
INVERTIBILITY OF SOBOLEV MAPPINGS
UNDER MINIMAL HYPOTHESES

LEONID V. KOVALEV, JANI ONNINEN, AND KAI RAJALA

Abstract. We prove a version of the Inverse Function Theorem for con-
tinuous weakly differentiable mappings. Namely, a nonconstant W 1,n

mapping is a local homeomorphism if it has integrable inner distortion
function and satisfies a certain differential inclusion. The integrability
assumption is shown to be optimal.

1. Introduction

Throughout this paper Ω is a bounded domain in Rn. The classical Inverse
Function Theorem states that if f : Ω → Rn is continuously differentiable
and the differential matrix Df(x) is invertible at some point x, then f is a
homeomorphism in a neighborhood of x. We are interested in a version of the
Inverse Function Theorem for continuous weakly differentiable mappings. In
this context the invertibility of the differential matrix is not sufficient. As an
example, consider the winding mapping f : R3 → R3 written in cylindrical
coordinates as f(r, θ, z) = (r, 2θ, z). Although f is Lipschitz and its Jacobian
determinant J(x, f) equals 2 for a.e. x ∈ Rn, this mapping is not a local
homeomorphism.

Let us introduce the following subset of n× n matrices.

M(δ) = {A ∈ Rn×n : 〈Aξ, ξ〉 ≥ δ|Aξ||ξ| for all ξ ∈ Rn}
where −1 ≤ δ ≤ 1. Note that δ = −1 imposes no condition on the matrix.
When −1 < δ < 0, the set M(δ) is not convex and the differential inclusion

(1.1) Df(x) ∈M(δ) for a.e. x ∈ Ω

cannot be integrated to yield a pointwise inequality for f .
The winding mapping does not satisfy (1.1) for any δ > −1. Even so, this

differential inclusion does not by itself guarantee that f is locally invertible,
e.g., f(x1, x2) = (x1, 0). There are also such examples with strictly positive
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Jacobian [15, Example 18]. To quantify the invertibility of a matrix A ∈
Rn×n, we introduce the inner distortion KI(A) ∈ [1,∞].

(1.2) KI(A) =


‖A]‖n

(detA)n−1
, det A > 0

1, A = 0
∞, otherwise.

Here A] stands for the cofactor matrix of A and ‖·‖ is the operator norm.
To shorter the notation we write KI(x, f) = KI(Df(x)) and

KΩ[f ] :=
1
|Ω|

∫
Ω

KI(x, f) dx,

where |Ω| is the Lebesgue measure of Ω. If f ∈ W 1,n(Ω, Rn) and KI(x, f) <
∞ a.e, then f has a logarithmic modulus of continuity [4, 9]; that is,

|f(a)− f(b)|n ≤
C(n)

∫
2B‖Df‖n

log
(
e + 2 diam B

|a−b|

) , a, b ∈ B, 2B b Ω.

If moreover KΩ[f ] < ∞ and f is invertible, then the inverse h := f−1 is
a W 1,n-mapping and ∫

Ω
KI(x, f) dx =

∫
f(Ω)

‖Dh‖n,

see [1, Theorem 9.1]. Thus KΩ[f ] controls the modulus of continuity of f−1,
should it exist. Our main result addresses its existence.

Theorem 1.1. Suppose that f ∈ W 1,n
loc (Ω, Rn) is a nonconstant mapping

such that KΩ[f ] < ∞. If there exists δ > −1 such that Df(x) ∈ M(δ) for
almost every x ∈ Ω, then f is a local homeomorphism.

This theorem is already known in the planar case n = 2 [15, Theorem 4].
The assumption KΩ[f ] < ∞ cannot be replaced by

∫
Ω Kq

I (x, f) dx < ∞ for
any q < 1, see [15, Example 18] or [2, Example 1].

Our proof of Theorem 1.1 is based on two results of independent interest.
The first step toward proving that a mapping is a local homeomorphism is
to show that it is discrete and open; that is, preimages of points are discrete
sets and images of open sets are open.

Theorem 1.2. Let f : Ω → Rn be a nonconstant mapping in W 1,n
loc (Ω, Rn)

such that J(x, f) > 0 a.e. If (Df)−1 ∈ L∞(Ω), then f is discrete and open.

The challenging Iwaniec-Šverák conjecture asserts even more: a noncon-
stant mapping f ∈ W 1,n

loc (Ω, Rn) with KΩ[f ] < ∞ is discrete and open. So
far this conjecture was proved only for n = 2 in [10]. Partial results in this
direction were recently obtained in [6, 7, 8, 16, 20, 21].

