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Abstract. Given an increasing function H : [0, 1) → [0,∞) and

An(H) := inf
τ∈Tn

 
nX

i=1

Z ti

ti−1

(ti − t)H2(t)dt

! 1
2

,

where Tn := {τ = (ti)
n
i=0 : 0 = t0 < t1 < · · · < tn = 1}, we characterize the property

An(H) ≤ c√
n
, and give conditions for An(H) ≤ c√

nβ
and An(H) ≥ 1

c
√

nβ
for β ∈ (0, 1),

both in terms of integrability properties of H. These results are applied to the approxi-

mation of certain stochastic integrals.
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1. Introduction

During the last years quantitative problems in stochastic finance
have become more and more important. One typical example consists
of replacing a continuously adjusted hedging portfolio in the Black-
Scholes option pricing model by a discretely adjusted one, as portfolios
are adjusted in practice only finitely many times. If we consider the
quadratic error which occurs in this replacement (and which we can
interpret as risk in finance), then we obtain the following stochastic
approximation problem:

We model the share price by an appropriate positive diffusion X =
(Xt)t∈[0,1] such that

dXt = σ(Xt)dWt with X0 ≡ x0 > 0,

whereW = (Wt)t∈[0,1] is a standard Brownian motion, σ satisfies certain
regularity properties, and (Ft)t∈[0,1] is the augmentation of the filtration
generated by W . Assume that f : (0,∞) → (0,∞) is a polynomially
bounded and Borel measurable payoff function of a European type
option. Setting Z = f(X1), we consider

(1) C(Z, τn, X, v) := Z − EZ −
n∑

i=1

vi−1(Xti −Xti−1
),

which is the difference between the exact payoff Z and the payoff of
the discretely adjusted hedging portfolio x0 +

∑n
i=1 vi−1(Xti − Xti−1

)
with initial capital x0 = EZ and rebalanced at the deterministic time
points τn = (ti)

n
i=0 with 0 = t0 < t1 < · · · < tn−1 < tn = 1. Here

1



2 HEIKKI SEPPÄLÄ

vi−1 : Ω → R is the number of shares one holds between ti−1 and ti.
We are interested in the minimal quadratic risk under the constraint
that one trades only n times, i.e.

(2) aX
n (Z) := inf

τn
aX(Z, τn)

where aX(Z, τn) := inf (E|C(Z, τn, X, v)|2) 1
2 with the infimum taken

over all v = (vi)
n−1
i=0 , where vi : Ω → R is a Fti-measurable step function

for all i = 0, ..., n− 1.

Under certain conditions on Z and σ, C. and S. Geiss showed that
if τn = ( i

n
)n
i=0 is the equidistant time net with cardinality n + 1, then

one has that
aX(Z, τn) ≤ c√

n

if and only if Z belongs to the Malliavin Sobolev space D1,2 [3, The-
orems 2.3, and 2.6]. Furthermore, they proved that there exists a
constant c > 0 such that aX

n (Z) ≥ 1
c
√

n
unless there are constants c0

and c1 such that Z = c0 + c1X1 a.s. [3, Theorem 2.5] (if such con-
stants do exists, then aX

n (Z) = 0). It is also known by [3, Theorem
2.9] that there exists a constant c > 0 such that aX

n (Z) ≤ c√
n
, if Z has

a certain polynomial smoothness measured by Besov spaces generated
by real interpolation. In this case the rate 1√

n
is obtained by adapted

non-equidistant time nets.
M. Hujo showed in [8, Theorem 3], for X being the Brownian motion

or the geometric Brownian motion, that there exists random variables
Z = f(X1) ∈ L2(Ω,F ,P) such that

sup
n∈N

√
naX

n (Z) = ∞,

which means that the approximation rate is not always 1√
n

even if the

underlying process is the standard Brownian motion. However, in a
sense, there are no explicit examples of such functions.

These results lead us to the question of how to characterize those
Z = f(X1) ∈ L2(Ω,F ,P) with

aX
n (Z) ≤ c√

n
for some c = c(Z) > 0.

Using Theorem 4.4 below, we see that finally the problem can be re-
duced to a non-stochastic one. Actually we characterize the property

inf
τ∈Tn

(
n∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

) 1
2

≤ c√
n
,

where the function H : [0, 1) → [0,∞) is increasing and

Tn := {τ = (ti)
n
i=0 : 0 = t0 < t1 < · · · < tn = 1},
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using the integrability properties of H. This with Theorem 4.4 imme-
diately gives the characterization of aX

n (Z) ≤ c√
n
. Moreover, we give

sufficient conditions for

inf
τ∈Tn

(
n∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

) 1
2

≤ c√
nβ

and

inf
τ∈Tn

(
n∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

) 1
2

≥ 1

c
√
nβ
,

where β ∈ [0, 1), in terms of the growth rate of H : [0, 1) → [0,∞).
As we see, the results do not strictly depend on the setting introduced
above and can be applied also to other situations, for example to the
quadratic approximation of multi-dimensional stochastic integrals (see
[9], [12] and [13]).

In Section 2 we introduce the main results of the paper, their proofs
can be found in Section 3. In Section 4 we apply the results of Section
2 to the setting explained above. We also give an example of random
variables for which the approximation rate is aX

n (Z) ∼c
1

c
√

nβ
, for β ∈

(0, 1) in case X is the standard Brownian motion or the geometric
Brownian motion. In Section 5 the results of Section 2 are applied
to the approximation of d-dimensional stochastic integrals where the
underlying diffusion might have a drift.

