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Abstract
We prove quantitative isoperimetric inequalities for images of the

unit ball under homeomorphisms of exponentially integrable distortion.
We show that the metric distortions of such domains can be controlled
by their Fraenkel asymmetries. An application of the quantitative
isoperimetric inequality proved by Hall and Fusco, Maggi, and Pratelli
then shows that for these domains a version of Bonnesen’s inequality
holds in all dimensions.
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1 Introduction

The classical Bonnesen inequality states that for a planar Jordan domain Ω
the inequality

(1.1) H1(∂Ω)2 − 4π|Ω| ≥ π2(R− ρ)2

holds, where R and ρ are the circumradius and the inradius of Ω, respec-
tively, see Osserman [12]. There are several related inequalities which show
that if a planar Jordan domain is almost a disk in the sense of the isoperimet-
ric inequality, then it is also geometrically close to a disk, with quantitative
bounds. Such inequalities are called Bonnesen-style inequalities in [12].

By considering cusp domains, one sees that inequalities like (1.1) do
not hold in dimensions higher than two. However, Hall [5] (see also [6])
showed that another natural quantitative isoperimetric inequality holds in
all dimensions. Let Ω ⊂ Rn be a bounded domain. The Fraenkel asymmetry
λ(Ω) is

λ(Ω) = min
x∈Rn

|Ω \B(x, r)|
rn

,

where r is defined by |B(x, r)| = |Ω|. The isoperimetric deficit of Ω is

δ(Ω) =
Hn−1(∂Ω)

nα
1/n
n |Ω|(n−1)/n

− 1.
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Hall proved that the isoperimetric deficit controls the Fraenkel asymmetry,
and conjectured that the sharp inequality is

(1.2) λ(Ω) ≤ C(n)
√

δ(Ω).

A beautiful solution to this problem was given in [3], where it was shown
that (1.2) indeed holds. Recently, a lot of progress has been made in under-
standing related inequalities, cf. the references in [3]. For convex domains,
Fuglede [2] proved essentially sharp higher-dimensional versions of (1.1).

In [13] we applied Hall’s result in our study of the branching of quasireg-
ular mappings in space. We especially showed that an inequality like (1.1)
holds for images of the unit ball under global K-quasiconformal maps. This
was done by proving that the Fraenkel asymmetry of such a domain Ω con-
trols its metric distortion

β(Ω) = min
{R− r

r
: ∃x ∈ Rn so that B(x, r) ⊂ Ω ⊂ B(x,R)

}
:

(1.3) β(Ω)n ≤ C(n, K)λ(Ω),

and then applying Hall’s theorem. In this paper we consider the more general
case where the class of quasiconformal maps is replaced by the class of
homeomorphisms with exponentially integrable distortion. From the point
of view of conformal analysis, this is essentially the largest class for which
inequalities like (1.3), and, consequently, inequalities like (1.1) hold true.
Our main objectives are to prove fairly sharp extensions of (1.3), and to
demonstrate, again relying on (1.2), that besides convex domains there are
also other natural classes of domains in the n-space which satisfy Bonnesen-
style inequalities.

Denote by |Df | and Jf the operator norm and the Jacobian determi-
nant of the distributional differential of a W 1,1-homeomorphism f , respec-
tively, and assume that Jf ≥ 0 almost everywhere. Then K(x) = Kf (x) =
|Df(x)|n/Jf (x) if Jf (x) > 0, K(x) = 1 if |Df(x)| = Jf (x) = 0, and
K(x) = ∞ otherwise. Our main theorem reads as follows.

Theorem 1.1. Let f : B(2) → fB(2) ⊂ Rn be a W 1,1-homeomorphism so
that Jf ≥ 0 almost everywhere, and

(1.4)
∫

B(2)
exp(µK(x)) dx ≤ K

for some K and µ > 0. Then

(1.5) β(fBn)n+n2/µ ≤ C(n, µ, K)λ(fBn).
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In Section 4 we prove a similar result for the preimage of the unit ball
under a polynomial integrability condition on K. The following example
demonstrates that, except for the constant n2 in (1.5), there is not too
much room for improvement in Theorem 1.1.

