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ANTTI KÄENMÄKI AND MARKKU VILPPOLAINEN

Abstract. We show that in a typical sub-self-affine set, the Hausdorff and
the Minkowski dimensions coincide and equal to the zero of an appropriate
topological pressure. This gives a partial positive answer to the question of
Falconer. We also study the properties of the topological pressure and the
existence and the uniqueness of natural measures supported on a sub-self-affine
set.

1. Introduction

An iterated function system (IFS) on R
d is a finite collection of strictly con-

tractive mappings f1, . . . , fκ : R
d → R

d. For such a system there exists a unique
nonempty compact set E ⊂ R

d satisfying

E =

κ
⋃

i=1

fi(E), (1.1)

see Hutchinson [16]. When the mappings are similitudes, the set E satisfying (1.1)
is called self-similar, and if they are affine, then E is called self-affine. There are
many works focusing on calculating the dimension and measures of these sets, see
for example [16, 20, 7, 8, 15, 11, 2, 19].

Falconer [9] introduced a generalization of self-similar sets by relaxing equality
in (1.1) to inclusion. He termed a compact set satisfying such an inclusion sub-self-
similar. The same generalization can of course be done with self-affine sets. If the
mappings f1, . . . , fκ are affine, then any nonempty compact set E ⊂ R

d satisfying

E ⊂
κ

⋃

i=1

fi(E)

is called sub-self-affine. These sets include many interesting examples, such as
sub-self-similar sets, graph directed self-affine sets, unions of self-affine sets, and
topological boundaries of self-affine sets. The reader is referred to [9, §2] for a
more comprehensive list of examples.
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For sub-self-similar sets satisfying a sufficient separation condition, the so-called
open set condition, Falconer [9] proved that the Hausdorff and the Minkowski
dimensions coincide and equal to the zero of an appropriate topological pressure.
We show in Theorem 5.2 that the same result is true for typical sub-self-affine sets.
This gives a partial positive answer to the question of Falconer [9]. The proof of
Theorem 5.2 is based on the existence of an equilibrium measure. The existence of
such measures on a self-affine set was proved by Käenmäki [18]. To our knowledge,
it is the first proof for the existence of an equilibrium measure that is not based
on the existence of the Gibbs-type measure. Cao, Feng, and Huang [5] have later
studied the variational principle in a more general setting. The uniqueness of
the equilibrium measure was implicitly asked in [18]. In Example 6.2, we answer
this question in negative. Sufficient conditions for the uniqueness can be found in
Lemma 3.5 and Theorem 3.6.

We also study the behavior of the topological pressure. It follows that there
are at most countably many points where the pressure is not differentiable. A
sufficient condition for the existence of the derivative is given in Theorem 4.4.

2. Setting and preliminaries

Throughout the article, we use the following notation: Let 0 < α < 1 and I be
a finite set with cardinality κ := #I ≥ 2. Put I∗ =

⋃∞
n=1 In and I∞ = IN. For

each i ∈ I∗, there is n ∈ N such that i = (i1, . . . , in) ∈ In. We call this n as
the length of i and we denote |i| = n. The length of elements in I∞ is infinity.
Moreover, if i ∈ I∗ and j ∈ I∗∪I∞ then with the notation ij we mean the element
obtained by juxtaposing the terms of i and j. For i ∈ I∗ and K ⊂ I∞, we define
[i; K] = {ij : j ∈ K} and we call the set [i] := [i; I∞] a cylinder set of level |i|.
If j ∈ I∗ ∪ I∞ and 1 ≤ n < |j|, we define j|n to be the unique element i ∈ In for
which j ∈ [i]. If j ∈ I∗ and n ≥ |j| then j|n = j. We also denote i− = i||i|−1.
We say that elements i, j ∈ I∗ are incomparable if [i] ∩ [j] = ∅.

Defining

|i− j| =

{

αmin{k−1:i|k 6=j|k}, i 6= j

0, i = j

whenever i, j ∈ I∞, the couple (I∞, | · |) is a compact metric space. We call
(I∞, | · |) a symbol space and an element i = (i1, i2, . . .) ∈ I∞ a symbol. If there is
no danger of misunderstanding, let us also call an element i ∈ I∗ a symbol. Define
the left shift σ by setting

σ(i1, i2, . . .) = (i2, i3, . . .). (2.1)

It is easy to see that as a mapping σ : I∞ → I∞ is continuous. With the notation
σ(i1, . . . , in), we mean the symbol (i2, . . . , in) ∈ In−1. Observe that to be precise
in our definitions, we need to work with “empty symbols”, that is, symbols with
zero length. However, this is left to the reader.
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The singular values ‖A‖ = α1(A) ≥ · · · ≥ αd(A) > 0 of an invertible matrix
A ∈ R

d×d are the square roots of the eigenvalues of the positive definite matrix
A∗A, where A∗ is the transpose of A. Given such a matrix A, we define the singular
value function to be

ϕt(A) = α1(A) · · ·αl(A)αl+1(A)t−l,

where 0 ≤ t < d and l = ⌊t⌋ is the integer part of t. When t ≥ d, we set
ϕt(A) = | det(A)|t/d for completeness.

For each i ∈ I, fix an invertible matrix Ai ∈ R
d×d such that ‖Ai‖ ≤ α. Clearly

the products Ai = Ai1 · · ·Ain are also invertible for all i ∈ In and n ∈ N. Denoting
α = mini∈I αd(Ai) > 0, it follows that

ϕt(Ai)α
δ|i| ≤ ϕt+δ(Ai) ≤ ϕt(Ai)α

δ|i| (2.2)

for all t, δ ≥ 0 and i ∈ I∗. According to [27, Corollary V.1.1] and [7, Lemma 2.1],
we have

ϕt(Aij) ≤ ϕt(Ai)ϕ
t(Aj) (2.3)

for all t ≥ 0 and i, j ∈ I∗.
For K ⊂ I∞ we denote Kn = {i|n ∈ In : i ∈ K}. If σ(K) ⊂ K, then it follows

that
ij ∈ Kn+m =⇒ i ∈ Kn and j ∈ Km (2.4)

for all i ∈ In and j ∈ Im. The converse does not necessarily hold: choose
I = {0, 1} and define K = {(0, 0, . . .), (1, 1, . . .)} ⊂ I∞ for a trivial counterexample.
We also set K∗ =

⋃∞
n=1 Kn. Now (2.3) together with (2.4) imply that

∑

i∈Kn+m

ϕt(Ai) ≤
∑

i∈Kn+m

ϕt(Ai|n)ϕt(Aσn(i))

≤
∑

i∈Kn

j∈Km

ϕt(Ai)ϕ
t(Aj) =

∑

i∈Kn

ϕt(Ai)
∑

j∈Km

ϕt(Aj)

whenever t ≥ 0 and n, m ∈ N. This observation allows us to give the following
definition. Given a set K ⊂ I∞ with σ(K) ⊂ K and t ≥ 0, we define the topological
pressure to be

PK(t) = lim
n→∞

1
n

log
∑

i∈Kn

ϕt(Ai).

