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Abstract. We study how planar Sobolev homeomorphisms dis-
tort sets of Hausdorff dimension strictly less than two. We measure
the image size by means of a generalized Hausdorff measure. As
an application, we obtain a sharp generalized dimension distortion
estimate for mappings of exponentially integrable distortion.

1. Introduction

Let f : Ω → R2 be a continuous mapping, where Ω ⊂ R2. We say
that f has finite distortion if f ∈ W 1,1

loc (Ω; R2), Jf ∈ L1
loc(Ω) and there

exists a measurable function K such that 1 ≤ K(x) < ∞ a.e. in Ω and
|Df(x)|2 ≤ K(x)Jf(x) a.e. in Ω. When K is bounded, we obtain the
class of mappings of bounded distortion, also called quasiregular map-
pings. In this case, the image of any set of Hausdorff dimension strictly
less than two under f is of the same class, and sets of area zero are
mapped to sets of area zero. This result relies on the higher integrability
results for the Jacobian of a quasiregular mapping, see [Boy57], [GV73].

We will concentrate on the case when exp(λK) ∈ L1
loc(Ω) for some

λ > 0. For short, we declare that f is of locally λ-exponentially inte-

grable distortion. For the basic properties of these mappings we refer
the reader to [IKO01, KKM01b, KKM01a] and for the existence theory
to [Dav88, IM01, IM08]. Similarly as for mappings of bounded distor-
tion, sets of area zero are mapped to sets of area zero. However, a set,
for example, of dimension one can be mapped onto a set of Hausdorff
dimension two. Our main result gives a rather sharp estimate on the
size of the image set.

Theorem 1. Let f ∈ W 1,1
loc (Ω; R2), Ω ⊂ R2, be a mapping of locally

λ-exponentially integrable distortion, λ > 0. Set hs(t) = t2 logs(1/t)
for s ∈ R. If E ⊂ R2 satisfies dimH(E) < 2, then Hhs(f(E)) = 0 for

all s < λ, where Hhs is the generalized Hausdorff measure associated

to hs.
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Theorem 1 is essentially sharp. Indeed, by Proposition 5.1 in [HK03],
for any given ε > 0 and λ > 0 we can find f , having locally (λ − ε)-
exponentially integrable distortion, and mapping a set of Hausdorff
dimension strictly less than two onto a set of positive generalized Haus-
dorff measure with the gauge function h(t) = t2 logλ(1/t). Partial mo-
tivation for Theorem 1 comes from trying to estimate the size of the
image of the unit circle under a mapping of locally exponentially inte-
grable distortion. In the case of bounded distortion these images are
called quasicircles and the question is rather well understood. Theorem
1 improves on the previous estimate from [HK03].

In the case of a mapping of bounded distortion, the dimension dis-
tortion estimates follow from the higher regularity of the mappings in
question. Indeed, if f belongs to the Sobolev space W 1,p(Ω; R2), p > 2,
then f maps sets of Hausdorff-dimension strictly less than two to sets of
the same type [GV73],[Kau00]. This may fail when f ∈ W 1,2(Ω; R2) :
one can even map a Cantor set of dimension, for example, one onto
a set of positive area. However, if f ∈ W 1,2(Ω; R2) is injective, then
f maps sets of area zero to sets of area zero by results of Reshet-
nyak [Reš66]. Our next result shows that a logarithmic improvement
on the L2-integrability of the differential results in generalized dimen-
sion bounds.

Theorem 2. Let Ω be an open set in R2 and f : Ω → f(Ω) ⊂ R2 be

a homeomorphism in W 1,2(Ω; R2) with |Df |2 logλ(e + |Df |) ∈ L1
loc(Ω)

for some λ > 0. Then, for E ⊂ R2, we have

dimH (E) < 2 =⇒ Hh (f (E)) = 0

for h (t) = t2 logλ
(

1
t

)

.

