INVERTIBILITY OF SOBOLEV MAPPINGS
UNDER MINIMAL HYPOTHESES

LEONID V. KOVALEV, JANI ONNINEN, AND KAI RAJALA

ABSTRACT. We prove a version of the Inverse Function Theorem for con-
tinuous weakly differentiable mappings. Namely, a nonconstant W'
mapping is a local homeomorphism if it has integrable inner distortion
function and satisfies a certain differential inclusion. The integrability
assumption is shown to be optimal.

1. INTRODUCTION

Throughout this paper €2 is a bounded domain in R"™. The classical Inverse
Function Theorem states that if f: 2 — R™ is continuously differentiable
and the differential matrix D f(x) is invertible at some point z, then f is a
homeomorphism in a neighborhood of . We are interested in a version of the
Inverse Function Theorem for continuous weakly differentiable mappings. In
this context the invertibility of the differential matrix is not sufficient. As an
example, consider the winding mapping f: R? — R3 written in cylindrical
coordinates as f(r, 0, z) = (r,26, z). Although f is Lipschitz and its Jacobian
determinant J(zx, f) equals 2 for a.e. € R", this mapping is not a local
homeomorphism.

Let us introduce the following subset of n X n matrices.

M(8) = {A € R™™: (A€, €) > 5|A€|le]  for all € € R™}

where —1 < § < 1. Note that § = —1 imposes no condition on the matrix.
When —1 < § < 0, the set M(9) is not convex and the differential inclusion
(1.1) Df(x) € M(6) for a.e. x € Q

cannot be integrated to yield a pointwise inequality for f.

The winding mapping does not satisfy (1.1) for any 6 > —1. Even so, this
differential inclusion does not by itself guarantee that f is locally invertible,
e.g., f(x1,x2) = (x1,0). There are also such examples with strictly positive
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Jacobian [15, Example 18]. To quantify the invertibility of a matrix A €
R™ ™ we introduce the inner distortion K(A) € [1, o0].

145"
det A >0
s ooqy ) @eedy 5
(1.2) 1(4) = 1, A=0
00, otherwise.
Here A* stands for the cofactor matrix of A and ||-|| is the operator norm.

To shorter the notation we write Kj(z, f) = K;(Df(z)) and

Half] = Ki(x
o= g

where || is the Lebesgue measure of Q. If f € WH*(Q,R") and K;(z, f) <
oo a.e, then f has a logarithmic modulus of continuity [4, 9]; that is,

n n) fQBHDan
|f(a) = f(B)|" < : ,
log (e + 2(‘1;&_12‘3)

If moreover #q[f] < oo and f is invertible, then the inverse h := f~1 is

a Wlm-mapping and
[ it pyde= [ ol
Q ()

see [1, Theorem 9.1]. Thus %[ f] controls the modulus of continuity of f~!,
should it exist. Our main result addresses its existence.

a,be B, 2B &

Theorem 1.1. Suppose that f € VV&)C"(Q R™) is a nonconstant mapping

such that J#q[f] < oco. If there exists 6 > —1 such that Df(x) € M(6) for

almost every x € Q, then f is a local homeomorphism.

This theorem is already known in the planar case n = 2 [15, Theorem 4].
The assumption g |f] < co cannot be replaced by [, K (z, f) dz < oo for
any ¢ < 1, see [15, Example 18] or [2, Example 1].

Our proof of Theorem 1.1 is based on two results of independent interest.
The first step toward proving that a mapping is a local homeomorphism is
to show that it is discrete and open; that is, preimages of points are discrete
sets and images of open sets are open.

Theorem 1.2. Let f: Q — R" be a nonconstant mapping in VVl "(Q,R")
such that J(x, f) > 0 a.e. If (Df)~t € L>®(), then f is discrete and open.

The challenging Iwaniec-Sverdk conjecture asserts even more: a noncon-
stant mapping f € VV&):(Q R™) with J#q|f] < oo is discrete and open. So
far this conjecture was proved only for n = 2 in [10]. Partial results in this
direction were recently obtained in [6, 7, 8, 16, 20, 21].