The limit above exists by the standard theory of subadditive sequences. Further-
more, it holds that PK(t) = infn∈N

1
n

log
∑

i∈Kn
ϕt(Ai). To simplify the notation,

we denote P (t) = PI∞(t).

Lemma 2.1. Suppose for each i ∈ I there is an invertible matrix Ai ∈ R
d×d. If

K ⊂ I∞ is a nonempty set with σ(K) ⊂ K, then the function PK : [0,∞) → R is
continuous, strictly decreasing with limt→∞ PK(t) = −∞, and convex on connected
components of [0,∞) \ {1, . . . , d}. Furthermore, there exists a unique t ≥ 0 for
which PK(t) = 0.
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Proof. Denoting α = mini∈I αd(Ai) > 0 and α = maxi∈I α1(Ai), (2.2) implies

0 < −δ log α ≤ PK(t) − PK(t + δ) ≤ −δ log α

for all t, δ ≥ 0. It follows that PK is continuous and strictly decreasing with
limt→∞ PK(t) = −∞. Furthermore, since PK(0) = limn→∞

1
n

log #Kn ≥ 0, also
the last claim is immediate.

To prove the claimed convexity, take γ ∈ (0, 1) and 0 ≤ t1 < t2 < d. Denoting
l1 = ⌊t1⌋, l2 = ⌊t2⌋, and l = ⌊γt1 + (1 − γ)t2⌋, we have for each i ∈ K∗

α1(Ai) · · ·αl(Ai)αl+1(Ai)
t1−l = ϕt1(Ai)

αl1+1(Ai)
l1−t1αl1+1(Ai) · · ·αl(Ai)

αl+1(Ai)l−t1

and

α1(Ai) · · ·αl(Ai)αl+1(Ai)
t2−l = ϕt2(Ai)

αl+1(Ai)
t2−l

αl+1(Ai) · · ·αl2(Ai)αl2+1(Ai)t2−l2
.

Hence

ϕγt1+(1−γ)t2(Ai) =
(

α1(Ai) · · ·αl(Ai)αl+1(Ai)
t1−l

)γ

(

α1(Ai) · · ·αl(Ai)αl+1(Ai)
t2−l

)1−γ

≤
(

ϕt1(Ai)
αl1+1(Ai)

l−t1

αl+1(Ai)l−t1

)γ(

ϕt2(Ai)
αl+1(Ai)

t2−l

αl2+1(Ai)t2−l

)1−γ

.

(2.5)

The convexity on connected components of [0, d] \ {1, . . . , d} is now an immediate
consequence of Hölder’s inequality. Indeed, choosing 0 ≤ t1 < t2 < d such that
⌊t1⌋ = ⌊t2⌋, we obtain from (2.5) that for each n ∈ N

∑

i∈Kn

ϕγt1+(1−γ)t2(Ai) ≤
(

∑

i∈Kn

ϕt1(Ai)

)γ(
∑

i∈Kn

ϕt2(Ai)

)1−γ

.

Notice that the convexity on [d,∞) follows by a similar reasoning. The proof is
complete. �

Remark 2.2. Observe that (2.5) implies

PK

(

γt1 + (1 − γ)t2
)

≤ γPK(t1) + (1 − γ)PK(t2) + d log(α/α)

whenever 0 ≤ t1 < t2 < d and γ ∈ (0, 1). It follows from [6, §2] that there exists
a convex function P̃K : [0,∞) → R such that |PK(t) − P̃K(t)| ≤ d

2
log(α/α) for all

0 ≤ t < d.

Suppose for each i ∈ I there is an invertible matrix Ai ∈ R
d×d with ‖Ai‖ ≤ α <

1. For a = (a1, . . . , aκ) ∈ R
dκ, where ai ∈ R

d is a translation vector and κ = #I,
we define a projection mapping πa : I∞ → R

d by setting

πa(i) =
∞

∑

n=1

Ai|n−1
ain
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as i = (i1, i2, . . .). The mapping πa is clearly continuous. The collection of con-
tractive affine mappings {Ai + ai}i∈I is called an affine iterated function system
(affine IFS).

If K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K, then we define EK =
πa(K) and call this set sub-self-affine. We also denote E = EI∞ and call this set
self-affine. It follows that the compact set EK satisfies

EK ⊂
⋃

i∈I

(Ai + ai)(EK). (2.6)

This is an immediate consequence of the fact that

πa(ii) = (Ai + ai)

∞
∑

n=1

Ai|n−1
ain = (Ai + ai)πa(i)

whenever i ∈ K and i ∈ K1. The converse is also true. Namely, if E ′ is a compact
set satisfying (2.6), then for the compact set K =

⋂∞
n=0{i ∈ I∞ : σn(i) ∈ π−1

a (E ′)}
we clearly have σ(K) ⊂ K and πa(K) ⊂ E ′. To see that E ′ ⊂ πa(K), pick x0 ∈ E ′

and use (2.6) repeatedly to discover a symbol i = (i1, i2, . . .) ∈ I∞ such that for
each n ∈ N there exists xn ∈ E ′ so that

x0 = (Ai1 + ai1) · · · (Ain + ain)(xn) = Ai|nxn + Ai|n−1
ain + · · ·+ ai1 .

Since |Ai|nxn| → 0 as n → ∞, we have x0 = πa(i). That i ∈ K follows from the

fact that πa

(

σn(i)
)

= xn for all n ∈ N. See also [9, Proposition 2.1] and [1, §3].
Since the self-affine set E satisfies (2.6) with an equality, it is also called an

invariant set of the affine IFS {Ai + ai}i∈I . It follows from [16, §3.1] that E is
the only nonempty compact set satisfying such an equality. If there is no danger
of misunderstanding, the image of a cylinder set Ei = πa([i]) will also be called a
cylinder set.

Recalling Lemma 2.1, we define the singularity dimension to be the unique t ≥ 0
for which PK(t) = 0. See also [7, Proposition 4.1], [9, Proposition 3.2], and [19,
§2]. Inspecting the proof of [7, Theorem 5.4], we see that the singularity dimension
serves as an upper bound for the upper Minkowski dimension of EK .

3. Equilibrium measures

Denote with M(I∞) the collection of all Borel probability measures on I∞.
We set Mσ(I∞) = {µ ∈ M(I∞) : µ is σ-invariant}, where the σ-invariance of µ
means that µ([i]) = µ

(

σ−1([i])
)

=
∑

i∈I µ([ii]) for all i ∈ I∗. Observe that if

µ ∈ Mσ(I∞), then µ(A) = µ
(

σ−1(A)
)

for all Borel sets A ⊂ I∞ by [3, Theorem
5.4]. Furthermore, we denote Eσ(I∞) = {µ ∈ Mσ(I∞) : µ is ergodic}, where the
ergodicity of µ means that µ(A) = 0 or µ(A) = 1 for every Borel set A ⊂ I∞ with
A = σ−1(A). Recall from [28, Theorem 6.10] that the set Mσ(I∞) is compact and
convex with ergodic measures as its extreme points.
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For K ⊂ I∞ we also denote Mσ(K) = {µ ∈ Mσ(I
∞) : spt(µ) ⊂ K} and

Eσ(K) = {µ ∈ Eσ(I
∞) : spt(µ) ⊂ K}. Here spt(µ) is the support of µ, that is, the

smallest closed set F ⊂ I∞ for which µ(I∞ \ F ) = 0. Observe that if K ⊂ I∞ is
a nonempty compact set, then Mσ(K) is nonempty by [28, Corollary 6.9.1]. It is
also compact and convex with Eσ(K) as the set of its extreme points.