Another crucial ingredient of our proof of Theorem 1.1 is an estimate
for the multiplicity of a local homeomorphism in terms of the integral of
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KI(·, f) in dimensions n ≥ 3. This result (Theorem 5.1) continues the line of
development that began in 1967 with the celebrated Global Homeomorphism
Theorem of Zorich [25].

The proof of Theorem 1.1 proceeds as follows. The differential inclu-
sion (1.1) allows us to approximate f by mappings fλ(x) := f(x) + λx to
which Theorem 1.2 can be applied. The results of [15] yield that fλ is a local
homeomorphism. By virtue of Theorem 5.1 the mappings fλ have uniformly
bounded multiplicity, which leads to a bound for the essential multiplicity of
f . This additional information suffices to show that f is discrete and open,
see Proposition 2.2 below. Since f is a limit of local homeomorphisms fλ,
the conclusion follows.

Different approaches to the invertibility of Sobolev mappings were pur-
sued in [2, 3, 5, 17, 19, 23], see also references therein.

2. Background

In this section we collect necessary notation and preliminaries. An open
ball with center a and radius r is denoted by B(a, r) := {x ∈ Rn : |x− a| <
r}. Its boundary is the sphere S(a, r). If λ > 0 and B = B(a, r), then
λB = B(a, λr) and λS = S(a, λr). In addition, B = B(0, 1), Br = B(0, r),
S = S(0, 1) and Sr = S(0, r).

Let Hd stand for the d-dimensional Hausdorff measure which agrees with
the Lebesgue measure when d is an integer. The Hausdorff distance dH(E,F )
between nonempty bounded sets E and F is defined as the infimum of num-
bers ε > 0 such that the ε-neighborhood of E contains F and vice versa.

Given a mapping f : Ω → Rn and a set E ⊂ Ω, we denote by N(y, f, E)
the cardinality (possibly infinite) of the set f−1(y) ∩ E. If y ∈ Rn \ f(∂Ω),
the local degree of f at y with respect to G is denoted deg(y, f, G). We
write f : A

hom−→ B to indicate that f is a homeomorphism from A onto B.
Let Γ be a family of paths (parametrized curves) in Rn, n ≥ 2. The

image of γ ∈ Γ is denoted by |γ|. We let ΥΓ be the set of all Borel functions
ρ : Rn → [0,∞] such that ∫

γ
ρ ds ≥ 1

for every locally rectifiable path γ ∈ Γ. The functions in ΥΓ are called
admissible for Γ. For a given weight ω : Rn → [0,∞] we define

MωΓ = inf
ρ∈ΥΓ

∫
ρ(x)nω(x) dx,

and call MωΓ the weighted conformal modulus of Γ. Here it suffices to have
ω defined on a Borel set containing

⋃
γ∈Γ |γ|. When ω ≡ 1 we obtain the

conformal modulus MΓ. We will also use the spherical modulus with respect
to a sphere S,

MSΓ = inf
ρ∈ΥΓ

∫
S

ρ(y)n dHn−1(y).
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The reader may wish to consult the monographs [22, 24] for basic properties
of moduli of path families. The following generalization of the Poletsky
inequality relates moduli of Γ and of its image under f , denoted fΓ.

Proposition 2.1. [13] Suppose that f ∈ W 1,n(Ω, Rn) is a discrete and open
mapping with KΩ[f ] < ∞. If Γ is a family of paths contained in Ω, then

(2.1) MfΓ ≤ MKI(·,f)Γ.

We will use the following result, which establishes the Iwaniec-Šverák
conjecture under an additional assumption on the multiplicity of f .

Proposition 2.2. Suppose that f ∈ W 1,n
loc (Ω, Rn) is a nonconstant mapping

with KΩ[f ] < ∞. Let B be a ball such that 2B b Ω. If

(2.2) ess lim sup
r→0

r1−n

∫
S(a,r)

N(y, f, B) dHn−1(y) < ∞

for every a ∈ Rn, then f is discrete and open in B.

This proposition is a consequence of [21, Theorem 2.2]. Although [21,
Theorem 2.2] requires that

ess sup
0<t<1

∫
∂(tB)

‖D]f(x)‖
|f(x)− a|n−1

dHn−1(x) < ∞,

this condition is only used to obtain (2.2).

3. Preliminary results

Proposition 3.1. Suppose that f ∈ W 1,n
loc (Ω, Rn) is a nonconstant mapping

such that KΩ[f ] < ∞. Let x ∈ Ω and y = f(x). If the x-component of
f−1(y) is {x}, then f is a discrete and open in some neighborhood of x.