Another crucial ingredient of our proof of Theorem 1.1 is an estimate

for the multiplicity of a local homeomorphism in terms of the integral of
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Ki(-, f) in dimensions n > 3. This result (Theorem 5.1) continues the line of
development that began in 1967 with the celebrated Global Homeomorphism
Theorem of Zorich [25].

The proof of Theorem 1.1 proceeds as follows. The differential inclu-
sion (1.1) allows us to approximate f by mappings fA(z) := f(z) + Az to
which Theorem 1.2 can be applied. The results of [15] yield that f* is a local
homeomorphism. By virtue of Theorem 5.1 the mappings f* have uniformly
bounded multiplicity, which leads to a bound for the essential multiplicity of
f. This additional information suffices to show that f is discrete and open,
see Proposition 2.2 below. Since f is a limit of local homeomorphisms f*,
the conclusion follows.

Different approaches to the invertibility of Sobolev mappings were pur-
sued in [2, 3, 5, 17, 19, 23], see also references therein.

2. BACKGROUND

In this section we collect necessary notation and preliminaries. An open
ball with center a and radius r is denoted by B(a,r) := {x € R™: |z —a| <
r}. Its boundary is the sphere S(a,r). If A > 0 and B = B(a,r), then
AB = B(a,Ar) and AS = S(a, Ar). In addition, B = B(0,1), B, = B(0,r),
S=5(0,1) and S, = S(0, 7).

Let H¢ stand for the d-dimensional Hausdorff measure which agrees with
the Lebesgue measure when d is an integer. The Hausdorff distance dy/(E, F')
between nonempty bounded sets E and F' is defined as the infimum of num-
bers € > 0 such that the e-neighborhood of E contains F' and vice versa.

Given a mapping f: Q — R" and a set E C 2, we denote by N(y, f, F)
the cardinality (possibly infinite) of the set f~1(y) N E. If y € R™\ f(09),
the local degree of f at y with respect to G is denoted deg(y, f,G). We

write f: A bom B to indicate that f is a homeomorphism from A onto B.
Let T be a family of paths (parametrized curves) in R™, n > 2. The
image of 7y € I is denoted by |y|. We let T be the set of all Borel functions

p: R™ — [0, 00| such that
/pds >1
g

for every locally rectifiable path v € I'. The functions in Yr are called
admissible for I'. For a given weight w: R™ — [0, co] we define

M,T = inf n :
int / pla)"w(x) da

and call M,I" the weighted conformal modulus of I'. Here it suffices to have
w defined on a Borel set containing (J,cp [7[- When w = 1 we obtain the
conformal modulus MI'. We will also use the spherical modulus with respect
to a sphere S,

MT = inf /p(y)”dH"_l(y).
peYT Jg
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The reader may wish to consult the monographs [22, 24| for basic properties
of moduli of path families. The following generalization of the Poletsky
inequality relates moduli of I and of its image under f, denoted fT'.

Proposition 2.1. [13] Suppose that f € WL(Q,R"™) is a discrete and open
mapping with #q|f] < oco. If T is a family of paths contained in 2, then

(2.1) MfT < Mg, (.pL.

We will use the following result, which establishes the Iwaniec-Sverdk
conjecture under an additional assumption on the multiplicity of f.

1n

Proposition 2.2. Suppose that f € W, (£, R") is a nonconstant mapping
with #q[f] < co. Let B be a ball such that 2B € ). If

(2.2) esslimsuprln/ N(y, f, B)dH" "} (y) < oo
S(a,r)

r—0

for every a € R™, then f is discrete and open in B.

This proposition is a consequence of [21, Theorem 2.2]. Although [21,
Theorem 2.2] requires that

| D f ()] -1
ess sup ——————dH xr) < 00,
0<t<1 /8(tB) |f(z) — a1 (@)

this condition is only used to obtain (2.2).