2. Results

To shorten the notation in the following, we say that A ∼c B if there
exists c ≥ 1 such that 1

c
A ≤ B ≤ cA.

2.1. Definition. Let H : [0, 1) → [0,∞) be a measurable function. If
τ = (ti)

n
i=0 ∈ Tn, we define




A(H, τ) :=

(∑n
i=0

∫ ti
ti−1

(ti − t)H2(t)dt
) 1

2
,

An(H) := infτ∈Tn A(H, τ).

2.2. Definition. We say that an increasing function H : [0, 1) → [0,∞)
belongs to the set A if and only if

‖H‖A := sup
n∈N

√
nAn(H) <∞,

and to the set H if and only if

‖H‖H :=

∫ 1

0

H(t)dt <∞.
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2.3. Theorem. Let H : [0, 1) → [0,∞) be an increasing function. Then

sup
n∈N

√
nAn(H) <∞

if and only if
∫ 1

0
H(t)dt <∞. In particular, one has that

‖H‖A ∼√2 ‖H‖H.
2.4. Remark. Theorem 2.3 implies that I :=

∫ 1

0
H(t)dt <∞ gives

An(H) ≤ I√
n

for all n ∈ N.

This rate can be obtained by regular sequences (see [10] and [11])
generated by H. Regular sequences generated by H are time nets
τn = (tni )n

i=0 for which
∫ tni

0

H(t)dt =
i

n

∫ 1

0

H(t)dt

for all i ∈ {0, ..., n}.
2.5. Theorem. Let H : [0, 1) → [0,∞) be an increasing function and
α ∈ (1

2
, 1). Then one has the following:

(1) If there exists a constant c1 ≥ 1 such that

H(t) ≤ c1
(1− log(1− t))−α

1− t
for all t ∈ [0, 1),

then

An(H) ≤ c√
n2α−1

for all n ∈ N,
where c = c(α) ≥ 1.

(2) If there exists s ∈ [0, 1) and a constant c2 ≥ 1 such that

H(t) ≥ (1− log(1− t))−α

c2(1− t)
for all t ∈ [s, 1),

then

An(H) ≥ 1

c
√
n2α−1

for all n ∈ N,
where c = c(α, c2) ≥ 1.

2.6. Remark. Geiss showed in [5, Lemma 4.14, Proposition 4.16] that
if H is increasing and there are C ∈ (0,∞), α ∈ (1,∞) with

H(t) ≤ C

[α + log(1 + 1
1−t

)]α(1− t)

for all t ∈ [0, 1), then one has that

sup
n

√
nAn(H) <∞ for all n ∈ N.
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2.7. Remark. LetH : [0, 1) → [0,∞) be a measurable function such that
H∗(t) := sups∈[0,t]H(s) < ∞ for all t ∈ [0, 1). Then the monotonicity
properties of An(·) imply the following:

(1) supn∈N
√
nAn(H) ≤ ‖H∗‖H as a consequence of Lemma 3.1.

(2) If H∗(t) ≤ c1
(1−log(1−t))−α

1−t
for all t ∈ [0, 1), then

An(H) ≤ c√
n2α−1

for all n ∈ N.

3. Proof

In this chapter we prove Theorems 2.3 and 2.5. To prove Theorem
2.3 we need two lemmas concerning the connection between An(H) and∫ 1

0
H(t)dt, where H is a non-negative and increasing function.

3.1. Lemma. Let H : [0, T ) → [0,∞), T > 0, be an increasing function
such that

I =

∫ T

0

H(t)dt <∞.

Then for all n ∈ N there exists a sequence τn = (tni )n
i=0, 0 = tn0 < tn1 <

· · · < tnn = T such that
∫ tni

0

H(t)dt =
i

n
I

for all i ≤ n and for this sequence it holds that

A(H, τn) ≤ I√
n
.

Proof. The existence of the sequence (tni )n
i=0 for which

∫ tni

0

H(t)dt =
i

n
I

follows from the continuity of the integral. Now we have that
n∑

i=1

∫ tni

tni−1

(tni − t)H2(t)dt =
n∑

i=1

∫ tni

tni−1

[(tni − t)H(t)]H(t)dt

≤ I

n

n∑
i=1

sup
t∈[tni−1,tni )

(tni − t)H(t).

Since H is increasing, it is clear that

(tni − t)H(t) ≤
∫ tni

t

H(s)ds ≤
∫ tni

tni−1

H(s)ds

for all t ∈ [tni−1, t
n
i ). Hence

A2(H, τn) ≤ I

n

n∑
i=1

∫ tni

tni−1

H(t)dt =
I2

n
.
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¤

3.2. Lemma. Let H : [0, 1) → [0,∞) be an increasing function. If for
all n ∈ N there exists a time net τn = (tni )n

i=0 ∈ Tn such that

A(H, τn) ≤ c√
n

for some fixed c > 0, then H is integrable and
∫ 1

0

H(t)dt ≤
√

2c.

Proof. If H ≡ 0, then the claim is trivial. Assume then that H(t) > 0
for some t ∈ [0, 1). Let a := inf{t ∈ [0, 1);H(t) > 0} and τ̃n =
{a} ∪ {tni ∈ τn, tni > a}. Since H is positive on (a, 1), our assumption
implies that ||τ̃n||∞ → 0 as n → ∞. Using the Cauchy-Schwartz

inequality and assumption A2(H, τn) ≤ c2

n
we see that

[
n−1∑
i=1

H(tni−1)(t
n
i − tni−1)

]2

≤ n

n−1∑
i=1

H2(tni−1)(t
n
i − tni−1)

2

≤ 2n
n∑

i=1

∫ tni

tni−1

(tni − t)H2(t)dt ≤ 2c2.

