in [BS88, Section III.3].

Recall that the Hardy-Littlewood maximal function M is defined for all locally integrable
functions f with values in the extended-reals by

M(f)(x) := sup
r>0

−
∫

B(x,r)

|f | dµ.

Similarly, the R-restricted Hardy-Littlewood maximal function MR is defined by

MR(f)(x) := sup
R>r>0

−
∫

B(x,r)

|f | dµ

The standard maximal function theorems remain valid in our setting [Hei01, Theorem 2.2].

Theorem 4.6. There is a quantity C1 ≥ 1 depending only on the doubling constant of µ such that
for all f ∈ L1(X) and t > 0

(4.2) µ({x ∈ X : |M(f)(x)| > t}) ≤ C1||f ||L1

t
.

Moreover, for each 1 < p ≤ ∞, there is a constant Cp ≥ 1 depending only on the doubling constant
of µ such that for all f ∈ Lp(X)

(4.3) ||Mf ||Lp ≤ Cp||f ||Lp .

The constant C∞ may be chosen to be 1.

The weak estimate (4.2) easily passes to the non-increasing rearrangement of the maximal
function.

Lemma 4.7. Let f ∈ L1(X) and t > 0. Then

(M(f))∗(t) ≤
C1 ‖f‖L1

t
.

Proof. By (4.2),

(M(f))∗(t) = inf{α ≥ 0 : µ({x ∈ X : |M(f)(x)| > α}) ≤ t}

≤ inf{α > 0 :
C1||f ||L1

α
≤ t} = inf{α > 0 :

C1||f ||L1

t
≤ α}

=
C1||f ||L1

t
,

as desired. �

Let f ∈ L1
loc(X), and let t > 0. Set

f∗∗(t) := −
∫ t

0

f∗(s) ds.

From the fact that f∗ is non-decreasing, we see that f∗∗ is the restricted maximal function of
the non-increasing rearrangement of f . The following result establishes the relationship of f∗∗

to the non-increasing rearrangement of the maximal function of f . The proof given in [BS88,
Theorem III.3.8] remains valid in this setting.

Lemma 4.8. There is a constant c > 0 such that for all f ∈ L1
loc(X) and t > 0,

c(Mf)∗(t) ≤ f∗∗(t).

The following inequality, due to Hardy, plays a central role in many interpolation theorems
[BS88, Lemma III.3.9]. Stated in this fashion, its relevance to the matters at hand is clear.
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Lemma 4.9 (G. H. Hardy). Let ψ be a nonnegative measurable function on (0,∞), and let Q > 1
and 1 ≤ q ≤ Q. Then there is a quantity C > 0 depending only on q and Q such that∫ ∞

0

(
t1/Q−

∫ t

0

ψ(s) ds
)q

dt

t
≤ C

∫ ∞

0

(t1/Qψ(t))q dt

t
.

Proposition 4.10. Let Q > 1 and 1 ≤ q ≤ Q. Then there is a constant C > 0 depending only
on q and Q such that for all f ∈ LQ,q(X),

||Mf ||LQ,q ≤ C||f ||LQ,q .

Proof. By Lemma 4.8,

||Mf ||q
LQ,q =

∫ ∞

0

(t1/Q(M(f))∗(t))q dt

t
≤ c−q

∫ ∞

0

(t1/Qf∗∗(t))q dt

t
.

Recalling the definition of f∗∗ and applying Lemma 4.9, we see that

||Mf ||q
LQ,q ≤ c−q

∫ ∞

0

(
t1/Q−

∫ t

0

f∗(s) ds
)q

dt

t

≤ Cc−q

∫ ∞

0

(t1/Qf∗(t))q dt

t
= Cc−q||f ||q

LQ,q ,

as desired. �

4.3. Perturbed maximal operators on Lorentz spaces. For a number p ≥ 1, consider the
operator Tp defined on Lp

loc(X) by

(4.4) Tp(g) = (M(gp))
1
p .