Proof. Recall that Ω is bounded. Let Uj be the x-component of f−1B(y, 1/j).
Since the sets U j ⊂ Rn are nested, compact, and connected, their intersec-
tion E is also connected. On the other hand, x ∈ E ⊂ f−1(y), hence
E = {x}. It follows that diam(Uj) → 0 as j → ∞. Let us fix j such that
Uj b Ω.

We claim that f is quasilight in Uj ; that is, the connected components of
f−1(y)∩Uj are compact for all y ∈ Rn. If not, then there exists z ∈ Uj such
that the z-component of f−1(f(z)) intersects ∂Uj at some point b. Since
f(b) = f(z) ∈ B(y, 1/j), there exists t > 0 such that fB(b, t) ⊂ B(y, 1/j).
This contradicts the definition of Uj . Therefore, f is quasilight in Uj . By [20,
Theorem 1.1] f is discrete and open in Uj . �

Given a sphere S, and a point p ∈ S, let CS(p, φ) be the open spherical
cap of S with center p and opening angle φ ∈ (0, π]. For instance CS(p, π/2)
is a hemisphere and CS(p, π) is a punctured sphere.

The following topological lemma forms the main step of the proof of Zorich
Global Homeomorphism Theorem, see [22, III.3].
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Lemma 3.2. Let f : Ω → Rn be a local homeomorphism, Ω ⊂ Rn, n ≥ 3.
Suppose we have the following:

(i) G b Ω such that f : G
hom−→ G′ where G′ is convex;

(ii) G ⊂ D b Ω and there is a ∈ ∂G ∩ ∂D;
(iii) a ball B ⊂ Rn that contains a′ = f(a) and such that S = ∂B meets

G′ at some point b′.
Let b = f−1(b′) ∩G and denote by C∗

S(b′, φ) the component of f−1CS(b′, φ)
containing b. Then there exists 0 < φ0 < π such that C∗

S(b′, φ0) ⊂ D and
the closure of C∗

S(b′, φ0) meets ∂D.

Proof. Let φ0 be the supremum of all φ such that C∗
S(b′, φ) ⊂ D. It suffices

to show that φ0 < π.
Suppose to the contrary that φ0 = π. Since C∗

S(b′, π) ⊂ D, it follows
from [22, Lemma III.3.1] that f : C

∗
S(b′, π) hom−→ CS(b′, π) = S (here the

assumption n ≥ 3 is used). Since S∗ := C
∗
S(b′, π) is homeomorphic to S,

it separates Rn into two components. Let U be the bounded component
of Rn \ S∗. Then the boundary of f(U) is contained in S which implies
f(U) = B. Moreover, f : U

hom−→ B by [22, Lemma III.3.1]. Since b ∈ U ∩G

and since f(U) ∩ f(G) = B ∩ G
′ is convex (hence connected), [22, Lemma

III.3.3] yields that f is homeomorphic in U ∪G.
This leads to a contradiction. Since U ∪ G ⊂ D it follows that a lies on

the boundary of U ∪G. On the other hand, f(a) = a′ ∈ f(U) is an interior
point of f(U ∪G). �

We shall use a geometric lemma which is essentially contained in [14].

Lemma 3.3. Suppose we are given a ball B(y0, r) ⊂ Rn, a point y1 ∈
S(y0, r) and a connected set E that contains y0 and some point y2 ∈ S(y0, r).
Then there exist q ∈ B(y0, r) and 0 < σ < 2r such that for every σ < t <
4σ/3,

(i) y1 ∈ B(q, t);
(ii) S(q, t) ∩ E 6= ∅;
(iii) S(q, t) ⊂ B(y0, 2r) \B(y0, r/10).

Proof. Let α be the angle at the point (y0+y1)/2 formed by the line segments
from y0 to (y0+y1)/2 and from (y0+y1)/2 to y2. There are two cases possible.

Case 1. 0 ≤ α < π/2, or, equivalently, |y1 − y2| > r. In this case
we choose q = (y0 + y1)/2 and σ = 3r/5. For σ < t < 4σ/3 we have
B(y0, r/10) ⊂ B(q, t) and y1 ∈ B(q, t). At the same time, y2 /∈ B(q, t)
because

|y2 − q| >
√

3
2

r =
5

2
√

3
σ >

4
3
σ.

