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Abstract. We show a sharp relationship between the existence of space filling mappings with
an upper gradient in a Lorentz space and the Poincaré inequality in a general metric setting.
As key examples, we consider these phenomena in Cantor diamond spaces and the Heisenberg
groups.

1. Introduction

The classical Hahn-Mazurkiewicz Theorem states that a topological space Y is the continuous
image of the unit cube [0, 1]n, n ≥ 1, if and only if it is compact, connected, locally connected, and
metrizable. The theory of analysis on metric spaces has allowed for a differentiable version of this
result. Sobolev mappings with metric space targets are now ubiquitous and well understood, and
they provide the language for the following modern version of the Hahn-Mazurkiewicz theorem
[7].

Theorem 1.1 (Haj lasz-Tyson). Let Y be a length-compact metric space. If n ≥ 2, then there is

a continuous surjection f : [0, 1]n → Y in the Sobolev class W 1,n([0, 1]n, Y ).

A metric space Y is said to be length-compact if it is a compact metric space when equipped
with the associated path distance. This additional condition, though not fully necessary, can
be considered as a differentiable version of the connectedness conditions imposed in the classical
Hahn-Mazurkiewicz.

In [25], we gave the following version of Theorem 1.1, which uses the Lorentz scale for measuring
the magnitude of the gradient. This provides a sharper picture of space-filling phenomena by giving
a complimentary rigidity result for dimension.

Theorem 1.2. Let Y be a length-compact metric space. If n ≥ 2 and 1 < q ≤ n, then there is a

continuous surjection f : [0, 1]n → Y in the Sobolev-Lorentz class W 1,n,q([0, 1]n;Y ). On the other

hand, if there is a continuous surjection f : [0, 1]n → Y in the class W 1,n,1([0, 1]n;Y ), then the

Hausdorff dimension of Y is at most n.

This paper examines similar issues when the domain is a general metric space rather than the
cube [0, 1]n; a key example being the Heisenberg group. In this general setting, we consider a
class of Sobolev-Lorentz mappings based on the concept of an upper gradient, which serves as a
generalization of the modulus of the gradient of a Sobolev mapping on a Euclidean space. An
analogue of the first part of the Theorem 1.2 holds in great generality. The assumption that a
space X be upper Q-regular at a point heuristically means that the space is at least Q-dimensional
near that point; precise definitions are given in Section 2.

Theorem 1.3. Let (X, d, µ) be a locally compact metric measure space, let Y be any length-

compact metric space, and let 1 < q ≤ Q. Suppose that there is a non-empty set P ⊆ X that

has no isolated points and compact closure, and that X is upper Q-regular at each point of P .

Then there is a continuous surjection f : X → Y that has an upper gradient in the Lorentz space

LQ,q(X).
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The mapping f : X → Y produced in Theorem 1.3 has several nice features in addition to the
regularity of an upper gradient. The mapping f itself is integrable in a strong sense, which we
describe in Section 3.3 below. Moreover, the local Lipschitz constant of f is finite off a set of
Hausdorff dimension 0. This condition is related to differentiability via Stepanov-type theorems
in a quite general setting [1],[4],[13].

The condition that a mapping f : X → Y have an upper gradient with some specified regularity
is vacuous if X contains no rectifiable curves. Thus some condition on the plentitude of curves
in X is needed to prove a result analogous to the second part of Theorem 1.2. We employ an
appropriate Poincaré inequality.

Theorem 1.4. Let Q ≥ 1, and suppose that (X, d, µ) is a complete and doubling metric measure

space that is Q-regular on small scales and supports a Q-Poincaré inequality. Let Y be any metric

space. If f : X → Y is a continuous mapping with an upper gradient in the Lorentz space LQ,1(X),
then the Hausdorff dimension of Y is at most Q.

We note that the class of length-compact metric spaces includes even infinite-dimensional spaces
such as the Hilbert Cube. Thus, the following statement shows that the Poincaré inequality
condition in Theorem 1.4 cannot be relaxed.

Theorem 1.5. For any ǫ > 0, there is a compact Ahlfors 2-regular metric space X which supports

a (2 + ǫ)-Poincaré inequality with the following property: for any 1 ≤ p < 2 + ǫ, and any length-

compact metric space Y , there is a continuous surjection f : X → Y which is constant off a set of

finite measure and has an upper gradient in the space Lp(X). In particular, there is a continuous

and integrable surjection f : X → Y with an upper gradient in the space L2,1(X).

The proof of Theorem 1.3 is modelled on the proof of Theorem 1.1, and has two main compo-
nents. First, we show that if a metric space X contains a set with no isolated points, and each
point of that set is zero set for a certain capacity, then there is a continuous surjection from X to
any length-compact space with an upper gradient in a space corresponding to the capacity. This
step is based on a construction in [7], originally due to Kaufman [11], and we employ an abstract
approach. The second part of the proof shows that if a space is upper Q-regular at some given
point, then that point is a zero set for the continuous (Q, q)-Lorentz capacity. Theorem 1.5 is
proven by constructing a space that is 2-regular and supports an appropriate Poincaré inequality,
but contains a set with no isolated points, each point of which is a zero set for the continuous
(2, 1)-Lorentz capacity.

The proof of Theorem 1.4 relies on the following principle, noted by Stein [22] and more recently
explored by Kauhanen, Koskela, and Malý [12]: A mapping f : R

n → R
m with a weak gradient

whose norm is in the Lorentz space Ln,1(Rn) enjoys many of the properties of mappings in the
Sobolev space W 1,1(R), while the weaker condition that the norm of the weak gradient be in
Ln(Rn) does not guarantee this. We exploit recent work that has extended this principle to the
abstract metric setting [20], [19]. The crucial property for this paper is Lusin’s condition N.

Our results can be extended to provide continuous surjections onto non-compact spaces in
certain circumstances. A modification of Theorem 1.3 yields the following result regarding the
Heisenberg groups H

n. Compare with [7, Corollary 1.5].

Corollary 1.6. For each n ≥ 1, and each 1 < q ≤ 4, there is a continuous surjection f : H
1 → H

n

that is constant off a set of finite measure, has finite local Lipschitz constant off a set of Hausdorff

dimension 0, and has an upper gradient in the space L4,q(H1). On the other hand, if f : H
1 → H

n

is a continuous mapping with an upper gradient in the space L4,1(H1), then the image of f has

Hausdorff dimension at most 4.

Section 2 introduces the metric setting. In Section 3 we discuss mappings with an upper gradient
satisfying an abstract integrability condition. The properties of such a mapping depend on the
structure of the underlying space. To quantify this, in Section 4 we introduce an abstract notion
of the capacity of a point, and study it in a variety of concrete cases. Section 5 links the capacity
of a point to space filling phenomena. Finally, Section 6 explores the properties of a mapping from
a Q-dimensional space X that has an upper gradient in the space LQ,1(X), and proves Theorem
1.4.
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2. Notation and basic definitions

Given a metric space (X, d), we denote the open ball centered at a point x ∈ X of radius r > 0
by

BX(x, r) = {y ∈ X : d(x, y) < r},

and the corresponding closed ball by

BX(x, r) = {y ∈ X : d(x, y) ≤ r}.

When there is no danger of confusion, we often write B(x, r) in place of BX(x, r). A similar
convention will be used for all objects that depend implicitly on the ambient space. Given a
subset A of X and a number ǫ > 0, we notate the ǫ-neighborhood of A by

N (A, ǫ) = {x ∈ X : dist(A, x) < ǫ}.

Given an open ball B = B(x, r) and a parameter λ > 0, we set λB = B(x, λr).
A metric measure space is a triple (X, d, µ) where (X, d) is a metric space and µ is a measure

on X . For our purposes, a measure is a nonnegative countably subadditive set function defined
on all subsets of a measure space that gives the value 0 to the empty set. We further assume that
measures are Borel inner and outer regular.

The metric measure space (X, d, µ) doubling if balls have finite and positive measure and there
is a constant C ≥ 1 such µ(2B) ≤ Cµ(B) for any open ball B in X . It follows from the definitions
that if (X, d, µ) is a doubling metric measure space, then the metric space (X, d) enjoys the
following property, also called doubling: there is a number n ∈ N such that any ball in X of radius
r > 0 can be covered by at most n balls of radius r/2. It is easy to see that a doubling metric
space is complete if and only if it is proper, i.e., closed and bounded sets are compact.

Doubling metric spaces are precisely those of finite Assouad dimension [8, Chapter 10]. However,
this notion of dimension is not uniform; a doubling metric space may have some parts or scales
where the space appears to be of lower dimension than is actually the case. We will have occasion
to be more precise. The metric measure space (X, d, µ) is called Q-regular at a point a ∈ X if
there exists a constant C ≥ 1 and a radius r0 > 0 such that if 0 < r < r0, then

(2.1)
rQ

C
≤ µ(B(a, r)) ≤ CrQ.