We do not know if the estimate in Theorem 2 is sharp, see how-
ever [KZZ] for a related result for Minkowski dimension. The proof of
Theorem 1 is based on the potentially non-sharp estimate from The-
orem 2, the higher regularity of our mappings and a suitable factor-
ization argument. Indeed, a mapping f of locally exponentially inte-
grable distortion is a priori only in the class W 1,1

loc (Ω; R2) but in fact

|Df |2 logcλ−1(e + |Df |) ∈ L1
loc(Ω) with a universal c [Dav88, IKM02,

IKMS03, FKZ05]. Recently, it has been proved that this holds for all
c < 1 [AGRS, Theorem 1.1]. This sharp estimate together with a usual
factorization of our mapping f from Theorem 1 into a homeomorphism
and a holomorphic function together with Theorem 2 rather easily gives
a weaker version of Theorem 2, with a worse exponent of the logarithm
in the definition of h than indicated. We establish the sharp bound by
employing a slightly more complicated decomposition.

The paper is organized as follows. Section 2 contains some prelimi-
naries. Theorem 2 is proven in Section 3. Finally, Section 4 contains
the proof of Theorem 1.
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2. Preliminaries

We write Hh(A) for the generalized Hausdorff measure of a set A,
given by

(1) Hh(A) = lim
δ→0

Hh
δ (A)

= lim
δ→0

[

inf
{

∞
∑

i=1

h(diam Ui) : A ⊂
∞
⋃

i=1

Ui, diam Ui ≤ δ
}]

,

where h is a dimension gauge (non-decreasing, h(0) = 0). If h(t) = tα

for some α ≥ 0, we put simply Hα for Htα and call it the Hausdorff

α-dimensional measure and the Hausdorff dimension dimH(A) of the
set A is the smallest α0 ≥ 0 such that Hα(A) = 0 for any α > α0.

We will compare integrals over annuli with integrals over circles. For
x ∈ R2 and 0 < r < R, we will use the symbol A(x, r, R) to denote the
closed annulus with center at x and radii r and R:

A(x, r, R) = {y ∈ R
2 : r ≤ |x − y| ≤ R}.

We will denote by S1(x, r) the circle with center at x and radius r.
Finally, we will need the following concept of a maximal operator.

Assume that Ω is a square and h : Ω → R is nonnegative and integrable.
The maximal operator MΩ is defined by

MΩh(x) = sup
{

−
∫

Q

h dx : x ∈ Q ⊂ Ω
}

,

where the supremum is taken over all subsquares of Ω containing the
given point x ∈ Ω.

3. Proof of Theorem 2

We begin by giving a short strategy of the proof of Theorem 2. First,
we show that

(2) diam f(B(x, ϑr)) ≤ C(ϑ)

r

∫

B(x,r)

MΩ|Df |(y) dy

for ϑ > 1/2, where C(ϑ) is a constant depending only on ϑ, and MΩ

denotes the maximal function defined above. The dependence on ϑ is
also some sort of hidden in the maximal function. Note that the two
balls in the inequality have different sizes. The reader who is familiar
with the 5r-Covering Theorem may notice that this is a nice situation
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for this theorem to kick in. We break the proof of (2) into two major
parts. The first step is to establish the inequality

(3) diam f(B(x, ϑr)) ≤ 1

r

∫

A(x,ϑr,3ϑr)

|Df(y)| dy

by averaging the inequality

(4) diam f(B(x, ϑr)) ≤
∫

S1(x,t)

|Df(y)| dsy,

which holds for almost every t ∈ [ϑr, 3ϑr]. The second step is to prove
that

(5)
1

r

∫

A(x,ϑr,3ϑr)

|Df(u)| du ≤ C

r

∫

B(x,r)

MΩ(|Df |)(y) dy.

Having diam f(B(x, ϑr)) under control, we control

diam2 f(B(x, ϑr)) logλ
( 1

diam f(B(x, ϑr))

)

by terms of the form

(6) logλ
( 1
∫

B(x,r)
M2

Ω(|Df |)(y) dy

)

∫

B(x,r)

M2
Ω(|Df |)(y) dy.