3. PRELIMINARY RESULTS

1,n

Proposition 3.1. Suppose that f € W, ' (2, R") is a nonconstant mapping
such that #q[f] < co. Let x € Q and y = f(z). If the x-component of
f~(y) is {z}, then f is a discrete and open in some neighborhood of x.

Proof. Recall that  is bounded. Let U; be the z-component of f~1B(y, 1/j).
Since the sets Uj C R™ are nested, compact, and connected, their intersec-
tion E is also connected. On the other hand, x € E C f~!(y), hence
E = {z}. It follows that diam(U;) — 0 as j — oo. Let us fix j such that
U j G Q.

We claim that f is quasilight in Uj; that is, the connected components of
f~Hy)NU; are compact for all y € R™. If not, then there exists z € U; such
that the z-component of f~!(f(z)) intersects OU; at some point b. Since
f(b) = f(2) € B(y,1/j), there exists ¢ > 0 such that fB(b,t) C B(y,1/j).
This contradicts the definition of U;. Therefore, f is quasilight in U;. By [20,
Theorem 1.1] f is discrete and open in Uj. O

Given a sphere S, and a point p € S, let Cs(p, ¢) be the open spherical
cap of S with center p and opening angle ¢ € (0, 7|. For instance Cs(p, 7/2)
is a hemisphere and Cg(p, 7) is a punctured sphere.

The following topological lemma forms the main step of the proof of Zorich
Global Homeomorphism Theorem, see [22, II1.3].
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Lemma 3.2. Let f: Q — R™ be a local homeomorphism, 2 C R™, n > 3.
Suppose we have the following:

(i) G € Q such that f: G 225 G’ where G' is convez;
(1)) G C D € Q and there is a € 0GNID;
(111) a ball B C R™ that contains @’ = f(a) and such that S = 0P meets
G’ at some point V.
Let b= f~1(t/) N G and denote by C%(V', ¢) the component of f~1Cs(V/, ¢)
containing b. Then there exists 0 < ¢og < m such that C%(V,¢o) C D and
the closure of CE(V, ¢o) meets OD.

Proof. Let ¢o be the supremum of all ¢ such that C§(V, ¢) C D. It suffices
to show that ¢g < 7.
Suppose to the contrary that ¢o = m. Since C§(V',7m) C D, it follows

from [22, Lemma II1.3.1] that f: C(V, ) hom Cs(t/,m) = S (here the
assumption n > 3 is used). Since S* := ég(b' ,7) is homeomorphic to S,
it separates R" into two components. Let U be the bounded component
of R™\ S*. Then the boundary of f(U) is contained in S which implies
f(U) = B. Moreover, f: U hom "% by [22, Lemma II1.3.1]. Since b€ UNG
and since f(U) N f(G) = ZN G is convex (hence connected), [22, Lemma
I11.3.3] yields that f is homeomorphic in U U G.

This leads to a contradiction. Since U UG C D it follows that a lies on
the boundary of U U G. On the other hand, f(a) = a’ € f(U) is an interior
point of f(UUG). O

We shall use a geometric lemma which is essentially contained in [14].

Lemma 3.3. Suppose we are given a ball B(yo,r) C R™, a point y1 €
S(yo,r) and a connected set E that contains yo and some point yo € S(yo,T).
Then there exist ¢ € B(yo,r) and 0 < o < 2r such that for every o < t <
40/3,

(Z) Y1 S B(q7t)7
(i) S(q,t) N E # @;
(i) S(q.t) C B(yo,2r)\ B(yo,r/10).

Proof. Let a be the angle at the point (yo+y1)/2 formed by the line segments
from yo to (yo+y1)/2 and from (yo+y1)/2 to y2. There are two cases possible.