If only the first inequality is assumed to hold, then X is called lower Q-regular at a, and if only
the second is assumed to hold, then X is called upper Q-regular at a. If X is Q-regular at every
point a ∈ X , and the constant C and radius r0 may be chosen uniformly, then the X is said to
be Q-regular on small scales. We define the terms upper and lower Q-regular on small scales in
a similar way. Finally, we say that X is Ahlfors Q-regular if there is a constant C ≥ 1 such that
(2.1) holds for all points and all radii less than 2 diamX . We will occasionally only need (2.1) to
hold only on some sequence of radii tending to zero rather than all sufficiently small radii; such
generalizations are left to the reader.

For Q ≥ 0, we denote the Q-dimensional Hausdorff measure by HQ, and the corresponding
premeasures by HQ,ǫ, where ǫ > 0.

Let f : X → Y be a mapping between metric spaces. An upper gradient of f is a Borel function
g : X → [0,∞] such that for each rectifiable path γ : [0, 1] → X ,

dY (f(γ(0)), f(γ(1))) ≤

∫

γ

g ds.

If X contains no rectifiable curves, then the constant function with value 0 is an upper gradient
of any mapping. If f is locally Lipschitz, then the local Lipschitz constant of f , defined by

Lip(f)(x) = lim sup
r→0

sup
y∈B(x,r)

dY (f(x), f(y))

r
,
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is an upper gradient of f [4, Proposition 1.11]. The concept of an upper gradient was introduced
by Heinonen and Koskela [9], and substantial literature indicates that it is a suitable analogue of
the weak gradient of a mapping between open sets in Euclidean space [10].

A key idea in theory of analysis on metric spaces is to measure the plentitude of curves in a given
space. Fundamental work has resulted in an analytic condition which guarantees the presence of
“many” rectifiable curves in a metric space [9]. Let p ≥ 1, and let f and g be measurable functions
on a metric measure space (X, d, µ). The pair (f, g) satisfies a p-Poincaré inequality with constant
C > 0 and dilation factor σ > 0 if for each ball B in X ,

(2.2) −

∫

B

|f − fB| dµ ≤ CP (diamB)

(
−

∫

σB

gp dµ

) 1
p

.

The space (X, d, µ) supports a p-Poincaré inequality if there is a constant C > 0 and a dilation
factor σ > 0 such that for each measurable function f on X and each upper gradient g of f , the
pair (f, g) satisfies a p-Poincaré inequality with constant C and dilation factor σ.

A deep theorem of Keith and Zhong states that the Poincaré inequality is an open ended
condition [14, Theorem 1.0.1].

Theorem 2.1. Let p > 1 and let (X, d, µ) be a complete and doubling metric measure space

that supports a p-Poincaré inequality with constant C and dilation factor σ. Then there exists

1 ≤ q < p such that (X, d, µ) supports a q-Poincaré inequality, with constant and dilation factor

depending only on C, σ, and the doubling constant.

3. Generalized Sobolev classes of mappings between metric spaces

Classical Sobolev functions on Euclidean spaces are defined by two conditions: a Lebesgue
integrability condition on the weak gradient of the mapping, and a Lebesgue integrability condition
on the mapping itself. If the domain of the mapping is a metric space containing sufficiently many
rectifiable curves, then the concept of an upper gradient has proven to be a suitable generalization
of the modulus of the weak gradient [9]. The Newtonian spaces of Shanmugalingam are Sobolev
spaces based on the integrability of upper gradients [21]. This approach has been expanded to
include Banach space valued (and hence metric space valued) mappings [10]. Variants such as
Sobolev-Orlicz spaces have also been studied [23]. As we will employ yet another generalization,
we will proceed in a rather abstract fashion, using the language of Banach function spaces.

3.1. Banach function spaces. Let (X,µ) be a totally σ-finite and complete measure space. We
denote by M(X) the set of measurable functions on X , and by M+(X) the set of measurable
functions f : X → [0,∞].

Definition 3.1. A Banach function norm on X is a function G : M+(X) → [0,∞] such that for
f, g, f1, f2, . . . ∈ M+, all c ≥ 0, all measurable subsets E ⊆ X , the following properties hold:

(A1) G(f) = 0 ⇐⇒ f = 0 a.e., G(cf) = cG(f), and G(f + g) ≤ G(f) + G(g),
(A2) if g ≤ f a.e., then G(g) ≤ G(f),
(A3) if fn ր f a.e., then G(fn) ր G(f),
(A4) if µ(E) <∞, then G(χE) <∞,
(A5) if µ(E) <∞, then

∫
E f dµ ≤ CEG(f), where 0 < CE <∞ depends only on E and not on

f .

Definition 3.2. A Banach function space is the collection

LG(X) = {f ∈ M(X) : G(|f |) <∞},

where G is a Banach function norm.

Banach function spaces are indeed Banach spaces, and have properties often associated with the
familiar Lebesgue spaces Lp(X), 1 ≤ p ≤ ∞, which are prototypical examples. When equipped
with the norm ||f ||G := G(|f |), the collection LG(X) is a Banach space after the usual identifications
[2, Chapter 1.1]. Other examples include the Orlicz spaces, and most important to this paper, the
Lorentz spaces.
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3.2. Lorentz spaces. We now define and discuss the Lorentz norms, a family of Banach function
norms. For a measurable function f ∈ M+(X), we define the distribution function ωf : [0,∞) →
[0,∞] of f by

ωf (α) = µ({x ∈ X : f(x) > α}).

The non-increasing rearrangement f∗ : [0,∞) → [0,∞] is given by

f∗(t) = inf{α ≥ 0 : ωf(α) ≤ t}.

Definition 3.3. Let 1 ≤ q ≤ Q. The Lorentz function norm GQ,q : M+ → [0,∞] is defined by

(3.1) GQ,q(f) =

(∫ ∞

0

t−1
(
t1/Qf∗(t)

)q
dt

)1/q

.

By [2, Theorem 4.4.3], GQ,q is a Banach function norm. We denote the corresponding Banach
function space by LQ,q(X), equipped with the norm

||f ||LQ,q := GQ,q(|f |).

The following statement gives the basic relationships between the Lorentz spaces [2, Propositions
2.1.8 and 4.4.2].

Proposition 3.4. For all 1 ≤ r ≤ q ≤ Q, there is a constant c, depending only on r, q, and Q,

such that for all measurable functions f : X → R,

||f ||LQ,q ≤ c||f ||LQ,r .

In particular, there is a bounded embedding LQ,r(X) →֒ LQ,q(X). Moreover, LQ,Q(X) = LQ(X)
and

||f ||LQ,Q = ||f ||Q.

Finally, if p > Q and X has finite total measure, then for every 1 ≤ q ≤ Q, there is a bounded

embedding Lp(X) →֒ LQ,q(X).

Corollary 3.5. If 1 ≤ q ≤ Q, then there is a bounded embedding LQ,q(X) →֒ LQ(X).

We now discuss a characterization of Lorentz spaces given in [12]. We say that a gauge is a
non-negative non-increasing function φ : (0,∞) → [0,∞). Given 1 ≤ q ≤ Q and a gauge φ, we

define functions TQ,qφ , FQ,qφ : [0,∞) → [0,∞) by

TQ,qφ (s) =

{
sq−1φq/Q(s) s > 0,

0 s = 0,
and FQ,qφ (s) =

{
sqφ(q−Q)/Q(s) s > 0,

0 s = 0.

A gauge is (Q, q)-admissible if ∫ ∞

0

TQ,qφ (s) ds <∞.

We denote the set of (Q, q)-admissible gauges by AQ,q.
The following theorem states that the Lorentz spaces are determined by a family of Orlicz

conditions [12, Corollary 2.4].

Theorem 3.6 (Kauhanen-Koskela-Malý). A measurable function f : X → R is in LQ,q(X) if and

only if there is φ ∈ AQ,q such that φ(|f(x)|) > 0 for almost every x ∈ X with |f(x)| > 0, and
∫

X

FQ,qφ (|f(x)|) dµ(x) <∞.

In addition, there is a constant C depending only on φ, Q, and q such that

(3.2) ||f ||Q
LQ,q ≤ C

∫

X

FQ,qφ (|f(x)|) dµ(x).
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3.3. Integrability conditions for metric space valued mappings.

Standing Assumption 3.7. For the remainder of the paper, we denote by X a locally compact
metric measure space, and by Y any metric space.