Theorem 1.2. There exists c(n) > 0 so that if n ≥ 2 and µ > 0, there
exist K = K(n, µ) > 0 and a sequence (fj), so that each fj satisfies the
assumptions of Theorem 1.1, λ(fjB

n) → 0 as j →∞, and

β(fjB
n)n+c(n)/µ ≥ λ(fjB

n)

for every j.

By combining Theorem 1.1 with the sharp inequality (1.2) proved in [3],
we have the following Bonnesen-style inequality. Recall that a homeomor-
phism f is by definition K-quasiconformal, 1 ≤ K < ∞, if the distortion
K(x) defined above satisfies K(x) ≤ K almost everywhere.

Corollary 1.3. Let f be as in Theorem 1.1. Then

(1.6) β(fBn)2n+2n2/µ ≤ C(n, µ, K)δ(fBn).

If f is K-quasiconformal, then

β(fBn)2n ≤ C(n, K)δ(fBn).

The exponent in (1.6) should not be sharp even for quasiconformal maps,
and it would be interesting to find the sharp exponent, as is done in [2]. Also,
there should be a geometric characterization for the domains for which in-
equalities like (1.6) hold true. In [13] we essentially used the quasisymmetry
property of quasiconformal maps to deduce (1.3). Such a method does not
work in the case of maps unbounded distortion because the quasisymmetries
they possess are too weak for the purpose of Theorem 1.1. Inequality (1.2)
holds for general Borel sets, and it is stated, as isoperimetric inequalites
usually are, in terms of the perimeter measure. One can apply [1], Propo-
sition 3.62, to show that the estimates above can be stated in terms of the
Hausdorff (n− 1)-measure.

2 Proof of Theorem 1.1

We denote an n-ball with center x and radius r by B(x, r), and B(r) =
B(0, r), Bn = B(0, 1). The corresponding notations for (n− 1)-spheres are
S(x, r) and S(r) = S(0, r). The Lebesgue measure of E ⊂ Rn is |E|, and
αn = |Bn|. The matrix D]f−1(x) is the adjoint matrix of the differential
Df−1(x). Under the assumptions of Theorem 1.1 we have

(2.1) |D]f−1|n ≤ KJn−1
f
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almost everywhere, see [8].
In this section we assume that f satisfies the assumptions of Theorem

1.1. Let G ⊂ fB(2) be open, y ∈ Rn, E ⊂ (0,∞) a Borel set, and

Λ = {Ut : t ∈ E} = {G ∩ S(y, t) : t ∈ E}.

Moreover, we denote by Y the family of all Borel functions ρ : Rn → [0,∞]
for which ∫

Ut

ρ(y) dHn−1(y) ≥ 1 for every t ∈ E,

and by X the corresponding family with the requirement∫
f−1(Ut)

ρ(x) dHn−1(x) ≥ 1 for every t ∈ E.

Lemma 2.1. We have

MΛ := inf
ρ∈Y

∫
Rn

ρ(y)n/(n−1) dy

≤ inf
ρ∈X

∫
Rn

ρ(x)n/(n−1)K(x)1/(n−1) dx =: MKf−1Λ.

Proof. Let ρ ∈ X. Under our assumptions we have f−1 ∈ W 1,n
loc (fB(2), Rn),

see [7]. In particular, the restriction of f−1 to Ut locally belongs to W 1,n for
almost every t. In such Ut, the change of variables inequality∫

Ut

|D]f−1(y)|ρ(f−1(y)) dHn−1(y) ≥
∫

f−1(Ut)
ρ(x) dHn−1(x) ≥ 1.

holds. Thus the function

y 7→ |D]f−1(y)|ρ(f−1(y)),

belongs to Y (after redefining the function in a set of measure zero). The
n-dimensional change of variables formula holds under our assumptions, see
[8], and by (2.1) we have∫

fB(2)

(
|D]f−1(y)|ρ(f−1(y))

)n/(n−1)
dy

=
∫

fB(2)

|D]f−1(y)|n/(n−1)

Jf−1(y)
ρ(f−1(y))n/(n−1)Jf−1(y) dy

≤
∫

fB(2)
K(f−1(y))1/(n−1)ρ(f−1(y))n/(n−1)Jf−1(y) dy

=
∫

B(2)
K(x)1/(n−1)ρ(x)n/(n−1) dx.

