INVERTIBILITY OF SOBOLEV MAPPINGS UNDER MINIMAL HYPOTHESES

LEONID V. KOVALEV, JANI ONNINEN, AND KAI RAJALA

ABSTRACT. We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant $W^{1,n}$ mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion. The integrability assumption is shown to be optimal.

1. INTRODUCTION

Throughout this paper Ω is a bounded domain in \mathbb{R}^n . The classical Inverse Function Theorem states that if $f: \Omega \to \mathbb{R}^n$ is continuously differentiable and the differential matrix Df(x) is invertible at some point x, then f is a homeomorphism in a neighborhood of x. We are interested in a version of the Inverse Function Theorem for continuous weakly differentiable mappings. In this context the invertibility of the differential matrix is not sufficient. As an example, consider the winding mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ written in cylindrical coordinates as $f(r, \theta, z) = (r, 2\theta, z)$. Although f is Lipschitz and its Jacobian determinant J(x, f) equals 2 for a.e. $x \in \mathbb{R}^n$, this mapping is not a local homeomorphism.

Let us introduce the following subset of $n \times n$ matrices.

$$\mathcal{M}(\delta) = \{ A \in \mathbb{R}^{n \times n} \colon \langle A\xi, \xi \rangle \ge \delta |A\xi| |\xi| \quad \text{for all } \xi \in \mathbb{R}^n \}$$

where $-1 \leq \delta \leq 1$. Note that $\delta = -1$ imposes no condition on the matrix. When $-1 < \delta < 0$, the set $\mathcal{M}(\delta)$ is not convex and the differential inclusion

(1.1)
$$Df(x) \in \mathcal{M}(\delta)$$
 for a.e. $x \in \Omega$

cannot be integrated to yield a pointwise inequality for f.

The winding mapping does not satisfy (1.1) for any $\delta > -1$. Even so, this differential inclusion does not by itself guarantee that f is locally invertible, e.g., $f(x_1, x_2) = (x_1, 0)$. There are also such examples with strictly positive

Date: May 16, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C65; Secondary 26B10, 26B25.

Key words and phrases. Local homeomorphism, differential inclusion, finite distortion. Kovalev was supported by the NSF grant DMS-0913474.

Onninen was supported by the NSF grant DMS-0701059.

Rajala was supported by the Academy of Finland. Part of this research was done when Rajala was visiting Syracuse University. He wishes to thank the department for its hospitality.

Jacobian [15, Example 18]. To quantify the invertibility of a matrix $A \in \mathbb{R}^{n \times n}$, we introduce the inner distortion $K_I(A) \in [1, \infty]$.

(1.2)
$$K_{I}(A) = \begin{cases} \frac{\|A^{\sharp}\|^{n}}{(\det A)^{n-1}}, & \det A > 0\\ 1, & A = 0\\ \infty, & \text{otherwise.} \end{cases}$$

Here A^{\sharp} stands for the cofactor matrix of A and $\|\cdot\|$ is the operator norm. To shorter the notation we write $K_I(x, f) = K_I(Df(x))$ and

$$\mathscr{K}_{\Omega}[f] := \frac{1}{|\Omega|} \int_{\Omega} K_I(x, f) \,\mathrm{d}x,$$

where $|\Omega|$ is the Lebesgue measure of Ω . If $f \in W^{1,n}(\Omega, \mathbb{R}^n)$ and $K_I(x, f) < \infty$ a.e, then f has a logarithmic modulus of continuity [4, 9]; that is,

$$|f(a) - f(b)|^n \le \frac{C(n) \int_{2B} ||Df||^n}{\log\left(e + \frac{2\operatorname{diam} B}{|a-b|}\right)}, \qquad a, b \in B, \quad 2B \Subset \Omega.$$

If moreover $\mathscr{K}_{\Omega}[f] < \infty$ and f is invertible, then the inverse $h := f^{-1}$ is a $W^{1,n}$ -mapping and

$$\int_{\Omega} K_I(x, f) \, \mathrm{d}x = \int_{f(\Omega)} \|Dh\|^n,$$

see [1, Theorem 9.1]. Thus $\mathscr{K}_{\Omega}[f]$ controls the modulus of continuity of f^{-1} , should it exist. Our main result addresses its existence.

Theorem 1.1. Suppose that $f \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n)$ is a nonconstant mapping such that $\mathscr{K}_{\Omega}[f] < \infty$. If there exists $\delta > -1$ such that $Df(x) \in \mathcal{M}(\delta)$ for almost every $x \in \Omega$, then f is a local homeomorphism.

This theorem is already known in the planar case n = 2 [15, Theorem 4]. The assumption $\mathscr{K}_{\Omega}[f] < \infty$ cannot be replaced by $\int_{\Omega} K_I^q(x, f) \, \mathrm{d}x < \infty$ for any q < 1, see [15, Example 18] or [2, Example 1].

Our proof of Theorem 1.1 is based on two results of independent interest. The first step toward proving that a mapping is a local homeomorphism is to show that it is discrete and open; that is, preimages of points are discrete sets and images of open sets are open.

Theorem 1.2. Let $f: \Omega \to \mathbb{R}^n$ be a nonconstant mapping in $W^{1,n}_{\text{loc}}(\Omega, \mathbb{R}^n)$ such that J(x, f) > 0 a.e. If $(Df)^{-1} \in L^{\infty}(\Omega)$, then f is discrete and open.

The challenging Iwaniec-Šverák conjecture asserts even more: a nonconstant mapping $f \in W_{\text{loc}}^{1,n}(\Omega, \mathbb{R}^n)$ with $\mathscr{K}_{\Omega}[f] < \infty$ is discrete and open. So far this conjecture was proved only for n = 2 in [10]. Partial results in this direction were recently obtained in [6, 7, 8, 16, 20, 21].

Another crucial ingredient of our proof of Theorem 1.1 is an estimate for the multiplicity of a local homeomorphism in terms of the integral of $K_I(\cdot, f)$ in dimensions $n \ge 3$. This result (Theorem 5.1) continues the line of development that began in 1967 with the celebrated Global Homeomorphism Theorem of Zorich [25].

The proof of Theorem 1.1 proceeds as follows. The differential inclusion (1.1) allows us to approximate f by mappings $f^{\lambda}(x) := f(x) + \lambda x$ to which Theorem 1.2 can be applied. The results of [15] yield that f^{λ} is a local homeomorphism. By virtue of Theorem 5.1 the mappings f^{λ} have uniformly bounded multiplicity, which leads to a bound for the essential multiplicity of f. This additional information suffices to show that f is discrete and open, see Proposition 2.2 below. Since f is a limit of local homeomorphisms f^{λ} , the conclusion follows.

