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Abstract. We give sufficient conditions that guarantee discreteness
and openness of a mapping of finite distortion with integrable n-energy.
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1. Introduction

Let f : Ω → Rn be a W 1,1
loc -map with locally integrable Jacobian determi-

nant Jf . Then f is KO-quasiregular, 1 ≤ KO <∞, if

(1.1) |Df(x)|n ≤ KOJf (x) for almost every x ∈ Ω.

Moreover, f is a mapping of finite distortion if (1.1) holds for a measur-
able, almost everywhere finite function KO. A fundamental theorem, due
to Reshetnyak, says that a non-constant quasiregular map has strong topo-
logical properties. Namely, the preimage set of every point is discrete, and
f is an open map, see [13].

Iwaniec and Šverák [8] proved in the plane that Reshetnyak’s theorem
remains valid for mappings of finite distortion f as long as f ∈W 1,n

loc (Ω,Rn)
and (1.1) holds for some

(1.2) KO ∈ Ln−1
loc (Ω),

and conjectured that this is the case in every dimension. A sharper form of
this conjecture is stated by replacing assumption (1.2) with KI ∈ L1

loc(Ω),
where KI is a measurable function satisfying

(1.3) |D]f(x)|n ≤ KI(x)Jf (x)n−1 for almost every x ∈ Ω.

Here D]f is the adjoint matrix of Df . The inequality KI ≤ Kn−1
O holds

for the smallest possible distortion functions. It is also an open problem
whether KI ∈ Lp

loc(Ω) for some p > 1 suffices. Assumption (1.3) is very
natural, because it is the inner distortion coefficient KI that controls the
relevant properties of the local inverse branches of discrete and open maps,
the existence of which is the main content of Reshetnyak’s theorem, cf. [7].

Both forms of the Iwaniec-Šverák conjecture remain open, but the case
where f is assumed to be essentially finite-to-one is now well understood,
see [6], [12], [5], and the proof of Theorem 2.2 below. In the general case
Manfredi and Villamor [15] proved that discreteness and openness follow
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when KO ∈ Lq
loc(Ω) for some q > n − 1, also see [2]. The main purpose of

this note is to give the following improvement of their result.

Theorem 1.1. Let f : Ω → Rn, n ≥ 2, be a non-constant mapping of finite
distortion satisfying f ∈W 1,n

loc (Ω,Rn), KO ∈ Ln−1
loc (Ω) and KI ∈ Lp

loc(Ω) for
some p > 1. Then f is discrete and open.

The proof of Theorem 1.1 is given in Section 2. Although the Iwaniec-
Šverák conjecture is known to be sharp in terms of the assumptions on KO

or KI by an example given in [1], it seems that there are no such higher-
dimensional examples of maps with infinite multiplicity. In Section 3 we
construct planar maps of infinite multiplicity with KO ∈ Lp for every p < 1.
These maps f are local homeomorphisms outside a line segment E = f−1(0).
Our next result, the proof of which is given in Section 4, shows that maps
with such properties cannot serve as counterexamples to the Iwaniec-Šverák
conjecture in any dimension.

Theorem 1.2. Let f : Ω → Rn, n ≥ 2, be a non-constant mapping of finite
distortion satisfying f ∈ W 1,n

loc (Ω,Rn) and KI ∈ L1
loc(Ω). Assume moreover

that f is a local homeomorphism outside a connected set E = f−1(0). Then
f is discrete and open (and a local homeomorphism when n ≥ 3).

2. Proof of Theorem 1.1

We denote an n-ball with center x and radius r by B(x, r), and B(r) =
B(0, r), Bn = B(0, 1). The corresponding notations for (n − 1)-spheres
are S(x, r) and S(r) = S(0, r). The Lebesgue measure of E ⊂ Rn is |E|.
The k-dimensional Hausdorff measure is denoted by Hk. We will use the
operator norm | · | for matrices. When G ⊂ Ω, notation N(y, f,G) refers to
the number of preimage points of y under f in G.