The lemma follows by taking the infimum with respect to ρ ∈ X.
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We will also apply a distortion estimate. Similar estimates have been
proved in [9].

Lemma 2.2. If B(x, t) ⊂ B(3/2), then

L

l
=

maxy∈S(3/2) |f(x)− f(y)|
miny∈S(x,t) |f(x)− f(y)|

≤ exp
(
C(n, µ, K)t−1/(n−3/2)

)
.

Proof. We first show that

(2.2)
L

Lt
≤ exp

(
C(n, µ, K)t−1/(n−3/2)

)
,

where Lt = maxy∈S(x,t) |f(x) − f(y)|. We choose a point x0 ∈ S(3/2) such
that |f(x0)− f(x)| = L, and

I = f−1({f(x0) + T (f(x0)− f(x)) : T ≥ 0}).

Then there exist p ∈ B(2) and t/4 ≤ r ≤ 3/2 such that, for every r < s <
r + t/8, the sphere S(p, s) contains a spherical cap Q(s) ⊂ B(2) such that

(2.3) Q(s) ∩ I 6= ∅ and Q(s) ∩B(x, t) 6= ∅.

Let
g = max{min{log |f − f(x)|, log L}, log Lt},

and Et = {Lt ≤ |f−f(x)| ≤ L}. Then, by (2.3) and the Sobolev embedding
theorem on spheres,

t

8

(
log

L

Lt

)n−1/2
≤ C(n)

∫ r+t/8

r

∫
Q(s)∩Et

|∇g(z)|n−1/2 dHn−1(z) ds

≤ C(n)
∫

Et

|Df(z)|n−1/2

|f(z)− f(x)|n−1/2
dz.

By Hölder’s inequality and the distortion inequality |Df |n ≤ KJf , the last
integral is bounded from above by( ∫

B(2)
K(z)2n−1 dz

)1/(2n)( ∫
Et

Jf (z)
|f(z)− f(x)|n

dz
)(n−1/2)/n

.

By Jensen’s inequality and (1.4), the first integral is bounded by C(n, µ, K).
Also, by change of variables, the second term is bounded by(

log
L

Lt

)(n−1/2)/n
.

Combining the estimates gives (2.2). We also have

(2.4)
Lt

l
≤ exp

(
C(n, µ, K)t−1/(n−3/2)

)
.

Inequality (2.4) is proved in a similar way as (2.2), and we thus omit the
proof. See [9], Theorem 3.6 for a more general result. The lemma follows
by combining (2.2) and (2.4).
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The following continuity estimate is proved in [11]

Theorem 2.3. If x and y ∈ B(5/4), then

|f(x)− f(y)| ≤ C(n, µ, K)
logµ/n 1

|x−y|
|fB(3/2)|1/n.

We now begin to prove Theorem 1.1. We may assume that |fBn| = αn.
We choose x0 so that λ(fBn) = |fBn \B(x0, 1)|. Without loss of generality,
x0 = 0. Lemma 2.2 applied to the unit ball now shows that β(fBn) ≤
C(n, µ, K). Thus we may assume that

(2.5) λ = λ(fBn) < ε = ε(n, µ, K),

where ε > 0 is to be determined later. Let

R = min{s : fBn ⊂ B(s)},

and
r = max{s : B(s) ⊂ fBn}.

Then β(fBn) ≤ R/r − 1. We first give an estimate for R− 1.
We choose a ∈ Sn−1 so that |f(a)| = R. Without loss of generality,

a = e1 and f(e1) = Re1.

Lemma 2.4. There exists κ′ = κ′(n, µ, K) > 0 such that

f−1B(Re1, κ
′) ⊂ B(e1, 1/4).

Proof. Since |fBn| = αn, we have |f(e1) − f(x)| ≥ 1 for some x ∈ B(3/2).
Thus by Lemma 2.2,

|f(x)− f(e1)| = |f(x)−Re1| ≥ κ′(n, µ, K)

for every x /∈ B(e1, 1/4).