Different approaches to the invertibility of Sobolev mappings were pursued in [2, 3, 5, 17, 19, 23], see also references therein.

2. Background

In this section we collect necessary notation and preliminaries. An open ball with center a and radius r is denoted by $B(a,r) := \{x \in \mathbb{R}^n : |x-a| < r\}$. Its boundary is the sphere S(a,r). If $\lambda > 0$ and B = B(a,r), then $\lambda B = B(a, \lambda r)$ and $\lambda S = S(a, \lambda r)$. In addition, $\mathbb{B} = B(0,1)$, $\mathbb{B}_r = B(0,r)$, $\mathbb{S} = S(0,1)$ and $\mathbb{S}_r = S(0,r)$.

Let \mathcal{H}^d stand for the *d*-dimensional Hausdorff measure which agrees with the Lebesgue measure when *d* is an integer. The Hausdorff distance $d_{\mathcal{H}}(E, F)$ between nonempty bounded sets *E* and *F* is defined as the infimum of numbers $\epsilon > 0$ such that the ϵ -neighborhood of *E* contains *F* and vice versa.

Given a mapping $f: \Omega \to \mathbb{R}^n$ and a set $E \subset \Omega$, we denote by N(y, f, E)the cardinality (possibly infinite) of the set $f^{-1}(y) \cap E$. If $y \in \mathbb{R}^n \setminus f(\partial\Omega)$, the local degree of f at y with respect to G is denoted deg(y, f, G). We write $f: A \xrightarrow{\text{hom}} B$ to indicate that f is a homeomorphism from A onto B.

Let Γ be a family of paths (parametrized curves) in \mathbb{R}^n , $n \geq 2$. The image of $\gamma \in \Gamma$ is denoted by $|\gamma|$. We let Υ_{Γ} be the set of all Borel functions $\rho \colon \mathbb{R}^n \to [0,\infty]$ such that

$$\int_{\gamma} \rho \, \mathrm{d}s \geq 1$$

for every locally rectifiable path $\gamma \in \Gamma$. The functions in Υ_{Γ} are called admissible for Γ . For a given weight $\omega \colon \mathbb{R}^n \to [0, \infty]$ we define

$$\mathsf{M}_{\omega}\Gamma = \inf_{\rho \in \Upsilon_{\Gamma}} \int \rho(x)^{n} \omega(x) \, \mathrm{d}x,$$

and call $\mathsf{M}_{\omega}\Gamma$ the weighted conformal modulus of Γ . Here it suffices to have ω defined on a Borel set containing $\bigcup_{\gamma \in \Gamma} |\gamma|$. When $\omega \equiv 1$ we obtain the conformal modulus $\mathsf{M}\Gamma$. We will also use the spherical modulus with respect to a sphere S,

$$\mathsf{M}^{S}\Gamma = \inf_{\rho \in \Upsilon_{\Gamma}} \int_{S} \rho(y)^{n} \, \mathrm{d}\mathcal{H}^{n-1}(y).$$

The reader may wish to consult the monographs [22, 24] for basic properties of moduli of path families. The following generalization of the Poletsky inequality relates moduli of Γ and of its image under f, denoted $f\Gamma$.

Proposition 2.1. [13] Suppose that $f \in W^{1,n}(\Omega, \mathbb{R}^n)$ is a discrete and open mapping with $\mathscr{K}_{\Omega}[f] < \infty$. If Γ is a family of paths contained in Ω , then

(2.1)
$$\mathsf{M}f\Gamma \le \mathsf{M}_{K_{I}(\cdot,f)}\Gamma.$$

We will use the following result, which establishes the Iwaniec-Sverák conjecture under an additional assumption on the multiplicity of f.

Proposition 2.2. Suppose that $f \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n)$ is a nonconstant mapping with $\mathscr{K}_{\Omega}[f] < \infty$. Let B be a ball such that $2B \subseteq \Omega$. If

(2.2)
$$\operatorname{ess\,lim\,sup}_{r\to 0} r^{1-n} \int_{S(a,r)} N(y,f,B) \, \mathrm{d}\mathcal{H}^{n-1}(y) < \infty$$

for every $a \in \mathbb{R}^n$, then f is discrete and open in B.

This proposition is a consequence of [21, Theorem 2.2]. Although [21, Theorem 2.2] requires that

$$\operatorname{ess\,sup}_{0 < t < 1} \int_{\partial(tB)} \frac{\|D^{\sharp}f(x)\|}{|f(x) - a|^{n-1}} \, \mathrm{d}\mathcal{H}^{n-1}(x) < \infty,$$

this condition is only used to obtain (2.2).

3. Preliminary results

Proposition 3.1. Suppose that $f \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n)$ is a nonconstant mapping such that $\mathscr{K}_{\Omega}[f] < \infty$. Let $x \in \Omega$ and y = f(x). If the x-component of $f^{-1}(y)$ is $\{x\}$, then f is a discrete and open in some neighborhood of x.

Proof. Recall that Ω is bounded. Let U_j be the x-component of $f^{-1}B(y, 1/j)$. Since the sets $\overline{U}_j \subset \mathbb{R}^n$ are nested, compact, and connected, their intersection E is also connected. On the other hand, $x \in E \subset \overline{f^{-1}(y)}$, hence $E = \{x\}$. It follows that diam $(U_j) \to 0$ as $j \to \infty$. Let us fix j such that $U_j \subseteq \Omega$.

We claim that f is quasilight in U_j ; that is, the connected components of $f^{-1}(y) \cap U_j$ are compact for all $y \in \mathbb{R}^n$. If not, then there exists $z \in U_j$ such that the z-component of $f^{-1}(f(z))$ intersects ∂U_j at some point b. Since $f(b) = f(z) \in B(y, 1/j)$, there exists t > 0 such that $fB(b, t) \subset B(y, 1/j)$. This contradicts the definition of U_j . Therefore, f is quasilight in U_j . By [20, Theorem 1.1] f is discrete and open in U_j .

Given a sphere S, and a point $p \in S$, let $C_S(p, \phi)$ be the open spherical cap of S with center p and opening angle $\phi \in (0, \pi]$. For instance $C_S(p, \pi/2)$ is a hemisphere and $C_S(p, \pi)$ is a punctured sphere.