(3)

Let b ∈ (a, 1) and 0 < ε <
√
c. Choose n such that b < tnn−1 and

∫ b

0

H(t)dt <
n−1∑
i=1

H(tni−1)(t
n
i − tni−1) + ε.

(We can choose n satisfying this, since the positivity of the function H
on the interval (a, 1) implies that tnn−1 → 1 and ||τ̃n||∞ → 0 as n→∞.)
Now (3) gives that ∫ b

0

H(t)dt ≤
√

2c+ ε

and since this is true for any b ∈ (a, 1) and any ε > 0, we finally have
that ∫ 1

0

H(t)dt ≤
√

2c.

¤

3.3. Lemma. Let H : [0, 1) → [0,∞) be an increasing function. Then

An(H) ≤ inf
T∈(0,1)




(∫ T

0
H(t)dt

)2

n− 1
+

∫ 1

T

(1− t)H2(t)dt




1
2

for all n ≥ 2.
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Proof. Let T ∈ [0, 1) and let τn = (ti)
n
i=0 ∈ Tn be a time net such that

0 = t0 < t1 < · · · < tn−1 = T < tn = 1 and
∫ ti

0

H(t)dt =
i

n− 1

∫ T

0

H(t)dt for all i = 1, ..., n− 1.

Using Lemma 3.1 we get that

A2(H, τn) =
n−1∑
i=1

∫ ti

ti−1

(ti − t)H2(t)dt+

∫ 1

tn−1

(1− t)H2(t)dt

≤

(∫ T

0
H(t)dt

)2

n− 1
+

∫ 1

T

(1− t)H2(t)dt.

By definition, we have that An(H) ≤ A(H, τn) and we are done. ¤
3.4. Remark. The best rate that Lemma 3.3 can give, is obtained by
choosing T such that

∫ T

0

H(t)dt =
√
n− 1

(∫ 1

T

(1− t)H2(t)dt

)1/2

.

However, it is not known if Lemma 3.3 gives the optimal upper bound,
i.e. we do not know whether the inequality

(4) A2
n(H) ≥ 1

c
inf

T∈(0,1)




(∫ T

0
H(t)dt

)2

n− 1
+

∫ 1

T

(1− t)H2(t)dt




holds. What we have is

A2
n(H) = inf

T∈(0,1)

[
A2

n−1(H|[0, T ]) +

∫ 1

T

(1− t)H2(t)dt

]
,

where

A2
n−1(H|[0, T ]) := inf

0=t0<···<tn−1=T

n−1∑
i=1

∫ ti

ti−1

(ti − t)H2(t)dt.

In order to obtain inequality (4) we would need to know that there
exists a constant c > 0 such that

A2
n−1(H|[0, T ]) ≥ 1

c

(∫ T

0
H(t)dt

)2

n− 1
,

for all n ≥ 2, but we do not know whether this is true.

Proof of Theorem 2.3. Assume first thatH ∈ H. Then I :=
∫ 1

0
H(t)dt <

∞ and Lemma 3.1 implies that
√
nAn(H) ≤ I for all n ∈ N

and ‖H‖A ≤ ‖H‖H.
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Assume now that H ∈ A, which means that

sup
n∈N

√
nAn(H) <∞.

Lemma 3.2 implies that
∫ 1

0

H(t)dt ≤
√

2 sup
n∈N

√
nAn(H)

and ‖H‖H ≤
√

2‖H‖A.
The computations above imply that

∫ 1

0

H(t)dt <∞ ⇐⇒ sup
n∈N

√
nAn(H)

and that ‖H‖H ∼√2 ‖H‖A. ¤
For the proof of Theorem 2.5, we need the following lemmas.

3.5. Lemma. Let β ∈ (0, 1). Then there exists a constant c > 0 such
that

(1− log(1− t))−(1+β)

(1− t)2
∼c

∫ ∞

1

z−β−2(1− t)
1
z
−2dz for all t ∈ [0, 1).

Proof. Let ψβ(t) = (1−log(1−t))−(1+β)

(1−t)2
and

ϕβ(t) =
∫∞

1
z−β−2(1− t)

1
z
−2dz = (− log(1−t))−(β+1)

(1−t)2

∫ − log(1−t)

0
xβe−xdx.

The statement follows from

lim
t→1

ϕβ(t)

ψβ(t)
=

∫ ∞

0

xβe−xdx ∈ (0,∞).

¤
3.6. Lemma. [8, Lemma 7] Let θ ∈ [1, 2) and Hθ : [0, 1) → [0,∞), be
given by

Hθ(t) =
√

(2− θ)(1− t)−θ for all t ∈ [0, 1).

Then

inf
(ti)n

i=0∈Tn

n∑
i=1

∫ ti

ti−1

(ti − t)H2
θ (t)dt ≥ (θ − 1)n−1

for all n ∈ {1, 2, ...}.
3.7. Lemma. Let H : [0, 1) → [0,∞) be an increasing function and
β ∈ (0, 1). If

H2(t) ≥
∫ ∞

1

z−β−2(1− t)
1
z
−2dz for all t ∈ [0, 1),

then

An(H) ≥ 1

cβ
√
nβ

for all n ∈ N

where cβ =
√

2β+2e.
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Proof. Let g : [1,∞)× [0, 1) → (0,∞) be given by

g(z, t) = z−β−2(1− t)
1
z
−2.