Now let κ = min{R− 1, κ′}, and Ut = fBn ∩S(Re1, t). We may assume
that κ is so small that s < 1/10 in Lemma 2.5 below.

Lemma 2.5. There exists C = C(n, µ, K) > 0 so that if s = exp(−Cκ−n/µ),
then f−1Ut separates Bn \ B(e1, 1/4) and Bn ∩ B(e1, s) in Bn for every
κ/2 < t < κ.

Proof. Let κ/2 < t < κ. From Lemma 2.2 it follows that

|fB(3/2)| ≤ C(n, µ, K)|fBn| = C(n, µ, K)αn.

Combining this with Theorem 2.3 shows that |x − e1| ≥ s whenever x ∈
f−1Ut. Lemma 2.4 then shows that

(2.6) s ≤ |x− e1| ≤ 1/4

for every x ∈ f−1Ut. Since Ut separates B(Re1, κ/2) and any point y ∈
fBn \B(Re1, t) in fBn, the lemma follows by (2.6).

6



Lemma 2.6. Let κ and Ut be as in Lemma 2.5, and

Λ = {Ut : κ/2 < t < κ}.

Then

MΛ ≥ κn/(n−1)

2n/(n−1)λ1/(n−1)
.

Proof. Let ρ ∈ Y , see Lemma 2.1. Now

κ/2 ≤
∫ κ

κ/2

∫
Ut

ρ(z) dHn−1(z) dt ≤
∫

fBn\Bn

ρ(y) dy

≤ |fBn \Bn|1/n
( ∫

fBn\Bn

ρ(y)n/(n−1) dy
)(n−1)/n

by Hölder’s inequality. The lemma follows, since λ = |fBn \Bn|.

Lemma 2.7. Let Λ be as in Lemma 2.6. Then

MKf−1Λ ≤ C(n, µ, K)κ−n2/((n−1)µ).

Proof. By the separation property in Lemma 2.5 and a simple calculation,

ρ(x) = 10n|x− e1|1−nχBn\B(e1,s)(x)

satisfies ρ ∈ X, where s is as in Lemma 2.5. We may assume that log 1
s is

an integer. Then

MKf−1Λ ≤
∫

Rn

ρ(x)n/(n−1)K(x)1/(n−1) dx

≤ C(n)
log 1

s∑
j=0

|Bj |−1

∫
Bj

K(x)1/(n−1) dx,

where Bj = B(e1, exp(−j)). Since the function t 7→ exp(µtn−1) is convex,
we can use Jensen’s inequality as follows:

|Bj |−1

∫
Bj

K(x)
1

n−1 dx ≤ µ
−1

n−1 log
1

n−1

(
|Bj |−1

∫
Bj

exp(µK(x)) dx
)

≤ µ
−1

n−1 log
1

n−1 (α−1
n exp(nj)K) ≤ C(n, µ, K)j

1
n−1 .

Thus

MKf−1Λ ≤ C(n, µ, K)
log 1

s∑
j=0

j
1

n−1 ≤ C(n, µ, K) log
n

n−1
1
s

= C(n, µ, K)κ
−n2

(n−1)µ .
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Combining Lemmas 2.1, 2.6 and 2.7 yields

κn+n2/µ ≤ C(n, µ, K)λ.

Thus, when we assume that ε in (2.5) is small enough depending on n, µ
and K, we have

(2.7) (R− 1)n+n2/µ ≤ C(n, µ, K)λ.

We now give an estimate for 1 − r. Notice that we could have r = 0.
However, we will soon see that, when λ is small enough, r is close to one.
We denote

a = inf{|f(x)| : x ∈ B(2) \B(3/2)}.

Lemma 2.8. We have

1− a ≤ C(n, µ, K)λ1/n.

Proof. We may assume that a < 1. Let η = min{1 − a, 1/2}. Since
maxx∈B(3/2) |f(x)| > 1, for every 1− η < t < 1 there exists

p(t) ∈ S(t) ∩ f(B(2) \B(3/2)).

We may assume that λ < ε(n), so that S(t)∩fBn 6= ∅ for every 1−η < t < 1.
We choose a point

q(t) ∈ S(t) ∩ fBn

so that

s(t) = |p(t)− q(t)| = min{|p(t)− y| : y ∈ S(t) ∩ fBn}.