In this section we assume that f ∈W 1,n(Ω,Rn) is a non-constant mapping
of finite distortion. Then (cf. [3]) f has a continuous representative, is
differentiable almost everywhere, sense-preserving, and satisfies the change
of variables formula∫

G
g(f(x))Jf (x) dx =

∫
fG
g(y)N(y, f,G) dy.

By the classical proof of Reshetnyak’s theorem, we know that if f has the
properties listed above, then it is discrete and open if the preimage set
f−1(y) is totally disconnected for every y ∈ Rn, cf. [3]. Therefore, we will
prove Theorems 1.1 and 1.2 by showing that an arbitrary point y has this
property. From [12] it follows that, under the assumption KI ∈ L1, no
nontrivial component of f−1(y) can be compactly contained in the domain
Ω.

2.1. Integrability of the adjoint differential. We may assume that Ω =
Bn and that our local integrability assumptions in fact global ones. We first
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show that, under the assumptions of Theorem 1.1,

(2.1)
∫

S(t)

|D]f(x)|
|f(x)|n−1

dHn−1(x) <∞

for almost every 0 < t < 1. This is a rather straightforward consequence of
some previously known results.

Proposition 2.1. Let f satisfy the assumptions of Theorem 1.1. Then (2.1)
holds for almost every 0 < t < 1.

Proof. By [11], the assumption KI ∈ Lp(Bn) for some p > 1 implies

(2.2)
∫

B(R)

|D]f(x)|p

(|f(x)| log 1
|f(x)|)

(n−1)p
dx <∞ for every 0 < R < 1

(while the authors in [11] do not explicitly state this estimate, it follows
from their arguments by replacing |Df |n−1 and Kn−1

O with |D]f | and KI ,
respectively, and applying the corresponding distortion inequalities). Also,
by [15] (see also [11]), the assumption KO ∈ Ln−1(Bn) yields (we assume
that |f | < 1/2)

u = log log
1
|f |

∈W 1,n−1
loc (Bn).

Hence the integral (2.2) over S(t) is finite for almost every 0 < t < 1, and
the trace of u in S(t) has (n−1)-integrable partial differentials. We fix such
t. By Trudinger’s inequality, cf. [16, Theorem 2.9.1],∫

S(t)

(
log

1
|f(x)|

)q
dHn−1(x) <∞

for every 1 < q <∞. Now Hölder’s inequality yields∫
S(t)

|D]f(x)|
|f(x)|n−1

dHn−1(x) =
∫

S(t)

|D]f(x)|(log 1
|f(x)|)

n−1

(|f(x)| log 1
|f(x)|)

n−1
dHn−1(x)

≤
( ∫

S(t)

|D]f(x)|p

(|f(x)| log 1
|f(x)|)

(n−1)p
dHn−1(x)

)1/p

×
( ∫

S(t)

(
log

1
|f(x)|

)q
dHn−1(x)

)(n−1)/q
<∞

for some q > 1. The proposition follows. �

From now on we only need to make the minimal assumptionKI ∈ L1(Bn).
In view of Proposition 2.1, the following, independently interesting result
implies Theorem 1.1.

Theorem 2.2. Suppose that KI ∈ L1(Bn), and that (2.1) holds true for
almost every 0 < t < 1. Then f−1(0) is totally disconnected.
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2.2. Multiplicity bound. The first step in proving Theorem 2.2 is to show
that (2.1) implies that the map f is “on the average” finite-to-one around
the origin.

Lemma 2.3. Let f satisfy the assumptions of Theorem 2.2. For almost
every 0 < t < 1 and 0 < r <∞,

r1−n

∫
S(r)

N(y, f,B(t)) dHn−1(y) ≤ C(n)
∫

S(t)

|D]f(x)|
|f(x)|n−1

dHn−1(x).