Then

g(k, t)

g(k + 1, t)
=

(
1 +

1

k

)β+2

(1− t)
1

k(k+1) ≤ 2β+2

for all k ≥ 1 and t ∈ [0, 1). We have that

d

dz
g(z, t) = (− log(1− t)− (2 + β)z)

(1− t)
1
z
−2

zβ+4

and it is easy to see that for any fixed t ∈ [0, 1) there exists kt ∈ N
such that g(z, t) is increasing for all z ≤ kt − 1 and decreasing for all
z ≥ kt. Hence

∫ ∞

1

g(z, t)dz ≥
kt−2∑

k=1

g(k, t) +
∞∑

k=kt+1

g(k, t),

where we treat an empty sum as zero. Since g(k, t) ≤ 2β+2g(k + 1, t)
for all k ≥ 1, we have that

g(kt − 1, t) + g(kt, t) + g(kt + 1, t) ≤ cβg(kt + 1, t),

with cβ := (4β+2 + 2β+2 + 1), (where we omit g(kt− 1, t) if kt = 1) and
therefore

∞∑

k=(kt−1)∨1

g(k, t) = g(kt − 1, t) + g(kt, t) + g(kt + 1, t) +
∞∑

k=kt+1

g(k + 1, t)

≤ cβ

∞∑

k=kt

g(k + 1, t).

This implies that

∫ ∞

1

g(z, t)dz ≥
kt−2∑

k=1

g(k, t) +
∞∑

k=kt

g(k + 1, t)

≥
kt−2∑

k=1

g(k, t) +
1

cβ

∞∑

k=(kt−1)∨1

g(k, t)

≥ 1

cβ

∞∑

k=1

g(k, t)

for all t ∈ [0, 1).
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Let ak = 2− 1
k

and pk = k−(1+β). By assumption,

H2(t) ≥
∫ ∞

1

g(z, t)dz

≥ 1

cβ

∞∑

k=1

g(k, t)

=
1

cβ

∞∑

k=1

1

kβ+1

1

k
(1− t)

1
k
−2

=
1

cβ

∞∑

k=1

pk(2− ak)(1− t)−ak .

Now

A2
n(H) = inf

τ∈Tn

n∑
i=1

∫ ti

ti−1

(ti − t)H2(t)dt

≥ inf
τ∈Tn

n∑
i=1

∫ ti

ti−1

(ti − t)
1

cβ

∞∑

k=1

pk(2− ak)(1− t)−akdt

=
1

cβ
inf

τ∈Tn

∞∑

k=1

pk

n∑
i=1

∫ ti

ti−1

(ti − t)(2− ak)(1− t)−akdt

≥ 1

cβ

∞∑

k=1

pk inf
τ∈Tn

n∑
i=1

∫ ti

ti−1

(ti − t)(2− ak)(1− t)−akdt.

To prove our claim it is enough to consider n ≥ 2. We set

Hak
(t) =

√
(2− ak)(1− t)−ak ,

and now Lemma 3.6 implies that

A2
n(H) ≥ 1

cβ

∞∑

k=1

pk(ak − 1)n−1

=
1

cβ

∞∑

k=1

k−(1+β)

(
1− 1

k

)n−1

≥ 1

cβe

∞∑

k=n

k−(1+β)

≥ 1

cβeβ
n−β

=
1

c̃βnβ
,

where c̃β = eβcβ. ¤



OPTIMAL APPROXIMATION RATE OF CERTAIN STOCHASTIC INTEGRALS11

3.8. Lemma. Let β ∈ (0, 1) and H : [0, 1) → [0,∞) be an increasing
function such that there exists a constant c1 ≥ 1 for which

An(H + 1) ≥ 1

c1
√
nβ

for all n ∈ N.

Then there exists a constant c2 ≥ 1 such that

An(H) ≥ 1

c2
√
nβ

for all n ∈ N.

Proof. Assume first that n ≥ ñ := 2
β

1−β c
2

1−β

1 , then we have that 1
c21(2n)β ≥

1
n

and since

A2
2n−1(H + 1) ≤ A2

n(H) + A2
n(1) ≤ A2

n(H) +
1

2n
for all n ∈ N,

we get that

A2
n(H) ≥ 1

c21(2n− 1)β
− 1

2n
≥ 1

2c21(2n)β
=

1

c̃22n
β

for all n ≥ ñ, where c̃2 = 2
1+β

2 c1.
If n < ñ, the computations above imply that

A2
n(H) ≥ A2

dñe(H) ≥ 1

c̃22dñeβ
≥ 1

c22n
β
,

where c2 = c̃2dñeβ
2 and dñe := inf{k ∈ Z : ñ ≤ k}. ¤

Proof of Theorem 2.5.

(1) Let T = 1−ecα(n), where cα(n) = 1− ((1−α)n1−α +1)
1

1−α . Then
∫ T

0

H(t)dt ≤ c1

∫ T

0

(1− log(1− t))−α

1− t
dt

=
c1

1− α
[(1− log(1− T ))1−α − 1]

= c1n
1−α

and
∫ 1

T

(1− t)H2(t)dt ≤ c21

∫ 1

T

(1− log(1− t))−2α

1− t
dt

=
c21

2α− 1
(1− log(1− T ))1−2α

=
c21

2α− 1
((1− α)n1−α + 1)

1−2α
1−α

≤ c21(1− α)
1−2α
1−α

2α− 1
n1−2α
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and hence Lemma 3.3 says that, for n ≥ 2,

An(H) ≤
[

1

n− 1

(∫ T

0

H(t)dt

)2

+

(∫ 1

T

(1− t)H2(t)dt

)]1/2

≤
[

c21
n− 1

n2−2α + c21c̃αn
1−2α

]1/2

≤ c1
(2 + c̃α)

1
2√

n2α−1
,

where c̃α = (1−α)
1−2α
1−α

2α−1
.