Since f−1 belongs to W 1,n by [7], also the restriction of f−1 to S(t)∩ fB(2)
belongs to W 1,n for almost every t. We denote

Q(t) = S(t) ∩B(p(t), s(t)).

Then, by the Sobolev embedding theorem in Q(t),

1
2

≤ |f−1(p(t))− f−1(q(t))|

≤ C(n)s(t)1/n
( ∫

Q(t)
|∇|f−1|(y)|n dHn−1(y)

)1/n
(2.8)

≤ C(n)s(t)1/n
( ∫

Q(t)
Kf−1(y)Jf−1(y) dHn−1(y)

)1/n

for almost every t, 1 − η < t < 1. Since Kf−1(y) ≤ K(f−1(y))n−1 almost
everywhere, see [8], (2.8) yields

C(n)−1s(t)−1 ≤
∫

Q(t)
K(f−1(y))n−1Jf−1(y) dHn−1(y).
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By integrating and changing variables (the change of variables formula holds
under our assumptions, see [8]), we have

(2.9)
∫ 1

1−η

dt

s(t)
≤ C(n)

∫
B(2)

K(x)n−1 dx ≤ C(n, µ, K).

Here the last inequality follows from Jensen’s inequality and our assumption
on K. By Hölder’s inequality, and (2.9),

η =
∫ 1

1−η

s(t)(n−1)/n

s(t)(n−1)/n
dt

≤
( ∫ 1

1−η
s(t)n−1 dt

)1/n( ∫ 1

1−η

dt

s(t)

)(n−1)/n

≤ C(n, µ, K)
( ∫ 1

1−η
Hn−1(S(t) ∩Bn \ fBn) dt

)1/n
(2.10)

≤ C(n, µ, K)λ1/n.

Thus, when λ is small enough depending on n, µ and K, η = 1− a and the
lemma follows from (2.10).

Now we continue in a similar way as in the proof of (2.7). We claim that

(2.11) (1− r)n+n2/µ ≤ C(n, µ, K)λ.

We may assume that f(e1) = min{|f(x)| : x ∈ S(1)} = r′. Notice that
if r′ is close to one and if λ is small, then r′ = r. The argument given
below will show that r′ is indeed close to one. Hence we will from now on
abuse notation and denote r′ by r. By Lemma 2.8, we may assume that
a ≥ (1 + r)/2. Let b = min{1, a}. Then, if

r0 = r + (1− r)/4,

b− r0 ≥ (1− r)/4. We denote

Wt = S(t) ∩ f(B(2) \Bn).

Then
f−1Wt ⊂ B(3/2) \B(e1, s)

for every r0 < t < b by Theorem 2.3 and Lemma 2.8, where

s = exp(−C(n, µ, K)(1− r)−n/µ).

Therefore, f−1Wt separates B(e1, s) \ Bn and S(3/2) in B(3/2) \ Bn for
every such t. We denote Λ = {Wt : r0 < t < b}. Then Lemma 2.1 gives

(2.12) MΛ ≤ MKf−1Λ.
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We estimate MΛ from below as follows: if ρ ∈ Y , then

1− r

4
≤

∫ b

r0

∫
Wt

ρ(z) dHn−1(z) dt ≤
∫

Bn\fBn

ρ(y) dy

≤ λ1/n
( ∫

Rn

ρ(y)n/(n−1)
)(n−1)/n

,

and so

(2.13) MΛ ≥ (1− r)n/(n−1)

4n/(n−1)λ1/(n−1)
.

In order to give an upper bound for MKf−1Λ, we notice that the separation
property mentioned above implies that the function ρ : B(2) → [0,∞),

ρ(x) = 100n|x− e1|1−nχB(3/2)\B(e1,s)(x)

belongs to the test function space X. By calculating as in Lemma 2.7, we
see that

(2.14) MKf−1Λ ≤ C(n, µ, K)(1− r)−n2/((n−1)µ).

Combining (2.12), (2.13) and (2.14) then yields (2.11). Since r ≥ 1/2 for
small enough λ, Theorem 1.1 follows by combining (2.7) and (2.11).