Thus, all conditions (i)–(iii) are satisfied.
Case 2. π/2 ≤ α ≤ π, or, equivalently, |y1−y2| ≤ r. This time we choose

q = (y1 + y2)/2 and σ = |y1 − y2|/2. Since |y0 − q| ≥ (
√

3/2)r, it follows
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that B(q, t) ∩B(y0, r/10) = ∅ provided that

t <

(√
3

2
− 1

10

)
r.

This is indeed the case, because

4
3
σ ≤ 2

3
r <

(√
3

2
− 1

10

)
r.

All conditions (i)–(iii) are met. �

4. Proof of Theorem 1.2

Let ||(Df)−1||∞ = L. First we observe that the inner distortion of f is
locally integrable because

(4.1) KI(x, f) = ‖(Df(x))−1‖nJ(x, f) ≤ Ln‖Df‖n for a.e. x ∈ Ω.

We may assume that B4 = B(0, 4) b Ω. It suffices to show that f is
discrete and open in B. We will do this by proving that (2.2) holds. Without
loss of generality, a in (2.2) equals 0. Fix 1 < t < 2 and 3 < T < 4 so that
Hn−1(fSt) < ∞ and Hn−1(fST ) < ∞. By the area formula we have∫

Rn

N(y, f, BT ) dy =
∫

BT

J(x, f) dx < ∞.

Therefore, for almost every 0 < R < ∞ we have

(4.2)
∫

SR

N(y, f, BT ) dHn−1(y) < ∞ and Hn−1(f(ST ) ∩ SR) = 0.

We fix such R < 1/(2L) so that (4.2) holds, and let

M := R1−n

∫
SR

N(y, f, BT ) dHn−1(y).

Our goal is to prove that

(4.3) r1−n

∫
Sr

N(y, f, B) dHn−1(y) ≤ M for a.e. 0 < r < R.

Let r < R be such that Hn−1(f(St) ∩ Sr) = 0, and denote by E ⊂ S the set
of unit vectors v for which

(4.4) deg(Rv, f, BT ) < deg(rv, f, Bt).

Let Iv : [r, R] → Rn be the parametrized line segment Iv(s) = sv. By
Proposition 3.1, either f−1(sv) has a nontrivial component for some r ≤
s ≤ R, or f is discrete and open in a neighborhood of f−1(Iv[r, R]). By
using the co-area formula as in [21, Lemma 2.4], we see that the former
possibility only occurs for v ∈ F1 where Hn−1(F1) = 0. Now we assume
that v ∈ E \ F1. Then, from (4.4) and basic properties of path lifting, it
follows that Iv has a maximal f -lifting I∗v starting at Bt and leaving BT .
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Denote

`f (x) := lim inf
z→x

|f(z)− f(x)|
|z − x|

.

By our assumption on (Df)−1 there exists a null set F ⊂ Ω such that
`f (x) ≥ 1/L for x ∈ Ω\F . Let F2 be the set of v ∈ E \F1 such that either I∗v
is unrectifiable or H1(|I∗v |∩F ) > 0. Since the measure of F is zero, it follows
that the family of curves ΓF := {I∗v : v ∈ F2} has zero weighted modulus for
any locally integrable weight. In particular, MKI

ΓF = 0. By (2.1) we have
M{Iv : v ∈ F2} = 0, which implies Hn−1(F2) = 0.

For v ∈ E \ (F1 ∪ F2) we have

(4.5) H1(I∗v ) ≤ LH1(Iv) < LR <
1
2
,

which contradicts the fact that I∗v begins at Bt and leaves BT . Thus E ⊂
F1 ∪ F2. As a consequence, Hn−1(E) = 0, which means deg(rv, f, Bt) ≤
deg(Rv, f, BT ) for Hn−1-a.e. v ∈ S. Since deg(y, f, Bt) = N(y, f, Bt) for a.e.
y ∈ Rn [8, Proposition 2], inequality (4.3) follows. This completes the proof
of Theorem 1.2 via Proposition 2.2. �

5. Multiplicity of local homeomorphisms

In 1967 Zorich [25] proved that a local homeomorphism f : Rn → Rn,
n ≥ 3, with KI(·, f) ∈ L∞(Rn) must be a global homeomorphism. Martio,
Rickman and Väisälä [17] gave a local version of this result. Namely, if
f : 2B → Rn, n ≥ 3, is a local homeomorphism with bounded distortion
KI , then its radius of injectivity in B is bounded from below by a constant
depending only on n and ess sup KI . As a consequence, the multiplicity
N(y, f, B) is bounded by C(n, ess supKI) for all y ∈ Rn.