The following topological lemma forms the main step of the proof of Zorich Global Homeomorphism Theorem, see [22, III.3].

Lemma 3.2. Let $f: \Omega \to \mathbb{R}^n$ be a local homeomorphism, $\Omega \subset \mathbb{R}^n$, $n \geq 3$. Suppose we have the following:

- (i) $G \subseteq \Omega$ such that $f: G \xrightarrow{\text{hom}} G'$ where G' is convex;
- (ii) $G \subset D \Subset \Omega$ and there is $a \in \partial G \cap \partial D$;
- (iii) a ball $\mathscr{B} \subset \mathbb{R}^n$ that contains a' = f(a) and such that $S = \partial \mathscr{B}$ meets G' at some point b'.

Let $b = f^{-1}(b') \cap G$ and denote by $C_S^*(b', \phi)$ the component of $f^{-1}C_S(b', \phi)$ containing b. Then there exists $0 < \phi_0 < \pi$ such that $C_S^*(b', \phi_0) \subset D$ and the closure of $C_S^*(b', \phi_0)$ meets ∂D .

Proof. Let ϕ_0 be the supremum of all ϕ such that $C^*_S(b', \phi) \subset D$. It suffices to show that $\phi_0 < \pi$.

Suppose to the contrary that $\phi_0 = \pi$. Since $C_S^*(b', \pi) \subset D$, it follows from [22, Lemma III.3.1] that $f: \overline{C}_S^*(b', \pi) \xrightarrow{\text{hom}} \overline{C}_S(b', \pi) = S$ (here the assumption $n \geq 3$ is used). Since $S^* := \overline{C}_S^*(b', \pi)$ is homeomorphic to S, it separates \mathbb{R}^n into two components. Let U be the bounded component of $\mathbb{R}^n \setminus S^*$. Then the boundary of f(U) is contained in S which implies $f(U) = \mathscr{B}$. Moreover, $f: \overline{U} \xrightarrow{\text{hom}} \overline{\mathscr{B}}$ by [22, Lemma III.3.1]. Since $b \in \overline{U} \cap \overline{G}$ and since $f(\overline{U}) \cap f(\overline{G}) = \overline{\mathscr{B}} \cap \overline{G}'$ is convex (hence connected), [22, Lemma III.3.3] yields that f is homeomorphic in $\overline{U} \cup \overline{G}$.

This leads to a contradiction. Since $\overline{U} \cup \overline{G} \subset \overline{D}$ it follows that a lies on the boundary of $\overline{U} \cup \overline{G}$. On the other hand, $f(a) = a' \in f(U)$ is an interior point of $f(\overline{U} \cup \overline{G})$.

We shall use a geometric lemma which is essentially contained in [14].

Lemma 3.3. Suppose we are given a ball $B(y_0, r) \subset \mathbb{R}^n$, a point $y_1 \in S(y_0, r)$ and a connected set E that contains y_0 and some point $y_2 \in S(y_0, r)$. Then there exist $q \in B(y_0, r)$ and $0 < \sigma < 2r$ such that for every $\sigma < t < 4\sigma/3$,

(*i*) $y_1 \in B(q, t);$

(ii)
$$S(q,t) \cap E \neq \emptyset$$
;

(*iii*) $S(q,t) \subset B(y_0,2r) \setminus B(y_0,r/10)$.

Proof. Let α be the angle at the point $(y_0+y_1)/2$ formed by the line segments from y_0 to $(y_0+y_1)/2$ and from $(y_0+y_1)/2$ to y_2 . There are two cases possible.

Case 1. $0 \leq \alpha < \pi/2$, or, equivalently, $|y_1 - y_2| > r$. In this case we choose $q = (y_0 + y_1)/2$ and $\sigma = 3r/5$. For $\sigma < t < 4\sigma/3$ we have $B(y_0, r/10) \subset B(q, t)$ and $y_1 \in B(q, t)$. At the same time, $y_2 \notin \overline{B}(q, t)$ because

$$|y_2 - q| > \frac{\sqrt{3}}{2}r = \frac{5}{2\sqrt{3}}\sigma > \frac{4}{3}\sigma.$$

Thus, all conditions (i)–(iii) are satisfied.

Case 2. $\pi/2 \leq \alpha \leq \pi$, or, equivalently, $|y_1 - y_2| \leq r$. This time we choose $q = (y_1 + y_2)/2$ and $\sigma = |y_1 - y_2|/2$. Since $|y_0 - q| \geq (\sqrt{3}/2)r$, it follows

that $\overline{B}(q,t) \cap B(y_0,r/10) = \emptyset$ provided that

$$t < \left(\frac{\sqrt{3}}{2} - \frac{1}{10}\right)r.$$

This is indeed the case, because

$$\frac{4}{3}\sigma \le \frac{2}{3}r < \left(\frac{\sqrt{3}}{2} - \frac{1}{10}\right)r.$$

All conditions (i)–(iii) are met.

4. Proof of Theorem 1.2

Let $||(Df)^{-1}||_{\infty} = L$. First we observe that the inner distortion of f is locally integrable because

(4.1)
$$K_I(x,f) = \|(Df(x))^{-1}\|^n J(x,f) \le L^n \|Df\|^n$$
 for a.e. $x \in \Omega$.

We may assume that $\mathbb{B}_4 = B(0,4) \Subset \Omega$. It suffices to show that f is discrete and open in \mathbb{B} . We will do this by proving that (2.2) holds. Without loss of generality, a in (2.2) equals 0. Fix 1 < t < 2 and 3 < T < 4 so that $\mathcal{H}^{n-1}(f\mathbb{S}_t) < \infty$ and $\mathcal{H}^{n-1}(f\mathbb{S}_T) < \infty$. By the area formula we have

$$\int_{\mathbb{R}^n} N(y, f, \mathbb{B}_T) \, \mathrm{d}y = \int_{\mathbb{B}_T} J(x, f) \, \mathrm{d}x < \infty.$$

Therefore, for almost every $0 < R < \infty$ we have

(4.2)
$$\int_{\mathbb{S}_R} N(y, f, \mathbb{B}_T) \, \mathrm{d}\mathcal{H}^{n-1}(y) < \infty \text{ and } \mathcal{H}^{n-1}(f(\mathbb{S}_T) \cap \mathbb{S}_R) = 0.$$