Proof. Let ε > 0 be small, and

φ(y) =


0, |y| < r − ε,
|y|−r+ε

2ε , r − ε < |y| < r + ε,
1, |y| ≥ r + ε.

We define a differential (n− 1)-form

ω(y) =
n∑

j=1

(−1)j−1φ(y)yj

|y|n
dy1 ∧ .. ∧ ˜dyj ∧ .. ∧ dyn.

Then the pullback f∗ω satisfies

||f∗ω(x)|| ≤ C(n)
|D]f(x)|
|f(x)|n−1

for almost every x ∈ Bn,

where || · || is any fixed norm. We denote

A(r, ε) = B(r + ε) \B(r − ε).

Then

dω(y) =
χA(r,ε)(y)
2ε|y|n−1

dy1 ∧ .. ∧ dyn, and

df∗ω(x) =
χf−1A(r,ε)(x)Jf (x)

2ε|f(x)|n−1
dx1 ∧ .. ∧ dxn

almost everywhere. We choose 0 < t < 1 so that Stokes theorem holds in
B(t) (by approximating with smooth forms one sees that it holds for almost
every t). By change of variables and Stokes theorem,∫

A(r,ε)

N(y, f,B(t))
2ε|y|n−1

dy =
∫

B(t)
df∗ω =

∫
S(t)

f∗ω

≤ C(n)
∫

S(t)

|D]f(x)|
|f(x)|n−1

dHn−1(x).

When ε→ 0, the first integral converges to
1

rn−1

∫
S(r)

N(y, f,B(t)) dHn−1(y)

for almost every r by the Lebesgue differentiation theorem. The lemma
follows. �
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2.3. Bad points. We need an auxiliary result. Let W ′ be the set of points
y in fBn for which f−1(y) has a nontrivial component. Moreover, let

W = {(x1, . . . xn−1) ∈ Rn−1 : ∃ t ∈ R so that (x1, . . . , xn−1, t) ∈W ′}.

Lemma 2.4. Let f satisfy the assumptions of Theorem 2.2. Then

Hn−1(W ) = 0.

Proof. Let Z ∈ Bn be the set of points that belong to some nontrivial
component of f−1(y) for some y ∈ Rn. Then Z is a closed set, and f is
discrete and open outside Z. Let Wj , j = 1, 2, . . ., be the set of points y in
W for which H1(f−1(y × R) ∩ Z) ≥ 1/j. Then W ⊂ ∪jWj . By the coarea
formula (see [10]),

j−1Hn−1(Wj) ≤
∫

Wj

H1(f−1(y × R) ∩ Z) = y}) dHn−1(y)

≤ C(n)
∫

Z
|D]f(x)| dx.(2.3)

Since f is differentiable almost everywhere, Jf (x) = 0 for almost every
x ∈ Z. Moreover, since f is a mapping of finite distortion, it follows that
also |D]f(x)| = 0 for almost every such x. We conclude that the last integral
in (2.3) equals 0. The proof is complete. �

2.4. Modulus of path families. Let g ≥ 0 be measurable and Γ a family
of paths in an open set Ω. Then the weighted conformal modulus MgΓ is

MgΓ = inf
ρ∈X

∫
Ω
g(x)ρ(x)n dx,

where X is the set of all Borel functions ρ : Ω → [0,∞] for which
∫
γ ρ ds ≥ 1

for every locally rectifiable γ ∈ Γ. The conformal modulus MΓ corresponds
to the function g = 1.

We will use the following familiar estimate. Fix, for every R ∈ E ⊂ (0,∞),
disjoint points pR and qR in S(R). Moreover, let ΓR be the family of paths
joining pR and qR in S(R), and Γ the union of the ΓR:s. Then

(2.4) MΓ ≥ Cn

∫
E

dR
R
.