Case 1. 0 < a < m/2, or, equivalently, |y; — y2| > r. In this case
we choose ¢ = (yo + vy1)/2 and ¢ = 3r/5. For ¢ < t < 40/3 we have
B(yo,7/10) C B(q,t) and 31 € B(q,t). At the same time, y2 ¢ B(q,t)

because
V3 5 4
|y2 q‘ 2 " 2\/§U 30

Thus, all conditions (i)—(iii) are satisfied.
Case 2. /2 < a <, or, equivalently, |y; —y2| < r. This time we choose

q= (y1 +v2)/2 and o = |y; — y2|/2. Since |yo — q| > (v/3/2)r, it follows
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that B(q,t) N B(yo,r/10) = @ provided that

V3 o1
t<<2—10>r.

This is indeed the case, because

All conditions (i)—(iii) are met. O

4. PROOF OF THEOREM 1.2

Let [|(Df)™!||sc = L. First we observe that the inner distortion of f is
locally integrable because

41)  Ki(z, f) = [(Df() "I (2, f) < L"|Df|" for ace. z € Q.

We may assume that By = B(0,4) € Q. It suffices to show that f is
discrete and open in B. We will do this by proving that (2.2) holds. Without
loss of generality, a in (2.2) equals 0. Fix 1 <t <2 and 3 < T < 4 so that
H"L(fS;) < oo and H" (fS7) < co. By the area formula we have

Rn BT

Therefore, for almost every 0 < R < oo we have

(4.2) N(y, f,Br)dH" 1(y) < oo and H" '(f(Sy)NSg) = 0.
Sr

We fix such R < 1/(2L) so that (4.2) holds, and let

M := Rl i N(y, f,Br)dH" " (y).
R

Our goal is to prove that

(4.3) = [ N(y, £,B)dH" (y) < M for a.e. 0 <7 < R.
Sr
Let r < R be such that H" 1(£(S;) N'S,) = 0, and denote by E C S the set

of unit vectors v for which
(4.4) deg(Rv, f,Br) < deg(rv, f,By).

Let I,: [r,R] — R"™ be the parametrized line segment I,(s) = sv. By
Proposition 3.1, either f~!(sv) has a nontrivial component for some r <
s < R, or f is discrete and open in a neighborhood of f~!(I,[r, R]). By
using the co-area formula as in [21, Lemma 2.4], we see that the former
possibility only occurs for v € Fy where H" '(F}) = 0. Now we assume
that v € E'\ F}. Then, from (4.4) and basic properties of path lifting, it
follows that I, has a maximal f-lifting I} starting at B; and leaving Br.
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Denote
l¢(z) == liminf M

Zz—x |z — 2|
By our assumption on (Df)~! there exists a null set ' C  such that
ly(z) > 1/L for x € Q\ F. Let F; be the set of v € E\ F such that either I}
is unrectifiable or H!(|I|NF) > 0. Since the measure of F is zero, it follows
that the family of curves I'p := {I¥: v € F5} has zero weighted modulus for
any locally integrable weight. In particular, Mg, I'r = 0. By (2.1) we have
M{I,: v € Fy} = 0, which implies H"~!(F,) = 0.

For v € E '\ (F1 U Fy) we have

1
(4.5) HNIY) < LHYI,) < LR < 5

which contradicts the fact that I begins at B; and leaves By. Thus E C
Fy U Fy. As a consequence, H" !(E) = 0, which means deg(rv, f,B;) <
deg(Rv, f,Br) for H" '-a.e. v € S. Since deg(y, f,B;) = N(y, f,B;) for a.e.
y € R™ [8, Proposition 2], inequality (4.3) follows. This completes the proof
of Theorem 1.2 via Proposition 2.2. O

5. MULTIPLICITY OF LOCAL HOMEOMORPHISMS

In 1967 Zorich [25] proved that a local homeomorphism f: R"™ — R™,
n > 3, with Kj(-, f) € L (R"™) must be a global homeomorphism. Martio,
Rickman and Vaisdld [17] gave a local version of this result. Namely, if
f:2B — R" n > 3, is a local homeomorphism with bounded distortion
K7, then its radius of injectivity in B is bounded from below by a constant
depending only on n and esssup K;. As a consequence, the multiplicity
N(y, f, B) is bounded by C(n,esssup K7) for all y € R™.