Remark 3.1. (1) Let K ⊂ I∞ be a nonempty compact set with σ(K) ⊂ K. If µ ∈
Eσ(I∞) satisfies µ(I∞\K) > 0, then the invariance of µ yields µ(K0) = µ(I∞\K),
where K0 =

⋂∞
n=1 σ−n(I∞ \ K) ⊂ I∞ \ K. Furthermore, since σ−1(K0) = K0, the

ergodicity of µ yields µ(I∞ \ K) = 1.
(2) There exists a measure µ ∈ Eσ(I

∞) and a nonempty compact set K ⊂ I∞

with σ(K) ⊂ K so that µ(K) = 0. Namely, let I = {0, 1} and define µ ∈ M(I∞)
by setting µ({(0, 1, 0, 1, . . .)}) = 1

2
= µ({(1, 0, 1, 0, . . .)}). Since µ([i]) = µ([0i]) +

µ([1i]) for all i ∈ I∗, the measure µ is invariant. Furthermore, let A ⊂ I∞ be
a Borel set with A = σ−1(A) and 0 < µ(A) < 1. It follows that µ(A) = 1

2
. If

(0, 1, 0, 1, . . .) ∈ A = σ−1(A), then also (1, 0, 1, 0, . . .) ∈ A, which clearly cannot
be the case. Similarly the other way around. Hence µ is ergodic. Choosing now
K = {(0, 0, . . .), (1, 1, . . .)} (or K = {i ∈ I∞ : σn−1(i|n+1) 6= (0, 1) for all n ∈ N}),
we have found the desired compact set.

We define a concave function H : [0, 1] → R by setting H(x) = −x log x when
0 < x ≤ 1 and H(0) = 0. Notice that 0 ≤ H(x) ≤ 1

e
for all x ∈ [0, 1]. The

following lemma is an immediate consequence of [18, Lemmas 2.3 and 2.2].

Lemma 3.2. If µ ∈ M(I∞), then

1
n

∑

i∈In

H
(

µ([i])
)

≤ 1
kn

n−1
∑

j=0

∑

i∈Ik

H
(

µ ◦ σ−j([i])
)

+ 3k
n

log #I

for all integers 0 < k < n. If in addition t ≥ 0 and for each i ∈ I there is an
invertible matrix Ai ∈ R

d×d, then

1
n

∑

i∈In

µ([i]) log ϕt(Ai) ≤ 1
kn

n−1
∑

j=0

∑

i∈Ik

µ ◦ σ−j([i]) log ϕt(Ai) + 3k
n

log α−t

for all integers 0 < k < n. Here α = mini∈I αd(Ai) > 0.

If µ ∈ Mσ(I
∞), then we define the entropy of µ by setting

h(µ) = lim
n→∞

1
n

∑

i∈In

H
(

µ([i])
)

.

If in addition t ≥ 0 and for each i ∈ I there is an invertible matrix Ai ∈ R
d×d,

then we define the t-energy of µ by setting

Λt(µ) = lim
n→∞

1
n

∑

i∈In

µ([i]) log ϕt(Ai).
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The limits above exist since

lim sup
n→∞

1
n

∑

i∈In

H
(

µ([i])
)

≤ inf
k∈N

1
k

∑

i∈Ik

H
(

µ([i])
)

,

lim sup
n→∞

1
n

∑

i∈In

µ([i]) log ϕt(Ai) ≤ inf
k∈N

1
k

∑

i∈Ik

µ([i]) log ϕt(Ai)

by the invariance of µ and Lemma 3.2.
Suppose K ⊂ I∞ is a nonempty compact set and µ ∈ M(K). Since trivially

µ([i]) = 0 for all I∗\K∗, we may write Lemma 3.2 and the definitions of entropy and
t-energy by using Kn instead of In. For our purposes the assumption µ ∈ M(K) is
natural, see Remark 3.1. Observe that the mapping µ 7→ Λt(µ) defined on Mσ(K)
is the infimum of continuous and affine (i.e. convex and concave) mappings. Since
also the mapping µ 7→ h(µ) defined on Mσ(K) is upper semicontinuous and affine
(see [28, Theorems 8.1 and 8.2] or [18, proof of Theorem 4.1]), the mapping µ 7→
h(µ)+Λt(µ) defined on Mσ(K) is upper semicontinuous and affine for each t ≥ 0.
Finally, it is easy to see that 0 ≤ hK(µ) ≤ log #I and t log α ≤ Λt(µ) ≤ t log α for
all µ ∈ Mσ(K) and t ≥ 0, where α = mini∈I αd(Ai) > 0 and α = maxi∈I α1(Ai).

If µ ∈ M(I∞) and t ≥ 0, then for each n ∈ N and Cn ⊂ In Jensen’s inequality
implies

∑

i∈Cn

µ([i])

(

− log µ([i]) + log ϕt(Ai) − log
∑

j∈Cn

ϕt(Aj)

)

=
∑

i∈Cn

β(i)H

(

µ([i])

β(i)

)

≤ H

(

∑

i∈Cn

β(i)
µ([i])

β(i)

)

∈ [0, 1
e
]

(3.1)

where β(i) = ϕt(Ai)/
∑

j∈Cn
ϕt(Aj) for all i ∈ Cn. In particular, if K ⊂ I∞ is a

nonempty compact set with σ(K) ⊂ K, then (3.1) applied with Cn = Kn yields

PK(t) ≥ h(µ) + Λt(µ)

for all µ ∈ Mσ(K) and t ≥ 0. A measure µ ∈ Mσ(K) is called a (K, t)-equilibrium
measure if

PK(t) = h(µ) + Λt(µ).

To simplify the notation, we speak about t-equilibrium measures when K = I∞.
From now on, without mentioning it explicitely, we assume that for each i ∈ I
there is an invertible matrix Ai ∈ R

d×d.

Theorem 3.3. If K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K and t ≥ 0,
then there exists an ergodic (K, t)-equilibrium measure.