To end the proof, we choose a nice covering of E and find upper bounds
for the terms in (6) by classifying the balls resulting into different
groups.

We conclude (3) by the following lemma.

Lemma 1. Let Ω ⊂ R2 be an open square and f : Ω → f(Ω) be a

homeomorphism in W 1,1(Ω, R2), x ∈ Ω, r > 0 and ϑ > 1/2 such that

that B(x, 3ϑr) ⊂ Ω. Then

diam f(B (x, ϑr)) ≤ 1

r

∫

A(x,ϑr,3ϑr)

|Df (y)| dy.

Proof. As the mapping f is a homeomorphism, we have

(7) diam f(B(x, ϑr)) ≤ diam f(∂B(x, t)) = diam f(S1(x, t))

for all t ∈ [ϑr, 3ϑr]. So, in order to prove (4), it suffices to establish

diam f(S1(x, t)) ≤
∫

S1(x,t)

|Df (y)| dsy

for L1-almost every t ∈ [ϑr, 3ϑr]. Clearly, this estimate is true for
smooth mappings. Let us take componentwise the standard smooth
approximations f ε of f in Ω. As the limit mapping f is continuous,
the convergence f ε → f , when ε → 0, is pointwise and uniform on each
compact set K ⊂ Ω. Thus, for t ∈ [ϑr, 3ϑr[, we have
(8)

diam f(S1(x, t)) = lim
ε→0

diam f ε(S1(x, t)) ≤ lim inf
ε→0

∫

S1(x,t)

|Df ǫ (y)| dsy.
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On the other hand, we have the convergence Df ǫ → Df , when ε → 0,
in L1(Ω). That is, integration in polar coordinates gives us

∫

[ϑr,3ϑr]

∫

S1(x,t)

|Df ǫ (y) − Df(y)| dsydt → 0,

when ε → 0. Passing to a subsequence {fj}∞j=1 ⊂ {f ε : ε > 0} lets us
conclude

∫

S1(x,t)

|Df j(y) − Df(y)| dsy → 0,

when j → ∞, for almost every t ∈ [ϑr, 3ϑr]. Next, we obtain

lim sup
j→∞

∣

∣

∣

∫

S1(x,t)

|Df j (y)| dsy −
∫

S1(x,t)

|Df(y)| dsy

∣

∣

∣

≤ lim sup
j→∞

∫

S1(x,t)

∣

∣|Df j(y)| − |Df(y)|
∣

∣dsy

≤ lim sup
j→∞

∫

S1(x,t)

|Df j(y) − Df(y)| dsy = 0

for almost every t ∈ [ϑr, 3ϑr]. This together with (7) and (8) gives us

diam f(B(x, ϑr)) ≤
∫

S1(x,t)

|Df(y)| dsy

for L1-almost every t ∈ [ϑr, 3ϑr]. Finally, integrating this estimate over
[ϑr, 3ϑr] with respect to t, we arrive at

2ϑr diam f(B(x, ϑr)) ≤
∫

[ϑr,3ϑr]

∫

S1(x,t)

|Df(y)| dsy dt

=

∫

A(x,ϑr,3ϑr)

|Df(y)| dy.

Taking into consideration the fact that ϑ > 1/2 finishes the proof. �

Now we tackle (5).

Lemma 2. Let Ω ⊂ R2 be a square, f : Ω → R, f ∈ W 1,2 (Ω; R2), and

ϑ > 1/2. Finally assume that B(x, (2 + 3ϑ)
√

2r) is contained in Ω.

Then there is a constant C = C (ϑ) > 0 such that
∫

A(x,ϑr,3ϑr)

|Df (y)| dy ≤ C

∫

B(x,r)

MΩ|Df |(y) dy.

Proof. For y ∈ R2 and ρ > 0, let Q(y, ρ) denote the square

Q(y, ρ) := {z ∈ R
2 : max

i∈{1,2}
(|zi − yi|) ≤ ρ}.