The boundedness of K can be replaced by the condition

exp(AK}/ ") e L'(2B),

but this cannot be relaxed any further [14, 18]. Surprisingly, the multiplic-
ity bound remains true under a much weaker condition, namely K; € L!.
Example 7.2 below shows that K7} € L' with ¢ < 1 does not suffice. The
mappings f;(z) = ¢/* show that all results discussed here fail when n = 2.

Theorem 5.1. Let f € VV&’?(Q,R”), n > 3, be a local homeomorphism
such that #q[f] < co. If B is a ball such that 4B € €, then N(y, f,B) <
C(n, #4p(f]) for all y € R™.

Proof. We may assume that B is the unit ball B. Let z1, ..., 2, € f~'(y)NB.
Moreover, let r; be the largest radius r so that the x;-component U(z;,7)
of f~'B(y,r) satisfies U(x;,r) C Bs. We denote by s; the largest radius
s such that B(z;,s) C U(zj;,7;). Then fB(zj,s;) intersects both y and
S(y,rj). We notice that since z; € B and since the balls B(xj,s;) are
pairwise disjoint, there exist at most N(n) indices j for which s; > 1. Thus
we may assume that B(z;,s;) C By for every 1 < j < m.
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We now fix 1 < j < m and a point a; € U(xj,r;) N'Ss. We apply
Lemma 3.3 with B(yo,r) = B(y,7j), y1 = f(a;) and E = f(B(z;,s;)),
obtaining a point ¢; and a number o; > 0. For o; < t < 40;/3 choose
w; € B(zj,s;) such that f(w;) € S(gj,t). We apply Lemma 3.2 with G =
U(zj,rj), D = B3, a = aj, Z = B(g;,t) and ' = f(w;). As a result we
obtain 0 < ¢; < w such that the spherical cap ¢; := Cs(qj7t)(f(wt),gbt)
satisfies €7 C B3 and ?: N Sg contains some point ¢;. Consequently, for
every path v joining f(w;) and f(¢;) in %, the maximal f-lifting v* of v
starting at w; starts from By and leaves Bs. Following [24, 10.2], we will
choose a particular family I'; of such paths.

Let us say that a circular arc is short if it is contained in a half-circle.
The family T'; will consist of all short circular arcs that connect f(w;) to
f(et) within €;. More precisely, let h be a Mobius transformation that maps
f(wy) to infinity and S(gj,t) \ {f(w:)} to R"1. Observe that k(%) is the
complement of a ball in R"~!. The convexity of R"~!\ h(%;) implies that
there exists an (n — 2)-hemisphere V' such that h(f(c)) + sv € h(%;) for
every s >0 and v e V.

Introduce a family of curves I,: [0,00) — %, defined by

L(s) = h (h(f(ct) + s~ "),

and denote by I;; the maximal f-lifting of I, starting at w;. Now let 0 <
¢(v) < oo be the smallest number such that I}(¢(v)) € S3. Let

Ly = {10y v € Vi)

We write fI'; for the image of I'y under f.
There is a lower bound for the spherical modulus of fT';, namely [24,
Theorem 10.2]

(5.1) ms(rry > S

Let
F; ={y: v € fT'; for some 0; <t < 40;/3},

and let I'; be the family of the corresponding lifts 7* starting at w;. Then
integrating (5.1) we obtain

40;/3 C
(5.2) MI; > / cln) dt > C(n).
O'j t
As observed earlier, every v € F; starts at By and leaves B3. We denote by
E; the smallest closed subset of B3 \ By that contains |y| N (B3 \ B2) for all

v € I';. Note that

(5.3) Ej € f7(B(y,2r;) \ B(y,7;/10))
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by part (iii) of Lemma 3.3. Since the characteristic function xp; is an
admissible function for I‘;‘-, we have

(5.4) MKII? < /E K](aj‘, f) dx.