Fix Q > 1 and choose 0 < ε < 1 such that Q > 1 + ε. For the remainder of this section, we set
T = TQ−ε. Our aim is to show that T maps LQ,1(X) into itself. To do so, we will employ the
Marcinkiewicz interpolation theorem, which applies to quasilinear operators of weak type. We
refer to [BS88, Sections III.5 and IV.4] for more information.

Definition 4.11 (quasilinearity). Let S be an operator that is defined on a linear subspace
of M0(X), and that has range contained in the set of measurable functions on X. Then S is
quasilinear if there is a constant k ≥ 1 such that for all functions f and g in the domain of S, and
all λ ∈ R, the following relations hold µ-a.e. on X:

|S(f + g)| ≤ k(|Sf |+ |Sg|),
|S(λf)| = |λ| |Sf | .

We recall for future use the elementary estimate

(4.5) (a+ b)p ≤ 2p(ap + bp),

which is valid for all p > 0 and all non-negative real numbers a and b. We also recall that a locally
integrable function is finite almost everywhere, i.e., L1

loc(X) ⊆M0(X).

Lemma 4.12. The operator T is quasilinear on the domain LQ−ε/2(X) +LQ+ε/2(X). Moreover,
the range of T on this domain is contained in the set of measurable functions that are finite almost
everywhere.

Proof. We begin by showing the statement regarding the range of T . Let g = g1 + g2, where
g1 ∈ LQ−ε/2(X) and g2 ∈ LQ+ε/2(X). We can write this as

(4.6) |g1|Q−ε ∈ L
Q−ε/2

Q−ε (X) ⊆ L1
loc(X), and |g2|Q−ε ∈ L

Q+ε/2
Q−ε (X) ⊆ L1

loc(X).

By (4.5), the inclusions (4.6) imply that |g|Q−ε is locally integrable. Hence T (g) is sensibly defined.
By Theorem 4.6, the inclusions (4.6) also imply that

(4.7) M(|g1|Q−ε) ∈ L
Q−ε/2

Q−ε (X) ⊆ L1
loc(X), and M(|g2|Q−ε) ∈ L

Q+ε/2
Q−ε (X) ⊆ L1

loc(X).
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Again using (4.5), we now see that for each x ∈ X

T (g)(x) =

(
sup
R>0

−
∫

B(x,R)

|(g1 + g2)(y)|Q−ε
dµ(y)

) 1
Q−ε

≤ 2

(
sup
R>0

(
−
∫

B(x,R)

|g1(y)|Q−ε
dµ(y) +−

∫
B(x,R)

|g2(y)|Q−ε
dµ(y)

)) 1
Q−ε

≤ 2
(
M(|g1|Q−ε)(x) +M(|g2|Q−ε)(x)

) 1
Q−ε

Thus the inclusions (4.7) in fact show that T (g) is locally integrable, and in particular it is in
M0(X).

Moreover, if g and h are arbitrary elements of the domain of T , the same argument as above
and another application of (4.5) show that for each x ∈ X,

T (g + h)(x) ≤ 2
(
M(|g|Q−ε)(x) +M(|h|Q−ε)(x)

) 1
Q−ε

≤ 2 · 2
1

Q−ε (T (g)(x) + T (h)(x)) .

Finally, for α ∈ R, we get

|T (αg)(x)| =

(
sup
R>0

−
∫

B(x,R)

|αg(y)|Q−ε
dµ(y)

) 1
Q−ε

= |α| |T (g)(x)| ,

establishing the quasilinearity of T . �

Proposition 4.2 and Proposition 4.3 show that the above lemma implies the following statement.

Lemma 4.13. If Q > 1 + ε/2, then the operator T is quasilinear on the domain LQ−ε/2,1(X) +
LQ+ε/2,1(X). Moreover, the range of T on this domain is contained in the set of measurable
functions that are finite almost everywhere.

Definition 4.14 (weak type). Let (X,µ) and (Y, ν) be two σ-finite measure spaces and suppose
that 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Let S be an operator defined on Lp,1(X) and taking values in
M0(Y ). Then S is said to be of weak type (p, q) if it is a bounded operator from Lp,1(X) into
Lq,∞(Y ), that is, if there is a constant C > 0 such that

‖Sf‖q,∞ ≤ C ‖f‖p,1 .