The key of the proof lies in the transition from the integral over
Q(y, (1 + 3ϑ)r), y ∈ B(x, r), to the one over A(x, ϑr, 3ϑr). The square



6 P. KOSKELA, A. ZAPADINSKAYA, AND T. ZÜRCHER

is chosen in such a way that it is contained in Ω and contains the
annulus. Now

∫

B(x,r)

MΩ|Df |(y) dy

≥ 1

((1 + 3ϑ) r)2

∫

B(x,r)

∫

Q(y,(1+3ϑ)r)

|Df(z)| dz dy

≥ 1

((1 + 3ϑ) r)2

∫

B(x,r)

∫

A(x,ϑr,3ϑr)

|Df (z)|dz dy

=
L2 (B (x, r))

((1 + 3ϑ) r)2

∫

A(x,ϑr,3ϑr)

|Df (z)| dz

= C (ϑ)

∫

A(x,ϑr,3ϑr)

|Df (z)| dz.

�

The next lemma is basically a special case of Lemma 5.1 in [GIM95].

Lemma 3. Let Ω ⊂ R
2 be an open square and f : Ω → R be in

W 1,2 (Ω; R2) with the property |Df |2 logλ (e + |Df |) ∈ L1 (Ω) for some

λ > 0. Then

M2
Ω (|Df |) logλ

(

e + M2
Ω (|Df |)

)

∈ L1 (Ω) .

Proof. We apply Lemma 5.1 from [GIM95] for n = 2, h = |Df | and

Φ (t) = A (t) t2 = t2 logλ (t + e) ,

obtaining

∫

Ω

M2
Ω (|Df |) (y) logλ

(

e + M2
Ω (|Df |) (y)

)

dy

≤
∫

Ω

(C|Df(y)|)2 logλ (e + C|Df(y)|) dy

≤ C̃

∫

Ω

|Df(y)|2 logλ (e + |Df(y)|) dy,

where C > 0 and C̃ = C̃(λ) > 0 are constants. �

Before we turn to bounds for images of sets of small Hausdorff mea-
sure, we state a result that controls the images of balls.

Proposition 1. Let Ω ⊂ R2 be a square and f : Ω → f(Ω) be a homeo-

morphism in W 1,2 (Ω; R2) with the property

|Df |2 logλ (e + |Df |) ∈ L1 (Ω)
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for some λ > 0. Fix ϑ > 1/2. Then there is a constant L = L (ϑ, λ)
and for every x ∈ Ω a positive Rx such that

(9) (diam f(B (x, ϑr)))2 logλ

(

1

diam f(B (x, ϑr))

)

≤ L logλ

(

1
∫

B(x,r)
M2

Ω (|Df |) (z) dz

)

∫

B(x,r)

M2
Ω (|Df |) (y) dy,

for all 0 < r < Rx.

Proof. Fix x ∈ Ω and r > 0 such that B(x, (2 + 3ϑ)
√

2r) ⊂ Ω. In
Lemma 1, we checked that

diam f(B (x, ϑr)) ≤ 1

r

∫

A(x,ϑr,3ϑr)

|Df (y)| dy.

By combining this inequality with Lemma 2, we obtain the estimate

diam f(B (x, ϑr)) ≤ C(ϑ)

r

∫

B(x,r)

MΩ (|Df |) (y) dy.

In the following, C ≥ 1 is a constant whose value may vary from
formula to formula, but it only depends on ϑ and λ. By applying the
Cauchy-Schwarz inequality, we obtain

(diam f(B (x, ϑr)))2 ≤ C

r2

(
∫

B(x,r)

MΩ (|Df |) (y) dy

)2

≤ C

r2
L2 (B (x, r))

∫

B(x,r)

M2
Ω (|Df |) (y) dy

≤ C

∫

B(x,r)

M2
Ω (|Df |) (y) dy.