The generalized Poletsky inequality MF;- < Mg, I [15, Theorem 4.1], to-
gether with (5.2) and (5.4) yield

(5.5)

m

S( sup ZXE](x)) x/:SBKI(a:,f)da:.

z€B3\B2 j=1

Claim 1. There exists M = M (n, #4g[f]) such that
(5.6) Z Xg,; () < M for every x € By \ Ba.
j=1

By virtue of (5.5), Theorem 5.1 follows from Claim 1. In the rest of this
section we prove (5.6).

Let € B3 \ B2 be a point covered by M of the sets F;. After relabeling
we have v € Ej for 1 <j < M, and r; <rg < --- < ryy. Since disjoint sets
have disjoint preimages, (5.3) implies rp; < 2077.

Choose T > 0 such that B(z,7) C B3 and f is injective in B(xz, 7). For
1 < j < M there exists 77 € I'; which meets B(z, 7). Let w; be the starting
point of 47, and let 7; be the subcurve of 77 that begins at w; and ends
once it meets B(z, 7).

Claim 2. For1 < j < M there is a curve 7; that joins y to f(w;) within
B(y,rj) in such a way that the union of |r;| and |f o v;| can be mapped
onto a line segment by an L-biLipschitz mapping g: R™ — R™. Here L is a
universal constant.

Proof of Claim 2. Note that the image f o «; is a short circular arc
contained in the sphere S(g,t) of Lemma 3.3. Part (iii) of Lemma 3.3 implies

1 1

There are two cases. If y € B(q,t), then 7; is the line segment connecting y
to f(w;). By virtue of (5.7), the distance from y to S(g,t) is comparable to
t. Therefore, the angle between 7; and the sphere S(g,t) is bounded from
below by a universal constant, and the claim follows.

Suppose that y ¢ B(q,t). Let p; := |f(w;) —y|. Note that r;/10 < p; <
rj. Let p be the point of the sphere S(y, p;) that is farthest from ¢, namely

. q—Y
p_y*pj|q_y|‘
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We choose 7; as the union of the line segment connecting y to p and the
geodesic arc on S(y, p;) from p to f(w;). Once again, the angle between 7;
and the sphere S(q,t) is bounded from below by a universal constant. [I.

Let nj, 1 < j < M, be the curve obtained by concatenating —(f o;) with
—7j, where — indicates the reversal of orientation. Note that 7; begins in
JB(z,T), proceeds along a circular arc to f(w;), and ends at y. Its f-lifting
n; starting in B(x,7) is contained in B3 and ends at ;.

Claim 3. There exists € = €(n, M) such that e — 0 as M — oo, and

(5.8) (oin - da (il [gl) < ey /L.

We begin our proof of Claim 3 by observing that |n;| C B(y,2ry) C
B(y,40r1). For e > 0let Z = {z1,...,2n} be an (er1/L)-net in B(y,40r;),
where N = N(e,n). The set of all nonempty subsets of Z is an (er1/L)-net
in the set of all nonempty closed subsets of B(y,40r;) equipped with the
Hausdorff metric. If M > 2V then by the pigeonhole principle there exist
i < j such that |n;| and |n;| are within the distance (er1/L) from the same
subset of Z. Claim 3 follows. U

Fix 4, j, and € as in Claim 3, and let g: R® — R™ be the L-biLipschitz
mapping from Claim 2. By replacing f with g o f, which has a comparable
distortion function K7, we may assume that |n;| is a line segment. For 6 > 0
we denote by W (d) the open d-neighborhood of |n;|. Let W*(6) be the
zj-component of f~1W(J).

Claim 4. If § > erq, then W*(0) NSy # @.