The boundedness of KI can be replaced by the condition

exp(λK
1/(n−1)
I ) ∈ L1(2B),

but this cannot be relaxed any further [14, 18]. Surprisingly, the multiplic-
ity bound remains true under a much weaker condition, namely KI ∈ L1.
Example 7.2 below shows that Kq

I ∈ L1 with q < 1 does not suffice. The
mappings fj(z) = ejz show that all results discussed here fail when n = 2.

Theorem 5.1. Let f ∈ W 1,n
loc (Ω, Rn), n ≥ 3, be a local homeomorphism

such that KΩ[f ] < ∞. If B is a ball such that 4B b Ω, then N(y, f, B) ≤
C(n, K4B[f ]) for all y ∈ Rn.

Proof. We may assume that B is the unit ball B. Let x1, . . . , xm ∈ f−1(y)∩B.
Moreover, let rj be the largest radius r so that the xj-component U(xj , r)
of f−1B(y, r) satisfies U(xj , r) ⊂ B3. We denote by sj the largest radius
s such that B(xj , s) ⊂ U(xj , rj). Then fB(xj , sj) intersects both y and
S(y, rj). We notice that since xj ∈ B and since the balls B(xj , sj) are
pairwise disjoint, there exist at most N(n) indices j for which sj ≥ 1. Thus
we may assume that B(xj , sj) ⊂ B2 for every 1 ≤ j ≤ m.
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We now fix 1 ≤ j ≤ m and a point aj ∈ U(xj , rj) ∩ S3. We apply
Lemma 3.3 with B(y0, r) = B(y, rj), y1 = f(aj) and E = f(B(xj , sj)),
obtaining a point qj and a number σj > 0. For σj < t < 4σj/3 choose
wt ∈ B(xj , sj) such that f(wt) ∈ S(qj , t). We apply Lemma 3.2 with G =
U(xj , rj), D = B3, a = aj , B = B(qj , t) and b′ = f(wt). As a result we
obtain 0 < φt < π such that the spherical cap Ct := CS(qj ,t)(f(wt), φt)
satisfies C ∗

t ⊂ B3 and C
∗
t ∩ S3 contains some point ct. Consequently, for

every path γ joining f(wt) and f(ct) in Ct, the maximal f -lifting γ∗ of γ
starting at wt starts from B2 and leaves B3. Following [24, 10.2], we will
choose a particular family Γt of such paths.

Let us say that a circular arc is short if it is contained in a half-circle.
The family Γt will consist of all short circular arcs that connect f(wt) to
f(ct) within Ct. More precisely, let h be a Möbius transformation that maps
f(wt) to infinity and S(qj , t) \ {f(wt)} to Rn−1. Observe that h(Ct) is the
complement of a ball in Rn−1. The convexity of Rn−1 \ h(Ct) implies that
there exists an (n − 2)-hemisphere V such that h(f(ct)) + sv ∈ h(Ct) for
every s > 0 and v ∈ V .

Introduce a family of curves Iv : [0,∞) → Ct, defined by

Iv(s) = h−1(h(f(ct)) + s−1v),

and denote by I∗v the maximal f -lifting of Iv starting at wt. Now let 0 <
`(v) < ∞ be the smallest number such that I∗v (`(v)) ∈ S3. Let

Γt = {I∗v |[0,`(v)] : v ∈ Vt}.

We write fΓt for the image of Γt under f .
There is a lower bound for the spherical modulus of fΓt, namely [24,

Theorem 10.2]

(5.1) MS
n(fΓt) ≥

C(n)
t

.

Let

Γ′j = {γ : γ ∈ fΓt for some σj < t < 4σj/3},

and let Γ∗j be the family of the corresponding lifts γ∗ starting at wt. Then
integrating (5.1) we obtain

(5.2) MΓ′j ≥
∫ 4σj/3

σj

C(n)
t

dt ≥ C(n).

As observed earlier, every γ ∈ Γ∗j starts at B2 and leaves B3. We denote by
Ej the smallest closed subset of B3 \ B2 that contains |γ| ∩ (B3 \ B2) for all
γ ∈ Γ∗j . Note that

(5.3) Ej ⊂ f−1
(
B(y, 2rj) \B(y, rj/10)

)
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by part (iii) of Lemma 3.3. Since the characteristic function χEj is an
admissible function for Γ∗j , we have

(5.4) MKI
Γ∗j ≤

∫
Ej

KI(x, f) dx.