As mentioned above, classical Sobolev functions are themselves required to satisfy integrability
conditions. The main purpose of this is to guarantee that a sensible norm may be defined for such
functions, and that the resulting Sobolev space is a Banach space. Typically, the integrability
of metric space valued mappings is defined via isometric embeddings of the target into a Banach
space. Recall that any metric space Y may be isometrically embedded in the Banach space l∞(Y )
[8, Page 99]. The Bochner integral then provides a framework for Banach function spaces of
Banach space valued mappings. See [10] for an example of how this works using the Lebesgue
scale. However, the fact that there are many possible isometric embeddings of a given metric space
in a Banach space means that the “function norm” resulting from this process is not canonical.
For our purposes, it suffices to consider an intrinsic notion of local integrability for metric space
valued mappings.

Recall that a mapping f : X → Y is said to be Bochner measurable if it is measurable in the
usual sense and essentially separably valued, meaning that there is a set N ⊆ X of measure 0 such
that f(X\N) is a separable subset of Y .

Definition 3.8. A mapping f : X → Y is in the class L1
loc(X ;Y ), i.e., it is said to be locally

integrable, if it is Bochner measurable and there exists a point z ∈ Y such that the function
x 7→ dY (f(x), z) is in the space L1

loc(X).

The following proposition, whose elementary proof we leave to the reader, shows that this
agrees with the corresponding notion for Banach space valued mappings. Namely, if V is a Banach
space, then f : X → V is said to be locally Bochner integrable if f is Bochner measurable and
||f ||V ∈ L1

loc(X).

Proposition 3.9. Let f : X → Y be a Bochner measurable mapping. Then f ∈ L1
loc(X ;Y ) if and

only if for every Banach space V and every isometric embedding ι : Y →֒ V , the mapping ι ◦ f is

locally Bochner integrable.

Most of the mappings we construct have much stronger integrability properties than just local
integrability. Often, they satisfy the hypotheses of the following statement.

Proposition 3.10. Let f : X → Y be a measurable, essentially bounded, and essentially separably

valued mapping. If f takes the value z ∈ Y except on a set of finite measure, then for any Banach

function norm G, the mapping x→ dY (f(x), z) is in the space LG(X). Moreover, if ι : Y →֒ V is

an isometric embedding into a Banach space V , then G(||ι ◦ f ||V ) <∞.

Proof. Define dzf : X → [0,∞) by dzf(x) = dY (f(x), z). We have assumed that there is a set
A ⊆ X of finite measure such that f(x) = z for all x ∈ X\A. By properties (A1), (A2), and (A4)
of the definition of a Banach function norm, we have

G(dzf) = G(dzf · χA) ≤ G(χA) (ess sup dzf) <∞,

as desired. The second statement is shown similarly. �

3.4. Mappings with an upper gradient in a Banach function space. Due to the difficulty
in defining Banach function spaces of mappings with metric space targets, in this paper we choose
not to consider Newtonian “spaces” of metric space valued mappings, though such objects are
sensible. Our simplified philosophy is to consider a mapping f : X → Y of metric spaces to
be a G-Newtonian mapping if it is locally integrable and has an upper gradient in the space
LG(X), though often the mappings we construct will have stronger integrability properties, as in
Proposition 3.10.

The following statement provides the completeness properties that, in the Banach space valued
setting, would come from the completeness of Newtonian spaces. The proof, which is essentially
Fuglede’s lemma, is standard.
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Proposition 3.11. Suppose that the sequence of mappings {fn : X → Y }n∈N converges pointwise

to a mapping f : X → Y , and that the sequence of functions {gn : X → [0,∞]}n∈N converges in

LG(X) to a function g : X → [0,∞]. If for each n ∈ N, the function gn is an upper gradient of fn,

then there is an upper gradient of f in every LG(X)-neighborhood of g.

Proof. There is a subsequence {gnk
}k∈N such that for each k ∈ N,

||gnk
− g||G ≤ 2−2k.

Let ρk = |gnk
− g|, and set

Γ =

{
γ : [0, 1] → X : lim

k→∞

∫

γ

ρk ds 6= 0

}
.

If γ : [0, 1] → X is a rectifiable path not in the family Γ, then

dY (f(γ(0)), f(γ(1))) = lim
k→∞

dY (fnk
(γ(0)), fnk

(γ(1))) ≤ lim
k→∞

∫

γ

gnk
ds =

∫

γ

g ds,

and so g satisfies the upper gradient inequality for f on the path γ.
On the other hand, if γ ∈ Γ, then for all j ∈ N there is some integer k ≥ j such that

∫

γ

ρk ds > 2−k.

Thus, for all j ∈ N, the function

ρ̃j =

∞∑

k=j

2kρk

satisfies ∫

γ

ρ̃j ds ≥ 1, and ||ρ̃j ||G ≤
∞∑

k=j

2−k = 2−j+1.

We claim that for any i ∈ N, the function

g̃i = g +
∞∑

j=i

ρ̃j

is an upper gradient of f . Since g̃i ≥ g, it suffices to show that g̃i satisfies the upper gradient
inequality on any path γ ∈ Γ. For such a path, we see that

∫

γ

g̃i ds ≤

∫

γ

g ds+

∞∑

j=i

∫

γ

ρ̃j ds = ∞,

and so the upper gradient inequality is trivially satisfied. Moreover, by the basic properties of
Banach function spaces [2, Chapter 1.1],

||g̃i − g||G = || lim
l→∞

l∑

j=i

ρ̃j ||G = lim
l→∞

||
l∑

j=i

ρ̃j ||G ≤ lim
l→∞

l∑

j=i

||ρ̃j ||G ≤ 2−i+2.

As i may be chosen to be arbitrarily large, this shows that g̃i may be chosen to lie in an arbitrary
LG-neighborhood of g. �

We will also need the following simple pasting lemma for upper gradients. Much more sophis-
ticated versions are available, as discussed in [23].

Lemma 3.12. Let U1, . . . , Un be disjoint Borel sets in X, let U0 = X\(∪iUi), and let f0, . . . , fn : X →
Y be mappings with upper gradients g0, . . . , gn : X → [0,∞] respectively. Suppose, for i = 1, . . . , n,

the restriction fi|X\Ui
is constant with value yi ∈ Y , and the restriction f0|Ui

is constant with

value yi. Then the mapping f : X → Y defined by

f(x) =

{
f0(x) x /∈

⋃n
i=1 Ui,

fi(x) x ∈ Ui,
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has an upper gradient defined by g =
∑n

i=0 gi.

Proof. Let ι : Y → l∞(Y ) be an isometric embedding. Our assumptions imply that for each x ∈ X ,

ι ◦ f(x) = ι ◦ f0(x) +

n∑

i=1

(ι ◦ fi(x) − ι(yi)) .

For i = 1, . . . , n, the mapping y 7→ ι(y) − ι(yi) is an isometry, and so gi is also an upper gradient
of the mapping x 7→ ι ◦ fi(x) − ι(yi). Thus g is an upper gradient of ι ◦ f , and hence of f . �

4. The capacity of a point

The strength of the condition that a given mapping f : X → Y has an upper gradient in the
space LG(X) depends on the underlying structure of the metric space X . To help understand this
phenomena, we introduce a variational-type capacity condition. A much more involved capacity
theory can be developed, as in [23] and [21].

Definition 4.1. A point a ∈ X has zero continuous G-capacity if for all ǫ > 0, there is a continuous
function η : X → [0,∞) such that

(i) supp η is a compact subset of B(a, ǫ),
(ii) there exists δ > 0 such that η(x) ≥ 1 for all x ∈ B(a, δ),

(iii) there is an upper gradient g of η such that ||g||G < ǫ.

If in addition, the function η may be chosen to be Lipschitz, we say that a ∈ X has zero

Lipschitz G-capacity.

Remark 4.2. In Definition 4.1 it is equivalent to require that for all ǫ > 0 and 0 < τ ≤ 1, there
is a function η : X → [0, τ ] satisfying conditions (i), (iii), and the following modified version of
condition (ii):

(ii)’ there exists δ > 0 such that η(x) = τ for all x ∈ B(a, δ).

To see this, choose a function η satisfying the requirements of Definition 4.1, and consider the
continuous function η̃ : X → [0, τ ] defined by

η̃(x) = τ min{η(x), 1}.

Then for all x, y ∈ X ,

|η̃(x) − η̃(y)| ≤ τ |η(x) − η(y)| ≤ |η(x) − η(y)|,

and so g is also an upper gradient of η̃.

The continuous Lp-capacity of a point has been studied in a general setting. The following
result can be deduced from the proof of [15, Theorem 3.4].

Theorem 4.3 (Korte). Let (X, d, µ) be a doubling metric measure space and let Q > 1. If X is

upper Q-regular at a point a ∈ X and 1 ≤ p ≤ Q, then the point a has zero continuous Lp-capacity.

On the other hand, if X is lower Q-regular at the point a, and X supports a Q-Poincaré inequality,

then for every p > Q, the point a does not have zero continuous Lp-capacity.