This estimate also holds if instead of spheres S(R) we consider only spherical
caps CR ⊂ S(R) for which both pR and qR ∈ CR. See [14, Chapter 10] for
these facts. In fact, (2.4) is equivalent to the Sobolev embedding theorem
for W 1,n(CR). By examining the standard proof, we see that (2.4) remains
valid if we define Γ in the following way. Let pR and qR ∈ CR, and let TR be
the intersection of CR with the set of points a that satisfy |a−pR| = |a−qR|.
Now we define Γ′R as the family of paths γ such that each γ first connects
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pR to some a ∈ TR with a spherical geodesic, and then a to qR with another
spherical geodesic. Let Γ0

R ⊂ Γ′R be a subfamily of paths so that the union⋃
γ∈Γ0

R

|γ|

covers at most a set of vanishing (n− 1)-measure in CR, and define

ΓR = Γ′R \ Γ0
R.

If Γ is again the union of the ΓR:s, then (2.4) holds.
In [9] it was shown that a weak version of the conformal invariance of

modulus remains valid (basically) in our setting, in the following sense.

Lemma 2.5. Let W ′ be as in 2.3 and let Γ be a family of paths in Bn so
that f(|γ|) ∩W ′ = ∅ for every γ ∈ Γ. Then MfΓ ≤MKI

Γ.

Proof. By [9], the claim holds if f is discrete and open (in [9] it is assumed
thatKO ∈ Lp for some p > n−1, but only to have discreteness and openness.
If this is already known, the arguments there go through with the assumption
KI ∈ L1). The lemma follows since f−1(Rn \W ′) is discrete and open. �

Finally, we will lift paths, see [13, II.3]. Let f : Ω → Rn be a continuous,
discrete, open, and sense-preserving map. Moreover, let γ : [0, 1) → Rn be
a path, and x ∈ Ω such that f(x) = γ(0). Then, by [13, Theorem II.3.2],
there exists a so-called maximal f -lifting γ′ of γ starting at x0. That is,
γ′ is a path that has the following properties: γ′(0) = x, f ◦ γ′ = γ|[0, c),
and if c < c′ < 1, then there does not exist a path γ′′ : [0, c′) → Ω so that
γ′ = γ′′|[0, c) and f ◦ γ′′ = γ|[a, c′). If Γ and Γ′ are path families so that
every γ ∈ Γ has a maximal f -lifting γ′ ∈ Γ′, then clearly MfΓ′ ≥MΓ.

2.5. Proof of Theorem 2.2. We will prove that f−1(y) is totally discon-
nected for every y ∈ Rn. Without loss of generality, y = 0. We choose a
nontrivial component E of f−1(0). By restricting f to a small ball centered
at some point in E and rotating, we may assume that a connected subset of
E joins 0 and en/2 in B(1/2). We fix an even integer M , to be determined
later. We denote

Ωj = {x ∈ Bn : (j − 1)/M < xn < j/M}, j = 1, . . . ,M/2.

Also, for each j we choose a line segment Ij : [0, 1] → Vj so that |f(Ij(0))| = s
and f(Ij(1)) = 0. Here s > 0 is some fixed number not depending on j, and
Vj = {x ∈ B(1/2) : xn = (j − 1/2)/M}.

We now fix j, and let Φj be the set of spheres S(r), 0 < r < s, for which
there exists

(2.5) qr ∈ S(r) \ f(Ωj ∩B(2/3)) = S(r) \ Fj .

We will prove a modulus estimate for paths on these spheres. This estimate
is not affected if we modify Φj in a set of vanishing 1-measure.
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Because Rn \ Fj is open, there exists for every r ∈ Φj a line segment

(2.6) ξε
r = {tqr : 1− ε < t < 1 + ε} ⊂ Rn \ Fj .