3 Proof of Theorem 1.2

We fix µ > 0 and a small a > 0, and denote ε = aε1(n)/µ << 1, where ε1(n)
will be determined later. The main part of the proof will be the construction
of a Lipschitz continuous homeomorphism g : Rn → Rn with the following
properties. Denote Ha = {x1 ≤ −a}, and by V the truncated cone

{−a ≤ x1 ≤ −|x| cos ε}.

Then we require that

(3.1) g(H0) = Ha ∪ V and g(0) = 0.

Also, we require that

(3.2)
∫

Bn

exp(µKg(x)) dx ≤ C(µ, n),

and that g is K(n)-quasiconformal in R
n \B

n.
Suppose for the moment that such a g exists. Denote τa(x) = x + ae1,

and let M : Rn → Rn be a Möbius transformation that maps Bn onto H0

and e1 to 0. Then consider

f = M−1 ◦ τa ◦ g ◦M.
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Then, sinceM|B(e1,1/2) is bi-Lipschitz continuous, f maps Bn onto the union
of Bn and a bi-Lipschitz image of V when a is small enough. Thus

λ(fBn) ≤ C(n)anεn−1 = C(n)an+(n−1)ε1(n)/µ ≤ C(n)β(fBn)n+(n−1)ε1(n)/µ,

which is the desired estimate (when a → 0). Also, assuming (3.2), we can
use the conformality and the local bi-Lipschitz property of M to show that∫

B(2)
exp(µKf (x)) dx ≤ C(µ, n).

We conclude that in order to prove Theorem 1.2 it suffices to construct, for
any given small a > 0, a homeomorphism g as above.

Let µ0 = C0(n)µ, where C0(n) is determined later. We will consider the
case n ≥ 3; the case n = 2 is an easy modification. Let x = (r, ϕ, φ), where
r = |x| and 0 ≤ ϕ ≤ π is the angle ∠(x, 0, e1). Also, φ ∈ Sn−2, φ = x̂/|x̂|
when x̂ 6= 0, where x̂ = (x2, . . . , xn). Then the map g is of the form

g(r, ϕ, φ) = (gr, η(r, ϕ), φ)

when x̂ 6= 0, g(0) = 0, and g(x) = grx1/|x1| otherwise. Here

gr =


r exp(1) exp(−1) ≤ r ≤ ∞,

log−µ0 1
r , exp(−(2a)−1/µ0) ≤ r ≤ exp(−1),

2a exp((2a)−1/µ0)r 0 ≤ r ≤ exp(−(2a)−1/µ0).

In order to define η, we first set

η0 =

{
π − arccos

(
a
gr

)
, r ≥ exp

(
−

(
a

cos ε

)−1/µ0
)
,

π − ε otherwise.

Then

η =
{ 2η0ϕ

π , 0 ≤ ϕ ≤ π/2,
(2− 2η0/π)ϕ− π + 2η0, π/2 ≤ ϕ ≤ π.

Now g is a Lipschitz homeomorphism and satisfies (3.1). We next esti-
mate Kg. The Jacobian determinant Jg is given by

Jg = ∂rgr ·
gr∂ϕη

r
·
(gr sin η

r sinϕ

)n−2
,

and
|Dg| ≤ C(n) max

{
∂rgr,

gr∂ϕη

r
,

gr sin η

r sinϕ

}
.

Thus g is K(n)-quasiconformal when r ≥ exp(−1). Let A1 be the set where
gr = log−µ0 1

r . Then

∂rgr = µ0 log−1 1
r
· gr

r
,

|Dg| ≤ C(n)
gr

r
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in A1. Also, since η0 ≤ 2π/3 in A1,

∂ϕη
( sin η

sinϕ

)n−2
≥ C(n)−1.

Therefore,

Kg ≤ max
{

C(n),
C(n)
µ0

log
1
r

}
,

and ∫
A1

exp(µKg(x)) dx ≤ 100n+µ +
∫

A1

|x|−α dx,

where α = C(n)/C0(n). Thus, when C0 is chosen to be large enough so that
α ≤ 1, the integral is bounded by 200n+µ.