4.1. The Lorentz capacity. The Lorentz capacity has been studied in detail in the Euclidean
setting [5]. In this section we establish a version of Theorem 4.3 that employs the Lorentz scale in
the borderline case. Let 1 ≤ q ≤ Q. We say that a point a ∈ X has zero Lipschitz (Q, q)-Lorentz
capacity if it has zero Lipschitz GQ,q-capacity where GQ,q is defined by (3.1).

Theorem 4.4. Suppose that X is upper Q-regular at a point a ∈ X. Then for all 1 < q ≤ Q, the

point a has zero Lipschitz (Q, q)-Lorentz capacity.

Proof. By Proposition 3.4, it suffices to consider the case that 1 < q < Q.
For 0 < s <∞, define η̃s : [0,∞) → [0,∞) by

η̃s(r) =





1 0 ≤ r ≤ e−e
s+1

,

log log
(

1
r

)
− s e−e

s+1

≤ r ≤ e−e
s

,

0 e−e
s

≤ r <∞.
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For all e−e
s+1

< r < e−e
s

, the function η̃s is smooth at r, and we have

(η̃s)
′(r) =

−1

r log
(

1
r

) .

Let a ∈ X , and for 0 < r < R <∞ denote closed annuli centered at a ∈ X by

Aa(r,R) := {x ∈ X : r ≤ d(a, x) ≤ R}.

Moreover, for 0 < s <∞, define ηs,a : X → [0,∞) by

ηs,a(x) = η̃s(d(a, x)).

It is not hard to see that η̃s and hence ηs,a are Lipschitz continuous functions, and that for any
x ∈ X , the local Lipschitz constant of ηs,a at x satisfies

Lip(ηs,a)(x) ≤

{
1

d(a,x) log( 1
d(a,x) )

x ∈ Aa(e−e
s+1

, e−e
s

),

0 otherwise.

Fix ǫ > 0. Recalling that X is assumed to be locally compact, it is clear that for sufficiently
large s > 0, the function ηs,a satisfies conditions (i) and (ii) of Definition 4.1. We now show that
the third condition holds for sufficiently large s > 0. Recall that the local Lipschitz constant of a
Lipschitz function is an upper gradient of that function.

By assumption, we may find C ≥ 1 and r0 > 0 such that if 0 < r < r0, then

µ(B(a, r)) ≤ CrQ.

Since 1 < q < Q, there is a number α such that

Q− q

q
< α < Q− 1.

Define a gauge

ψ(s) =

{
s−Q logαQ/(q−Q)(e + s) s ≥ 1,

logαQ/(q−Q)(e + 1) s ≤ 1.

An easy calculation shows that the assumption α > (Q− q)/q implies that ψ ∈ AQ,q.
For ease of notation let t = s+ 1. It follows from the definitions that

(4.1)

∫

X

FQ,qψ ◦ Lip(ηs,a)(x) dµ(x) ≤

∫

Aa(e−et ,e−es )

logα
(
e+ 1

d(a,x) log(d(a,x)−1)

)

(d(a, x) log(d(a, x)−1))
Q

dµ(x).

Let k be the unique positive integer satisfying k ≤ et − es < k + 1, and for j ∈ {0, . . . , k}, set

Aj := Aa(e−e
t+j , e−e

t+j+1).

Since the function r 7→ r log(1/r) is increasing for r < e−1, the integrand on the right hand side
of (4.1) is a decreasing function of d(a, x). If s is so large that e−e

s+1 ≤ r0, then a trivial estimate
and the volume growth assumption show that

∫

Aj

FQ,qψ ◦ Lip(ηs,a)(x) dµ(x) ≤
logα

(
e+ eet

−j

et−j

)

(et − j)Q
µ(B(a, e−e

t+j+1))

(e−et+j)Q

≤ CeQ(et − j)−Q logα

(
e+

ee
t−j

et − j

)

≤ CeQ2α(et − j)α−Q ≤ CeQ2α
∫ et−j

et−j−1

uα−Q du.
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As no three of the sets {Aa(e−e
t+j , e−e

t+j+1)}kj=0 intersect, we see that

∫

X

FQ,qψ ◦ Lip(ηs,a)(x) dµ(x) ≤ CeQ2α+1
k∑

j=0

∫ et−j

et−j−1

uα−Q du

≤ CeQ2α+1

∫ es+1

es−1

uα−Q du.

Since α < Q − 1, the final term above tends to zero as s tends to infinity. That condition (iii)
holds for sufficiently large s now follows from the characterization of LQ,q(X) provided by Theorem
3.6. �

For the negative result, we assume slightly more about the growth of the space near the point
in question than is assumed in Theorem 4.3. More precise versions of this result can likely be
deduced from [19].

Theorem 4.5. Suppose that X supports a Q-Poincaré inequality, and that X is Q-regular at a

point a ∈ X. Then the point a does not have zero continuous (Q, 1)-Lorentz capacity.

We defer the proof of this theorem to Section 6, in which the properties of mappings with an
upper gradient in the space LQ,1(X) are studied.

4.2. The Cantor Diamond Sets. Though there are AhlforsQ-regular metric spaces that contain
points of zero continuous (Q, 1)-Lorentz capacity, Theorem 4.5 shows that such spaces cannot
support a Q-Poincaré inequality. This subsection is devoted to a class of examples that will show
that this relationship is sharp.

We first need some notation regarding Cantor sets. For 0 < λ < 1, let Eλ be the middle
interval Cantor set with the following properties. At stage i, there are 2i−1 removed open intervals
{Ui,j}j∈Ji

of length (λ/2)i−1(1−λ), and 2i remaining closed intervals {Uki }k∈Ki
of length (λ/2)i.

Then the Hausdorff dimension of Eλ is log2/λ 2. In this notation, the “standard middle-third
Cantor set” is given by E2/3.

For convenience, we denote the center point of Ui,j by ui,j , and we set

wi =
(λ/2)i−1(1 − λ)

2
,

so that Ui,j = (ui,j −wi, ui,j +wi). Similarly, we write Uki = [uki − vi, u
k
i + vi], where 2vi = (λ/2)i.

We may assume that for each positive integer i, the intervals {Uki }k∈Ki
are ordered so that the right

endpoint of Uki is less than the left endpoint of Uk+1
i , and similarly for the intervals {Ui,j}j∈Ji

.
Note that the notation established above depends implicitly on the parameter λ.

We now define the spaces that will be used in our example. For each i ∈ N and j ∈ Ji, we
define the “diamond” Di,j by

Di,j := {(x, y) ∈ R
2 : |x− ui,j| ≤ wi − |y|}.

The λ-Cantor diamond set is defined by

Xλ =


 ⋃

i∈N,j∈Ji

Di,j


 ∪ (Eλ × {0}).

To the best of our knowledge, these spaces were introduced in [16]. See Figure 1.
Recall that an s-similarity, s > 0, is a mapping φ : X → Y that satisfies, for all x, y ∈ X ,

dY (φ(x), φ(y)) = sdX(x, y).

The Cantor set Eλ is self-similar in the following sense. For each positive integer i and each
k ∈ Ki, there is a (λ/2)i-similarity φki : R → R which maps Eλ bijectively onto Eλ ∩ Uki . The
space Xλ inherits self-similarities from the Cantor set Eλ. Namely, for each i ∈ N and k ∈ Ki,
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Figure 1. The Cantor diamond set with λ = 2/3.

the map φki : R → R extends to a (λ/2)i-similarity Φki : R
2 → R

2 that maps Xλ bijectively onto
Xλ ∩ (Uki × [0, 1]). Recall that if A ⊆ R

2 is a Borel set and Φ: R
2 → R

2 is an s-similarity, then

H2(Φ(A)) = s2H2(A).

We endow Xλ with the metric inherited from the plane R
2 and the two-dimensional Hausdorff

measure H2. The next two statements give the basic properties of the space Xλ. We leave the
proof of the first to the reader, and the second can be found at [16, Theorem 3.1].

Proposition 4.6. The metric measure space Xλ is Ahlfors 2-regular with a constant depending

only on λ.

Theorem 4.7 (Koskela-MacManus). The metric measure space Xλ satisfies a p-Poincaré inequal-

ity for all p > pλ, where

pλ = 2 −
log 2

logλ
> 2.

We denote the set of non-endpoints of Xλ by

X̃λ = Xλ\


 ⋃

i∈N,j∈Ji

Di,j


 =


Eλ\

⋃

i∈N,j∈Ji

{ui,j − wi, ui,j + wi}


× {0}.

Note that the set X̃λ has no isolated points.

Proposition 4.8. Each point of X̃λ has zero Lipschitz Lp-capacity for any 1 ≤ p < pλ.