Thus, there exists a constant L = L(ϑ, λ) ≥ 1 such that

(10) (diam f(B(x, ϑr)))2 ≤ L

∫

B(x,r)

M2
Ω(|Df |)(y) dy

for each x ∈ Ω and all r > 0 such that B(x, (2 + 3ϑ)
√

2r) ⊂ Ω. Since
M2

Ω(|Df |) is locally integrable by Lemma 3, we have that

(11) lim
r→0

∫

B(x,r)

M2
Ω (|Df |) (y) dy = 0.

Thus, for each x ∈ Ω, there exists Rx > 0 small enough to guarantee
∫

B(x,r)

M2
Ω (|Df |) (y) dy <

1

L
min

{

1, e−λ
}

,

along with (10) for all 0 < r < Rx. This implies diam(f(B(x, ϑr))) ≤ 1
for all 0 < r < Rx. Using the monotonicity of the function t logλ(1/t)
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for t ∈]0, min
(

1, e−λ
)

[ together with (10), we conclude

(diam f(B(x, ϑr)))2 logλ

(

1

diam f(B (x, ϑr))

)

≤ (diam f(B (x, ϑr)))2 logλ

(

1

(diam f(B (x, ϑr)))2

)

≤ L logλ

(

1
∫

B(x,r)
M2

Ω(|Df |)(z) dz

)

∫

B(x,r)

M2
Ω(|Df |)(y) dy

for all r < Rx and the proposition follows. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2. By the σ-additivity of the Hausdorff measure, we
may assume that E is contained in a square whose distance to the
boundary of Ω is bounded away from zero. Let us assume in the fol-
lowing that all the appearing (also implicitly) balls and rings are con-
tained in a cube Ω and |Df | logλ(e+|Df |) is integrable on Ω. Applying
Proposition 1 for ϑ = 5, we find a corresponding Rx > 0 for each x ∈ Ω.
Setting En := {x ∈ E : Rx < 1/n}, we see that E = ∪En. Thus, by
the σ-additivity of the Hausdorff measure, it suffices to verify the the-
orem for bounded sets E for which there exists a constant R > 0 such
that (9) holds with ϑ = 5 for each x ∈ E and r < R.

Notice first that there exists 0 < α < 2 so that Hg(E) = 0, when
g(t) = tα logλ(1/tα). Indeed, let α = dimH(E)+ε, where ε > 0 is chosen
so that α < 2. Note that logλ(1/t) ≤ (1/t)ε/2 for t small enough. We
obtain

tα logλ(1/tα) ≤ αλtα logλ(1/t) ≤ αλtdimH(E)+ε/2

for t small enough. This proves the claim.
Let us fix δ1 > 0 and ε ∈]0, min{1, e−λ}[. We choose δ0 ∈]0, 5R[ such

that

f(B(x, 5ρ)) ⊂ B(f(x), δ1/2)

for every x ∈ E (the set E is bounded and thus f is uniformly con-
tinuous on a neighborhood of E) and all 0 < ρ < δ0/5 < R, where
R is the mentioned above constant for the set E. Since E has zero
Hg-measure, we conclude by the Vitali Covering Theorem (see for ex-
ample p. 27 in [EG92]) that there are countably many pairwise disjoint
balls Bj = B (xj , rj) such that

•
∑

rα
j <

∑

rα
j logλ

(

1/rα
j

)

< ε,
• E ⊂ ∪B (xj , 5rj) and
• 5rj < δ0.
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We note that f (B (xj , 5rj)) is a δ1-cover of f (E). Inequality (9) gives
us the estimate

(diam f(B (xj , 5rj)))
2 logλ

(

1

diam f(B (xj , 5rj)

)

≤ L logλ

(

1
∫

B(xj ,rj)
M2

Ω (|Df |) (y) dy

)

∫

B(xj ,rj)

M2
Ω (|Df |) (y) dy.

Let us first consider the balls B (xj , rj) that satisfy
∫

B(xj ,rj)

M2
Ω (|Df |) (y) dy ≤ rα

j .