Lemma 4.15. If Q > 1 + ε, then the operator T is of weak types (Q − ε/2, Q − ε/2) and (Q +
ε/2, Q+ ε/2).

Proof. We show that T has weak type (Q − ε/2, Q − ε/2). The proof that T has weak type
(Q+ ε/2, Q+ ε/2) is identical. For the remainder of the proof, we denote by C a positive number,
possibly varying in each occurrence, that depends only Q and ε.

Let g ∈ LQ−ε/2,1(X). By Proposition 4.4 and Proposition 4.2,

(4.8) ‖T (g)‖Q−ε/2,∞ =
∥∥∥(M(|g|Q−ε))

∥∥∥ 1
Q−ε

Q−ε/2
Q−ε ,∞

≤ C
∥∥∥M(|g|Q−ε)

∥∥∥ 1
Q−ε

Q−ε/2
Q−ε ,1

.

Similarly, ∥∥∥|g|Q−ε
∥∥∥

Q−ε/2
Q−ε ,1

≤ C
∥∥∥|g|Q−ε

∥∥∥
Q−ε/2

Q−ε , 1
Q−ε

= C ‖g‖Q−ε
Q−ε/2,1 .

Thus, |g|Q−ε ∈ L
Q−ε/2

Q−ε ,1(X). Proposition 4.10 states that the maximal function is bounded on
Lorentz spaces. Hence, by applying (4.8), followed by Lemma 4.5 and Proposition 4.2, we obtain

‖T (g)‖Q−ε/2,∞ ≤ C
∥∥∥|g|Q−ε

∥∥∥ 1
Q−ε

Q−ε/2
Q−ε ,1

= C ‖g‖Q−ε/2,Q−ε ≤ C ‖g‖Q−ε/2,1 ,

as desired. �
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For the reader’s convenience, we record the Marcinkiewicz Interpolation Theorem, as stated in
[BS88, Theorem IV.4.13].

Theorem 4.16 (Marcinkiewicz Interpolation Theorem). Suppose 1 ≤ p0 < p1 <∞ and 1 ≤ q0, q1 ≤ ∞
with q0 6= q1. Let 0 < θ < 1 and define p and q by

1
p

=
1− θ

p0
+

θ

p1
,

1
q

=
1− θ

q0
+

θ

q1
.

Let T be a quasilinear operator defined on (Lp0,1 + Lp1,1)(X,µ) and taking values in M0(Y, ν),
where (X,µ) and (Y, ν) are σ-finite measure spaces. Suppose T is of weak types (p0, q0) and (p1, q1).
If 1 ≤ r ≤ ∞, then T : Lp,r(X) → Lq,r(Y ) is a bounded operator, with constant depending only on
p0, p1, q0, q1, θ, r, and the constants associated to the weak type conditions.

Proposition 4.17. The operator T is a bounded operator from LQ,1(X) to itself, with constant
depending only on Q and ε.

Proof. Let p0 = Q− ε/2 = q0 and p1 = Q+ ε/2 = q1. Set θ = Q+ε/2
2Q . Then 0 < θ < 1 and

1− θ

p0
+

θ

p1
=

1
Q− ε/2

(
2Q−Q− ε/2

2Q

)
+

1
Q+ ε/2

(
Q+ ε/2

2Q

)
=

1
Q
.

This also implies that
1− θ

q0
+

θ

q1
=

1
Q
.

By Lemma 4.13 and Lemma 4.15, T satisfies the hypotheses of Marcinkiewicz’s Interpolation
Theorem 4.16 for these parameters, yielding the desired result. �

5. Improving the Poincaré inequality

If the metric space X contains no rectifiable curves, the upper gradient condition is vacuous.
Haj lasz introduced the following notion of an upper gradient, which does not rely on curves [Haj03].