Before we begin the proof, we define piecewise linear approximations to a version of the Cantor
function that is supported on a fixed interval Uk0i0 . Let i ∈ N, and define ck0i0;i : U

k0
i0

→ [0, 1] to be
the piecewise linear continuous function given by

ck0i0;i(x) =

∫ x

u
k0
i0

−vi0

ρk0i0;i(t) dt,

where ρk0i0;i : U
k0
i0

→ [0,∞) is given by

ρk0i0;i(t) =

{
2i0

λi0+i t ∈
⋃
k∈Ki

φk0i0 (Uki ),

0 otherwise.

The indices i0 and k0 give the location of the support of the function ck0i0;i, while the index i
determines how closely the function approximates the Cantor function. See Figure 2.

A simple computation shows that

ck0i0;i(u
k0
i0

− vi0 ) = 0 and ck0i0;i(u
k0
i0

+ vi0 ) = 1.

Moreover, the absolute continuity of the integral implies that for all t ∈ Uk0i0 ,

Lip(ck0i0;i)(t) = ρk0i0;i(t).
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U1
1 U1

1
U1,1 U1,1U2

1 U2
1

c21;2 c21;3

0 0

1 1

Figure 2. Graphs of the functions c21;2 and c21;3, when λ = 2/3.

Proof of Proposition 4.8. Let (a, 0) ∈ X̃λ, and let ǫ > 0. Since a is a “non-endpoint” of Eλ, we
may find i0 ∈ N and kl, kr ∈ Ki0 such that

ukl

i0
+ vi0 < a < ukr

i0
− vi0 and (Ukl

i0
∪ Ukr

i0
) ⊆ (a− ǫ, a+ ǫ).

Then δ := dist(a, Ukl

i0
∪Ukr

i0
) > 0. The condition that p < pλ implies that λ2−p < 2, and hence we

may find i ∈ N so that

2H2(Xλ)

(
2

λ

)(p−2)i0 (λ2−p

2

)i
< ǫp.

Define η : Xλ → [0, 1] by

η(x, y) =





1 x ∈ [ukl

i0
+ vi0 , u

kr

i0
− vi0 ],

ckl

i0;i(x) x ∈ Ukl

i0
,

1 − ckr

i0;i(x) x ∈ Ukr

i0
,

0 otherwise.

It follows from the definitions that η has compact support contained in B((a, 0), ǫ), is identically
one on B((a, 0), δ), and satisfies

Lip η(x, y) =

{
2i0

λi0+i x ∈
⋃
k∈Ki

(φkl

i0
(Uki ) ∪ φkr

i0
(Uki )),

0 otherwise.

Note that

H2({(x, y) ∈ Xλ : x ∈
⋃

k∈Ki

(φkl

i0
(Uki ) ∪ φkr

i0
(Uki ))}) = 2i+1H2({(x, y) ∈ Xλ : x ∈ φkl

i0
(U1

i )}).

By the self-similarity of Xλ, there is some k′ ∈ Ki0+i such that

{(x, y) ∈ Xλ : x ∈ φkl

i0
(U1

i )} = Φk
′

i0+i(Xλ).

This implies that

H2({(x, y) ∈ Xλ : x ∈ φkl

i0
(U1

i )}) =

(
λ

2

)2(i0+i)

H2(Xλ).
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As a result, we see that

||Lip η||pLp =

(
2i0

λi0+i

)p
2i+1

(
λ

2

)2(i0+i)

H2(Xλ)

= 2H2(Xλ)

(
2

λ

)(p−2)i0 (λ2−p

2

)i
< ǫp.

Recalling that Lip η is an upper gradient of η, this completes the proof. �

Combining this result with Proposition 3.4 yields the following statement.

Corollary 4.9. Each point of X̃λ has zero Lipschitz (2, 1)-Lorentz capacity in Xλ.

We may deduce from this and the work of Keith and Zhong that the number pλ given in
Theorem 4.7 is sharp.

Corollary 4.10. The space Xλ does not support a pλ-Poincaré inequality.

Proof. Suppose that Xλ does support a pλ-Poincaré inequality. By the Keith-Zhong theorem [14],
it follows that Xλ-satisfies a p-Poincaré inequality for some 2 < p < pλ. Proposition 4.8 then
produces a point with zero Lipschitz Lp-capacity, yielding a contradiction by Proposition 4.6 and
Theorem 4.3. �

5. Space filling with generalized Newtonian maps

This section is based on [7, Section 3], where the same construction is done in the setting
of Reshetnyak-Sobolev spaces on the unit cube [0, 1]n. The spirit of the construction is due to
Kaufman [11]. We connect the capacity condition of the previous section to the construction of
space filling mappings with controlled upper gradients. This allows us to prove Theorem 1.3 and
Corollary 1.6

5.1. The compact case.

Theorem 5.1. Let G be a Banach function norm, and suppose that there is a non-empty set P ⊆ X
that has no isolated points and compact closure, and such that each point of P has zero continuous

G-capacity. Then for any length-compact metric space (Y, dY ), any point z ∈ Y , and any ǫ > 0,

there is a continuous surjection f : X → Y that takes the value z outside the ǫ-neighborhood of P ,

and has an upper gradient g : X → [0,∞] satisfying ||g||G ≤ ǫ.

Proof. To produce the desired mapping, we construct a uniform Cauchy sequence of continuous
mappings from X to Y , such that the mappings cover finer and finer nets in Y . The limit mapping
is seen to be a continuous surjection, and we use Proposition 3.11 to show that it has an upper
gradient in the desired space.

The assumption that Y is length-compact implies that for each non-negative integer n we may
find a finite set Yn = {yni }

kn

i=1 with the property that each y ∈ Y can be connected to a point
in Yn by a path of length no greater than 2−n. Then

⋃
n Yn is dense in Y . We may assume the

diameter of Y with respect to the path metric is 1, and hence we may assume that y0
1 = z.

For each integer n ≥ 1, we may partition Yn into kn−1 sets C(yn−1
i ) so that if ynj ∈ C(yn−1

i ),

then there is a 1-Lipschitz path γnj : [0, 2−(n−1)] → Y satisfying γnj (0) = yn−1
i and γnj (1) = ynj .

Let f0 : X → Y be the constant mapping f0(x) = z for all x ∈ X . Clearly, the constant function
g0(x) = 0 is an upper gradient of f0.

As P is non-empty and has no isolated points, it is infinite, and so we may find a collection C(x0
1)

of k1 distinct points {x1
i }
k1
i=1 ⊆ P. Choose 0 < ǫ1 < ǫ/(21k1) so small that the balls {B(x1

i , ǫ1)}k1i=1

are pairwise disjoint.
By the capacity assumption and Remark 4.2, we may find a number δ1 > 0 and continuous

functions η1
i : X → [0, 1] for i = 1, . . . , k1 satisfying

(i) supp η1
i is a compact subset of B(x1

i , ǫ1),
(ii) η1

i (x) = 1 for all x ∈ B(x1
i , δ1),

(iii) there is an upper gradient g1
i of η1

i such that ||g1
i ||G < ǫ1.
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As the collection {B(x1
i , ǫ1)}k1i=1 is pairwise disjoint, we may define the mapping f1 : X → Y by

f1(x) =

{
f0(x) x /∈

⋃k1
i=1 BX(x1

i , ǫ1),

γ1
i ◦ η

1
i (x) x ∈ BX(x1

i , ǫ1).

We note that condition (ii) above implies that

(5.1) f1(BX(x1
i , δ1)) = {y1

i },

and so the image of f1 contains Y1. To see that f1 is continuous, recall that γ1
i (0) = y0

1 , and so if
x /∈ B(x1

i , ǫ1), then

γ1
i ◦ η

1
i (x) = y0

1 = f0(x).

Moreover, Lemma 3.12 shows that g1 := g0 +
∑k1
i=1 g

1
i is an upper gradient of f1, and

||g1 − g0||G = ||g1||G ≤ k1ǫ1 < ǫ2−1.

Since length(γ1
i ) ≤ 1 for each i = 1, . . . , k1, we see that for all x ∈ X ,

dY (f1(x), f0(x)) ≤ 1.

We now consider the net Y2 = {y2
i }
k2
i=1. Since P is non-empty and has no isolated points, we

may find distinct points {x2
j}
k2
j=1 ⊆ P with the following properties. First, there is a partition of

these points into k1 collections, labelled C(x1
i ), so that

(5.2) x2
j ∈ C(x1

i ) ⇐⇒ y2
j ∈ C(y1

i ).

Second, we may find 0 < ǫ2 < ǫ/(22k2) so small that the balls {BX(x2
j , ǫ2)}k2j=1 are disjoint, and

that if x2
j ∈ C(x1

i ), then

(5.3) BX(x2
j , ǫ2) ⊆ BX(x1

i , δ1)\{x1
i }.

By the capacity assumption and Remark 4.2, we may find δ2 > 0 and continuous functions
η2
j : X → [0, 2−1] for j = 1, . . . , k2 satisfying

(i) supp η2
j is a compact subset of B(x2

j , ǫ2),

(ii) η2
j (x) = 2−1 for all x ∈ B(x2

j , δ2),

(iii) there is an upper gradient g2
j of η2

j such that ||g2
j ||G < ǫ2.