Let A2 be the set where gr = 2a exp((2a)−1/µ0)r. Then

|Dg| ≤ C(n)gr

r
, ∂rgr =

gr

r
, and ∂ϕη

( sin η

sinϕ

)n−2
≥ C(n)−1εn−1

in A2. Therefore,
Kg ≤ C(n)ε1−n,

and ∫
A2

exp(µKg(x)) dx ≤ exp
(
C(n)µε1−n

)
|A2|

≤ exp
(
C(n)µε1−n − C(n, µ)a−1/µ0

)
.

If we now choose ε1(n) to be small enough depending on C0(n), then the
integral is smaller than 1 for small a. By combining the estimates we see
that (3.2) holds when a is small. The proof is complete.

4 Theorem 1.1 for inverse images

In this section we show that, when a suitable polynomial integrability con-
dition on K is assumed, an estimate similar to Theorem 1.1 holds for the
inverse of a ball under f .

Theorem 4.1. Let f : f−1B(2) → B(2) be a W 1,1-homeomorphism so that
Jf ≥ 0 almost everywhere, and

(4.1)
∫

f−1B(2)
K(x)p dx ≤ K|f−1Bn|

for some K > 0 and p > n− 1. Then

β(f−1Bn)n+n2/(p−n+1) ≤ C(n, p,K)λ(f−1Bn)

whenever

(4.2) λ(f−1Bn) < ε(n).

12



We do not know if assumption (4.2) is really needed. By (4.1) and
Hölder’s inequality,

(4.3)
∫

f−1B(2)
|Df(x)|q dx ≤ C(n, p,K, |f−1Bn|),

where q = np/(p + 1) > n− 1 when p > n− 1.
The proof of Theorem 4.1 is similar to the proof of Theorem 1.1. There-

fore, we will leave out some details to avoid unnecessary repetition. Let
G ⊂ f−1B(2) be open, x ∈ Rn, and E ⊂ (0,∞) a Borel set. As in the
beginning of the proof of Theorem 1.1, we consider the family

(4.4) Λ = {Ut : t ∈ E} = {S(x, t) ∩G : t ∈ E},

and define the quantities

M1/KΛ = inf
ρ∈X

∫
Rn

ρ(x)n/(n−1)K(x)−1 dx,

where X is the family of all Borel functions for which∫
Ut

ρ(x) dHn−1(x) ≥ 1 for every t ∈ E,

and MfΛ as before.

Lemma 4.2. We have
M1/KΛ ≤ MfΛ.

Proof. Since f ∈ W 1,q(f−1B(2), Rn) for some q > n−1 by (4.3), the (n−1)-
dimensional change of variables formula holds on almost every Ut. The
proof can now be carried out as the proof of Lemma 2.1. Notice that the
n-dimensional change of variables formula is not needed here. The inequality∫

U
g(f(x))Jf (x) dx ≤

∫
fU

g(y) dy,

valid for all W 1,1-homeomorphisms, is sufficient.

We will use the following continuity estimate for the inverse. In the case
n = 2 this was proved in [10], and the case n ≥ 3 can be proved similarly.

Theorem 4.3. Let f be as in Theorem 4.1, and x and y in B(3/2). Then

|f−1(x)− f−1(y)| ≤ C(n, p,K, |f−1Bn|)
logα 1

|x−y|
,

where α = p(n− 1)/n.
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We may assume that |f−1Bn| = αn and that

λ = λ(f−1Bn) = |f−1(Bn) \Bn|.

Let
R = min{s : f−1Bn ⊂ B(s)},

and
r = max{s : B(s) ⊂ f−1Bn}.

We first claim that

(4.5) (R− 1)n+n2/(p−n+1) ≤ C(n, p,K)λ.

We may assume that Re1 = f−1(e1). We choose Ut and Λ in (4.4) so that
x = 0, G = f−1Bn, and E = (1, 1 + (R− 1)/2).

Lemma 4.4. There exist κ = κ(n, p,K) > 0 and a continuum γ in Bn ∩
f−1Bn so that diam fγ ≥ κ.