We fix such R < 1/(2L) so that (4.2) holds, and let

$$M := R^{1-n} \int_{\mathbb{S}_R} N(y, f, \mathbb{B}_T) \, \mathrm{d}\mathcal{H}^{n-1}(y).$$

Our goal is to prove that

(4.3)
$$r^{1-n} \int_{\mathbb{S}_r} N(y, f, \mathbb{B}) \, \mathrm{d}\mathcal{H}^{n-1}(y) \le M \text{ for a.e. } 0 < r < R.$$

Let r < R be such that $\mathcal{H}^{n-1}(f(\mathbb{S}_t) \cap \mathbb{S}_r) = 0$, and denote by $E \subset \mathbb{S}$ the set of unit vectors v for which

(4.4)
$$\deg(Rv, f, \mathbb{B}_T) < \deg(rv, f, \mathbb{B}_t).$$

Let $I_v: [r, R] \to \mathbb{R}^n$ be the parametrized line segment $I_v(s) = sv$. By Proposition 3.1, either $f^{-1}(sv)$ has a nontrivial component for some $r \leq s \leq R$, or f is discrete and open in a neighborhood of $f^{-1}(I_v[r, R])$. By using the co-area formula as in [21, Lemma 2.4], we see that the former possibility only occurs for $v \in F_1$ where $\mathcal{H}^{n-1}(F_1) = 0$. Now we assume that $v \in E \setminus F_1$. Then, from (4.4) and basic properties of path lifting, it follows that I_v has a maximal f-lifting I_v^* starting at \mathbb{B}_t and leaving \mathbb{B}_T .

Denote

$$\ell_f(x) := \liminf_{z \to x} \frac{|f(z) - f(x)|}{|z - x|}.$$

By our assumption on $(Df)^{-1}$ there exists a null set $F \subset \Omega$ such that $\ell_f(x) \geq 1/L$ for $x \in \Omega \setminus F$. Let F_2 be the set of $v \in E \setminus F_1$ such that either I_v^* is unrectifiable or $\mathcal{H}^1(|I_v^*| \cap F) > 0$. Since the measure of F is zero, it follows that the family of curves $\Gamma_F := \{I_v^* : v \in F_2\}$ has zero weighted modulus for any locally integrable weight. In particular, $\mathsf{M}_{K_I}\Gamma_F = 0$. By (2.1) we have $\mathsf{M}\{I_v : v \in F_2\} = 0$, which implies $\mathcal{H}^{n-1}(F_2) = 0$.

For $v \in E \setminus (F_1 \cup F_2)$ we have

(4.5)
$$\mathcal{H}^1(I_v^*) \le L\mathcal{H}^1(I_v) < LR < \frac{1}{2},$$

which contradicts the fact that I_v^* begins at \mathbb{B}_t and leaves \mathbb{B}_T . Thus $E \subset F_1 \cup F_2$. As a consequence, $\mathcal{H}^{n-1}(E) = 0$, which means $\deg(rv, f, \mathbb{B}_t) \leq \deg(Rv, f, \mathbb{B}_T)$ for \mathcal{H}^{n-1} -a.e. $v \in \mathbb{S}$. Since $\deg(y, f, \mathbb{B}_t) = N(y, f, \mathbb{B}_t)$ for a.e. $y \in \mathbb{R}^n$ [8, Proposition 2], inequality (4.3) follows. This completes the proof of Theorem 1.2 via Proposition 2.2.

5. Multiplicity of local homeomorphisms

In 1967 Zorich [25] proved that a local homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$, $n \geq 3$, with $K_I(\cdot, f) \in L^{\infty}(\mathbb{R}^n)$ must be a global homeomorphism. Martio, Rickman and Väisälä [17] gave a local version of this result. Namely, if $f: 2B \to \mathbb{R}^n$, $n \geq 3$, is a local homeomorphism with bounded distortion K_I , then its radius of injectivity in B is bounded from below by a constant depending only on n and ess sup K_I . As a consequence, the multiplicity N(y, f, B) is bounded by $C(n, \operatorname{ess} \operatorname{sup} K_I)$ for all $y \in \mathbb{R}^n$.

The boundedness of K_I can be replaced by the condition

$$\exp(\lambda K_I^{1/(n-1)}) \in L^1(2B),$$

but this cannot be relaxed any further [14, 18]. Surprisingly, the multiplicity bound remains true under a much weaker condition, namely $K_I \in L^1$. Example 7.2 below shows that $K_I^q \in L^1$ with q < 1 does not suffice. The mappings $f_j(z) = e^{jz}$ show that all results discussed here fail when n = 2.

Theorem 5.1. Let $f \in W^{1,n}_{\text{loc}}(\Omega, \mathbb{R}^n)$, $n \geq 3$, be a local homeomorphism such that $\mathscr{K}_{\Omega}[f] < \infty$. If B is a ball such that $4B \Subset \Omega$, then $N(y, f, B) \leq C(n, \mathscr{K}_{4B}[f])$ for all $y \in \mathbb{R}^n$.

Proof. We may assume that B is the unit ball \mathbb{B} . Let $x_1, \ldots, x_m \in f^{-1}(y) \cap \mathbb{B}$. Moreover, let r_j be the largest radius r so that the x_j -component $U(x_j, r)$ of $f^{-1}B(y,r)$ satisfies $U(x_j,r) \subset \mathbb{B}_3$. We denote by s_j the largest radius s such that $\overline{B}(x_j,s) \subset \overline{U}(x_j,r_j)$. Then $f\overline{B}(x_j,s_j)$ intersects both y and $S(y,r_j)$. We notice that since $x_j \in \mathbb{B}$ and since the balls $B(x_j,s_j)$ are pairwise disjoint, there exist at most N(n) indices j for which $s_j \geq 1$. Thus we may assume that $B(x_j,s_j) \subset \mathbb{B}_2$ for every $1 \leq j \leq m$. We now fix $1 \leq j \leq m$ and a point $a_j \in \overline{U}(x_j, r_j) \cap \mathbb{S}_3$. We apply Lemma 3.3 with $B(y_0, r) = B(y, r_j)$, $y_1 = f(a_j)$ and $E = f(\overline{B}(x_j, s_j))$, obtaining a point q_j and a number $\sigma_j > 0$. For $\sigma_j < t < 4\sigma_j/3$ choose $w_t \in \overline{B}(x_j, s_j)$ such that $f(w_t) \in S(q_j, t)$. We apply Lemma 3.2 with $G = U(x_j, r_j)$, $D = \mathbb{B}_3$, $a = a_j$, $\mathscr{B} = B(q_j, t)$ and $b' = f(w_t)$. As a result we obtain $0 < \phi_t < \pi$ such that the spherical cap $\mathscr{C}_t := C_{S(q_j,t)}(f(w_t), \phi_t)$ satisfies $\mathscr{C}_t^* \subset \mathbb{B}_3$ and $\overline{\mathscr{C}}_t^* \cap \mathbb{S}_3$ contains some point c_t . Consequently, for every path γ joining $f(w_t)$ and $f(c_t)$ in \mathscr{C}_t , the maximal f-lifting γ^* of γ starting at w_t starts from \mathbb{B}_2 and leaves \mathbb{B}_3 . Following [24, 10.2], we will choose a particular family Γ_t of such paths.