Define f2 : X → Y by

f2(x) =

{
f1(x) x /∈

⋃k2
j=1BX(x2

j , ǫ2),

γ2
j ◦ η

2
j (x) x ∈ BX(x2

j , ǫ2).

As in the first stage, the mapping f2 is continuous. Moreover, for any j = 1, . . . , k2,

f2(BX(x2
j , δ2)) = {y2

j},

while (5.3) implies that for any i = 1, . . . , k1,

f2(x1
i ) = f1(x1

i ) = y1
i .

We may apply Lemma 3.12 again to show that g2 := g1 +
∑k2
j=1 g

1
j is an upper gradient of f2, and

||g2 − g1||G =≤ k2ǫ2 < ǫ2−2.

Finally, as length(γ2
j ) ≤ 2−1 for each j = 1, . . . , k2, we see that

dY (f2(x), f1(x)) ≤ 2−1.

Continuing in this fashion, for each n ∈ N we may find a continuous mapping fn : X → Y , an
upper gradient gn of fn, and a set {xni }

kn

i=1 ⊆ P such that

• dY (fn+1(x), fn(x)) ≤ 2−n for all x ∈ X ,
• for all integers m ≥ n ≥ 1 and i = 1, . . . , kn, it holds that fm(xni ) = (yni ),

• ||gn+1 − gn||G < ǫ2−(n+1),

• fn(x) = z for all x /∈
⋃k1
i=1B(x1

i , ǫ1).
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The first point above shows that {fn : X → Y } is a Cauchy sequence of mappings in the supre-
mum norm. Since Y is length-compact, it is compact, and hence {fn} converges uniformly to a
continuous function f : X → Y . The second point shows that ∪nYn ⊆ f(P ). Since P has compact
closure in X and the set ∪nYn is dense in the compact space Y , it follows that f(X) = Y .

The third point above implies that {gn} is a Cauchy sequence in the Banach function space
LG(X), and that it converges to a function g : X → [0,∞] satisfying ||g||G < ǫ. Thus Proposition
3.11 implies that f has an upper gradient g̃ that also satisfies ||g̃||G < ǫ. The fourth point
above, along with the details of the construction, shows that f takes the value z outside the
ǫ-neighborhood of P . �

With slightly stronger hypotheses, we can produce a continuous surjection with Lipschitz prop-
erties.

Theorem 5.2. If it is additionally assumed in the hypotheses of Theorem 5.1 that each point of

P has zero Lipschitz G-capacity, then the mapping f : X → Y produced by Theorem 5.1 may be

chosen so that it also satisfies Lip(f)(x) <∞ for all x ∈ X\E, where E is a compact subset of X
with Hausdorff dimension 0.

Proof. Using the notation established in the proof of Theorem 5.1, for n ∈ N, set

Bn =

kn⋃

i=1

B(xni , ǫn),

The construction shows that for each n ∈ N, the closure of Bn+1 is a subset of Bn. It follows that
E =

⋂
n∈N

Bn is closed. Since the sequence {ǫn} tends to 0, the set P ∩E is dense in E. Thus E
is a subset of the closure of P , and hence compact. By choosing the sequence {ǫn} to tend to 0
sufficiently fast, we may assume that E has Hausdorff dimension 0.

Let x ∈ E\X . The nesting of the sets {Bn}n∈N and the fact that E is closed implies that there
is open neighborhood U of x and some n ∈ N such that

U ⊆ (X\Bn)

It follows from the construction that f |U = fn−1|U . With the additional assumption that each
point of P has zero Lipschitz G-capacity, the proof of Theorem 5.1 shows that there is a constant
Ln ≥ 1 such that the mapping fn−1 is Ln-Lipschitz. From this, we may conclude that Lip f(x) <
Ln. �

We now have all the tools needed to prove Theorems 1.3 and 1.5.

Proof of Theorem 1.3. We assume that there is a non-empty set P ⊆ X that has no isolated points
and compact completion, and that X is upper Q-regular at each point of P . By Theorem 4.4, each
point of P has zero Lipschitz (Q, q)-Lorentz capacity. Theorem 5.1 now completes the proof. �

Proof of Theorem 1.5. Let ǫ > 0. By Proposition 4.7, we may find 0 < λ < 1 so small that the
Cantor diamond space Xλ satisfies a (2+ ǫ)-Poincaré inequality. By Proposition 4.6, the space Xλ

is Ahlfors 2-regular, and it is clearly compact. By Theorem 4.8, each point of the set X̃λ, which is
nearly perfect, has zero Lipschitz Lp-capacity for any 1 ≤ p < 2 + ǫ. Theorem 5.1 now completes
the proof. �

5.2. The non-compact case.

Theorem 5.3. Suppose that X contains a collection {Pi}i∈N of non-empty subsets such that for

each i ∈ N,

(i) the set Pi has no isolated points and has compact closure,

(ii) each point of Pi has zero continuous G-capacity,

(iii) there is a number ri > 0 so that the resulting collection {N (Pi, ri)}i∈N is pairwise disjoint.

Moreover, suppose that Y is a metric space that may be written as a countable union of length-

compact subsets with non-empty intersection. Then there is a continuous surjection F : X → Y
with an upper gradient G : X → [0,∞] in LG(X).
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Proof. Write Y =
⋃
i∈N

Yi, where for each i ∈ N the subset Yi is length-compact, and let z ∈⋂
i∈N

Yi. By applying Theorem 5.1 with ǫ < min{ri, 2−i}, we may find a continuous surjection
fi : X → Yi that takes the value z off of the set N (Pi, ri), and has an upper gradient gi : X → [0,∞]
satisfying ||gi||G < 2−i.

For each k ∈ N, define Fk : X → Y by

Fk(x) =

{
fi(x) x ∈ N (Pi, ri) for some 1 ≤ i ≤ k,

z otherwise.

Then Fk converges pointwise to the continuous surjection F : X → Y defined by

F (x) =

{
fi(x) x ∈ N (Pi, ri), for some i ∈ N,

z otherwise.

By Lemma 3.12, the function Gk : X → [0,∞] defined by

Gk(x) =
k∑

i=1

gi(x),

is an upper gradient of Fk. As ||gi||G < 2−i for each i ∈ N, the sequence {Gk}k∈N forms a Cauchy
sequence in the Banach space LG(X). Thus, by Proposition 3.11, F has an upper gradient G in
LG(X). �

Remark 5.4. If ∑

i∈N

µ (N (Pi, ri)) <∞,

then the mapping F constructed above takes the value z off of a set of finite measure. In any case,
it is clear that F is locally integrable in the sense of Definition 3.8.

Remark 5.5. Suppose that in the statement of Theorem 5.3, each point of ∪iPi has zero Lipschitz
G-capacity. By Theorem 5.2, for each mapping fi : X → Y in the above construction, we may find
a compact set Ei ⊆ Pi of Hausdorff dimension 0 such that Lip(fi)(x) < ∞ for each x ∈ X\Ei.
Then the set E = ∪Ei has Hausdorff dimension 0; assume further that it closed. Then we may
assume that the constructed mapping F has finite local Lipschitz constant except on E, as follows.

The construction in Theorem 5.1 shows that fi takes the value z off the balls employed at the
first stage of the construction of fi, which have radius ǫi. Since ǫi < ri, it follows that the set
N (Ei, 2ri) contains these balls. If x ∈ X\E, there is an open neighborhood U of x such that
dist(U,E) > 0. We may assume without loss of generality that the sequence {ri} tends to zero.
Hence there is a finite number N ∈ N such that N (Ei, 2ri) ∩ U = ∅ for all i ≥ N . Thus, by the
above discussion and the definition of F , we see that

Lip(F )(x) ≤ max
1≤i≤N

Lip(fi)(x) <∞.

We conclude this section with the proof of Corollary 1.6. For basic information regarding the
Heisenberg groups, see, for example, [3].

Proof of Corollary 1.6. We consider the Heisenberg space H
n, n ≥ 1, to be equipped with the

standard Carnot-Carathéodory metric dHn and (2n + 2)-dimensional Hausdorff measure. Recall
that H

n is an Ahlfors (2n + 2)-regular, complete, and geodesic metric space that supports a
1-Poincaré inequality. We will verify the hypotheses of Theorem 5.3 and Remarks 5.4 and 5.5.