Proof. To prove the theorem, we use similar approach as in [18, Theorem 2.6]. For
each n ∈ N we define a Borel probability measure

νn =

∑

i∈Kn
ϕt(Ai)δihi

∑

i∈Kn
ϕt(Ai)

,
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where δihi is the Dirac measure and for each i ∈ Kn the symbol hi ∈ I∞ is chosen
such that ihi ∈ K. Now with the measure νn ∈ M(K), we have an equality in
(3.1) (when Cn is chosen to be Kn). Furthermore, we set

µn = 1
n

n−1
∑

j=0

νn ◦ σ−j

for all n ∈ N. Going into a subsequence, if necessary, it follows that {µn}n con-
verges weakly to some µ ∈ Mσ(K). According to Lemma 3.2 and the concavity
of H , we have

1
n

∑

i∈Kn

H
(

νn([i])
)

≤ 1
k

∑

i∈Kk

H
(

µn([i])
)

+ 3k
n

log #I (3.2)

for all integers 0 < k < n. Denoting α = mini∈I αd(Ai) > 0, Lemma 3.2 also
implies

1
n

∑

i∈Kn

νn([i]) log ϕt(Ai) ≤ 1
k

∑

i∈Kk

µn([i]) log ϕt(Ai) + 3k
n

log α−t (3.3)

for all integers 0 < k < n. Now (3.1) (with the equality), (3.2), and (3.3) yield

1
n

log
∑

i∈Kn

ϕt(Ai) ≤ 1
k

∑

i∈Kk

H
(

µn([i])
)

+ 1
k

∑

i∈Kk

µn([i]) log ϕt(Ai) + 3k
n

log #Iα−t

for all integers 0 < k < n. Letting n → ∞ along the chosen subsequence, we get

PK(t) ≤ 1
k

∑

i∈Kk

H
(

µ([i])
)

+ 1
k

∑

i∈Kk

µ([i]) log ϕt(Ai).

Recall also [21, Theorem 1.24] and the fact that cylinders are both open and closed.
Letting k → ∞ we have shown that µ is a (K, t)-equilibrium measure.

Since the mapping µ 7→ h(µ) + Λt(µ) defined on Mσ(K) is upper semicontinu-
ous and affine, the set of all (K, t)-equilibrium measures is compact and convex.
Moreover, for a (K, t)-equilibrium measure µ, by Choquet’s Theorem ([22, §3]),
there exists a Borel probability measure τµ on Eσ(K) such that

h(µ) + Λt(µ) =

∫

Eσ(K)

h(η) + Λt(η)dτµ(η).

This implies the existence of an ergodic (K, t)-equilibrium measure. See also [18,
Theorem 4.1]. �

If K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K, then µ ∈ Mσ(K)
is called a (K, t)-semiconformal measure if it satisfies the following Gibbs-type
property: there exists a constant c ≥ 1 such that

c−1e−|i|PK(t)ϕt(Ai) ≤ µ([i]) ≤ ce−|i|PK(t)ϕt(Ai) (3.4)
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for all i ∈ K∗. To simplify the notation, we speak about t-semiconformal measures
when K = I∞. For a motivation to the use of the term “semiconformal”, the reader
is referred to [8, Lemma 1]. Since a (K, t)-semiconformal measure µ satisfies

h(µ) + Λt(µ) ≥ lim
n→∞

1
n

∑

i∈Kn

µ([i])
(

− log µ([i]) + log c−1enPK(t)µ([i])
)

= PK(t),

a (K, t)-semiconformal measure is always a (K, t)-equilibrium measure.
We will discover that semiconformal measures may or may not exist: If for given

t ≥ 0 there exists a constant D ≥ 1 such that

D−1ϕt(Ai)ϕ
t(Aj) ≤ ϕt(Aij)

for all i, j ∈ I∗, then there exists an ergodic t-semiconformal measure. Take
account of Remark 6.1. Moreover, if a t-semiconformal measure is ergodic, then it
is the only t-semiconformal measure. These facts follow from [20, Theorem 2.2] by
a minor modification. More precisely, in [20] it was assumed that the parameter
t is an exponent, but an examination of the proof reveals that this fact is not
required. In Example 6.4, it is shown that semiconformal measures do not always
exist. Also, even if there exists a semiconformal measure, it is not necessarily
ergodic, see Example 6.2.

Remark 3.4. Suppose K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K. If a
(K, t)-semiconformal measure exists when PK(t) = 0, then it is easy to see that
Ht(EK) < ∞. Here Ht denotes the t-dimensional Hausdorff measure, see [21, §4.3].
Indeed, it follows from [7, proof of Proposition 5.1] that there exists a constant c,
depending only on the dimension of the ambient space, such that

Ht(EK) ≤ c lim inf
n→∞

∑

i∈Kn

ϕt(Ai).

From this, the claim follows immediately. Moreover, if PK(t) = 0 for 0 ≤ t ≤ 1,
then the existence of a (K, t)-semiconformal measure implies P t(EK) < ∞. Here
P t denotes the t-dimensional packing measure, see [21, §5.10]. This fact follows
from [10, Proposition 2.2(d)], since for every x ∈ EK and 0 < r < diam(EK) it
holds that

µ ◦ π−1
a

(

B(x, r)
)

rt
≥ µ([i|n])

diam(Ei|n)t
≥ c

ϕt(Ai|n)

α1(Ai|n)t
= c > 0,

where x = πa(i) for some i ∈ K, µ is a t-semiconformal measure, and n is the
smallest integer for which Ei|n ⊂ B(x, r). It seems difficult to extend this to the
case t > 1.

The following two results give sufficient conditions for the uniqueness of the
equilibrium measure. A self-affine set carrying two different ergodic equilibrium
measures is given in Example 6.2.
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Lemma 3.5. Suppose that there is an invertible matrix A ∈ R
d×d such that Ai = A

for all i ∈ I. Then for each t ≥ 0, the uniform Bernoulli measure is the unique
t-equilibrium measure.

Proof. In this case, for a given n ∈ N, the value of ϕt(Ai) is independent of the
specific i ∈ In chosen. Using this, one easily finds that

P (t) = log κ + lim
n→∞

1
n

log ϕt(An),

and, for any µ ∈ Mσ(I
∞),

Λt(µ) = lim
n→∞

1
n

log ϕt(An).

Applying Jensen’s inequality, we have

1
κn

∑

i∈In

H
(

µ([i])
)

≤ H( 1
κn ) = n

κn log κ

with equality if and only if µ([i]) = 1
κn for every i ∈ In whenever n ∈ N. Hence

h(µ) ≤ log κ for every µ ∈ Mσ(I∞) and h(µ) = log κ if and only if µ is the uniform
Bernoulli measure. The proof is finished. �

We remark that generalizing the result of Lemma 3.5 for an arbitrary nonempty
set K ⊂ I∞ satisfying σ(K) ⊂ K seems to be difficult. The following theorem
shows that if (K, t)-semiconformal measure is ergodic, then it is the only (K, t)-
equilibrium measure.

Theorem 3.6. Suppose K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K,
t ≥ 0, and c ≥ 1. If µ ∈ Mσ(K) satisfies µ([i]) ≥ c−1e−|i|PK(t)ϕt(Ai) for all
i ∈ K∗, then any (K, t)-equilibrium measure is absolutely continuous with respect
to µ. Moreover, if µ lies in the convex hull of a countable family of ergodic (K, t)-
equilibrium measures, then the closure of the convex hull is precisely the set of all
(K, t)-equilibrium measures. In particular, if µ is itself ergodic, then it is the only
(K, t)-equilibrium measure.