Let us say that a circular arc is *short* if it is contained in a half-circle. The family Γ_t will consist of all short circular arcs that connect $f(w_t)$ to $f(c_t)$ within \mathscr{C}_t . More precisely, let h be a Möbius transformation that maps $f(w_t)$ to infinity and $S(q_j, t) \setminus \{f(w_t)\}$ to \mathbb{R}^{n-1} . Observe that $h(\mathscr{C}_t)$ is the complement of a ball in \mathbb{R}^{n-1} . The convexity of $\mathbb{R}^{n-1} \setminus h(\mathscr{C}_t)$ implies that there exists an (n-2)-hemisphere V such that $h(f(c_t)) + sv \in h(\mathscr{C}_t)$ for every s > 0 and $v \in V$.

Introduce a family of curves $I_v: [0, \infty) \to \mathscr{C}_t$, defined by

$$I_v(s) = h^{-1}(h(f(c_t)) + s^{-1}v),$$

and denote by I_v^* the maximal *f*-lifting of I_v starting at w_t . Now let $0 < \ell(v) < \infty$ be the smallest number such that $I_v^*(\ell(v)) \in \mathbb{S}_3$. Let

$$\Gamma_t = \{ I_v^* |_{[0,\ell(v)]} \colon v \in V_t \}.$$

We write $f\Gamma_t$ for the image of Γ_t under f.

There is a lower bound for the spherical modulus of $f\Gamma_t$, namely [24, Theorem 10.2]

(5.1)
$$\mathsf{M}_{n}^{S}(f\Gamma_{t}) \geq \frac{C(n)}{t}$$

Let

$$\Gamma'_j = \{ \gamma : \gamma \in f\Gamma_t \text{ for some } \sigma_j < t < 4\sigma_j/3 \},$$

and let Γ_j^* be the family of the corresponding lifts γ^* starting at w_t . Then integrating (5.1) we obtain

(5.2)
$$\mathsf{M}\Gamma'_{j} \ge \int_{\sigma_{j}}^{4\sigma_{j}/3} \frac{C(n)}{t} \,\mathrm{d}t \ge C(n).$$

As observed earlier, every $\gamma \in \Gamma_j^*$ starts at \mathbb{B}_2 and leaves \mathbb{B}_3 . We denote by E_j the smallest closed subset of $\overline{\mathbb{B}}_3 \setminus \mathbb{B}_2$ that contains $|\gamma| \cap (\overline{\mathbb{B}}_3 \setminus \mathbb{B}_2)$ for all $\gamma \in \Gamma_j^*$. Note that

(5.3)
$$E_j \subset f^{-1} \left(\overline{B}(y, 2r_j) \setminus B(y, r_j/10) \right)$$

by part (iii) of Lemma 3.3. Since the characteristic function χ_{E_j} is an admissible function for Γ_i^* , we have

(5.4)
$$\mathsf{M}_{K_I}\Gamma_j^* \le \int_{E_j} K_I(x, f) \,\mathrm{d}x.$$

The generalized Poletsky inequality $\mathsf{M}\Gamma'_j \leq \mathsf{M}_{K_I}\Gamma^*_j$ [15, Theorem 4.1], together with (5.2) and (5.4) yield

(5.5)
$$mC(n) \leq \sum_{j=1}^{m} \mathsf{M}\Gamma'_{j} \leq \sum_{j=1}^{m} \int_{E_{j}} K_{I}(x) \, \mathrm{d}x$$
$$\leq \left(\sup_{x \in \mathbb{B}_{3} \setminus \mathbb{B}_{2}} \sum_{j=1}^{m} \chi_{E_{j}}(x)\right) \times \int_{3B} K_{I}(x, f) \, \mathrm{d}x$$

Claim 1. There exists $M = M(n, \mathscr{K}_{4B}[f])$ such that

(5.6)
$$\sum_{j=1}^{m} \chi_{E_j}(x) \le M \quad \text{for every } x \in \mathbb{B}_3 \setminus \mathbb{B}_2.$$

By virtue of (5.5), Theorem 5.1 follows from Claim 1. In the rest of this section we prove (5.6).

Let $x \in \mathbb{B}_3 \setminus \mathbb{B}_2$ be a point covered by M of the sets E_j . After relabeling we have $x \in E_j$ for $1 \leq j \leq M$, and $r_1 \leq r_2 \leq \cdots \leq r_M$. Since disjoint sets have disjoint preimages, (5.3) implies $r_M \leq 20r_1$.

Choose $\tau > 0$ such that $B(x, \tau) \subset \mathbb{B}_3$ and f is injective in $\overline{B}(x, \tau)$. For $1 \leq j \leq M$ there exists $\gamma_j^* \in \Gamma_j^*$ which meets $B(x, \tau)$. Let w_j be the starting point of γ_j^* , and let γ_j be the subcurve of γ_j^* that begins at w_j and ends once it meets $\overline{B}(x, \tau)$.

Claim 2. For $1 \leq j \leq M$ there is a curve τ_j that joins y to $f(w_j)$ within $\overline{B}(y, r_j)$ in such a way that the union of $|\tau_j|$ and $|f \circ \gamma_j|$ can be mapped onto a line segment by an L-biLipschitz mapping $g \colon \mathbb{R}^n \to \mathbb{R}^n$. Here L is a universal constant.