The generalized Poletsky inequality MΓ′j ≤ MKI
Γ∗j [15, Theorem 4.1], to-

gether with (5.2) and (5.4) yield

mC(n) ≤
m∑

j=1

MΓ′j ≤
m∑

j=1

∫
Ej

KI(x) dx

≤
(

sup
x∈B3\B2

m∑
j=1

χEj (x)
)
×
∫

3B
KI(x, f) dx.

(5.5)

Claim 1. There exists M = M(n, K4B[f ]) such that

(5.6)
m∑

j=1

χEj (x) ≤ M for every x ∈ B3 \ B2.

By virtue of (5.5), Theorem 5.1 follows from Claim 1. In the rest of this
section we prove (5.6).

Let x ∈ B3 \ B2 be a point covered by M of the sets Ej . After relabeling
we have x ∈ Ej for 1 ≤ j ≤ M , and r1 ≤ r2 ≤ · · · ≤ rM . Since disjoint sets
have disjoint preimages, (5.3) implies rM ≤ 20r1.

Choose τ > 0 such that B(x, τ) ⊂ B3 and f is injective in B(x, τ). For
1 ≤ j ≤ M there exists γ∗j ∈ Γ∗j which meets B(x, τ). Let wj be the starting
point of γ∗j , and let γj be the subcurve of γ∗j that begins at wj and ends
once it meets B(x, τ).

Claim 2. For 1 ≤ j ≤ M there is a curve τj that joins y to f(wj) within
B(y, rj) in such a way that the union of |τj | and |f ◦ γj | can be mapped
onto a line segment by an L-biLipschitz mapping g : Rn → Rn. Here L is a
universal constant.

Proof of Claim 2. Note that the image f ◦ γj is a short circular arc
contained in the sphere S(q, t) of Lemma 3.3. Part (iii) of Lemma 3.3 implies

(5.7) dist(y, |f ◦ γj |) ≥ dist(y, S(q, t)) ≥ 1
10

rj ≥
1
40

diam |f ◦ γj |.

There are two cases. If y ∈ B(q, t), then τj is the line segment connecting y
to f(wj). By virtue of (5.7), the distance from y to S(q, t) is comparable to
t. Therefore, the angle between τj and the sphere S(q, t) is bounded from
below by a universal constant, and the claim follows.

Suppose that y /∈ B(q, t). Let ρj := |f(wj)− y|. Note that rj/10 ≤ ρj ≤
rj . Let p be the point of the sphere S(y, ρj) that is farthest from q, namely

p = y − ρj
q − y

|q − y|
.
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We choose τj as the union of the line segment connecting y to p and the
geodesic arc on S(y, ρj) from p to f(wj). Once again, the angle between τj

and the sphere S(q, t) is bounded from below by a universal constant. �.
Let ηj , 1 ≤ j ≤ M , be the curve obtained by concatenating −(f ◦γj) with

−τj , where − indicates the reversal of orientation. Note that ηj begins in
fB(x, τ), proceeds along a circular arc to f(wj), and ends at y. Its f -lifting
η∗j starting in B(x, τ) is contained in B3 and ends at xj .

Claim 3. There exists ε = ε(n, M) such that ε → 0 as M →∞, and

(5.8) min
1≤i<j≤M

dH (|ηi|, |ηj |) ≤ εr1/L.

We begin our proof of Claim 3 by observing that |ηj | ⊂ B(y, 2rM ) ⊂
B(y, 40r1). For ε > 0 let Z = {z1, . . . , zN} be an (εr1/L)-net in B(y, 40r1),
where N = N(ε, n). The set of all nonempty subsets of Z is an (εr1/L)-net
in the set of all nonempty closed subsets of B(y, 40r1) equipped with the
Hausdorff metric. If M > 2N , then by the pigeonhole principle there exist
i < j such that |ηi| and |ηj | are within the distance (εr1/L) from the same
subset of Z. Claim 3 follows. �

Fix i, j, and ε as in Claim 3, and let g : Rn → Rn be the L-biLipschitz
mapping from Claim 2. By replacing f with g ◦ f , which has a comparable
distortion function KI , we may assume that |ηj | is a line segment. For δ > 0
we denote by W (δ) the open δ-neighborhood of |ηj |. Let W ∗(δ) be the
xj-component of f−1W (δ).

Claim 4. If δ > εr1, then W ∗(δ) ∩ S4 6= ∅.
Since δ > εr1, we have |ηi| ⊂ W (δ). Suppose to the contrary that W ∗(δ) ⊂

B4. Then W ∗(δ) b Ω, which by [22, Lemma III.3.1] implies that f : W ∗(δ) →
W (δ) is a homeomorphism. This contradicts the fact that the f -liftings of
ηi and ηj starting in B(x, τ) end at different points, namely xi and xj . �

Let δ0 be the supremum of all numbers δ such that W ∗(δ) ⊂ B4. Since
f is a local homeomorphism, δ0 > 0. By [22, Lemma III.3.1], f : W ∗(δ) hom−→
W (δ) for every 0 < δ < δ0. By Claim 4 we have δ0 ≤ εr1.