Proof. Let µ be a (K, t)-semiconformal measure. To prove the first claim, we follow
some of the ideas of Bowen [4]. Assume to the contrary that there exists a Borel
set A ⊂ I∞ such that µ(A) = 0 and ν(A) > 0, where ν is a (K, t)-equilibrium
measure. Choose 0 < ε < exp

(

−2(log c + 2
e
)/ν(A)

)

, where c ≥ 1 is as in (3.4).
Now there exists a sequence of symbols {ik} such that

A ⊂
∞
⋃

k=1

[ik] =: C̃

and µ(C̃) = µ(C̃ \ A) < ε. Since ν(C̃) ≥ ν(A) > 0, there exists N ∈ N large
enough such that ν(C̃N ) ≥ ν(A)/2, where

C̃N =
N
⋃

k=1

[ik].
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Since we are now dealing with a finite union, we can rewrite C̃N as a union of
cylinders of the same length n. Let us call the collection of these symbols Cn, and
also set C ′

n = C̃N . Note that ν(C ′
n) ≥ ν(A)/2 and µ(C ′

n) ≤ µ(C̃) < ε. Let us also
denote K ′

n =
⋃

i∈Kn
[i].

Using the fact that ν is a (K, t)-equilibrium measure and applying (3.1) and
semiconformality of the measure µ, we have

nPK(t) ≤ −
∑

i∈Kn

ν([i]) log ν([i]) +
∑

i∈Kn

ν([i]) log ϕt(Ai)

=
∑

i∈Kn∩Cn

ν([i])
(

− log ν([i]) + log ϕt(Ai)
)

+
∑

i∈Kn\Cn

ν([i])
(

− log ν([i]) + log ϕt(Ai)
)

≤ ν(K ′
n ∩ C ′

n) log
∑

i∈Kn∩Cn

ϕt(Ai) + ν(K ′
n \ C ′

n) log
∑

i∈Kn\Cn

ϕt(Ai) + 2
e

≤ ν(K ∩ C ′
n) log µ(C ′

n) + ν(K ′
n \ C ′

n) log µ(K ′
n \ C ′

n) + nPK(t) + log c + 2
e
.

Since spt(ν) ⊂ K, this implies

0 ≤ 1
2
ν(A) log µ(C ′

n) + log c + 2
e

< 0,

which is a contradiction.
For the second claim, suppose that µ lies in the convex hull of {νi}∞i=1, where

each νi is an ergodic (K, t)-equilibrium measure. Denote the closure of the convex
hull by C. Clearly all measures in C are (K, t)-equilibrium measures. Suppose that
there exists a (K, t)-equilibrium measure µ̃ which is not in C. Recalling that the
set of all (K, t)-equilibrium measures is compact and convex, it follows that there
exists an ergodic (K, t)-equilibrium measure ν̃ which is not in C. Since any two
different ergodic measures are mutually singular, for each i there is a Borel set Ai

such that νi(Ai) = 0 and ν̃(Ai) = 1. Letting A =
⋂∞

i=1 Ai, we see that µ(A) = 0
and ν̃(A) = 1. Therefore ν̃ is not absolutely continuous with respect to µ, which
is a contradiction.

The last assertion is immediate, since in this case C = {µ}. This completes the
proof. �

4. Topological pressure

We will now look at the topological pressure in more detail. The existence of
an equilibrium measure allows us to study the differentiability of the pressure.
If the ergodic semiconformal measure exists, then we are able to determine the
derivative. Suppose that for each i ∈ I there is an invertible matrix Ai ∈ R

d×d

with ‖Ai‖ ≤ α. We denote α = mini∈I αd(Ai) > 0.
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Lemma 4.1. If K ⊂ I∞ is a nonempty compact set and µ ∈ Mσ(K), then there
exist 0 > log α ≥ λ1(µ) ≥ · · · ≥ λd(µ) ≥ log α > −∞ such that

lim
n→∞

1
n

∑

i∈Kn

µ([i]) log αl(Ai) = λl(µ)

whenever l ∈ {1, . . . , d}. Moreover, if µ ∈ Eσ(K), then

λl(µ) = lim
n→∞

1
n

log αl(Ai|n)

for all l ∈ {1, . . . , d} and for µ-almost every i ∈ K.

Proof. If µ ∈ Mσ(K), we define λl(µ) = Λl(µ) − Λl−1(µ) for l ∈ {1, . . . , d} to
get the first claim. On the other hand, if µ ∈ Eσ(I

∞), it follows from (2.3) and
Kingman’s subadditive ergodic theorem [25] that

lim
n→∞

1
n

log ϕt(Ai|n) = Λt(µ)

for µ-almost every i ∈ I∞ whenever t ≥ 0. The proof is finished. �

Suppose K ⊂ I∞ is a nonempty set with σ(K) ⊂ K and t ∈ (0,∞). Left and
right derivatives of the topological pressure at a point t are defined by

P ′
K(t−) = lim

δ↑0

PK(t + δ) − PK(t)

δ
,

P ′
K(t+) = lim

δ↓0

PK(t + δ) − PK(t)

δ
,

respectively.

Lemma 4.2. Suppose K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K and
t ∈ (0, d) \ N. If µ is a (K, t)-equilibrium measure then

P ′
K(t−) ≤ λl+1(µ) ≤ P ′

K(t+),

where l = ⌊t⌋. In fact, P ′
K(t) = λl+1(µ) except for at most countably many points

of (0, d).

Proof. Choosing δ ∈ R so that ⌊t + δ⌋ = l, we have

PK(t + δ) ≥ h(µ) + Λt+δ(µ) = h(µ) + Λt(µ) + δλl+1(µ)

= PK(t) + δλl+1(µ)

by Lemma 4.1. This gives the first claim. The second claim follows from Lemma
2.1 by recalling some of the basic properties of convex functions, see, for example,
[24, Theorem 24.1] and [26, §3 Lemma 3.12]. �

Remark 4.3. (1) If P ′
K(t) exists and µ1, µ2 are ergodic (K, t)-equilibrium measures,

then λl+1(µ1) = λl+1(µ2), where l = ⌊t⌋.
(2) If K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K and t ∈ [0, 1), then

there exists a (K, t)-equilibrium measure µ such that P ′
K(t+) = λ1(µ). To see this,
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choose a converging sequence {µn}n, where µn is a (K, tn)-equilibrium measures
and tn ↓ t. By the upper semicontinuity of the mapping µ 7→ h(µ) + Λt(µ)
defined on Mσ(K), the limiting measure is a (K, t)-equilibrium measure. Since
(2.3) yields λ1(µ) = infn∈N

1
n

∑

i∈Kn
µ([i]) log αl+1(Ai), the claim follows now by a

simple calculation.
(3) We can apply the idea used in the previous remark to show the following: If

for every t ≥ 0 there exists a constant D ≥ 1 such that

D−1ϕt(Ai)ϕ
t(Aj) ≤ ϕt(Aij)

for all i, j ∈ I∗, then for each t ∈ (0, d) \ N we have P ′(t) = λl+1(µ), where
l = ⌊t⌋ and µ is the ergodic t-semiconformal measure. See Remark 6.1. To see
this, observe first that the mapping µ 7→ Λt(µ) defined on Mσ(I

∞) is also lower
semicontinuous. Hence the mapping µ 7→ λl+1(µ) defined on Mσ(I

∞) is easily seen
to be continuous. The claim now follows from the uniqueness of the equilibrium
measure.

