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Abstract. We prove essentially sharp dimension distortion esti-
mates for planar Sobolev-Orlicz homeomorphisms.

1. Introduction

Let Ω, Ω′ ⊂ R
2 be open and connected. We consider homeomor-

phisms f : Ω → Ω′ that belong to the Sobolev class W 1,1
loc (Ω; R2), which

means that both component functions of f have locally integrable
distributional partial derivatives. It is by now well-known that the
Luzin condition (N), which requires that f map Lebesgue null sets to
Lebesgue null sets, holds if we additionally assume that |Df | ∈ L2

loc(Ω)
[18, 15, 14], but may fail if |Df | ∈ Lp

loc(Ω) for some p < 2 [16, 17].
On the other hand, if |Df | ∈ Lp

loc(Ω) for some p > 2, then the im-
age of any set of Hausdorff dimension strictly less then two is also
of Hausdorff dimension strictly less then two [4, 10]. Recently it was
proven [11] that already the local integrability of |Df |2 log−1(e+ |Df |)
suffices for the Luzin condition (N). The motivation for this result
and our results below partially arises from the theory of mappings
with finite distortion, where the natural regularity assumption is that
|Df |2 logλ−1(e + |Df |) ∈ L1

loc for some λ > 0 [2, 1, 7, 8, 3].
Analogously to the Lp–scale setting, one expects that some kind of

a dimension distortion estimate to hold when λ as above is strictly
positive. However, it is rather easy to map, for example, a subset of
the real line onto a set of Hausdorff dimension two [6, 19] and thus
we have to work with a refined scale. Towards this end, we consider
the gauge functions hλ(t) = t2 logλ 1

t
, λ > 0. In Section 2 below, we

describe a homeomorphism f that maps a Cantor set E of Minkowski
(and so also Hausdorff) dimension strictly less than two to a set of
positive Hhλ-measure, with |Df |2 logt−1(e + |Df |) ∈ L1

loc for all t < λ.
Our main result shows that this homeomorphism is critical for our

generalized dimension distortion.

Theorem 1. Let Ω and Ω′ be open sets in R
2 and f : Ω → Ω′ a homeo-

morphism of class W 1,1
loc (Ω; R2) with

|Df |2 logλ−1(e + |Df |) ∈ L1
loc(Ω)
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for some λ > 0. Then

Hhλ(f(E)) = 0

for every set E ⊂ Ω of lower Minkowski dimension dimM(E) strictly

less than two.

We conjecture that one may replace the Minkowski dimension in
Theorem 1 with the Hausdorff dimension. For a related, weaker result
in this direction, see [12].

This note is organized as follows. In Section 2 we recall the neces-
sary definitions and describe the construction for the homeomorphism
referred to above. Section 3 contains the proof of Theorem 1.

2. Preliminaries

Let U ⊂ R
2 be open and connected. We say that a mapping

f ∈ L1(U ; R2) has bounded variation, f ∈ BV (U), if the component
functions f1 and f2 of f are of bounded variation. That is,

sup
{

∫

U

fi div ϕ dx |ϕ ∈ C1
0(U ; R2), |ϕ| ≤ 1

}

< ∞, i = 1, 2.

We write f ∈ BVloc(U) if f ∈ BV (G) for each open and connected G,
compactly contained in U . For each function g ∈ BV (U ; R) of bounded
variation we can define a Radon measure ||Dg|| in the following way:
for an open set V ⊂ U we put

||Dg||(V ) = sup
{

∫

V

g div ϕ dx |ϕ ∈ C1
0 (V ; R2), |ϕ| ≤ 1

}

,

and for A ⊂ U not necessarily open

||Dg||(A) = inf
{

||Dg||(V ) |A ⊂ V ⊂ U, V is open
}

.

For a set V and a number δ > 0, V + δ denotes the set

{y| dist(y, V ) < δ}.
We write Hh(A) for the generalized Hausdorff measure of a set A,

given by

(1) Hh(A) = lim
δ→0

Hh
δ (A)

= lim
δ→0

[

inf
{

∞
∑

i=1

h(diam Ui) : A ⊂
∞
⋃

i=1

Ui, diam Ui ≤ δ
}]

,

where h is a dimension gauge (non-decreasing, h(0) = 0). If h(t) = tα

for some α ≥ 0, we put simply Hα for Htα and call it the Hausdorff

α-dimensional measure and the Hausdorff dimension dimH(A) of the
set A is the smallest α0 ≥ 0 such that Hα(A) = 0 for any α > α0.
The lower Minkowski dimension dimM(A) of a bounded set A ⊂ R

2 is
defined as

dimM(A) = inf{s : lim inf
ε→0+

N(A, ε)εs = 0},
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where N(A, ε), ε > 0, denotes the smallest number of balls of radius ε
needed to cover A:

N(A, ε) = min
{

k : A ⊂
k

⋃

i=1

B(xi, ε) for some xi ∈ R
2
}

.