Also, there exists pr ∈ f(Ij [0, 1]) ∩ S(r). If pr /∈ W ′, then the discreteness
and openness of f outside f−1W ′ imply that there exists a line segment

(2.7) ψδ
r = {tpr : 1− δ < t < 1 + δ} ⊂ fQM \W ′,

where QM is the M/10-neighborhood of Ij [0, 1]. If pr ∈ W ′, we can guar-
antee the validity of (2.7) on almost every 0 < r < s by choosing pr to be
any point in fQM ∩ S(r) \W ′ (that this set is nonempty for almost every
0 < r < s can be seen using Lemma 2.4 and the absolute continuity of f
on almost every segment in QM parallel to Ij). We denote εr = min{ε, δ},
where ε and δ are as in (2.6) and (2.7), respectively.

Next, by using suitable coverings we may assume that

Φj = ∪∞k=1∆k, ∆k = (rk(1− εk), rk(1 + εk)), εk = εrk
,

where the intervals ∆k have bounded overlap. Let

Ak = {x ∈ S(r) : r ∈ ∆k}.

We will consider paths in Ak that join ψk = ψεk
rk

to ξk = ξεk
rk

. By using local
coverings of Ak\(ψk∪ξk) and applying Lemma 2.4 in the coverings (together
with bi-Lipschitz maps) in connection with the paths we constructed after
(2.4), we see that if Γk is the family of all paths joining ψk to ξk in Ak \W ′,
then MΓk ≥

∫
∆k

dr
r , and so

(2.8) MΓ ≥
∫

Φj

dr
Cr

, where Γ = ∪∞k=1Γk.

On the other hand, we have constructed the ψk:s and ξk:s so that for every
γ ∈ Γ there exists a maximal f -lifting γ′ that starts at a point in QM and
leaves Ωj (see (2.5)). This implies that every such γ′ has length at least
1/(8M). Let Γ′ be the family of all these lifts. Then

(2.9) MKI
Γ′ ≤ (8M)n

∫
Ωj

KI(x) dx <∞.

By combining Lemma 2.5, (2.8), and (2.9), we see that the logarithmic
measure of Φj is finite. Consequently, the logarithmic measure of the union
Φ = ∪jΦj is finite. This means that most of the spheres S(r) for small r are
covered at least M/2 times by fB(2/3). It follows that for a set of r:s with
infinite logarithmic measure,∫

S(r)
N(y, f,B(2/3)) dHn−1(y) ≥M/2.

This contradicts Lemma 2.3 and (2.1) when M is chosen to be large enough.
The proof of Theorem 2.2 (and consequently the proof of Theorem 1.1) is
complete.
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3. Examples

The sharpness of the condition KO ∈ Ln−1 (or KI ∈ L1) in the Iwaniec-
Šverák conjecture is shown by a simple example that squeezes a line segment
to a point with a map that is homeomorphic outside the line segment, see
[1]. Other examples with more interesting preimage sets have been con-
structed in [4]. These examples are not homeomorphisms outside the non-
trivial preimage sets, but they are finite-to-one. Here we construct some
planar examples in which the image of a square spirals around the origin.

We define a map f : (1, 2) × (−1, 1) → R2 so that f((1, 2) × {0}) = {0}.
It suffices to give the construction in (1, 2) × [0, 1), because one can then
extend f to the rest of the domain by the reflecting:

f(x1, x2) = (f1(x1,−x2),−f2(x1,−x2)).

Let
f(x1, x2) = (x1r(x2) cos(log x2), x1r(x2) sin(log x2)),

where r(x2) → 0 as x2 → 0. Then

Df(x) =

r(x2) cos(log x2) x1

(
∂2r(x2) cos(log x2)− r(x2) sin(log x2)

x2

)
r(x2) sin(log x2) x1

(
∂2r(x2) sin(log x2) + r(x2) cos(log x2)

x2

) .
Moreover, Jf (x) = x1r(x2)2

x2
,

|Df(x)|2 ≤ Cmax
{
r(x2)2

x2
2

, (∂2r(x2))2
}
,

and

KO(x) ≤ Cmax
{

1
x2
,
x2(∂2r(x2))2

r(x2)2

}
.