Definition 5.1 (Haj lasz upper gradient). Let f ∈ M0(X). A Haj lasz upper gradient of f is a
measurable function g : X → [0,∞] such that for almost every x, y ∈ X,

(5.1) |f(x)− f(y)| ≤ d(x, y)(g(x) + g(y)).

A function and Haj lasz upper gradient pair always satisfies a p-Poincaré inequality, for any
p ≥ 1 [Haj03, Section 9].

Theorem 5.2 (Haj lasz). Let p ≥ 1. If f ∈M0(X) has a Haj lasz upper gradient g, then the pair
(f, g) satisfies a p-Poincaré inequality with constant depending only on the doubling constant, and
with dilation factor 1.

Theorem 5.2 has a converse of sorts [Haj03, Theorem 9.4]. Recall the definition of the operator
Tp, p ≥ 1, from (4.4).

Theorem 5.3 (Haj lasz). Let p ≥ 1. If the pair (f, g) satisfies a p-Poincaré inequality with
constant C and any dilation factor, then there is a quantity C̃ > 0, depending only on C and the
doubling constant, such that C̃Tp(g) is a Haj lasz upper gradient of f .

In the standard Poincaré inequality, the ball on the right-hand side may be larger than that
on the left. The following technical lemma essentially states that we may avoid this, provided we
pass to a maximal function.

Lemma 5.4. Fix 0 < λ ≤ σ < ∞. Suppose that f, g ∈ L1
loc(X), the function g is non-negative

almost everywhere, and the pair (f, g) satisfies a 1-Poincaré inequality with constant C > 1 and
dilation σ. Then the pair (f,M(g)) satisfies a 1-Poincaré inequality with dilation factor λ, and
with constant depending only C and the doubling constant. In particular, the constant does not
depend on λ.
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Proof. Fix a ball B = B(z, r) in X. Note that if x ∈ λB, then

σB ⊆ B(x, (σ + λ)r) ⊆ (σ + 2λ)B.

Using this and the assumptions, we estimate

−
∫

λB

M(g)(x) dµ(x) ≥ −
∫

λB

(
−
∫

B(x,(σ+λ)r)

g(y) dµ(y)

)
dµ(x)

≥ −
∫

λB

1
µ(B(x, (σ + λ)r))

(∫
σB

g(y) dµ(y)
)
dµ(x)

≥ −
∫

λB

1
µ((σ + 2λ)B)

(∫
σB

g(y) dµ(y)
)
dµ(x)

=
1

µ((σ + 2λ)B)

∫
σB

g(y) dµ(y)

By the Lebesgue differentiation theorem, at almost every point y ∈ λB, the function g satisfies

g(y) = lim
R→0

−
∫

B(y,R)

g(x) dµ(x) ≤M(g)(y).

Thus, renaming variables and using the fact that λ ≤ σ, we see that

−
∫

λB

M(g)(x) dµ(x) ≥ µ(σB)
µ(3σB)

−
∫

σB

M(g)(x) dµ(x).

The desired result now follows from the doubling property and the assumption that the pair (f, g)
satisfies a 1-Poincaré inequality with dilation factor σ. �

We may combine these statements with the results of Section 4.

Theorem 5.5. Let Q > 1 and λ ≤ 1. Assume that (X, d, µ) is complete and supports a Q-
Poincaré inequality with constant C > 1 and any dilation factor. If f ∈ M0(X) has an upper
gradient g ∈ LQ,1(X), then there is a Haj lasz upper gradient ρ ∈ LQ,1(X) of f such that the pair
(f, ρ) satisfies a 1-Poincaré inequality with dilation factor λ and with constant depending only on
C and the doubling constant.

Proof. For this proof only, we refer to C and the doubling constant as the data. By Theorem 2.3,
the pair (f, g) satisfies a (Q− ε)-Poincaré inequality for some ε > 0, with constant depending only
on the data, and with some unspecified dilation factor. By Hölder’s inequality, we may assume
that ε < Q− 1.