Finally, let a . b mean that there exists some constant C > 0 such
that a ≤ Cb.

In [6] a homeomorphism h : R
n → R

n was constructed, which maps
a set C of Minkowski and Hausdorff dimension n log 2/ log(1/σ) for
some 0 < σ < 1/2 onto a set C′ of positive Hh-measure with h(t) =
tn(log(1/t))pn for given p > 0. This mapping is the identity outside the
cube [0, 1]n and satisfies |Dh(x)| ≤ τ1···τk

σk in Aki. Here Aki, k = 1, 2, . . .,

i = 1, . . . , 2kn, are the open “cubical frames” needed to construct the
Cantor set C. They are pairwise disjoint with respect to both i and k,
that is, int(Aki)∩ int(Alj) = ∅, when (k, i) 6= (l, j), cover the set [0, 1]n

up to a set of zero n-Lebesgue measure, and each Aki is contained in a
cube of edge length (1/2)σk−1. The numbers τk, k = 1, 2, . . ., used to
construct the image Cantor-type set, are defined as follows

τ1 =
1

2

1

logp 4
and τk =

1

2

(

1 − 1

k

)p
for k = 2, 3, . . . .

Note, that

τ1 · · · τk =
1

2k

1

logp 4

1

kp
,

so, in the case n = 2, we have

(2)

∫

[0,1]2
|Dh|2 logs(e + |Dh|) =

∞
∑

k=1

4k
∑

i=1

∫

Aki

|Dh|2 logs(e + |Dh|)

≤
∞

∑

k=1

4k 1

4
σ2k−2 (τ1 · · · τk)

2

σ2k
logs(e +

τ1 · · · τk

σk
)

=

∞
∑

k=1

1

4σ2k2p log2p 4
logs

(

e +
1

(2σ)kkp logp 4

)

.

∞
∑

k=1

ks−2p < ∞,

when s + 1 < 2p.

3. Proofs

Clearly, we may assume in the rest of this note that Ω is an open
and connected subset of R

2. We begin with the following lemma.

Lemma 1. Let f : Ω → f(Ω) ⊂ R
2 be a homeomorphism, f ∈ W 1,1

loc (Ω, R2).
Then there exists a set F ⊂ f(Ω) such that H3/2(F ) = 0 and for all

y ∈ f(Ω) \ F there exist constants Cy > 0 and ry > 0 such that

(3) diam(f−1(B(y, r))) ≤ Cyr
1/2,

for all 0 < r < ry.
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Proof. First, note that by Theorem 1.2 in [5], f−1 is in BVloc(f(Ω)).
Next, fix y ∈ f(Ω) and r > 0 such that B(y, 3r) ⊂ f(Ω). Let Q(y, t)
be the square, centered in y and having the edge length 2t. As f−1 is
a homeomorphism, for t ∈ (r, 2r) we have

(4) diam f−1(B(y, r)) < diam f−1(Q(y, t)) ≤ diam f−1(∂Q(y, t))

≤ diam f−1
1 (∂Q(y, t)) + diam f−1

2 (∂Q(y, t)),

where f−1
i , i = 1, 2, denotes the i-th component function of f−1. In-

tegrating this inequality over the interval [r, 2r] with respect to t, we
obtain

(5) r diam f−1(B(y, r)) <
2

∑

i=1

∫

[r,2r]

diam f−1
i (∂Q(y, t))dt.