(2) Assume that there exists a constant c2 ≥ 1 such that

H(t) ≥ (1− log(1− t))−α

c2(1− t)
for all t ∈ [s, 1).

Then there exists a constant c3 ≥ 1 such that

H(t) + 1 ≥ (1− log(1− t))−α

c3(1− t)
for all t ∈ [0, 1).

If we write β = 2α− 1 ∈ (0, 1), Lemma 3.5 implies that there exists a
constant c4 ≥ 1 such that

(H(t) + 1)2 ≥ 1

c4

∫ ∞

1

z−β−2(1− t)
1
z
−2dz for all t ∈ [0, 1),

and Lemma 3.7 implies that there exists c5 ≥ 1 such that

An(H + 1) ≥ 1

c5
√
nβ

for all n ∈ N.

Now Lemma 3.8 implies the existence of a constant c ≥ 1 such that

An(H) ≥ 1

c
√
nβ

for all n ∈ N.

¤

4. Application: Optimal approximation rate of certain
stochastic integrals

Throughout the section, we assume a standard Brownian motion
W = (Wt)t∈[0,1] on a stochastic basis (Ω,F ,P, (Ft)t∈[0,1]), where (Ft)t∈[0,1]

is the augmentation of the natural filtration of W and F = F1. We
let the process S = (St)t∈[0,1] be the geometric Brownian motion, i.e.

St = eWt− t
2 for all t ∈ [0, 1]. Moreover, we let X = (Xt)t∈[0,1] be a

diffusion such that

(5) dXt = σ(Xt)dWt with X0 ≡ x0 ∈ R,
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where the process X is obtained through Y = (Yt)t∈[0,1] given as unique
continuous solution of

dYt = σ̂(Yt)dWt + b̂(Yt)dt with Y0 ≡ y0 ∈ R,
with 0 < ε0 ≤ σ̂ ∈ C∞b (R) and b̂ ∈ C∞b (R), in the following two ways:

(a) y0 = x0 ∈ R, σ̂ := σ, b̂ := 0, Xt := Yt,
(b) y0 = log x0 with x0 > 0,

σ̂(y) :=
σ(ey)

ey
, b̂(y) := −1

2
σ̂(y)2, and Xt = eYt .

Moreover, we let γ be the Gaussian measure on R, i.e.

dγ(x) :=
1√
2π
e−

x2

2 dx.

4.1. Definition. Let Ce be the linear space of Borel measurable func-
tions f : R→ R such that there exists m > 0 for which

sup
x∈R

e−m|x|Ef 2(x+ tg) <∞

for all t > 0, where g is a centered standard normal random variable.
Moreover, we define

C := {Z := f(Y1) : Ω → R | f ∈ Ce and Y as above}.
The main tool for investigating the approximation problem in papers

of C. Geiss, S. Geiss, and Hujo was the H-functional defined in the
following way.

4.2. Definition. Let X be a stochastic process as in (5) and assume
that Z ∈ C (or Z ∈ L2(Ω,F ,P) if X ∈ {W,S}). Then we set

(6) HXZ(t) :=

∥∥∥∥
(
σ2∂

2F

∂x2

)
(t,Xt)

∥∥∥∥
L2

for all t ∈ [0, 1),

where F : [0, 1) × I → R is given by F (t, x) = E(Z|Xt = x), with
I = R in case of (a) and I = (0,∞) in case of (b).

4.3. Lemma. [3, Lemma 5.3] The function HXZ : [0, 1) → [0,∞) is
continuous and increasing.

In order to deduce from Theorem 2.3 a characterization of the ap-
proximation rate

aX
n (Z) ≤ c√

n
,

we need the following theorem.
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4.4. Theorem. [3, Lemma 3.2] [6, Theorem 4.4] Let X be a stochastic
process as in (5), Z ∈ C (or Z ∈ L2(Ω,F ,P) if X ∈ {W,S}) and
τ = (ti)

n
i=0 ∈ Tn. Then

aX(Z, τ) ∼c

(
n∑

i=1

∫ ti

ti−1

(ti − t)H2
XZ(t)dt

) 1
2

where c ≥ 1 is an absolute constant depending on σ only. Consequently,

aX
n (Z) ∼c An(HXZ).

4.5. Corollary. Let X be as in (5) and Z ∈ C (or Z ∈ L2(Ω,F ,P) if
X ∈ {W,S}). Then

sup
n∈N

√
naX

n (Z) ∼c

∫ 1

0

∥∥∥∥
(
σ2∂

2F

∂x2

)
(t,Xt)

∥∥∥∥
L2

dt,

where F : [0, 1)×I → R is given by F (t, x) = E(Z|Xt = x), with I = R
in case of (a) and I = (0,∞) in case of (b).