By Theorem 5.3, there is a constant C̃ > 0, depending only on the data, such that the function
g̃ := C̃TQ−ε(g) is a Haj lasz upper gradient of f . Theorem 5.2 shows that the pair (f, g̃) satisfies
a 1-Poincaré inequality with constant depending only on the data and dilation factor 1, and
Proposition 4.17 implies that g̃ ∈ LQ,1(X).

By Lemma 5.4, the pair (f,M(g̃)) satisfies a 1-Poincaré inequality with constant depending
only on the data, and with smaller dilation factor λ. By the Lebesgue differentiation theorem,
M(g̃) ≥ g̃ almost everywhere, and hence M(g̃) is also a Haj lasz upper gradient of f . Finally,
Proposition 4.10 implies that M(g̃) ∈ LQ,1(X). �

Remark 5.6. A Rado-Reichelderfer condition using balls now follows from Theorem 5.5 and the
proof of [RM09, Theorem 3.2].

6. Proof of the main result

6.1. The Poincaré inequality and the Riesz potential. We first show that if a pair (f, g)
satisfies a 1-Poincaré inequality, then the Riesz potential of g provides a pointwise bound on f .
In the Euclidean setting, such a result may be found in [MZ97]. Since this bound will eventually
lead to the Rado-Reichelderfer condition, we employ cubes rather than the usual balls. We recall
that c = 1/16 is the fixed universal constant used to specify the “size” of a cube; see Theorem 2.1
(iii).
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Proposition 6.1. Assume that X is Ahlfors Q-regular, Q > 1, on scales below r0 with constant
CQ. Suppose that f and g are in the space L1

loc(X), and that the pair (f, g) satisfies a 1-Poincaré
inequality with constant CP and dilation factor 0 < σ < c/3. Then there exists a quantity C
depending only on CP , σ, CQ, and Q, such that for almost every point z ∈ X, if I is a cube of
diameter less than cr0/6 that contains z, then

(6.1) |f(z)− fI | ≤ C

∫
I

d(z, x)
µ(B(z, d(z, x)))

g(x) dµ(x).

Proof. Throughout this proof we denote by C a quantity, possibly changing at each occurrence,
that depends only on CP , σ, CQ, and Q.

By the Lebesgue density theorem and Theorem 2.1 (iv), there is a set N of measure zero such
that if z /∈ N , then z is a Lebesgue point if f and for all k ∈ Z there is a cube Ik ∈ Qk that
contains z. Recalling Theorem 2.1 (iii), for each k ∈ Z we write

(6.2) Ak := B(zIk
, csk) ⊆ Ik ⊆ B(zIk

, 3sk) =: Bk.

Fix z /∈ N and let I be a cube containing z. By Theorem 2.1 (i) and (ii), we may assume that
I = Ik0 for some k0 ∈ Z. The assumption that I have diameter less than cr0/6 implies by (6.2)
that we may apply the Ahlfors regularity condition to all balls of radius 3sk0 and smaller.

As z is a Lebesgue point of f , the triangle inequality yields

(6.3) |f(z)− fI | ≤
∞∑

k=k0

|fIk+1 − fIk
| ≤

∞∑
k=k0

(
−
∫

Ik+1

|f(y)− fBk
| dµ(y) + |fIk

− fBk
|

)
.

Fix k ≥ k0. Using the Ahlfors regularity condition and the Poincaré inequality, we estimate

−
∫

Ik+1

|f(y)− fBk
| dµ(y) + |fIk

− fBk
| ≤

(
µ(Bk)
µ(Ik+1)

+
µ(Bk)
µ(Ik)

)
−
∫

Bk

|f(y)− fBk
| dµ(y)

≤ C−
∫

Bk

|f(y)− fBk
| dµ(y) ≤ C

diam(Bk)
µ(Bk)

∫
σBk

g dµ.

As σ < c/3, we see that σBk ⊆ Ak ⊆ Ik. Using this fact and again applying the Ahlfors regularity
condition, it follows that

|f(z)− fI | ≤
∞∑

k=k0

C

∫
Ik

(sk)1−Qg dµ

≤ C

∞∑
k=k0

∞∑
m=0

(sQ−1)m

∫
Ik+m\Ik+m+1

(sk+m)1−Qg dµ.