Let us consider the smooth approximation f ε
i = ηε∗f−1

i of f−1
i , i = 1, 2,

on the cube Q(y, 2r). Here ηε is a standard bump function. As f−1

is continuous, the convergence f ε
i → f−1

i is pointwise and uniform on
each compact set K ⊂ Q(y, 2r). So, for t ∈ (r, 2r) and i = 1, 2 we
have diam f−1

i (∂Q(y, t)) = limε→0 diam f ε
i (∂Q(y, t)). Put ai = yi − 2r,

bi = yi + 2r, i = 1, 2, where y = (y1, y2). Fatou’s Lemma implies

(6)

∫

[r,2r]

diam f−1
i (∂Q(y, t))dt =

∫

[r,2r]

lim
ε→0

diam f ε
i (∂Q(y, t))dt

≤ lim inf
ε→0

∫

[r,2r]

diam f ε
i (∂Q(y, t))dt

≤ lim inf
ε→0

∫

[r,2r]

{
∫

[a2,b2]

∣

∣

∣

∣

∂f ε
i

∂ξ
(y1 − t, ξ)

∣

∣

∣

∣

dξ +

∫

[a2,b2]

∣

∣

∣

∣

∂f ε
i

∂ξ
(y1 + t, ξ)

∣

∣

∣

∣

dξ

+

∫

[a1,b1]

∣

∣

∣

∣

∂f ε
i

∂ξ
(ξ, y2 − t)

∣

∣

∣

∣

dξ +

∫

[a1,b1]

∣

∣

∣

∣

∂f ε
i

∂ξ
(ξ, y2 + t)

∣

∣

∣

∣

dξ

}

dt

= lim inf
ε→0

{
∫

[a1,y1−r]×[a2,b2]

∣

∣

∣

∣

∂f ε
i

∂x2

(x)

∣

∣

∣

∣

dx +

∫

[y1+r,b1]×[a2,b2]

∣

∣

∣

∣

∂f ε
i

∂x2

(x)

∣

∣

∣

∣

dx

+

∫

[a1,b1]×[a2,y2−r]

∣

∣

∣

∣

∂f ε
i

∂x1
(x)

∣

∣

∣

∣

dx +

∫

[a1,b1]×[y2+r,b2]

∣

∣

∣

∣

∂f ε
i

∂x1
(x)

∣

∣

∣

∣

dx

}

≤ lim inf
ε→0

2
∑

j=1

∫

Q(y,2r)

∣

∣

∣

∣

∂f ε
i

∂xj
(x)

∣

∣

∣

∣

dx,

for i = 1, 2. Let us show that

(7)

∫

Q(y,2r)

∣

∣

∣

∣

∂f ε
i

∂xj

(x)

∣

∣

∣

∣

dx ≤ ||Df−1
i ||(Q(y, 2r))
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for i, j = 1, 2. Given ϕ ∈ C1
0 (Q(y, 2r)), |ϕ| ≤ 1, we may write

(8)
∫

Q(y,2r)

∂f ε
i

∂xj
ϕdx = −

∫

Q(y,2r)

f ε
i

∂ϕ

∂xj
dx = −

∫

Q(y,2r)

(ηε ∗ f−1
i )

∂ϕ

∂xj
dx

= −
∫

Q(y,2r)

f−1
i

∂ηε ∗ ϕ

∂xj

dx ≤ ||Df−1
i ||(Q(y, 2r)).

This implies (7), and combining it with (5) and (6), we finally obtain

diam f−1(B(y, r)) <
2

r
(||Df−1

1 ||(Q(y, 2r)) + ||Df−1
2 ||(Q(y, 2r)))

for all y ∈ f(Ω) and r > 0 such that B(y, 3r) ⊂ f(Ω). That is, the
inequality (3) holds for all y ∈ f(Ω) such that

(9)
||Df−1

k ||(Q(y, 2r))

r3/2
< My

is valid for k = 1, 2, all small enough r > 0 and some constant My,
depending on y. Let F1 be the set of those y for which (9) does not
hold for k = 1. Let K ⊂ f(Ω) be a compact set and fix some δ > 0
such that dist(K, ∂f(Ω)) > δ. For every i ∈ N and every y ∈ F1 ∩ K
there exists ri,y < δ

√
2/20 such that ||Df−1

1 ||(Q(y, 2ri,y)) ≥ i(ri,y)
3/2.