We note that the x-axis Ax in H
1 is isometric to R

1. For an integer i ≥ 1, let Pi ⊆ [i+(1/4), i+
(3/4)] ⊆ Ax be a standard Cantor set of diameter 2−i. Then Pi is compact and perfect. Since
the standard Euclidean metric on R

3 is majorized by the Heisenberg distance dH1 , the collection
{NH1(Pi, 1/2)} is pairwise disjoint. As a result given any collection of compact subsets Ei ⊆ Pi for
i ≥ 1, the union ∪iEi is closed. By Theorem 4.4, each point of H

1 has zero Lipschitz (4, q)-capacity
for any q > 1. Moreover, there is a universal constant c ≥ 1 such that

∞∑

i=1

H4(NH1(Pi, 2
−i)) ≤ c

∞∑

i=1

(diamH1 Pi + 2−i)4 <∞.



SPACE FILLING WITH METRIC MEASURE SPACES 17

The metric dHn is proper and geodesic. Thus the collection {BHn(0, i)} is an exhaustion of
H
n by length-compact sets each containing the origin. We may now apply Theorem 5.3 and

Remarks 5.4 and 5.5 to produce a continuous surjection F : H
1 → H

n that is constant off a set of
finite measure, has finite local Lipschitz constant off a set of Hausdorff dimension 0, and has an
upper gradient in L4,q(H1), as desired. The final statement of Corollary 1.6 follows directly from
Theorem 1.4. �

6. Mappings with an upper gradient in LQ,1(X)

In this section, we describe the properties of a mapping f : X → Y that has an upper gradient
in the Lorentz space LQ,1(X). The results here are mostly based on [12], [20], and [19]. For the
purposes of this paper, the most important property is Lusin’s condition N. The source of this
property, and several others, is the Rado-Reichelderfer condition [18].

6.1. The Rado-Reichelderfer condition and its consequences.

Definition 6.1. Let Θ ∈ L1
loc(X) be a non-negative function and σ ≥ 1 A mapping f : X → Y

satisfies the Q-Rado-Reichelderfer condition on small scales with weight Θ and scaling factor σ if
there is a radius r0 > 0 such that for any ball B of radius less than r0 with compact closure in X ,

(diam f(B))Q ≤

∫

σB

Θ dµ.

Definition 6.2. Let Q > 0. A mapping f : X → Y satisfies Lusin’s condition NQ if every set
E ⊆ X satisfying µ(E) = 0 also satisfies HQ(f(E)) = 0.

Theorem 6.3. Assume that (X, d, µ) is doubling. Then each continuous mapping f : X → Y that

satisfies the Q-Rado-Reichelderfer condition on small scales also satisfies Lusin’s condition NQ.

Proof. Let Θ and σ be the weight and scaling factor from the Q-Rado-Reichelderfer condition,
and suppose that E ⊆ X satisfies µ(E) = 0. As X is doubling, it is separable, and our standing
assumptions states that X is locally compact. As a result, the set E has a countable open cover
{Un} by sets with compact closure. By the countable sub-additivity of HQ, we may assume that E
itself is contained in an open set U with compact closure. As µ is assumed be Borel outer regular,
we may find an open set Uǫ ⊆ Ucontaining E that satisfies µ(Uǫ) < ǫ. Since f is uniformly
continuous on Uǫ, there is a number 0 < δ < ǫ such that if B ⊆ Uǫ is a ball of radius less than
δ, then diam f(B) < ǫ. Suppose that X satisfies the Q-Rado-Reichelderfer condition with weight
Θ and scaling factor σ on balls of radius smaller than r0. Since X is doubling, we may find
0 < β <∞ and C ≥ 1 such that if B(y, r) ⊆ B(x,R) are nested balls in X , then

(6.1)
µ(B(x,R))

µ(B(y, r))
≤ C

(
R

r

)β
.

We will show that HQ(f(E)) = 0 by splitting E in two pieces based on the behavior of the
weight Θ. Let α > β, and let G denote the set of points x ∈ E such that there is a sequence of
positive numbers {ri} tending to 0 satisfying

(6.2)

∫

B(x,σri)

Θ dµ ≤ (5σ)α
∫

B(x,ri/5)

Θ dµ.

We first show that HQ(G) = 0. Fix ǫ > 0.
For each point x ∈ G, we may find a ball Bx ⊆ Uǫ of diameter less than min{δ, r0} such that

(6.2) holds. The separability of X and the standard covering lemma [8, Theorem 1.2] now implies
that there is a countable cover {Bn} of G consisting of such balls with the additonal property that
the collection {(1/5)Bn} is disjoint. Then {f(Bn)} is a cover of f(E) by sets of diameter less than
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ǫ. Hence, applying the Rado-Reichelderfer condition and (6.2),

HQ,ǫ(f(G)) ≤
∑

n∈N

(diam f(Bn))Q ≤
∑

n∈N

∫

σBn

Θ dµ

≤ (5σ)α
∑

n∈N

∫

(1/5)Bn

Θ dµ

≤ (5σ)α
∫

Uǫ

Θ dµ.

As Θ is in L1(U), letting ǫ tend to zero shows that HQ(f(G)) = 0.
Now let x ∈ E\G. By assumption, there is a scale rx > 0 such that if 0 < r < σrx, then

(6.3)

∫

B(x,r)

Θ dµ ≤ (5σ)−α
∫

B(x,5σr)

Θ dµ.

We may also assume that B(x, rx) ⊆ U . Let 0 < r < rx, and find i ∈ N such that

(6.4) (5σ)iσr < σrx ≤ (5σ)i+1σr.

Repeatedly applying (6.3) and using (6.4), we see that

(6.5) (diam f(B(x, r))Q ≤

∫

B(x,σr)

Θ dµ ≤ (5σ)−αi
∫

U

Θ dµ ≤

(
5σ

rx

)α
rα
∫

U

Θ dµ.

By the countable sub-additivity of HQ, it suffices to show that the sets

En = {x ∈ E\G : rx > 1/n}.

satisfy HQ(f(En)) = 0 for each n ∈ N. To this end, fix n ∈ N and ǫ > 0. Since E is contained in a
compact set, we may find a ball B of radiusR > 0 such that N (En, 1/n) ⊆ B. Let r < min{δ, 1/n},
and let x1, . . . , xN be a maximal r-separated set in En. Then {B(xj , r)}Nj=1 covers En, while

{B(xj , r/2)}Nj=1 is disjoint. By (6.1), for each j = 1, . . . , N ,

1 ≤ C

(
2R

r

)β
µ(B(xj , r/2))

µ(B)
.

Hence, by disjointness,

N ≤ C

(
2R

r

)β N∑

j=1

µ(B(xj , r/2))

µ(B)
≤ C

(
2R

r

)β+ǫ

.

Using this and (6.5), we estimate that

HQ,ǫ(f(En)) ≤
N∑

j=1

(diam f(B(xj , r)))
Q ≤ N (5σn)

α
rα
∫

U

Θ dµ

≤ C(2R)β+ǫ (5σn)α rα−(β+ǫ)

∫

U

Θ dµ.

Letting r tend to zero shows that HQ,ǫ(f(En)) = 0. This quickly implies the desired result. �

In appropriate circumstances, the Rado-Reichelderfer condition also implies that the mapping
in question has finite Lipschitz constant almost everywhere.

Proposition 6.4. Assume that (X, d, µ) is doubling and Q-regular at small scales. If f : X → Y
satisfies the Q-Rado-Reichelderfer condition on small scales, then Lip f(x) < ∞ for almost every

x ∈ X.
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Proof. Let r0 > 0 be the scale below which both the Q-regularity and Q-Rado-Reichelderfer condi-
tions hold. Let Θ ∈ L1

loc(X) and σ ≥ 1 be the weight and scaling factor from theQ-Rado-Reichelderfer
condition, and suppose that x is a Lebesgue point of f . If 0 < r < r0, then

diam f(B(x, r))

r
≤

(
r−Q

∫

B(x,σr)

Θ dµ

)Q
≤ C

(
−

∫

B(x,σr)

Θ dµ

)Q
,

where C is a number depending only on σ and the constant from the Q-regularity condition. The
Lebesgue differentiation theorem now implies that Lip f(x) <∞ for almost every x ∈ X . �

6.2. The space LQ,1(X) and the Rado-Reichelderfer condition. We now establish the Rado-
Reichelderfer condition for mappings with an upper gradient in an appropriate Lorentz space. In
the Euclidean setting, this was done in [12]. In the metric setting, closely related results have
been given in [20] and [19]. We will employ these results and occasionally skip a few details in
the proof. The interested reader can find a full presentation in [24]. We first consider real-valued
mappings.

Theorem 6.5. Assume that X is doubling and Q-regular on small scales, and supports a Q-

Poincaré inequality. Let f : X → R be a locally integrable mapping with an upper gradient g in

the Lorentz space LQ,1(X). Then there is a continuous representative of f that satisfies the Rado-

Reichelderfer condition on small scales with a weight Θ depending only on g and the constants

associated to the assumptions on X.

Proof. Throughout this proof, we refer to the constants associated with doubling, Q-regularity,
and Poincaré inequality conditions as the data. We also denote by C a quantity, possibly varying
at each instance, that depends only on the data.