Proof. If λ is small enough, then there exists p ∈ B(1/2) ∩ f−1Bn. Conse-
quently, p and S(1)∩f−1Bn can be connected in Bn∩f−1Bn by a continuum
γ. Since diam γ ≥ 1/2, diam fγ ≥ κ(n, p,K) by Theorem 4.3.

Lemma 4.5. There exists C = C(n, p,K) > 0 so that if

s = exp(−C(R− 1)−n/((n−1)p)),

then fUt separates fγ and F = Bn ∩ B(e1, s) in Bn for every 1 < t <
1 + (R− 1)/2.

Proof. Apply Theorem 4.3 as in the proof of Lemma 2.5.

Lemma 4.6. We have

C(n, p,K)M1/KΛ ≥ (R− 1)n/(n−1)λ(n−1−p)/(p(n−1)).

Proof. Let ρ ∈ X. Then, by polar coordinates and Hölder’s inequality,

R− 1
2

≤
∫

f−1(Bn)\Bn

ρ(x)K(x)−(n−1)/nK(x)(n−1)/n dx

≤
( ∫

f−1B(2)
ρ(x)n/(n−1)K(x)−1 dx

)(n−1)/n

×
( ∫

f−1B(2)
K(x)p dx

)(n−1)/(np)
|f−1(Bn) \Bn|τ ,

where τ = (p− n + 1)/(np). The lemma follows.
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Lemma 4.7. We have

MfΛ ≤ C(n, p,K) min{1, (R− 1)−n/((n−1)p)}.

Proof. We use the duality of the modulus MΛ of separating surfaces and
conformal capacity, and apply a classical estimate for conformal capacity.
Namely, by Lemma 4.5 and [14], and the so-called Loewner property of the
unit ball (cf. [4]), we have

(4.6) MfΛ ≤ C(n) log
1
s

when s < κ (s is as in Lemma 4.5 and κ as in Lemma 4.4), and

MfΛ ≤ C(n, p,K)

otherwise. The lemma follows.

The estimate (4.5) now follows by combining Lemmas 4.2, 4.6 and 4.7.
Now we give an estimate for 1− r. We claim that

(4.7) (1− r)n+n2/(p−n+1) ≤ C(n, p,K)λ.

We denote
a = inf{|f−1(x)| : x ∈ B(2) \B(3/2)}.

Lemma 4.8. We have

1− a ≤ C(n, p,K)λ(p−n+1)/(np).

Proof. We may assume that a < 1. Let η = min{1 − a, 1/2} and s(t) =
Hn−1(S(t) \ f−1Bn). As in the proof of Lemma 2.8, we apply the Sobolev
embedding theorem on spheres to conclude that

1 ≤ C(n)s(t)q−n+1

∫
S(t)∩f−1B(2)

|∇|f |(x)|q dHn−1(x)

for almost every 1 − η ≤ t ≤ 1, where q = np/(p + 1). Therefore, by
integration with respect to t, and (4.3),∫ 1

1−η
s(t)n−1−q dt ≤ C(n, p,K).

By Hölder’s inequality,

η ≤
( ∫ 1

1−η
s(t)n−1−q dt

)1/τ( ∫ 1

1−η
s(t)n−1 dt

)(τ−1)/τ

≤ C(n, p,K)λ(τ−1)/τ ,

where τ = q/(n− 1). The lemma follows.
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We now prove (4.7). Notice that

np

p− n + 1
≤ n +

n2

p− n + 1
.

Thus we may assume that a ≥ (1 + r)/2 by Lemma 4.8. Also, as in the
proof of (2.11), we may assume that

r = min{|f−1(y)| : y ∈ S(1)}.

Let b = min{1, a} and r0 = r + (1− r)/4. Moreover, let

Λ = {Wt : r0 < t < b},

where
Wt = S(t) ∩ f−1(B(2) \Bn).

Then, as in the proofs of (2.11) and (4.5), we have

C(n, p,K)M1/KΛ ≥ (1− r)n/(n−1)λ(n−1−p)/(p(n−1)),

and
MfΛ ≤ C(n, p,K)(1− r)−n/(p(n−1)).

Combining these estimates with Lemma 4.2 gives (4.7). The proof is com-
plete.
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