Consider the collection of all balls Bi = {B(y, 2
√

2ri,y) : y ∈ F1∩K} for
every i ∈ N. Using Vitali’s covering theorem, we obtain for every i ∈ N

a countable subcollection of disjoint balls Bi,j, j = 1, 2, . . ., centered in

F1 ∩ K, having radii 2
√

2ri
j < δ/5 and with 5Bi,j covering F1 ∩ K. As

Q(y, 2ri
j) ⊂ Bi,j, we have

(10)

H3/2
δ (F1 ∩ K) ≤

∞
∑

j=1

(10
√

2ri
j)

3/2 ≤ (10
√

2)3/2

i

∞
∑

j=1

||Df−1
1 ||(Q(y, 2ri

j))

≤ (10
√

2)3/2

i

∞
∑

j=1

||Df−1
1 ||(Bi,j) ≤

(10
√

2)3/2||Df−1
1 ||(K + δ/5)

i

for all i ∈ N. Letting i → ∞ and δ → 0, we obtain H3/2(F1 ∩ K) =
0. �

The previous lemma implies the following result.

Lemma 2. Let E ⊂ Ω and f : Ω → f(Ω) ⊂ R
2 be a homeomorphism of

the class W 1,1
loc (Ω, R2). Then there exists a decomposition f(E) =

∞
⋃

i=0

Fi,

where H3/2(F0) = 0 and for each Fi, i = 1, 2, . . ., there exist constants

Ci < ∞ and ri > 0 such that

f−1(Fi + r) ⊂ E + Cir
1/2

for every r ∈ (0, ri).
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Proof. We choose F0 = F , where F is the set from the previous lemma
for F0. Moreover, by this lemma we may represent the set f(E) as

(11) f(E)

= F0∪
∞
⋃

j=1

∞
⋃

k=1

{

y ∈ f(E) | diam(f−1(B(y, r))) ≤ kr
1

2 for all r ∈ (0,
1

j
)
}

.

So, putting Ci = Ci(j,k) = k and ri = ri(j,k) = 1
j
, we complete the

proof. �

Proof of Theorem 1. As f ∈ W 1,1
loc (Ω, R2) is a homeomorphism, its Ja-

cobian Jf is either non-negative almost everywhere in Ω or non-positive
almost everywhere in Ω [13]. We may assume that Jf ≥ 0 almost

everywhere in Ω. Recalling that |Df |2 logλ−1(e + |Df |) ∈ L1
loc(Ω),

by Corollary 9.1 in [9], we have Jf logλ(e + Jf) ∈ L1
loc. Next, as

dimM(E) < 2, there exist constants C, ε > 0 and a sequence of numbers
rj, j = 1, 2, . . ., tending to zero as j → ∞, such that L2(E + rj) ≤ Crε

j

for all j = 1, 2, . . .. By Lemma 2, we have f(E) =
∞
⋃

i=0

Fi, where

H3/2(F0) = 0 and f−1(Fi +Ri,j) ⊂ E + rj for all large enough j (j ≥ ji

for some ji ∈ N). Here Ri,j = (rj/Ci)
2 and Ci are the constants from

Lemma 2. It suffices to show that Hh(Fi) = 0 for all i ∈ N. We use
the fact that L2(f(A)) ≤

∫

A
Jf for each open A ⊂ Ω [11, Lemma 3.2].

Thus, for a fixed i ∈ N, we have

L2(Fi + Ri,j) ≤
∫

f−1(Fi+Ri,j)

Jf(x)dx ≤
∫

E+rj

Jf (x)dx

≤
∫

{x∈E+rj : Jf (x)<r
−ε/2

j }

Jf +

∫

{x∈E+rj : Jf (x)≥r
−ε/2

j }

Jf

≤r
−ε/2
j L2(E + rj) + log−λ(e + r

−ε/2
j )

∫

E+rj

Jf logλ(e + Jf)

≤Cr
ε/2
j + M(rj) log−λ 1

rj

(12)

for big enough j, where M(r) → 0 as r → 0. In other words,
L2(Fi + Ri,j) = o(log−λ 1

rj
) as j → ∞. Using the Besicovitch cov-

ering theorem, for each large enough j ∈ N, we can cover the set Fi

with N countable families of pairwise disjoint balls centered in Fi and
of radius Ri,j (N is independent of both i and j). It is obvious that
each of these families is finite. Let li,j denote the total number of cov-
ering balls. We have L2(Fi + Ri,j) ≥ Cli,jR

2
i,j, where C is a constant

independent of i and j. So, for each fixed i ∈ N and all big enough
j ≥ ji we have

Hh
Ri,j

(Fi) ≤ li,jR
2
i,j logλ(1/Ri,j) ≤

2λ

C
L2(Fi + Ri,j) logλ(Ci/rj),
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and thus (12) shows that Hh(Fi) = 0. It follows that Hh(F ) = 0. �
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