By Theorem 2.1, there is ǫ > 0, depending only on the data, such that X supports a (Q− ǫ)-
Poincaré inequality. Define a perturbed maximal function of g by

g̃(x) =

(
sup
r>0

−

∫

B(x,r)

gQ−ǫ dµ

)1/(Q−ǫ)

.

By [6, Section 9], the function g̃ is a Haj lasz upper gradient of f , meaning that for almost every
x, y ∈ X ,

|f(x) − f(y)| ≤ d(x, y)(g̃(x) + g̃(y)).

It is also shown in [6, Section 9] that the pair (f, g̃) satisfies a 1-Poincaré inequality with some
scaling factor σ. Moreover, the standard Hardy-Littlewood maximal function theorem [8, Theorem
2.2] and the Marcinkeiwicz Interpolation Theorem [2, Theorem IV.4.13] imply that

||g̃||LQ,1 ≤ C||g||LQ,1 .

Let B be an open ball of radius less than r0. By the Lebesgue Differentiation Theorem [8,
Theorem 1.8], there is a set N of measure 0 such that each point of X\N is a Lebesgue point of
f . We may find a point z ∈ B\Z such that

diam f(B\N) ≤ 3|f(z) − fB|.

The proof of [20, Lemma 3] implies that

|f(z) − fB| ≤ C||g̃ · χ3σB||LQ,1 .

Theorem 3.6 states that there is a gauge φ ∈ AQ,1 and a constant C′, each depending on the data

and g̃, such that FQ,1φ ◦ g̃ ∈ L1(X) and

||g̃ · χ3σB ||LQ,1 ≤ C′

∫

3σB

FQ,1φ (g̃(x)) dµ(x).

Then Θ = CC′FQ,1φ ◦ g̃ is in L1(X), and

diam f(B\N) ≤

∫

3σB

Θ dµ.
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Since Θ is independent of B and z, it follows that f is uniformly continuous on X\N , and hence

has a continuous representative f̃ that agrees with f off of N . By the continuity of f̃ ,

(diam f̃(B))Q = (diam f(B\N))Q ≤

∫

3σB

Θ dµ,

as desired. �

A similar result for metric space valued mappings now follows easily.

Corollary 6.6. Assume that X is doubling and Q-regular on small scales, and supports a Q-

Poincaré inequality. Let Y be a separable metric space, and let f : X → Y be a continuous mapping

with an upper gradient g in the Lorentz space LQ,1(X). Then f Rado-Reichelderfer condition on

small scales with a weight Θ depending only on g and the constants associated to the assumptions

on X.

Proof. Recall that as Y is separable, there is an isometric embedding ι : Y →֒ l∞. For each k ∈ N,
let Tk : l∞ → R denote the 1-Lipschitz projection defined by

Tk({an}n∈N) = ak.

Then g is again an upper gradient of the continuous real-valued mapping Tk ◦ ι ◦ f ∈ L1
loc(X).

Hence, by Theorem 6.5, each mapping Tk ◦ ι ◦ f satisfies the Q-Rado-Reichelderfer with the same
weight Θ and scaling factor σ, which depend only on the data and g. Thus if B is a sufficiently
small ball, the definition of the metric on l∞ implies that

(diam f(B))Q = (diam ι ◦ f(B))Q =

(
sup
x,y∈B

sup
k∈N

|Tk ◦ ι ◦ f(x) − Tk ◦ ι ◦ f(y)|

)Q

= sup
k∈N

(
sup
x,y∈B

|Tk ◦ ι ◦ f(x) − Tk ◦ ι ◦ f(y)|

)Q

≤

∫

σB

Θ dµ,

yielding the desired result. �

Theorem 1.4 states that certain mappings cannot increase dimension. One step in the proof
is to show that the mappings under consderation satisfy Lusin’s condition N, implying sets of
measure zero cannot be mapped onto a set of higher dimension. We also need to show that large
sets cannot be mapped onto a set of higher dimension. This is true even for Sobolev mappings,
as the following well-known statement shows.

Lemma 6.7. Assume that X is doubling and supports a Q-Poincaré inequality, Q ≥ 1. Suppose

that f ∈ L1
loc(X ;Y ) is continuous and has an upper gradient in LQ(X). Then there are subsets

E1 ⊇ E2 ⊇ . . . such that µ(Ei) < 1/i and f |Ei
is Lipschitz for each i ∈ N. In particular, the set

E =
⋂
i∈N

Ei has measure zero, and the Hausdorff dimension of f(X\E) is no greater than the

Hausdorff dimension of X.

Proof. Let ι : Y → l∞(Y ) be an isometric embedding. By Proposition 3.9, the mapping ι ◦ f is in
locally Bochner integrable, and it has an upper gradient g in LQ(X). By [10, Theorem 4.3], the
mapping ι ◦ f satisfies a Q-Poincaré inequality. A standard chaining argument [6, Theorem 3.2]
now shows that f satisfies a pointwise inequality of the form

dY (f(x), f(y)) = ||ι ◦ f(x) − ι ◦ f(y)||l∞(Y ) . dX(x, y)((M(gQ)(x))1/Q + (M(gQ)(y))1/Q),

where M denotes the Hardy-Littlewood maximal function. Since M maps L1(X) to weak-L1(X),
the result follows. �

Proof of Theorem 1.4. We assume that X is complete, doubling, Q-regular on small scales, and
supports a Q-Poincaré inequality, and that f ∈ L1

loc(X ;Y ) is a continuous surjection with an upper
gradient in the space LQ,1(X). Since X is doubling, it separable, and hence the Q-regularity on
small scales and the countable sub-additivity of HQ imply that X has Hausdorff dimension Q. By
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Corollary 3.5, the space LQ,1(X) is contained in LQ(X). Thus, by Lemma 6.7 there is a set E such
that the Hausdorff dimension of f(X\E) is no greater than Q, and µ(E) = 0. On the other hand,
Theorem 6.3 and Corollary 6.6 imply that f satisfies Lusin’s condition N, and so HQ(f(E)) = 0
as well. Since f is a surjection, we see that Y has Hausdorff dimension no greater that Q. �

Remark 6.8. Theorem 1.5 shows that the conclusion of Theorem 1.4 does not hold for the Cantor
diamond space Xλ, introduced in subsection 4.2. However, recent work of Marola and Ziemer
allows us to make the following statement [17, Corollary 6.2]. Let m ≥ 3. If f : Xλ → R

m is a
continous mapping with an upper gradient in the space Lp(Xλ) for some p > pλ, then f satisfies
Lusin’s condition N2. Thus, by Lemma 6.7, we may conclude that f is not a surjection.

Finally, we prove Theorem 4.5, giving conditions under which a point does not have zero Lorentz
(Q, 1)-capacity. We employ a Sobolev-Lorentz embedding theorem that is valid in great generality
[19, Theorem 2.1].

Proof of Theorem 4.5. We assume that X is doubling, Q-regular at a point a ∈ X , and supports
a Q-Poincaré inequality. As before, we let C be a number, possibly varying at each instance, that
depends only on the constants associated to our assumptions.

Towards a contradiction, suppose that the point a has zero continuous (Q, 1)-Lorentz capacity.
Let r0 be the scale below which the Q-regularity condition holds, and let 0 < r < r0 and ǫ > 0. By
assumption, we may find a continuous map η : X → [0, 1] that is compactly supported in B(a, r),
takes the value 1 on a neighborhood of a, and has an upper gradient g satisfying ||g||LQ,1 < ǫ.
As in the proof of Theorem 6.5, there is a Haj lasz upper gradient g̃ of u such that ||g̃||LQ,1 < Cǫ.
The Poincaré ineqality implies that X is connected; this and the Q-regularity assumption show
that the hypotheses of [19, Theorem 2.1] are met under our assumptions. Thus for almost every
x, y ∈ B(a, r),

|f(x) − f(y)| ≤ C||g̃||LQ,1 ≤ Cǫ.

Choosing ǫ < 1/C, an easy approximation argument now yields a contradiction. �

Remark 6.9. Given Theorems 4.5 and 1.4, it is natural to ask what can be said about a mapping
f : X → Y with an upper gradient in some Banach function space LG(X), given that each point
of X does not have zero continuous G-capacity. Is there a bound on how much can such mappings
increase dimension, in terms of G?
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[5] Şerban Costea. Scaling invariant Sobolev-Lorentz capacity on R
n. Indiana Univ. Math. J., 56(6):2641–2669,

2007.
[6] Piotr Haj lasz and Pekka Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc., 145(688):x+101, 2000.
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[14] Stephen Keith and Xiao Zhong. The Poincaré inequality is an open ended condition. Ann. of Math. (2),

167(2):575–599, 2008.



22 K. WILDRICK AND T. ZÜRCHER
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