Since 0 > ery, we have |n;| C W(9). Suppose to the contrary that W*(6) C
B4. Then W*(9) € Q, which by [22, Lemma II1.3.1] implies that f: W*(§) —
W(0) is a homeomorphism. This contradicts the fact that the f-liftings of
n; and 7; starting in B(x,7) end at different points, namely x; and z;. O

Let o be the supremum of all numbers § such that W*(§) C By4. Since

hom

f is a local homeomorphism, 6y > 0. By [22, Lemma IIL.3.1], f: W*(§) —
W (9) for every 0 < § < §p. By Claim 4 we have dy < ery.

Choose a point a € OW*(dy) N'Sy. Let a’ = f(a). Since o’ € W (dy),
there exists p € |n;| such that |a’ — p| = §y. For dy < t < 5 diam |n;| choose
b, € [njl N S(p,t). We apply Lemma 3.2 with G = W*(dy), D = By, a = a,
P = B(p,t) and b/ = b}. As a result we obtain 0 < ¢; < 7 such that the
spherical cap 6; := Cg(p1) (b}, ¢¢) satisfies ;" C By and %, N'Sy contains
some point ¢;. Consequently, for every path + joining b; and f(c¢;) in %3, the
maximal f-lifting v* of v starting at f=1(b}) N 7| starts from B; and leaves
B4. Let I' be the family of all such paths v and I'* be the family of the lifts
v*. From [24, Theorem 10.2] we have

diam(n;)/2 ; .
ML > C(n)/ ’ % > O(n) log 20 0L).

e 2ery
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By (5.7) we have diam |n;| > cr; with a universal constant ¢ > 0. Therefore,
1

(5.9) ML > C(n)log —.
€

On the other hand, since the characteristic function xp,\p, is an admissible
function for I';, we obtain

Mg, I < / Ki(z, f)da.
B4\B3

Combining this with (5.9) and using the Poletsky inequality again, we have
¢ > C(n, #1p[f]), hence M < C(n, #3p[f]). This gives (5.6). The proof of
Theorem 5.1 is complete. O

6. PROOF OF THEOREM 1.1

Denote fA(x) = f(z)+ Az, A > 0. Then f* € VV;}’C"(Q,]R") Moreover, by
[15, Lemma 10],

6.1) Kl f) <COn)K (e, f) and [[(DfY) (@) < C(6,A)

for almost every € Q. Thus f* is discrete and open for every A > 0 by
Theorem 1.2. Furthermore, by [15, Lemma 13] f is a local homeomorphism.
(Although [15, Lemma 13| imposes a stronger condition on the distortion of
f, this condition is only used to ensure that f is discrete and open.) Since
f — f locally uniformly, the following proposition implies that f is a local
homeomorphism, completing the proof of Theorem 1.1.

Proposition 6.1. Suppose that a mapping [ € VVli)C"(Q,]R”) with Jo[f] <
oo can be uniformly approximated by local homeomorphisms f; € Wl’n(Q, R™)

1
such that sup; #q|f;] < oo. Then f is a local homeomorphism. .

Proof. By [15, Proposition 7] it suffices to show that f is discrete and open.
If n = 2, this is due to Iwaniec and Sverdk [10]. Thus we assume that n > 3.
Let B = B(zg, R) be a ball such that 8B € 2. We will show that

(6.2) N(y,f,B) <C for ae. y € R",

where C' < 0o does not depend on y. Proposition 2.2 will then imply that f
is discrete and open in B.
Applying Theorem 5.1 to f;, we obtain

N(y, f;,2B) < C  for every y € R"

where C' depends only on sup; #q[f;] and n.