As the function t logλ(1/t) is increasing for t ∈]0, min
{

1, e−λ
}

[,
we conclude that

logλ

(

1
∫

B(xj ,rj)
M2

Ω (|Df |) (z) dz

)

∫

B(xj ,rj)

M2
Ω (|Df |) (y) dy

≤ rα
j logλ

(

1

rα
j

)

.

If, on the other hand, B(xj , rj) satisfies
∫

B(xj ,rj)

M2
Ω (|Df |) (y) dy > rα

j ,

then
∫

B(xj ,rj)

M2
Ω (|Df |) (y) logλ

(

1
∫

B(xj ,rj)
M2

Ω (|Df |) (z) dz

)

dy

≤
∫

B(xj ,rj)

M2
Ω (|Df |) (y) logλ

(

1

rα
j

)

dy.

We split B (xj , rj) into two parts B1 and B2, where

B1 :=

{

y ∈ B (xj , rj) : M2
Ω (|Df |) (y) <

1

r2−α
j

}

,

B2 :=

{

y ∈ B (xj , rj) : M2
Ω (|Df |) (y) ≥ 1

r2−α
j

}

.

We obtain the following two estimates (rα
j < 1):

∫

B1

M2
Ω (|Df |) (y) logλ

(

1

rα
j

)

dy ≤
∫

B1

1

r2−α
j

logλ

(

1

rα
j

)

≤ Crα
j logλ

(

1

rα
j

)

,
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where C is some constant independent of xj and rj, and
∫

B2

M2
Ω (|Df |) (y) logλ

(

1

rα
j

)

dy

=

∫

B2

M2
Ω (|Df |) (y)

(

α

2 − α

)λ

logλ

(

1

r2−α
j

)

dy

≤
∫

B2

M2
Ω (|Df |) (y)

(

α

2 − α

)λ

logλ
(

M2
Ω (|Df |) (y)

)

dy

≤
(

α

2 − α

)λ ∫

B2

M2
Ω (|Df |) (y) logλ

(

e + M2
Ω (|Df |) (y)

)

dy.

Let us set r = sup rj and denote by Er the closed r-neighborhood of
E. Lemma 3 gives us

∫

Er

M2
Ω(|Df |)(y) logλ(e + MΩ(|Df |)(y)) dy < ∞.

Let Ar := {x ∈ Er : MΩ(|Df |)(x) ≥ 1
r1−α/2}. We obtain

∫

Ar

M2
Ω(|Df |)(y) dy ≥

∫

Ar

1

r2−α
dy = L2(Ar)

1

r2−α
.

Consequently

L2(Ar) ≤ r2−α

∫

Ar

M2
Ω(|Df |)(y) dy

and thus limr→0 L2(Ar) = 0. We obtain

Hh
δ1

(f (E)) ≤
∞
∑

j=1

(diam f(B (xj , 5rj))
2 logλ

(

1

diam f(B (xj , 5rj)

)

≤ C

∫

Ar

(

α

2 − α

)λ

M2
Ω (|Df |) (y) logλ

(

e + M2
Ω (|Df |) (y)

)

dy

+ C

∞
∑

j=1

rα
j logλ

(

1

rα
j

)

.

The integral above converges to zero as δ1 tends to zero. Then, assum-
ing that,

∫

Ar

(

α

2 − α

)λ

M2
Ω (|Df |) (y) logλ

(

e + M2
Ω (|Df |) (y)

)

dy < ε,

we obtain
Hh

δ1
(f (E)) < Cε.

Letting first δ1 and then ε go to zero, we get the claim. �

Using the σ-additivity of the Hausdorff measure, we conclude with
the following result.
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Corollary 1. Let Ω ⊂ R2 be open and f : Ω → f(Ω) be a homeo-

morphism in W 1,2 (Ω; R2) and |Df |2 logλ (e + |Df |) ∈ L1
loc (Ω; R2) for

some λ > 0. Assume that E ⊂ Ω is a countable union of sets of

Hausdorff dimension strictly less than two. Then

Hh (f (E)) = 0

for h (t) = t2 logλ
(

1
t

)

.