By assumption, for each integer m ≥ 0 the cube Ik+m contains the point z, and so if x ∈ Ik+m,
then d(z, x) ≤ Csk+m. Thus,

|f(z)− fI | ≤ C

∞∑
k=k0

∞∑
m=0

(sQ−1)m

∫
Ik+m\Ik+m+1

d(z, x)1−Qg(x) dµ(x)

≤ C

∞∑
m=0

(sQ−1)m
∞∑

k=k0

∫
Ik+m\Ik+m+1

d(z, x)1−Qg(x) dµ(x)

≤ C

∞∑
m=0

(sQ−1)m
∞∑

k=k0

∫
Ik\Ik+1

d(z, x)1−Qg(x) dµ(x)

≤ C

∞∑
m=0

(sQ−1)m

∫
Ik0

d(z, x)1−Qg(x) dµ(x)

≤ C

∫
I

d(z, x)1−Qg(x) dµ(x).
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A final application of the Ahlfors regularity condition shows that if z ∈ I, then

d(z, x)1−Q ≤ C
d(z, x)

µ(B(z, d(z, x)))
.

This now yields the desired result. �

6.2. The Riesz potential and Lorentz spaces. We now discuss the characterization of the
Lorentz space LQ,1(X) given in [KKM99], and use it to connect the Riesz potential to Lorentz
spaces. We say that a gauge is a non-increasing function ϕ : (0,∞) → [0,∞). Given a gauge ϕ,
we define FQ

ϕ : [0,∞) → [0,∞) by

FQ
ϕ (r) =

{
rϕ(1−Q)/Q(r) r > 0,
0 r = 0.

The following theorem states that the Lorentz spaces are determined by a family of Orlicz con-
ditions, defined in terms of the admissible gauges [KKM99, Corollary 2.4]. The main advantage
of this representation is that it does not require the calculation of g∗ in order to determine the
membership of a function g in a given Lorentz space. Instead, the Lorentz norm of g is estimated
by the integral of a function of g itself.

Theorem 6.2 (Kauhanen-Koskela-Malý). Let Q > 1. A non-negative function g ∈ M0(X) is
in the space LQ,1(X) if and only if there is a gauge ϕ ∈ L1/Q((0,∞)) such that ϕ(g(x)) > 0 for
almost every x ∈ X with g(x) > 0, and∫

X

FQ
ϕ (g(x)) dµ(x) <∞.

In addition, there is a constant C depending only on ϕ and Q such that

(6.4) ||g||QQ,1 ≤ C

∫
X

FQ
ϕ (g(x)) dµ(x).

We next adapt Theorem 3.1 in [KKM99], which connects the Riesz potential to the Lorentz
norm, to our more general setting. The proof given in [KKM99] remains valid in our setting with
only minor modifications, and so we omit it.

Theorem 6.3. Suppose that (X, d, µ) is Ahlfors Q-regular, Q > 1, on scales below r0 > 0, with
constant CQ. Then there is a number C ≥ 1 depending only CQ and Q with the following property.
If g is a nonnegative measurable function on X, ϕ is a gauge, E ⊆ X is a measurable set with
diamE < r0, and z ∈ E, then(∫

E

d(z, x)
µ(B(z, d(z, x)))

g(x) dµ(x)
)Q

≤ C

(∫ ∞

0

ϕ
1
Q (t) dt

)Q−1 ∫
E

FQ
ϕ (g(x)) dx,

whenever the right-hand side is finite.

6.3. The final steps. We now show how our previous results combine to yield Theorem 1.1.

Proposition 6.4. Suppose that (X, d, µ) is Ahlfors Q-regular, Q > 1, on scales below r0 > 0, with
constant CQ. Let f ∈ L1

loc(X) and g ∈ LQ,1(X), and assume that there is a constant C ≥ 1 such
that for almost every z ∈ X and every cube I of diameter less than r0 in some cube structure Q
on X,

(6.5) |f(z)− fI | ≤ C0

∫
I

d(z, x)
µ(B(z, d(z, x)))

g(x) dµ(x).