Now, if we choose r(x2) = xα
2 for some α ≥ 1, then f is Lipschitz, and

satisfies KO ∈ Lp for every p < 1. However, the restriction of f to (1, 2) ×
(0, 1) is then finite-to-one. If, on the other hand,

r(x2) =
(

log
2
x2

)−α
for some α > 1,

then again KO ∈ Lp for every p < 1, but now f has infinite multiplicity.
This map f does not satisfy the assumption f ∈ W 1,2 in Theorem 1.1, but
it belongs to W 1,1, and it has all the essential analytic properties listed in
the beginning of Section 2.

4. Proof of Theorem 1.2

By [8], we may assume that Ω = Bn and n ≥ 3. Moreover, by [12] we may
assume that the connected set f−1(0) intersects B(1/2) but is not compactly
contained in Bn. Let

R = max
x∈B(1/2)

|f(x)| > 0.
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We claim that for every 0 < r < R there exist xr ∈ B(1/2) and qr ∈ S(r)
so that pr = f(xr) ∈ S(r) and so that every path γ joining pr and qr in
some spherical cap Cr ⊂ S(r) has a maximal f -lifting γ′ starting at xr and
leaving B(2/3) (see 2.4). Suppose for the moment that this is true. Let Γ
be the family of all these γ:s, and Γ′ the family of the corresponding lifts.
Then

MΓ ≤MKI
Γ′

by Lemma 2.5 and the discussion at the end of 2.4. Since the lengths of all
γ′:s are at least 1/6,

MKI
Γ′ ≤ 6n

∫
B(2/3)

KI(x) dx <∞.

But by (2.4) (and the discussion afterwoods), MΓ = ∞. This is a contradic-
tion. Thus it suffices to verify the claim above. The argument is basically
the same as the main step in the proof of the Zorich Global Homeomorphism
Theorem, see [13, III.3]. Therefore we omit most details.

We fix 0 < r < R, and a point pr = f(xr) so that xr ∈ B(1/2). Let
Cϕ ⊂ S(r) be the relatively open spherical cap centered at pr with opening
angle 0 < ϕ ≤ π (that is, Cϕ = B(pr, t)∩S(r) for some 0 < t < 2r). Denote
by ϕ0 the supremum of all the ϕ:s with the property that the restriction of
f to the xr-component Uϕ of f−1(Cϕ) is a homeomorphism onto Cϕ. Since
f is a local homeomorphism outside f−1(0), ϕ0 > 0. Also, if ϕ0 < π, then
Uϕ0 must intersect S(1). In this case the required point

qr ∈ Bn \B(2/3)

can be found in a suitable Cϕ, ϕ < ϕ0; qr has the desired properties because
the restriction of f to Uϕ is a homeomorphism. Thus we may assume that
ϕ0 = π. Then Cϕ0 is a punctured sphere. The main point of the argument
now is that when n ≥ 3, and if Uϕ0 is compactly contained in Bn, then
the restriction of f extends to a homeomorphism of Uϕ0 onto S(r), cf. [13,
III.3]. We denote the bounded component of Rn \ Uϕ0 by V . We choose
a ∈ V \f−1(0). Then, if |f(a)| ≥ r, there exists a path γ starting at f(a) and
converging to infinity, so that f(a) is the only point in |γ| ∩B(r). Thus the
maximal f -lifting γ′ of γ, starting at a, stays in V . This is a contradiction,
and so we must have a ∈ B(r). Then if we lift a line segment joining f(a)
and 0, starting at a, we see that V ∩ f−1(0) 6= ∅. This is a contradiction
because f−1(0) is a connected set not compactly contained in Bn, and

∂V ∩ f−1(0) = Uϕ0 ∩ f−1(0) = ∅.

We conclude that f is discrete and open. That f is a local homeomorphism
follows from the fact that the set Bf where f is not a local homeomorphism
is either empty or satisfies Hn−2(fBf ) > 0, see [13, III 5.3].
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