Proof of Claim 2. Note that the image $f \circ \gamma_j$ is a short circular arc contained in the sphere S(q, t) of Lemma 3.3. Part (iii) of Lemma 3.3 implies

(5.7)
$$\operatorname{dist}(y, |f \circ \gamma_j|) \ge \operatorname{dist}(y, S(q, t)) \ge \frac{1}{10} r_j \ge \frac{1}{40} \operatorname{diam} |f \circ \gamma_j|.$$

There are two cases. If $y \in B(q, t)$, then τ_j is the line segment connecting y to $f(w_j)$. By virtue of (5.7), the distance from y to S(q, t) is comparable to t. Therefore, the angle between τ_j and the sphere S(q, t) is bounded from below by a universal constant, and the claim follows.

Suppose that $y \notin B(q,t)$. Let $\rho_j := |f(w_j) - y|$. Note that $r_j/10 \le \rho_j \le r_j$. Let p be the point of the sphere $S(y,\rho_j)$ that is farthest from q, namely

$$p = y - \rho_j \frac{q - y}{|q - y|}.$$

We choose τ_j as the union of the line segment connecting y to p and the geodesic arc on $S(y, \rho_j)$ from p to $f(w_j)$. Once again, the angle between τ_j and the sphere S(q, t) is bounded from below by a universal constant. \Box .

Let η_j , $1 \leq j \leq M$, be the curve obtained by concatenating $-(f \circ \gamma_j)$ with $-\tau_j$, where - indicates the reversal of orientation. Note that η_j begins in $f\overline{B}(x,\tau)$, proceeds along a circular arc to $f(w_j)$, and ends at y. Its f-lifting η_j^* starting in $\overline{B}(x,\tau)$ is contained in $\overline{\mathbb{B}}_3$ and ends at x_j .

Claim 3. There exists $\epsilon = \epsilon(n, M)$ such that $\epsilon \to 0$ as $M \to \infty$, and

(5.8)
$$\min_{1 \le i < j \le M} d_{\mathcal{H}}(|\eta_i|, |\eta_j|) \le \epsilon r_1/L.$$

We begin our proof of Claim 3 by observing that $|\eta_j| \subset B(y, 2r_M) \subset B(y, 40r_1)$. For $\epsilon > 0$ let $Z = \{z_1, \ldots, z_N\}$ be an $(\epsilon r_1/L)$ -net in $B(y, 40r_1)$, where $N = N(\epsilon, n)$. The set of all nonempty subsets of Z is an $(\epsilon r_1/L)$ -net in the set of all nonempty closed subsets of $B(y, 40r_1)$ equipped with the Hausdorff metric. If $M > 2^N$, then by the pigeonhole principle there exist i < j such that $|\eta_i|$ and $|\eta_j|$ are within the distance $(\epsilon r_1/L)$ from the same subset of Z. Claim 3 follows.

Fix i, j, and ϵ as in Claim 3, and let $g: \mathbb{R}^n \to \mathbb{R}^n$ be the *L*-biLipschitz mapping from Claim 2. By replacing f with $g \circ f$, which has a comparable distortion function K_I , we may assume that $|\eta_j|$ is a line segment. For $\delta > 0$ we denote by $W(\delta)$ the open δ -neighborhood of $|\eta_j|$. Let $W^*(\delta)$ be the x_j -component of $f^{-1}W(\delta)$.

Claim 4. If $\delta > \epsilon r_1$, then $W^*(\delta) \cap \mathbb{S}_4 \neq \emptyset$.

Since $\delta > \epsilon r_1$, we have $|\eta_i| \subset W(\delta)$. Suppose to the contrary that $W^*(\delta) \subset \mathbb{B}_4$. Then $W^*(\delta) \Subset \Omega$, which by [22, Lemma III.3.1] implies that $f: W^*(\delta) \to W(\delta)$ is a homeomorphism. This contradicts the fact that the *f*-liftings of η_i and η_j starting in $\overline{B}(x,\tau)$ end at different points, namely x_i and x_j . \Box

Let δ_0 be the supremum of all numbers δ such that $W^*(\delta) \subset \mathbb{B}_4$. Since f is a local homeomorphism, $\delta_0 > 0$. By [22, Lemma III.3.1], $f: W^*(\delta) \xrightarrow{\text{hom}} W(\delta)$ for every $0 < \delta < \delta_0$. By Claim 4 we have $\delta_0 \leq \epsilon r_1$.

Choose a point $a \in \partial W^*(\delta_0) \cap \mathbb{S}_4$. Let a' = f(a). Since $a' \in \partial W(\delta_0)$, there exists $p \in |\eta_j|$ such that $|a' - p| = \delta_0$. For $\delta_0 < t < \frac{1}{2} \operatorname{diam} |\eta_j|$ choose $b'_t \in |\eta_j| \cap S(p,t)$. We apply Lemma 3.2 with $G = W^*(\delta_0)$, $D = \mathbb{B}_4$, a = a, $\mathscr{B} = B(p,t)$ and $b' = b'_t$. As a result we obtain $0 < \phi_t < \pi$ such that the spherical cap $\mathscr{C}_t := C_{S(p,t)}(b'_t, \phi_t)$ satisfies $\mathscr{C}_t^* \subset \mathbb{B}_4$ and $\overline{\mathscr{C}}_t^* \cap \mathbb{S}_4$ contains some point c_t . Consequently, for every path γ joining b'_t and $f(c_t)$ in \mathscr{C}_t , the maximal f-lifting γ^* of γ starting at $f^{-1}(b'_t) \cap |\eta^*_j|$ starts from \mathbb{B}_3 and leaves \mathbb{B}_4 . Let Γ be the family of all such paths γ and Γ^* be the family of the lifts γ^* . From [24, Theorem 10.2] we have

$$\mathsf{M}\Gamma \ge C(n) \int_{\epsilon r_1}^{\operatorname{diam}(\eta_j)/2} \frac{\mathrm{d}t}{t} \ge C(n) \log \frac{\operatorname{diam}(\eta_j)}{2\epsilon r_1}.$$

By (5.7) we have diam $|\eta_i| \ge cr_1$ with a universal constant c > 0. Therefore,

(5.9)
$$\mathsf{M}\Gamma \ge C(n)\log\frac{1}{\epsilon}$$

On the other hand, since the characteristic function $\chi_{\mathbb{B}_4 \setminus \mathbb{B}_3}$ is an admissible function for Γ_i , we obtain

$$\mathsf{M}_{K_I}\Gamma^* \leq \int_{\mathbb{B}_4\setminus\mathbb{B}_3} K_I(x,f) \,\mathrm{d}x.$$

Combining this with (5.9) and using the Poletsky inequality again, we have $\epsilon \geq C(n, \mathscr{K}_{4B}[f])$, hence $M \leq C(n, \mathscr{K}_{4B}[f])$. This gives (5.6). The proof of Theorem 5.1 is complete.