Choose a point a ∈ ∂W ∗(δ0) ∩ S4. Let a′ = f(a). Since a′ ∈ ∂W (δ0),
there exists p ∈ |ηj | such that |a′ − p| = δ0. For δ0 < t < 1

2 diam |ηj | choose
b′t ∈ |ηj | ∩ S(p, t). We apply Lemma 3.2 with G = W ∗(δ0), D = B4, a = a,
B = B(p, t) and b′ = b′t. As a result we obtain 0 < φt < π such that the
spherical cap Ct := CS(p,t)(b′t, φt) satisfies C ∗

t ⊂ B4 and C
∗
t ∩ S4 contains

some point ct. Consequently, for every path γ joining b′t and f(ct) in Ct, the
maximal f -lifting γ∗ of γ starting at f−1(b′t)∩ |η∗j | starts from B3 and leaves
B4. Let Γ be the family of all such paths γ and Γ∗ be the family of the lifts
γ∗. From [24, Theorem 10.2] we have

MΓ ≥ C(n)
∫ diam(ηj)/2

εr1

dt

t
≥ C(n) log

diam(ηj)
2εr1

.
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By (5.7) we have diam |ηj | ≥ cr1 with a universal constant c > 0. Therefore,

(5.9) MΓ ≥ C(n) log
1
ε
.

On the other hand, since the characteristic function χB4\B3
is an admissible

function for Γj , we obtain

MKI
Γ∗ ≤

∫
B4\B3

KI(x, f) dx.

Combining this with (5.9) and using the Poletsky inequality again, we have
ε ≥ C(n, K4B[f ]), hence M ≤ C(n, K4B[f ]). This gives (5.6). The proof of
Theorem 5.1 is complete. �

6. Proof of Theorem 1.1

Denote fλ(x) = f(x)+λx, λ > 0. Then fλ ∈ W 1,n
loc (Ω, Rn). Moreover, by

[15, Lemma 10],

(6.1) KI(x, fλ) ≤ C(δ, n)KI(x, f) and ‖(Dfλ)−1(x)‖ ≤ C(δ, λ)

for almost every x ∈ Ω. Thus fλ is discrete and open for every λ > 0 by
Theorem 1.2. Furthermore, by [15, Lemma 13] fλ is a local homeomorphism.
(Although [15, Lemma 13] imposes a stronger condition on the distortion of
f , this condition is only used to ensure that f is discrete and open.) Since
fλ → f locally uniformly, the following proposition implies that f is a local
homeomorphism, completing the proof of Theorem 1.1.

Proposition 6.1. Suppose that a mapping f ∈ W 1,n
loc (Ω, Rn) with KΩ[f ] <

∞ can be uniformly approximated by local homeomorphisms fj ∈ W 1,n
loc (Ω, Rn)

such that supj KΩ[fj ] < ∞. Then f is a local homeomorphism.

Proof. By [15, Proposition 7] it suffices to show that f is discrete and open.
If n = 2, this is due to Iwaniec and Šverák [10]. Thus we assume that n ≥ 3.
Let B = B(x0, R) be a ball such that 8B b Ω. We will show that

(6.2) N(y, f, B) ≤ C for a.e. y ∈ Rn,

where C < ∞ does not depend on y. Proposition 2.2 will then imply that f
is discrete and open in B.

Applying Theorem 5.1 to fj , we obtain

N(y, fj , 2B) ≤ C for every y ∈ Rn

where C depends only on supj KΩ[fj ] and n.
We fix R < t < 2R so that Hn−1(fS(x0, t)) < ∞, and a point y ∈ fB \

fS(x0, t). Let d = dist(y, fS(x0, t)). Since fj → f locally uniformly, there
exists j0 such that |fj(x) − f(x)| < d/2 for all j ≥ j0 and all x ∈ S(x0, t).
Consequently, the restrictions of fj and f to S(x0, t) are homotopic via the
straight-line homotopy that takes values in Rn \ {y}. It follows that

deg(y, f, B(x0, t)) = deg(y, fj , B(x0, t)) ≤ N(y, fj , 2B) ≤ C
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for all j ≥ j0. Since N(y, f, B) ≤ N(y, f, B(x0, t)) = deg(y, f, B(x0, t)) for
almost every y ∈ Rn, we conclude that (6.2) indeed holds. The proof is
complete. �

7. Concluding remarks

Corollary 7.1. Suppose that f ∈ W 1,n
loc (Rn, Rn) is a nonconstant mapping

such that KI(·, f) ∈ L1
loc(Rn). If there exists δ > −1 such that Df(x) ∈

M(δ) for almost every x ∈ Rn, then f is a homeomorphism.