Proof. Theorem 2.3 together with Lemma 4.3 and Theorem 4.4 gives
the result immediately. ¤

4.6. Remark. Remark 2.4 implies that if
∥∥∥
(
σ2 ∂2F

∂x2

)
(t,Xt)

∥∥∥
L2

is inte-

grable, then the regular sequences generated by
∥∥∥
(
σ2 ∂2F

∂x2

)
(t,Xt)

∥∥∥
L2

give the rate 1√
n
. Using these sequences, denoted by τn

r , we have that

if A :=
∫ 1

0

∥∥∥
(
σ2 ∂2F

∂x2

)
(t,Xt)

∥∥∥
L2

dt <∞, then

aX
n (Z) ≤ aX(Z, τn

r ) ≤ c(4.4)A√
n

for all n ∈ N,

where c(4.4) > 0 is taken from Theorem 4.4 above.
One can also optimize over random time nets instead of deterministic

ones considered here. The result [4, Theorem 1.1.] from C. and S. Geiss
implies that 1√

n
is the best possible approximation rate also for the

random time nets in case the underlying diffusion X is the Brownian
motion W or the geometric Brownian motion S and Z is not equal to
c0 + c1X1 a.s. for some c0, c1 ∈ R. This means that if X ∈ {W,S}, the
random time nets do not improve the approximation if the deterministic
time nets already give the rate 1√

n
. According to this, Corollary 4.5

implies that if
∫ 1

0

∥∥∥∥
(
σ2∂

2F

∂x2

)
(t,Xt)

∥∥∥∥
L2

dt <∞,

then the optimal approximation rate is 1√
n

also for the random time

nets and this rate is obtained by using the regular sequences generated

by
∥∥∥
(
σ2 ∂2F

∂x2

)
(t,Xt)

∥∥∥
L2

.
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Now we give for β ∈ (0, 1) an example such that

aX
n (Z) ∼c

1√
nβ

for all n ∈ N,

in case X is a standard Brownian motion or the geometric Brownian
motion. According to Theorem 2.5, Lemma 4.3 and Theorem 4.4 it is
sufficient to find a random variable Z = fα(W1) such that

HXZ(t) ∼c
(1− log(1− t))−α

1− t
,

where α = β+1
2

.

4.7. Example. Let α ∈ (1/2, 1) and fα =
∑∞

k=0 akhk ∈ L2(γ), where
a = (ak)

∞
k=0 is given by

ak =





0 if k ∈ {0, 1, 3}
1√
2

if k = 2√
k−2

k(k−1)
log−α(k − 2) if k ≥ 4

and (hk)
∞
k=0 ⊂ L2(γ) is the complete orthonormal system of Hermite

polynomials,

hk(x) =
(−1)k

√
k!

e
x2

2
dk

dxk
e−

x2

2 .

Then Zα := fα(W1) ∈ L2(Ω,F ,P) and it can be shown that

HWZα(t) =

(
1 +

∞∑

k=2

k log−2α(k)tk

)1/2

∼c1

(1− log(1− t))−α

1− t

for all t ∈ [0, 1) (according to Lemmas 4.9 and 4.8 below). Using
Lemma 4.9 it is easy to show that there exists a constant c2 > 0 such
that

HWZα(t) ∼c2 HSZα(t) for all t ∈ (0, 1).

Theorem 2.5 implies that there exists a constant c3 ≥ 1 such that

1

c3
√
n2α−1

≤ aX
n (Zα) ≤ c3√

n2α−1

for all n ∈ N, where X ∈ {W,S}. In other words, letting β ∈ (0, 1)
and defining α := β+1

2
we have

aX
n (Zα) ∼c3

1√
nβ

for all n ∈ N.

The following lemma should be folklore. For completeness and con-
vinience of the reader we include a proof.
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4.8. Lemma. Let β > 1. Then for all t ∈ [0, 1), one has that

(7)
(1− log(1− t))−β

(1− t)2
∼c 1 +

∞∑

k=2

k log−β(k)tk,

where the constant c ≥ 1 depends at most on β.

Proof. Let n ≥ eβ be an integer, ε ∈ [ 1
n+1

, 1
n
), and t = e−ε. Since

k log−β(k) is increasing if k ≥ eβ and we assumed that n ≥ eβ, we have
that

1 +
∞∑

k=2

k log−β(k)tk ≥
2n∑

k=n

k log−β(k)(e−1/n)k

≥
2n∑

k=n

n log−β(n)e−2

≥ e−2n2 log−β(n).

Moreover,

1 +
∞∑

k=2

k log−β(k)tk ≤ 1 +
n∑

k=2

k log−β(k) +
∞∑

m=1

(m+1)n∑

k=mn+1

k log−β(k)e−
mn
n+1

≤ cβ

n∑

k=2

n log−β(n) +
∞∑

m=1

(m+ 1)n2 log−β(n)e−
mn
n+1

≤ cβn
2 log−β(n) + n2 log−β(n)

∞∑
m=1

(m+ 1)e−m/2

≤ (cβ + c)n2 log−β(n),

where cβ depends at most on β and c =
∑∞

m=1(m + 1)e−m/2. This
implies that

1 +
∞∑

k=2

k log−β(k)tk ∼c1 n
2 log−β(n) for all n ≥ eβ,

where c1 ≥ 1 is a constant depending at most on β. Adapting the
constant c1 > 0, we get this for n ≥ 2.
Now we show that if n ≥ 4, then

(1− log(1− t))−β

(1− t)2
∼c2 n

2 log−β(n),

where c2 ≥ 2 is a constant depending at most on β. Firstly, we have
that log(1

t
) ∼c3

1
n
, where c3 = 5

4
. Moreover

log(u−1) ∼c4 1− u,
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for all u ∈ [e−1/2, 1], where c4 = [2(1− e−
1
2 )]−1. Hence

1− t ∼c5

1

n
,

where c5 = 5
8
[1− e−

1
2 ]−1. Furthermore,

log n

2
≤ log(n/c5) ≤ log((1− t)−1) ≤ log(c5n) ≤ 2 log n

since c5 < 2 and n ≥ 4. Now

1 + log

(
1

1− t

)
∼3 log(n)

and hence
(1− log(1− t))−β

(1− t)2
∼c2 n

2 log−β n,

where c2 = 4βc25.