6. Proof of Theorem 1.1

Denote $f^{\lambda}(x) = f(x) + \lambda x$, $\lambda > 0$. Then $f^{\lambda} \in W^{1,n}_{\text{loc}}(\Omega, \mathbb{R}^n)$. Moreover, by [15, Lemma 10],

(6.1)
$$K_I(x, f^{\lambda}) \le C(\delta, n) K_I(x, f) \text{ and } ||(Df^{\lambda})^{-1}(x)|| \le C(\delta, \lambda)$$

for almost every $x \in \Omega$. Thus f^{λ} is discrete and open for every $\lambda > 0$ by Theorem 1.2. Furthermore, by [15, Lemma 13] f_{λ} is a local homeomorphism. (Although [15, Lemma 13] imposes a stronger condition on the distortion of f, this condition is only used to ensure that f is discrete and open.) Since $f^{\lambda} \to f$ locally uniformly, the following proposition implies that f is a local homeomorphism, completing the proof of Theorem 1.1.

Proposition 6.1. Suppose that a mapping $f \in W^{1,n}_{\text{loc}}(\Omega, \mathbb{R}^n)$ with $\mathscr{K}_{\Omega}[f] < \infty$ can be uniformly approximated by local homeomorphisms $f_j \in W^{1,n}_{\text{loc}}(\Omega, \mathbb{R}^n)$ such that $\sup_j \mathscr{K}_{\Omega}[f_j] < \infty$. Then f is a local homeomorphism.

Proof. By [15, Proposition 7] it suffices to show that f is discrete and open. If n = 2, this is due to Iwaniec and Šverák [10]. Thus we assume that $n \ge 3$. Let $B = B(x_0, R)$ be a ball such that $8B \subseteq \Omega$. We will show that

(6.2)
$$N(y, f, B) \le C$$
 for a.e. $y \in \mathbb{R}^n$

where $C < \infty$ does not depend on y. Proposition 2.2 will then imply that f is discrete and open in B.

Applying Theorem 5.1 to f_i , we obtain

 $N(y, f_i, 2B) \leq C$ for every $y \in \mathbb{R}^n$

where C depends only on $\sup_j \mathscr{K}_{\Omega}[f_j]$ and n.

We fix R < t < 2R so that $\mathcal{H}^{n-1}(fS(x_0,t)) < \infty$, and a point $y \in fB \setminus fS(x_0,t)$. Let $d = \operatorname{dist}(y, fS(x_0,t))$. Since $f_j \to f$ locally uniformly, there exists j_0 such that $|f_j(x) - f(x)| < d/2$ for all $j \ge j_0$ and all $x \in S(x_0,t)$. Consequently, the restrictions of f_j and f to $S(x_0,t)$ are homotopic via the straight-line homotopy that takes values in $\mathbb{R}^n \setminus \{y\}$. It follows that

$$\deg(y, f, B(x_0, t)) = \deg(y, f_j, B(x_0, t)) \le N(y, f_j, 2B) \le C$$

for all $j \ge j_0$. Since $N(y, f, B) \le N(y, f, B(x_0, t)) = \deg(y, f, B(x_0, t))$ for almost every $y \in \mathbb{R}^n$, we conclude that (6.2) indeed holds. The proof is complete.

7. Concluding Remarks

Corollary 7.1. Suppose that $f \in W^{1,n}_{\text{loc}}(\mathbb{R}^n, \mathbb{R}^n)$ is a nonconstant mapping such that $K_I(\cdot, f) \in L^1_{\text{loc}}(\mathbb{R}^n)$. If there exists $\delta > -1$ such that $Df(x) \in \mathcal{M}(\delta)$ for almost every $x \in \mathbb{R}^n$, then f is a homeomorphism.

Proof. As in the proof of Theorem 1.1 we have that $f^{\lambda}(x) = f(x) + \lambda x$ is a local homeomorphism for all $\lambda > 0$. Since $(Df^{\lambda})^{-1} \in L^{\infty}(\mathbb{R}^n)$, it follows from [15, Lemma 12] that

(7.1)
$$\liminf_{x \to a} \frac{|f(x) - f(a)|}{|x - a|} > 0$$

for all $a \in \mathbb{R}^n$. By a theorem of John [11, p. 87], f^{λ} is a homeomorphism. Since f is discrete and open by Theorem 1.1, we can apply [15, Proposition 7] and conclude that f is a homeomorphism.

Sharpness of Theorem 5.1 is demonstrated by the following example which combines the ideas from [2] and [14].

Example 7.2. For any q < 1 there exists a sequence of mappings $f_j \in W^{1,3}(\mathbb{B}, \mathbb{R}^3)$ such that

$$\sup_{j} \int_{\mathbb{B}} K_{I}^{q}(x, f_{j}) \, \mathrm{d}x < \infty \text{ and } N(0, f_{j}, B(0, 1/4)) \to \infty$$

Proof. By a version of Zorich's construction (see [9, 22]) there exists a mapping $\phi \in W^{1,3}(\mathbb{R}^3, \mathbb{R}^3)$ such that $K_I(\cdot, \phi) \in L^{\infty}(\mathbb{R}^3)$, ϕ is a local homeomorphism outside of $\mathbb{R} \times (2\mathbb{Z} + 1)^2$, and ϕ is 4-periodic in the last two variables. Therefore, it suffices for us to construct biLipschitz homeomorphisms $f_i \colon \mathbb{B} \to \mathbb{R}^3$ such that

- (i) $\sup_{j} \int_{\mathbb{B}} K_{I}^{q}(x, f_{j}) \,\mathrm{d}x < \infty;$
- (ii) $f_i(\mathbb{B}) \subset \mathbb{D} \times \mathbb{R}$ (here $\mathbb{D} \subset \mathbb{R}^2$ is the unit disc);
- (iii) $f_j(\mathbb{B}_{1/4})$ contains a line segment $\{0\} \times [-L, L] \subset \mathbb{R}^2 \times \mathbb{R}$ where $L \to \infty$ as $j \to \infty$.

The compositions $\phi \circ f_i$ will be mappings with large multiplicity.