Then there is a continuous function f̃ ∈ L1
loc(X) that agrees with f almost everywhere, and satisfies

the Q-Rado-Reichelderfer condition with a weight depending only on CQ, Q, C0, and g.

Proof. Through out this proof, we denote by C a number, possibly varying at each instance, that
depends only on CQ, Q, and C0.
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By Theorem 6.2, there exists a nonnegative function ϕ ∈ L1/Q((0,∞)) such that ϕ(g(x)) > 0
for almost every x with g(x) > 0, and such that FQ

ϕ ◦ g ∈ L1(X). Let N be a set of measure zero
in X with the property that (6.5) holds at each point z ∈ X\N .

Let I be a cube with diameter at most r0. We first consider diam f(I\N). We may find a point
z ∈ I\N such that

diam f(I\N) ≤ 4|f(z)− fI | ≤ 4C0

∫
I

d(z, x)
µ(B(z, d(z, x)))

ρ(x) dµ(x).

By Theorem 6.3,

(6.6) (diam f(I\N))Q ≤ C

(∫ ∞

0

ϕ
1
Q (t) dt

)Q−1 ∫
I

FQ
ϕ (g(x)) dµ(x).

Define Θ: X → R by

Θ(x) := C

(∫ ∞

0

ϕ
1
Q (t) dt

)Q−1

FQ
ϕ (g(x)).

Then Θ ∈ L1(X), and it depends only on C0, CQ, Q, and g. In particular, it does not depend
on I. These facts, along with (6.6) implies that f is uniformly continuous on X\N . As N has
measure zero, it has empty interior, and so we may extend f |X\N to a continuous function f̃ on
X. By the continuity of f̃ ,

(diam f̃(I))Q = (diam f̃(I\N))Q = (diam f(I\N))Q ≤
∫

I

Θ dµ,

as desired. �

Remark 6.5. The technique used in the above proof also shows how a Rado-Reichelderfer con-
dition using balls would follow from [Rom08, Lemma 5].

Corollary 6.6. Assume that (X, d, µ) is complete, Ahlfors Q-regular on small scales, and supports
a Q-Poincaré inequality. If f ∈ L1

loc(X) has an upper gradient g ∈ LQ,1(X), then there is a
continuous representative f̃ of f that satisfies the Q-Rado-Reichelderfer condition with a weight
that depends only on the constants associated to the assumptions and g.

Proof. Theorem 5.5 implies that there is a Haj lasz upper gradient ρ of f , depending only on the
data and g, such that the pair (f, ρ) satisfies a 1-Poincaré inequality with dilation factor c/3, and
constant depending only on the data. Proposition 6.1 and Proposition 6.4 now provide the desired
property. �

Corollary 6.6 only applies to real-valued mappings f . However, it easily extends to the general
case.

Proof of Theorem 1.1. Recall that as Y is separable, there is an isometric embedding ι : Y ↪→ l∞

[Hei01, Exercise 12.6]. For each k ∈ N, let Tk : l∞ → R denote the 1-Lipschitz projection defined
by

Tk({an}n∈N) = ak.

Then g is again an upper gradient of the real-valued mapping Tk ◦ ι ◦ f ∈ L1
loc(X). Hence, by

Corollary 6.6 each mapping Tk ◦ ι ◦ f satisfies the Q-Rado-Reichelderfer with the same weight Θ,
which depends only on the constants associated with the space and g. By the definition of the
metric on l∞,

(diam f(I))Q = (diam ι ◦ f(I))Q =
(

sup
x,y∈I

sup
k∈N

|Tk ◦ ι ◦ f(x)− Tk ◦ ι ◦ f(y)|
)Q

= sup
k∈N

(
sup

x,y∈I
|Tk ◦ ι ◦ f(x)− Tk ◦ ι ◦ f(y)|

)Q

≤
∫

I

Θ dµ,

yielding the desired result. �
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