In the following theorem we show that if the ergodic semiconformal measure ex-
ists, then we can determine the derivative of the topological pressure. In Example
6.5, we exhibit a nondifferentiable pressure.

Theorem 4.4. Suppose K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K,
t ∈ (0, d) \N, and c ≥ 1. If µ ∈ Eσ(K) satisfies µ([i]) ≥ c−1e−|i|PK(t)ϕt(Ai) for all
i ∈ K∗, then

P ′
K(t) = λl+1(µ),

where l = ⌊t⌋.
Proof. To prove the theorem, we use methods similar to those in Heurteaux [14].
Let us first show that λl+1(µ) ≥ P ′

K(t+). Take β < P ′
K(t+) < 0, choose δ >

log c/
(

P ′
K(t+) − β

)

, and set ε = c−1eP ′

K
(t+)δ − eβδ > 0. Since µ is ergodic, Lemma

4.1 implies that it suffices to find a set C ⊂ I∞ with µ(C) > 0 so that

lim
n→∞

1
n

log αl+1(Ai|n) ≥ β

for all i ∈ C.
Recall that PK(s) ≤ 1

n
log

∑

i∈Kn
ϕs(Ai) for all s ≥ 0 and n ∈ N. Choose n0 ∈ N

so that ⌊t + δ/n⌋ = l for every n ≥ n0. Now Lemma 2.1 implies
∑

i∈Kn

ϕt+δ/n(Ai) ≥ enPK(t+δ/n) ≥ eP ′

K
(t+)δ+nPK (t) (4.1)

for all n ≥ n0. Denoting Cn = {i ∈ Kn : αl+1(Ai|n) > enβ} and C ′
n =

⋃

i∈Cn
[i], it

follows from (4.1) and (2.2) that for every n ≥ n0 we have

eP ′

K
(t+)δenPK(t) ≤

∑

i∈Kn

ϕt+δ/n(Ai) ≤
∑

i∈Kn\Cn

ϕt(Ai)αl+1(Ai)
δ/n +

∑

i∈Cn

ϕt(Ai)

≤ ceβδenPK(t)
(

1 − µ(C ′
n)

)

+ cenPK(t)µ(C ′
n).
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Hence

µ(C ′
n) ≥

c−1eP ′

K
(t+)δ − eβδ

1 − eβδ
≥ ε

for all n ≥ n0 and consequently, µ(C) ≥ ε for C =
⋂∞

n=1

⋃∞
k=n C ′

k. Since for every
i ∈ C and for all n ∈ N there is k ≥ n so that 1

k
log αl+1(Ai|k) > β, we have proven

the first claim.
Let us next show that λl+1(µ) ≤ P ′

K(t−). Take log α ≤ P ′
K(t−) < β < 0, choose

δ > log c/
(

β − P ′
K(t−)

)

, and set ε = (c−1e−P ′

K
(t−)δ − e−βδ)/(e−δ log α − e−βδ) > 0.

Let n0 ∈ N be such that ⌊t− δ/n⌋ = l for every n ≥ n0. Similarly, as in the proof
of the first claim, it follows that

e−P ′

K
(t−)δenPK(t) ≤

∑

i∈Kn

ϕt−δ/n(Ai) ≤
∑

i∈Cn

ϕt(Ai)αl+1(Ai)
−δ/n + α−δ

∑

i∈Kn\Cn

ϕt(Ai)

≤ ce−βδenPK(t)
(

1 − µ(K \ C ′
n)

)

+ ce−δ log αenPK(t)µ(K \ C ′
n),

where Cn = {i ∈ Kn : αl+1(Ai|n) > enβ} and C ′
n =

⋃

i∈Cn
[i]. Hence

µ(K \ C ′
n) ≥ c−1e−P ′

K
(t−)δ − e−βδ

e−δ log α − e−βδ
≥ ε

for all n ≥ n0. The second claim now follows similarly as in the proof of the first
claim. The proof is finished. �

5. Dimension results

Suppose K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K. If for each i ∈ I
there are an invertible matrix Ai ∈ R

d×d with ||Ai|| ≤ α < 1 and a translation
vector ai ∈ R

d, then both the affine IFS {Ai + ai}i∈I and the sub-self-affine set
EK ⊂ R

d are called tractable provided that Ai

(

Qd

)

⊂ Qd ∪ {0} for all i ∈ I and

EK is not contained in any hyperplane of R
d. See [19, Appendix A] and Example

6.6 for details. Here Qd is the collection of all vectors v ∈ R
d with strictly positive

coefficients and Qd its closure.
Given a nonempty compact set K ⊂ I∞ with σ(K) ⊂ K and a tractable affine

IFS, define for r > 0

Z(r) =
{

i ∈ K∗ : diam
(

Ei

)

≤ r < diam
(

Ei−)
)}

and if in addition x ∈ EK , set

Z(x, r) = {i ∈ Z(r) : Ei ∩ B(x, r) 6= ∅}.
We say that a tractable sub-self-affine set EK satisfies the ball condition if there
exists a constant 0 < δ < 1 such that for each x ∈ EK there is r0 > 0 such that
for every 0 < r < r0 there exists a set {xi ∈ conv

(

Ei

)

: i ∈ Z(x, r)} such that the
collection {B(xi, δr) : i ∈ Z(x, r)} is disjoint. Here with the notation conv(A), we
mean the convex hull of a given set A. Inspecting the proof of [20, Theorem 3.5],
we see that the ball condition is equivalent to supx∈EK

lim supr↓0 #Z(x, r) < ∞.
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With the notation Ht, we mean the t-dimensional Hausdorff measure, see [21,
§4.3]. The n-dimensional Lebesgue measure is denoted by Ln. Finally, the Haus-
dorff and the upper Minkowski dimensions are denoted by dimH and dimM, re-
spectively. Consult [21, §4.8 and §5.3] and [10, §10.1].

Theorem 5.1. Suppose K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K and
EK is a tractable sub-self-affine set satisfying the ball condition. If PK(s) = 0 for
some 0 < s ≤ 1, then dimH(EK) = dimM(EK) = s.

Proof. Choose 0 < t < s and let µ be an ergodic (K, t)-equilibrium measure. Since
λ1(µ) ≤ log α < 0 < P (t), it follows from [18, Proposition 4.2] that

lim
n→∞

log µ([i|n])
log α1(Ai|n)t

= 1 − P (t)

tλ1(µ)
> 1

for µ-almost all i ∈ K. Now, using Egorov’s Theorem, we find a compact set
C ⊂ K with µ(C) ≥ 1

2
and n0 ∈ N so that µ([i|n]) < α1(Ai|n)t for all i ∈ C and

n ≥ n0. Hence, recalling [19, Lemma A.3], there are constants c′, c ≥ 1 such that

µ|C([i]) ≤ c′α1(Ai)
t ≤ c diam(Ei)

t

for all i ∈ K∗. Since the ball condition implies supx∈EK
lim supr↓0 #Z(x, r) < ∞,

there exists M > 0 such that for each x ∈ EK there is r0 > 0 so that for every
0 < r < r0 we have #Z(x, r) < M and

µ|C ◦ π−1
a

(

B(x, r)
)

≤
∑

i∈Z(x,r)

µ([i]) ≤ c
∑

i∈Z(x,r)

diam(Ei)
t ≤ cMrt.