4. Proof of Theorem 1

The combination of Theorem 2 with Theorem 1.1 in [AGRS] would
give us Theorem 1 with s < λ − 1 instead of s < λ. We employ a
factorization trick to bridge this gap. The initial mapping f will be
decomposed into a quasiconformal mapping and a mapping with finite
distortion, having better integrability properties than the distortion of
the initial mapping. The tools used here are the Beltrami equation,
Stoilow factorization (see, for example, [IM01], Chapter 11, or [Leh87],
Chapter 4) and the so-called “minimal” decomposition for a Beltrami
coefficient (see, for example, [Leh87, §4.7] and [Dav88, Proposition 3]
for the quasiconformal case).

Consider the equation

(12) ∂f(z) = µ(z)∂f(z),

in the complex plane C, where ∂ = 1
2
(∂x + i∂y) and ∂ = 1

2
(∂x − i∂y).

Equation (12) is called the Beltrami equation. The function µ is the
Beltrami coefficient of the mapping f (provided f is a solution of (12)
in some sense). Given an abstract Beltrami coefficient µ(z), such that
|µ(z)| < 1 almost everywhere, we can associate to µ a real-valued func-

tion K = 1+|µ|
1−|µ|

, called a distortion function of the Beltrami coefficient.

The terminology is natural, as the Beltrami equation yields the distor-
tion inequality

|Df(z)|2 ≤ K(z)Jf (z)

for its W 1,1
loc –solutions. Conversely, a mapping with finite distortion

function K(z) satisfies almost everywhere the Beltrami equation with
the associated Beltrami coefficient µf(z) = ∂f(z)/∂f(z). In this case,

|µ(z)| ≤ K(z)−1
K(z)+1

< 1 for almost every z.

The next lemma is essentially Corollary 4.4 from [AGRS].

Lemma 4. Let Ω ⊂ R2 be a bounded domain and f ∈ W 1,1
loc (Ω; R2) be a

mapping with λ–exponentially integrable distortion, λ > 0. Given any

C > 1, we can find a decomposition f = h ◦ g ◦ f1 with a holomorphic

h : g(f1(Ω)) → R2, a C–quasiconformal g : f1(Ω) → g(f1(Ω)) and a

homeomorphic f1 : Ω → f1(Ω) of finite distortion, whose distortion is

Cλ-exponentially integrable.
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Proof. We will think of Ω as of a domain in the complex plane C and
consider f as a complex mapping. Let µ and K denote the Beltrami
coefficient and the distortion function of f , respectively. Consider the
Beltrami equation with the Beltrami coefficient µ = µfχΩ. By Theo-
rem 11.8.3 in [IM01], this equation has a principal solution f2 in the

class z + W 1,Q
loc (C), Q(t) = t2

log(e+t)
, (i.e. |∂f2| + |∂f2 − 1| ∈ LQ(C)).

See §11.4 in [IM01] for the definition of principal solution. In particu-
lar, f2 is homeomorphic. Next, the mapping f is a solution of the same
equation a.e. in Ω and belongs to the Orlicz-Sobolev class W 1,Q

loc (C)
(see, for example, [IM01], §11.5). Thus, by Theorem 11.5.1 in [IM01],
it can be represented as f = h◦f2, where h : f2(Ω) → C is holomorphic.
As a solution of the same Beltrami equation, f2 satisfies

|Df2(z)|2 ≤ K(z)Jf2(z)

almost everywhere in Ω and

|Df2(z)|2 ≤ Jf2(z)

outside Ω. By [AGRS, Corollary 4.4], f2 can be represented as f2 =
g ◦ f1 in Ω, where g is C–quasiconformal and f1 is a homeomorphic
mapping with finite, Cλ-exponentially integrable distortion. Thus,

f = h ◦ g ◦ f1

gives us the desired decomposition.
�

In order to estimate the generalized Hausdorff measure of an image
set under a quasiconformal mapping we employ the following lemma
along with the higher regularity result for quasiconformal mappings
from [Ast94].