If t > e−
1
4 , the computations above imply that

(1− log(1− t))−β

(1− t)2
∼c2 n

2 log−β n ∼c1 1 +
∞∑

k=2

k log−β(k)tk,

where n is such that e−
1
n < t ≤ e−

1
n+1 . If 0 ≤ t < e−

1
4 , then one has

that

1 ≤ 1 +
∞∑

k=2

k log−β(k)tk ≤ cβ,

where the constant cβ > 0 depends only on β, and

1

dβ

≤ (1− log(1− t))−β

(1− t)2
≤ dβ,

where the constant dβ > 0 depends only on β. Hence

(1− log(1− t))−β

(1− t)2
∼c 1 +

∞∑

k=2

k log−β(k)tk

for all t ∈ [0, 1), where the constant c ≥ 1 depends on β. ¤

4.9. Lemma. [7, Lemma 3.9] For f =
∑∞

k=0 akhk ∈ L2(γ), t ∈ [0, 1)
and Z = f(W1) one has that

HWZ
2(t) =

∞∑

k=0

a2
k+2(k + 2)(k + 1)tk,

HSZ
2(t) =

∞∑

k=0

(
ak+2 − ak+1√

k + 2

)2

(k + 2)(k + 1)tk,
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where W is a standard Brownian motion and S is the geometric Brow-
nian motion. Moreover

1

12
HWZ

2(t)− 2

3
(a2

1 + a2
2) ≤ HSZ

2(t) ≤ 4HWZ
2(t) + 2a2

1.

5. Application: Approximation of certain d-dimensional
stochastic integrals with drift

We can apply Theorems 2.3 and 2.5 also to the discrete time ap-
proximation of d-dimensional stochastic integrals considered by Zhang
[13], Temam [12] and Hujo [9]. Our setting is the same as in [9], which
generalizes the 1-dimensional setting of Section 4 to d dimensions.

We assume a stochastic basis (Ω,F ,P, (Ft)t∈[0,1]), where (Ft)t∈[0,1] is
the augmentation of the natural filtration generated by the d-dimensional
standard Brownian motion W = (Wt)t∈[0,1] with F = F1.

We consider a diffusion X = (X1, ..., Xd), where

(8) X i
t = xi

0 +

∫ t

0

bi(Xu)du+
d∑

j=1

∫ t

0

σij(Xu)dW
j
u , t ∈ [0, 1], a.s.

for all i = 1, ..., d and x0 = (x1
0, ..., x

d
0). We assume that X is obtained

through Y given as unique path-wise continuous solution of

(9) Y i
t = yi

0 +

∫ t

0

b̂i(Yu)du+
d∑

j=1

∫ t

0

σ̂ij(Yu)dW
j
u , t ∈ [0, 1], a.s.

for all i = 1, ..., d, where b̂i, σ̂ij ∈ C∞b (Rd) and (σ̂σ̂T )ij(x) =
∑d

k=1 σ̂ik(x)σ̂jk(x)
is uniformly elliptic, i.e.

d∑
i,j=1

(σ̂σ̂T )ij(x)ξiξj ≥ λ‖ξ‖2, for all x, ξ ∈ Rd and some λ > 0,

where ‖ · ‖ is the Euclidean norm. We assume that X is obtained
through Y by one of the following two ways:

(a) x0 = y0 ∈ Rd, b̂i(x) := bi(x), σ̂ij(x) := σij(x), and Xt = Yt,

(b) x0 = ey0 ∈ (0,∞)d, b̂i(y) := bi(e
y)

eyi
− 1

2

∑d
j=1 σ̂

2
ij(y), σ̂ij(y) :=

σij(e
y)

eyi
, and Xt = eYt .

Here and in the following ey = (ey1 , ..., eyd) for y = (y1, ..., yd). As in
one dimensional case, (a) is related to the standard Brownian motion
and (b) is related to the geometric Brownian motion.

Moreover, we assume that f : E → R is a Borel-function such that
for some q ∈ [2,∞) and C > 0 it holds that

(10) |f(x)| ≤ C(1 + ‖x‖q), x ∈ E,
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where the set E is defined by

E :=

{
Rd in case (a)

(0,∞)d in case (b).

Finally, we define the function g : Rd → R by

g(y) :=

{
f(y) in case (a)

f(ey) in case (b).

5.1. Theorem. [1, Theorem 8 on p. 263], [2, Theorem 5.4 on p. 149]

For b̂, σ̂ with σ̂σ̂T uniformly elliptic, there exists a transition density
Γ : (0, 1]×Rd×Rd → [0,∞) ∈ C∞ such that P(Yt ∈ B) =

∫
B

Γ(t, y, ξ)dξ,

for t ∈ (0, 1] and B ∈ B(Rd), where Y = (Yt)t∈[0,1] is the strong solution
of SDE (9) starting from y. Moreover, the following is satisfied:

(i) For (s, y, ξ) ∈ (0, 1]× Rd × Rd we have that

∂

∂s
Γ(s, y, ξ) =

1

2

d∑

k,l=1

d∑
j=1

σ̂kjσ̂lj
∂2

∂yk∂yl

Γ(s, y, ξ) +
d∑

i=1

b̂i(y)
∂

∂yi

Γ(s, y, ξ).

(ii) For a ∈ {0, 1, 2, ...} and multi-indices b and c there exists pos-
itive constants C and D, depending only on a, b, c and d such
that ∣∣∣∣

∂a+|b|+|c|

∂at∂by∂cξ
Γ(t, y, ξ)

∣∣∣∣ ≤
C

t(d+2a+|b|+|c|)/2
e−D

‖y−ξ‖2
t .