It follows now from [10, Proposition 2.2(a)] that Ht(EK) > 0. The proof is finished
since 0 < t < s was arbitrary and s serves as an upper bound for the upper
Minkowski dimension. �

The following theorem generalizes [7, Theorem 5.3] and [18, Theorem 4.5] into
sub-self-affine sets.

Theorem 5.2. Suppose for each i ∈ I there is an invertible matrix Ai ∈ R
d×d with

‖Ai‖ < 1
2
. If K ⊂ I∞ is a nonempty compact set with σ(K) ⊂ K and PK(s) = 0,

then for Ldκ-almost every choice of a = (ai, . . . , aκ) ∈ R
dκ, where ai ∈ R

d is a
translation vector and κ = #I, we have

dimH(EK) = dimH(µ ◦ π−1
a ) = min{s, d},

where EK = πa(K) and µ is an ergodic (K, s)-equilibrium measure.

Proof. If µ ∈ Eσ(K) and dimL(µ) = l−
(

h(µ)+Λl(µ)
)

/λl+1(µ), where l = max{k ∈
N : 0 < h(µ) + Λk(µ)}, then [17, Theorem 1.9] implies that dimH(µ ◦ π−1

a ) =
min{dimL(µ), d} for Ldκ-almost all a ∈ R

dκ. A simple calculation shows that if µ
is a (K, s)-equilibrium measure, then dimL(µ) = s if and only if PK(s) = 0. The
existence of an ergodic (K, s)-equilibrium measure finishes the proof. �
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Falconer [9] asked if dimH(E) = dimM(E) for all sub-self-similar sets E. The-
orem 5.2 gives a partial positive answer to this question. The question remains
open for sub-self-similar sets which does not satisfy the open set condition and are
constructed by using exceptional (in the sense of Theorem 5.2) translation vectors.

6. Remarks and examples

In this last section, we give the examples mentioned in the previous sections. We
begin by recalling a geometric condition implying the uniqueness of the equilibrium
measure.

Remark 6.1. Suppose that for each i ∈ I there is a contractive invertible matrix
Ai ∈ R

2×2 such that the following geometric condition is satisfied: There exist
θ ∈ S1 and 0 < β < π/2 such that

Ai

(

X(θ, β)
)

⊂ X(θ, β),

A∗
i

(

X(θ, β)
)

⊂ X(θ, β)

for all i ∈ I. Here A∗ denotes the transpose of a given matrix A, B the closure of
a given set B, and X(θ, β) = {x ∈ R

2 : cos(β/2) < |θ · x|/|x|, x 6= 0} ∪ {0}. Then
it follows from [19, Lemma 4.1] that there exists a constant D ≥ 1 such that for
every 0 ≤ t ≤ 2

D−1ϕt(Ai)ϕ
t(Aj) ≤ ϕt(Aij)

whenever i, j ∈ I∗. Consequently, there exists an ergodic t-semiconformal mea-
sure. Theorem 3.6 implies that it is the only t-equilibrium measure.

We calculate the topological pressure for 0 ≤ t ≤ 1 when the 2× 2 matrices are
diagonal. Let I = {0, 1} and

A0 =

(

β 0
0 γ

)

, A1 =

(

λ 0
0 θ

)

,

where 0 < β, γ, λ, θ < 1. Suppose i ∈ In has k zeros and n − k ones. Notice that
Ai is a diagonal matrix with diagonal elements, which are also its singular values,
βkλn−k and γkθn−k. Hence, if 0 ≤ t ≤ 1, then

ϕt(Ai) = max{βkλn−k, γkθn−k}t.

Therefore

max{(βt + λt)n, (γt + θt)n} ≤
n

∑

k=0

(

n

k

)

max{βkλn−k, γkθn−k}t

=
∑

i∈In

ϕt(Ai) ≤
n

∑

k=0

(

n

k

)

(βtkλt(n−k) + γtkθt(n−k))

= (βt + λt)n + (γt + θt)n ≤ 2 max{(βt + λt)n, (γt + θt)n}
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Figure 1. An illustration for Example 6.2 when λ = 1
2

and γ = 1
4
.

and consequently,

P (t) = max{log(βt + λt), log(γt + θt)} (6.1)

for 0 ≤ t ≤ 1.

Example 6.2. We exhibit a self-affine set E having exactly two different ergodic
s-equilibrium measures and, as a consequence, infinitely many s-equilibrium mea-
sures, where P (s) = 0. We also show that any convex combination of these two
ergodic s-equilibrium measures is s-semiconformal and Ps(E) < ∞.

Let I = {0, 1} and

A0 =

(

λ 0
0 γ

)

, A1 =

(

γ 0
0 λ

)

where 0 < γ < λ ≤ 1
2
. Now the mappings of the affine IFS {A0, A1 +(1−γ, 1−λ)}

map the unit square as illustrated in Figure 1. Let π : I∞ → R
2 be the projection

mapping associated to this affine IFS and E = π(I∞) the corresponding self-affine
set. Let us also denote Ex = projx(E) and Ey = projy(E), where projx and projy
are orthogonal projections onto the x-axis and y-axis, respectively. We choose
0 < s < 1 to be the unique number for which λs + γs = 1. It is easy to see that
Ex and Ey are self-similar sets and s = dimH(Ex) = dimH(Ey) ≤ dimH(E) ≤ 1.
It follows from (6.1) that P (t) = log(λt + γt), yielding dimH(E) ≤ s. Therefore
dimH(E) = s.

Let µ and ν be the ergodic Bernoulli measures on I∞ obtained from probability
vectors (λs, γs) and (γs, λs), respectively. Consult, for example, [20, Theorem
2.2]. It follows from standard arguments that µ ◦ (projx π)−1 has full dimension
on Ex and ν ◦ (projx π)−1 has full dimension on Ey. Hence dimH(µ ◦ π−1) =
dimH(ν◦π−1) = dimH(E) = s. Using [17, Theorem 1.9], we get s = −h(µ)/λ1(µ) =
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−h(ν)/λ1(ν), and thus h(µ) + Λs(µ) = h(µ) + sλ1(µ) = 0 = P (s) = h(ν) + Λs(ν)
yielding that both the measures µ and ν are s-equilibrium measures. See also [23].

The convexity of the set of all s-equilibrium measures implies that any convex
combination of the measures µ and ν is an s-equilibrium measure. We claim that
any such a measure η is an s-semiconformal measure. Since P (s) = 0, we have to
check there exists a constant c ≥ 1 such that

c−1ϕs(Ai) ≤ η([i]) ≤ cϕs(Ai)

for all i ∈ I∗. But this follows immediately from the fact that

ϕs(Ai) = max{λkγn−k, λn−kγk}s.

We can now apply Theorem 3.6 to conclude that the set of s-equilibrium measures
is the convex hull of {µ, ν} and, in particular, µ and ν are the only ergodic s-
equilibrium measures.