We fix R <t < 2R so that H"~1(fS(xg,t)) < oo, and a point y € fB\
fS(xo,t). Let d = dist(y, fS(xo,t)). Since f; — f locally uniformly, there
exists jo such that |f;(x) — f(x)| < d/2 for all j > jo and all x € S(xo,1).
Consequently, the restrictions of f; and f to S(zo,t) are homotopic via the
straight-line homotopy that takes values in R™ \ {y}. It follows that

deg(y7 f,B(CCo,t)) = deg(yvf],B(ant)) < N(y’ fja QB) < c
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for all J > j(]' Since N(ya f7 B) < N(yv fa B(ﬂl’o, t)) = deg(ya f7 B(x()vt)) for
almost every y € R", we conclude that (6.2) indeed holds. The proof is
complete. O

7. CONCLUDING REMARKS

Corollary 7.1. Suppose that f € Wﬁi’:(Rn,R") is a nonconstant mapping
such that Kj(-, f) € Li _(R™). If there exists 6 > —1 such that Df(z) €

loc
M(6) for almost every x € R™, then f is a homeomorphism.

Proof. As in the proof of Theorem 1.1 we have that f(z) = f(z) + Az is
a local homeomorphism for all A > 0. Since (Df*)~! € L>®(R"), it follows
from [15, Lemma 12] that

(7.1) liminf L& =@
r—a |z —a

for all @ € R”. By a theorem of John [11, p. 87], f* is a homeomorphism.

Since f is discrete and open by Theorem 1.1, we can apply [15, Proposition 7]

and conclude that f is a homeomorphism. ([l

Sharpness of Theorem 5.1 is demonstrated by the following example which
combines the ideas from [2] and [14].

Example 7.2. For any g < 1 there exists a sequence of mappings f; €
Wh3(B,R3) such that

sup/ K{(z, f;)dz < 0o and N(0, f;, B(0,1/4)) — oo.
j JB

Proof. By a version of Zorich’s construction (see [9, 22]) there exists a map-
ping ¢ € WI3(R3,R3) such that K;(-,¢) € L®(R3), ¢ is a local home-
omorphism outside of R x (2Z + 1)2, and ¢ is 4-periodic in the last two
variables. Therefore, it suffices for us to construct biLipschitz homeomor-
phisms f;: B — R3 such that

(i) sup; [z K{(z, f;) dz < oo;
(ii) fj(B) C D x R (here D C R? is the unit disc);
(ili) fj(By4) contains a line segment {0} x [~L, L] C R* X R where L — oo
as j — oo.
The compositions ¢ o f; will be mappings with large multiplicity.

For y € R3 let s(y) = v/y? + y3. For a > 2 we define a mapping = = g(y)
by
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Since s(x) = s(y)®, the inverse mapping y = f(x) outside the set {s(z) = 0}
is given by
yi=s(@)/ ey, =1
ys = s(z)"/z3, s(z) # 0.

Let Q = {z € R3: s(z) < 1,|z3] < 1} and Q' = f(Q). We restrict our
attention to y € ', where in particular s(y) < 1. Elementary computations
show that

[Dg(y)ll < Cmax(s(y),|ys]) and
J(y,g) > Cs(y)X@- D+,

Therefore,
D 3 o)
72) DAL < o2 max(s . 1)
Since ;
Dg(y
o e

inequality (7.2) can be used to estimate Kj(x, f) as follows.
K1z, f) < C () CA=0=D/% max(s(2)?/, 5() "%/ )
< C8($)7(2a+2)/o¢

where at the last step we used |z3| < 1. We achieve [, K;(z, f)?dx < oo by
choosing « large enough so that

200 + 2

q <2

The mapping f constructed thus far is not in W3, and is not even
continuous. However, this can be corrected by replacing s(y) with s;(y) =

y? +y5 + 1/52 . The mapping z = gj(y) given by

Ty = Sj(y)ailyh 1= ]-a 27
x3 = 5;(Y)ys,

is biLipschitz; we denote the inverse by f;. The computation of || Dg;l|
and J(-,g;) goes through exactly as before and shows that the integral of
K{(-, fj) is bounded independently of ¢;. Since g;(0,0,y3) = (0,0,y3/7),
we have f;(0,0,z3) = (0,0, jz3). Thus, this mapping f; fulfills the require-
ments (i)—(iii). O
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