If we apply Theorem 5.1 to the stochastic differential equation{
Zi

t = Zi
0 +

∑d
j=1

∫ t

0
σ̂ij(Zu)dW

j
u in case (a)

Zi
t = Zi

0 −
∫ t

0

(
1
2

∑d
j=1 σ̂

2
ij(Zu)

)
du+

∑d
j=1

∫ t

0
σ̂ij(Zu)dW

j
u in case (b),

we obtain a transition density Γ0 such that we can define the function
G ∈ C∞([0, 1]× Rd) by

G(t, y) :=

∫

Rd

Γ0(1− t, y, ξ)g(ξ)dξ, 0 ≤ t < 1

so that



(
∂
∂t + 1

2

∑d
k,l=1

(
σ̂σ̂T (y)

)
kl

∂2

∂yk∂yl

)
G(t, y) = 0 (a)(

∂
∂t −

∑d
i=1

(
1
2

∑d
j=1 σ̂2

ij(y)
)

∂
∂yi

+ 1
2

∑d
k,l=1

(
σ̂σ̂T (y)

)
kl

∂2

∂yk∂yl

)
G(t, y) = 0 (b).

We define the function F : E → R by setting

F (t, x) :=

{
G(t, x), in case (a)

G(t, log(x)), in case (b),

where log x = (log(x1), ..., log(xd)), and the operator L by

L :=
∂

∂t
+

1

2

d∑

k,l=1

Lkl(x)
∂2

∂xk∂xl

,
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where Lkl =
∑d

j=1 σkj(x)σlj(x). Now we have that

LF (t, x) = 0 on [0, 1)× E,

and Itô’s formula implies that

F (t,Xt) = F (0, X0) +
d∑

k=1

∫ t

0

∂

∂xk

F (u,Xu)dX
k
u , a.s. t ∈ [0, 1).

From Theorem 5.1 we get that

F (t,Xt) → f(X1) in L2 as t↗ 1

and

f(X1) = F (0, X0) +
d∑

k=1

∫ 1

0

∂

∂xk

F (u,Xu)dX
k
u a.s.

5.2. Definition. For f , F and X as above we define

asim
X (f(X1), τ, s)

:=

∥∥∥∥∥
n∑

i=1

d∑

k=1

∫ tni ∧s

tni−1∧s

(
∂

∂xk

F (u,Xu)− ∂

∂xk

F (tni−1, Xtni−1
)

)
dXk

u

∥∥∥∥∥
L2

,

for all τ = (ti)
n
i=1 ∈ Tn and s ∈ [0, 1).

5.3. Definition. We define HXf,H
∗
Xf : [0, 1) → [0,∞) by setting

HXf(t) :=

(
sup
α,β
E

[
Vαα(Xt)Vββ(Xt)

∣∣∣∣
∂2

∂xα∂xβ
F (t,Xt)

∣∣∣∣
2
]) 1

2

and

H∗
Xf(t) := sup

s∈[0,t]
HXf(s).

5.4. Remark. According to [9], one can check that H∗
Xf(t) < ∞ for

t ∈ [0, 1).

Finally, we define functions Qi : Rd → R for i = 1, ..., d by

Qi(x) :=

{
1, in case (a)

xi in case (b).

In this setting we have the following theorem, which refines [9, The-
orem 1].

5.5. Theorem. Assume that for all x ∈ E
∣∣∣∣

∂s

∂q
xβ∂

r
xα

σij(x)

∣∣∣∣ ≤ C1
Qi(x)

Qq
β(x)Qr

α(x)
, where q + r = s, q, r, s ∈ {0, 1, 2},

|bi(x)| ≤ C1Qi(x) and Vii ≥ 1
C1
Q2

i (x) for i ∈ {1, ..., d} and some fixed
C1 > 0.
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(1) If one has that
∫ 1

0

H∗
Xf(t)dt <∞,

then

inf
τ∈Tn

sup
s∈[0,1]

asim
X (f(X1), τ, s) ≤ D1√

n
for all n ∈ N,

where D1 = D1(C1, d) > 0.
(2) If there exists C2 > 0 and α ∈ (1

2
, 1) such that

H∗
Xf(t) ≤ C2

(1− log(1− t))−α

1− t
for all t ∈ [0, 1),

then

inf
τ∈Tn

sup
s∈[0,1]

asim
X (f(X1), τ, s) ≤ D2√

n2α−1
for all n ∈ N,

where D2 = D2(C1, C2, d) > 0.

Proof of Theorem 5.5 . Hujo showed in the proof of [9, Theorem 1, p.
18] that under the assumptions of Theorem 5.5 we have that

E

∣∣∣∣∣
n∑

i=1

d∑

k=1

∫ tni ∧s

tni−1∧s

(
∂

∂xk
F (u,Xu)− ∂

∂xk
F (tni−1, Xtni−1

)
)

dXk
u

∣∣∣∣∣

2

≤ c

n∑

i=1

∫ tni

tni−1

∫ t

tni−1

sup
α,β
E

[
Vαα(Xu)Vββ(Xu)

∣∣∣∣
∂2

∂xα∂xβ
F (u,Xu)

∣∣∣∣
2
]

dudt

≤ c
n∑

i=1

∫ tni

tni−1

(ti − t)[H∗
Xf(t)]2dt

for any s ∈ [0, 1) and any time net τ = (tni )n
i=0. Hence we can conclude

by Theorems 2.3 and 2.5. ¤
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