That Ps(E) < ∞ follows now from Remark 3.4.

Question 6.3. Is the number of different ergodic t-equilibrium measures on a
self-affine set always finite? In a forthcoming paper [12], we show that in R

2 a
self-affine set can have at most two different ergodic t-equilibrium measures.

Example 6.4. In this example, we show that semiconformal measures do not always
exist. We also exhibit a self-affine set E for which Hs(E) = ∞, where s is the
singularity dimension.

Let I = {0, 1} and set

A0 = A1 = λ

(

1 1
0 1

)

,

where 0 < λ < 1/2 is fixed. Observe that the equilibrium measure is unique
by Lemma 3.5. Let us show by a direct calculation that there cannot be an s-
semiconformal measure when P (s) = 0. It is straightforward to see that if i ∈ In,
then

Ai = λn

(

1 n
0 1

)

,

and consequently, α1(Ai)
2 = n2λ2n

(

1/n2 + 1/2 + (1/n2 + 1/4)1/2
)

. This, in turn,
shows that

(nλn)t ≤ ϕt(Ai) ≤ 2(nλn)t

whenever 0 < t < 1. We deduce that P (t) = log(2λt) for 0 < t < 1, yield-
ing the singular value dimension to be s = log 2/ log(1/λ). Suppose µ is an s-
semiconformal measure, let c be as in (3.4), and pick an integer n > c1/s. Then

1 =
∑

i∈In

µ(i) ≥ c−1
∑

i∈In

ϕs(Ai) ≥ c−12n(nλn)s = c−1ns,

giving the desired contradiction.
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Let us consider the affine IFS {A0, A1 + (1, 1)}, and denote the invariant set by
E. In what follows, we will show that Hs(E) = ∞. Let P (x, y) = x− y. This is a
Lipschitz map, so it is enough to show that Hs

(

P (E)
)

= ∞. Note that

P
(

π(i)
)

=
∞

∑

k=0

kλkik+1

for any i = (i1, i2, . . .) ∈ I∞. In particular, if i ∈ In, then

diam
(

P (Ei)
)

=

∞
∑

k=n

kλk = λn 1 + (n − 1)(1 − λ)

(1 − λ)2
=: δn.

A short calculation yields

δn − 2δn+1 =
λn

(1 − λ)2

(

n(1 − 3λ + 2λ2) − λ
)

.

Notice that 1 − 3λ + 2λ2 > 0 since λ < 1/2. Thus we may choose n0 such that
δn − 2δn+1 > 0 for all n ≥ n0.

Fix any i ∈ In0. The choice of n0 guarantees that for any two incomparable
j, j′ ∈ I∗, the sets P (Eij) and P (Eij′) are disjoint. We can therefore construct a
Borel probability measure ν supported on F := P (Ei), by assigning equal mass
2−n to all the sets P (Eij) where j ∈ In. Recall that 2−n = λns and pick x ∈ F
and 0 < r < δn0+1. Noting that {δn} is decreasing in n, we may fix n for which
δn < r ≤ δn−1. Now

ν
(

B(x, r)
)

rs
≤ ν

(

B(x, δn−1)
)

δs
n

≤ 3λ(n−1)s

δs
n

since P (Eij) ∩ B(x, δn−1) 6= ∅ for at most three different j ∈ In−1. Noting that
limn→∞ λn/δn = 0, it follows from [21, proof of Theorem 5.7] that Hs(F ) = ∞.
Thus Hs(E) = ∞, as claimed.

Example 6.5. We exhibit a nondifferentiable topological pressure. This example is
a modification of [13, Example 3.5]. Let I = {0, 1} and

A0 =

(

1
4

0
0 1

32

)

, A1 =

(

1
4

0
0 1

2

)

.

According to (6.1), we now have P (t) = max{P1(t), P2(t)}, where P1(t) = (1 −
2t) log 2 is affine and P2(t) = log(32−t + 2−t) is strictly convex. It obviously
follows that P has a point of nondifferentiability in (0, 1), since P1(

1
2
) > P2(

1
2
) and

P1(1) < P2(1).

Example 6.6. In this example, we construct an affine IFS {Ai + ai}i∈I on R
2

satisfying Ai(Q2) ⊂ Q2 ∪ {0} for all i ∈ I, but dimM(E) < s for P (s) = 0.
This shows that in the definition of the tractable affine IFS, the condition on
hyperplanes is indispensable.
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Let I = {0, 1} and set

Ai =

(

λ − βi θi

βi λ − θi

)

=

(

θi + λi θi

βi βi + λi

)

for all i ∈ I, where β1 = θ2 = 17/100, β2 = θ1 = 13/100, λ = 1/3, and λi =
λ − βi − θi = 1/30 for all i ∈ I. Now trivially Ai(Q2) ⊂ Q2 ∪ {0} for all i ∈ I.

Define Lq = {(x, y) ∈ R
2 : x + y = q} for all q ∈ R. Observe that dist(Lq, Lp) =

|q − p|/
√

2. Now choosing ai = (1 − λ)(θi, βi)/(βi + θi) and denoting fi = Ai +
ai, an elementary calculation gives fi(Lq) = L1−λ(1−q) for all i ∈ I. Especially,
fi(L1) = L1 and fi(L1−λ

n) = L
1−λ

n+1 for all n ∈ N. Since fi(0, 0) ∈ L1−λ, we get

fi(0, 0) ∈ L1−λ
n for all i ∈ In. But since fi(1, 0) ∈ L1 for all i ∈ I∗, we have

λ
n
/
√

2 = dist(L1, L1−λ
n) ≤ |fi(1, 0) − fi(0, 0)| ≤ α1(Ai)

for all i ∈ In.
On the other hand, since fi(x, 1−x) =

(

λix, λi(1−x)
)

+(1−λi)(θi, βi)/(βi +θi)
for all i ∈ I and x ∈ R, it follows that fi|L1

is a similitude mapping acting on L1

with a contraction ratio λi. Since both systems, {fi}i∈I and {fi|L1
}i∈I have the

same invariant set E, it follows from the choices of λ and λi that dimM(E) < s for
P (s) = 0.

We remark that this example can be easily modified to show that the assumption
[15, Hypothesis 3] is indispensable and also that the assumption according to which
the invariant set is not contained in any hyperplane does not suffice either. Namely,
adding a third mapping f3 of similar kind except that for which L1/3 is invariant
and performing some obvious calculation is enough.
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[18] A. Käenmäki. On natural invariant measures on generalised iterated function systems. Ann.

Acad. Sci. Fenn. Math., 29(2):419–458, 2004.
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Statist., 25(1):93–98, 1989.
[26] E. M. Stein and R. Shakarchi. Real analysis. Measure theory, integration, and Hilbert spaces.

Princeton Lectures in Analysis, III. Princeton University Press, Princeton, N.J., 2005.
[27] R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. Springer-

Verlag, New York, 1988.
[28] P. Walters. An Introduction to Ergodic Theory. Springer-Verlag, New York-Berlin, 1982.

Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 Uni-
versity of Jyväskylä, Finland
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