Lemma 5. Let g ∈ W 1,p
loc (Ω′; R2) be continuous and p > 2. If F ⊂ Ω′

satisfies Hh(F ) = 0 for h(t) = t2 logq(1/t), q > 0, then Hĥ(g(F )) = 0

for ĥ = t2 logq(p−2)/p(1/t).

Proof. Let us fix a compact subset K ⊂⊂ Ω′. It suffices to show that

Hĥ(g(F∩K)) = 0. Pick an open set G ⊂⊂ Ω′, containing the set F∩K.
As Hh(F ∩ K) = 0, given any ε > 0, we can choose a covering Q =
{Qi ⊂ G : i ∈ N} of F ∩ K by closed squares, having pairwise disjoint

interiors, whose diameters li, i ∈ N, satisfy li < min
{

1, e−
(p−2q)

2p

}

, and

such that
∞
∑

i=1

l2i logq 1

li
< ε.

We have g(F ∩ K)) ⊂ ∪ig(Qi). Morrey’s inequality gives us (see, for
example, [EG92, p. 143])

diam g(Qi) ≤ Cp(diam(Qi))
1− 2

p

(

∫

Qi

|Dg(y)|p dy
)1/p
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for i = 1, 2, . . .. Using the monotonicity of the function ĥ(t) for t ∈
]0, min

{

1, e−
(p−2)q

2p

}

[, we estimate

∞
∑

i=1

ĥ(diam g(Qi))

≤
∑

{i : diam g(Qi)≤li}

ĥ(diam g(Qi)) +
∑

{i : diam g(Qi)>li}

ĥ(diam g(Qi))

≤
∞
∑

i=1

ĥ(li) +
∞
∑

i=1

diam2 g(Qi) logq(p−2)/p
(1

li

)

≤
∞
∑

i=1

h(li) + C2
p

∞
∑

i=1

l
2(p−2)

p

i

(

∫

Qi

|Dg(y)|p dy
)2/p

logq(p−2)/p
(1

li

)

≤
∞
∑

i=1

h(li) + C̃
(

∞
∑

i=1

h(li)
)

p−2
2
(

∞
∑

i=1

∫

Qi

|Dg(y)|p dy
)2/p

≤ ε + C̃ε
p−2

p

(

∫

G

|Dg(y)|p dy
)2/p

,

where the third step is due to Morrey’s inequality and the fact that
q(p−2)

p
< q and the second to last step is simply the Hölder inequality

for series. Letting ε → 0 completes the proof. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. It is enough to show that Hhs(f(E ∩ Ω1)) = 0
for each s ∈]0, λ[ and each domain Ω1 ⊂⊂ Ω. Fix such an s and
Ω1. Let us take a factorization f = h ◦ g ◦ f1 in Ω1 as in Lemma 4
for C > max{1, 1/(λ − s)}. By Theorem 1.1 from [AGRS], we have
|Df1|2 logq(e + |Df1|) ∈ L1

loc(Ω1) for all q < Cλ − 1, as the distor-
tion of f1 is Cλ–exponentially integrable in Ω1. Theorem 2 implies
Hhq(f1(E ∩ Ω1)) = 0 for each q ∈]0,Cλ − 1[. In order to combine this
with Lemma 5, we note that g ∈ W 1,p

loc (f1(Ω1)) for all p < 2C/(C − 1)
[Ast94, Corollary 1.2], as g is C–quasiconformal in f1(Ω1). Thus, by
Lemma 5, we have

(13) Hhs1 (g(f1(E ∩ Ω1))) = 0,

where s1 = (p−2)q
p

, for all p < 2C/(C− 1) and q ∈]0,Cλ − 1[. In other

words, (13) holds for all s1 > 0 such that

s1 < (Cλ − 1)

(

2C

C − 1
− 2

)

C − 1

2C
= λ − 1

C
,

and thus, for s1 = s. Finally, as h is holomorphic in Ω1, and thus,
locally Lipschitz, we obtain Hhs(f(E ∩ Ω1)) = 0. �
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