Proof. As in the proof of Theorem 1.1 we have that fλ(x) = f(x) + λx is
a local homeomorphism for all λ > 0. Since (Dfλ)−1 ∈ L∞(Rn), it follows
from [15, Lemma 12] that

(7.1) lim inf
x→a

|f(x)− f(a)|
|x− a|

> 0

for all a ∈ Rn. By a theorem of John [11, p. 87], fλ is a homeomorphism.
Since f is discrete and open by Theorem 1.1, we can apply [15, Proposition 7]
and conclude that f is a homeomorphism. �

Sharpness of Theorem 5.1 is demonstrated by the following example which
combines the ideas from [2] and [14].

Example 7.2. For any q < 1 there exists a sequence of mappings fj ∈
W 1,3(B, R3) such that

sup
j

∫
B

Kq
I (x, fj) dx < ∞ and N(0, fj , B(0, 1/4)) →∞.

Proof. By a version of Zorich’s construction (see [9, 22]) there exists a map-
ping φ ∈ W 1,3(R3, R3) such that KI(·, φ) ∈ L∞(R3), φ is a local home-
omorphism outside of R × (2Z + 1)2, and φ is 4-periodic in the last two
variables. Therefore, it suffices for us to construct biLipschitz homeomor-
phisms fj : B → R3 such that

(i) supj

∫
B Kq

I (x, fj) dx < ∞;
(ii) fj(B) ⊂ D× R (here D ⊂ R2 is the unit disc);
(iii) fj(B1/4) contains a line segment {0}× [−L,L] ⊂ R2×R where L →∞

as j →∞.

The compositions φ ◦ fj will be mappings with large multiplicity.
For y ∈ R3 let s(y) =

√
y2
1 + y2

2. For α > 2 we define a mapping x = g(y)
by

xi = s(y)α−1yi, i = 1, 2;

x3 = s(y)y3.
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Since s(x) = s(y)α, the inverse mapping y = f(x) outside the set {s(x) = 0}
is given by

yi = s(x)1/α−1xi, i = 1, 2;

y3 = s(x)−1/αx3, s(x) 6= 0.

Let Ω = {x ∈ R3 : s(x) < 1, |x3| < 1} and Ω′ = f(Ω). We restrict our
attention to y ∈ Ω′, where in particular s(y) < 1. Elementary computations
show that

‖Dg(y)‖ ≤ C max(s(y), |y3|) and

J(y, g) ≥ Cs(y)2(α−1)+1.

Therefore,

(7.2)
‖Dg(y)‖3

J(y, g)
≤ Cs(y)2(1−α)−1 max(s(y)3, |y3|3).

Since
‖Dg(y)‖3

J(y, g)
= KI(x, f),

inequality (7.2) can be used to estimate KI(x, f) as follows.

KI(x, f) ≤ C s(x)(2(1−α)−1)/α max(s(x)3/α, s(x)−3/α|x3|3)

≤ C s(x)−(2α+2)/α

where at the last step we used |x3| < 1. We achieve
∫
Ω KI(x, f)q dx < ∞ by

choosing α large enough so that
2α + 2

α
q < 2.

The mapping f constructed thus far is not in W 1,3, and is not even
continuous. However, this can be corrected by replacing s(y) with sj(y) =√

y2
1 + y2

2 + 1/j2 . The mapping x = gj(y) given by

xi = sj(y)α−1yi, i = 1, 2;

x3 = sj(y)y3,

is biLipschitz; we denote the inverse by fj . The computation of ‖Dgj‖
and J(·, gj) goes through exactly as before and shows that the integral of
Kq

I (·, fj) is bounded independently of εj . Since gj(0, 0, y3) = (0, 0, y3/j),
we have fj(0, 0, x3) = (0, 0, jx3). Thus, this mapping fj fulfills the require-
ments (i)–(iii). �
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10. T. Iwaniec and V. Šverák, On mappings with integrable dilatation, Proc. Amer. Math.
Soc. 118 (1993), no. 1, 181–188.

11. F. John, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77–110.
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