For $y \in \mathbb{R}^3$ let $s(y) = \sqrt{y_1^2 + y_2^2}$. For $\alpha > 2$ we define a mapping x = g(y) by

$$x_i = s(y)^{\alpha - 1} y_i, \quad i = 1, 2;$$

 $x_3 = s(y) y_3.$

Since $s(x) = s(y)^{\alpha}$, the inverse mapping y = f(x) outside the set $\{s(x) = 0\}$ is given by

$$y_i = s(x)^{1/\alpha - 1} x_i, \quad i = 1, 2;$$

 $y_3 = s(x)^{-1/\alpha} x_3, \quad s(x) \neq 0.$

Let $\Omega = \{x \in \mathbb{R}^3 : s(x) < 1, |x_3| < 1\}$ and $\Omega' = f(\Omega)$. We restrict our attention to $y \in \Omega'$, where in particular s(y) < 1. Elementary computations show that

$$||Dg(y)|| \le C \max(s(y), |y_3|)$$
 and
 $J(y, g) \ge Cs(y)^{2(\alpha-1)+1}.$

Therefore,

(7.2)
$$\frac{\|Dg(y)\|^3}{J(y,g)} \le Cs(y)^{2(1-\alpha)-1} \max(s(y)^3, |y_3|^3).$$

Since

$$\frac{\|Dg(y)\|^3}{J(y,g)} = K_I(x,f),$$

inequality (7.2) can be used to estimate $K_I(x, f)$ as follows.

$$K_I(x, f) \le C \, s(x)^{(2(1-\alpha)-1)/\alpha} \max(s(x)^{3/\alpha}, s(x)^{-3/\alpha} |x_3|^3)$$

< $C \, s(x)^{-(2\alpha+2)/\alpha}$

where at the last step we used $|x_3| < 1$. We achieve $\int_{\Omega} K_I(x, f)^q dx < \infty$ by choosing α large enough so that

$$\frac{2\alpha + 2}{\alpha}q < 2.$$

The mapping f constructed thus far is not in $W^{1,3}$, and is not even continuous. However, this can be corrected by replacing s(y) with $s_j(y) = \sqrt{y_1^2 + y_2^2 + 1/j^2}$. The mapping $x = g_j(y)$ given by

$$\begin{aligned} x_i &= s_j(y)^{\alpha - 1} y_i, \quad i = 1, 2 \\ x_3 &= s_j(y) y_3, \end{aligned}$$

is biLipschitz; we denote the inverse by f_j . The computation of $||Dg_j||$ and $J(\cdot, g_j)$ goes through exactly as before and shows that the integral of $K_I^q(\cdot, f_j)$ is bounded independently of ϵ_j . Since $g_j(0, 0, y_3) = (0, 0, y_3/j)$, we have $f_j(0, 0, x_3) = (0, 0, jx_3)$. Thus, this mapping f_j fulfills the requirements (i)-(iii).

References

- K. Astala, T. Iwaniec, G. J. Martin and J. Onninen, *Extremal mappings of finite distortion*, Proc. London Math. Soc. (3) **91** (2005), no. 3, 655–702.
- J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), no. 3-4, 315–328.

- V. M. Gol'dshtein, The behavior of mappings with bounded distortion when the distortion coefficient is close to one, Sibirsk. Mat. Zh. 12 (1971), 1250–1258.
- V. M. Gol'dshtein and S. K. Vodopyanov, Quasiconformal mappings, and spaces of functions with first generalized derivatives, Sibirsk. Mat. Zh. 17 (1976), no. 3, 515–531.
- J. Heinonen and T. Kilpeläinen, BLD-mappings in W^{2,2} are locally invertible, Math. Ann. **318** (2000), no. 2, 391–396.
- J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatations, Arch. Rational Mech. Anal. 125 (1993), no. 1, 81–97.
- S. Hencl and P. Koskela Mappings of finite distortion: discreteness and openness for quasi-light mappings, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 3, 331–342.
- S. Hencl and J. Malý, Mappings of finite distortion: Hausdorff measure of zero sets, Math. Ann. 324 (2002), no. 3, 451–464.
- T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford University Press, New York, 2001.
- T. Iwaniec and V. Sverák, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), no. 1, 181–188.
- 11. F. John, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77–110.
- P. Koskela and J. Malý, Mappings of finite distortion: the zero set of the Jacobian, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 2, 95–105.
- P. Koskela and J. Onninen, Mappings of finite distortion: capacity and modulus inequalities, J. Reine Angew. Math. 599 (2006), 1–26.
- P. Koskela, J. Onninen, and K. Rajala, Mappings of finite distortion: injectivity radius of a local homeomorphism, in "Future trends in geometric function theory", 169–174, Rep. Univ. Jyväskylä Dep. Math. Stat., 92, Univ. Jyväskylä, Jyväskylä, 2003.
- L. V. Kovalev and J. Onninen, On invertibility of Sobolev mappings, preprint, 2008. arXiv:0812.2350.
- J. J. Manfredi and E. Villamor, An extension of Reshetnyak's theorem, Indiana Univ. Math. J. 47 (1998), no. 3, 1131–1145.
- O. Martio, S. Rickman, and J. Väisälä, *Topological and metric properties of quasireg*ular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 488 (1971).
- J. Onninen, Mappings of finite distortion: minors of the differential matrix, Calc. Var. Partial Differential Equations 21 (2004), no. 4, 335–348.
- 19. K. Rajala, The local homeomorphism property of spatial quasiregular mappings with distortion close to one, Geom. Funct. Anal. 15 (2005), no. 5, 1100–1127.
- 20. K. Rajala, *Reshetnyak's theorem and the inner distortion*, Pure Appl. Math. Q., to appear.
- K. Rajala, Remarks on the Iwaniec-Šverák conjecture, University of Jyväskylä preprint no. 377 (2009).
- 22. S. Rickman, Quasiregular mappings, Springer-Verlag, Berlin, 1993.
- Q. Tang, Almost-everywhere injectivity in nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 1-2, 79–95.
- J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin-New York, 1971.
- V. A. Zorich, M. A. Lavrentyev's theorem on quasiconformal space maps, Mat. Sb. (N.S.) 74 (116) 1967, 417–433.

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: lvkovale@syr.edu

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: jkonnine@syr.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF JYVÄSKYLÄ, P.O. BOX 35 (MAD), FI-40014, UNIVERSITY OF JYVÄSKYLÄ, FINLAND *E-mail address*: kirajala@maths.jyu.fi