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Abstract

The Malliavin derivative for a Lévy process (Xt) can be de�ned on
the space D1,2 using a chaos expansion or in the case of a pure jump
process also via an increment quotient operator [12]. In this paper we
de�ne the Malliavin derivative operator D on the class S of smooth
random variables f(Xt1 , . . . , Xtn), where f is a smooth function with

compact support. We show that the closure of L2(P) ⊇ S D→ L2(m⊗P)
yields to the space D1,2. As an application we conclude that Lipschitz
functions operate on D1,2.
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1 Introduction

In the recent years Malliavin calculus for Lévy processes has been developed
using various types of chaos expansions. For example, Lee and Shih [7]
applied a white noise approach, León et al. [5] worked with certain strongly
orthogonal martingales, Løkka [6] and Di Nunno et al. [2] considered multiple
integrals with respect to the compensated Poisson random measure and Solé
et al. [11] used the chaos expansion proved by Itô [4].

This chaos representation from Itô applies to any square integrable func-
tional of a general Lévy process. It uses multiple integrals like in the well
known Brownian motion case but with respect to an independent random
measure associated with the Lévy process. Solé et al. propose in [12] a
canonical space for a general Lévy process. They de�ne for random variables
on the canonical space the increment quotient operator

Ψt,xF (ω) =
F (ωt,x)− F (ω)

x
, x 6= 0,

in a pathwise sense, where, roughly speaking, ωt,x can be interpreted as the
outcome of adding at time t a jump of the size x to the path ω. They show
that on the canonical Lévy space the Malliavin derivative Dt,xF de�ned via
the chaos expansion due to Itô and Ψt,xF coincide a.e. on R+ × R0 × Ω
(where R0 := R \ {0}) whenever F ∈ L2 and E

∫
R+×R0

|Ψt,xF |2dm(t, x) <∞
(see Section 2 for the de�nition of m).

On the other hand, on the Wiener space, the Malliavin derivative is in-
troduced as an operator D mapping smooth random variables of the form
F = f(W (h1), . . . ,W (hn)) into L2(Ω;H), i.e.

DF =
n∑

i=1

∂

∂xi

f(W (h1), . . . ,W (hn))hi,

(see, for example, [8]). Here f is a smooth function mapping from Rn into R
such that all its derivatives have at most polynomial growth, and {W (h), h ∈
H} is an isonormal Gaussian family associated with a Hilbert space H. The
closure of the domain of the operator D is the space D1,2.

In the present paper we proceed in a similar way for a Lévy process
(Xt)t≥0. We will de�ne a Malliavin derivative operator on a class of smooth
random variables and determine its closure. The class of smooth random
variables we consider consists of elements of the form F = f(Xt1 , . . . , Xtn)
where f : Rn → R is a smooth function with compact support.

Analogously to results of Solé et al. [12] about the canonical Lévy space
the Malliavin derivative DF ∈ L2(m⊗ P), de�ned via chaos expansion, can
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be expressed explicitly as a two-parameter operator Dt,x. For certain smooth
random variables of the form F = f(Xt1 , . . . , Xtn) it holds

Dt,xf(Xt1 , . . . , Xtn) =
n∑

i=1

∂f

∂xi

(Xt1 , . . . , Xtn)1I[0,ti]×{0}(t, x)

+Ψt,xf(Xt1 , . . . , Xtn)1I{x 6=0}(x),

for m⊗ P-a.e. (t, x, ω). Here Ψt,x, for x 6= 0, is given by

Ψt,xf(Xt1 , . . . , Xtn)

:=
f(Xt1 + x1I[0,t1](t), . . . , Xtn + x1I[0,tn](t))− f(Xt1 , . . . , Xtn)

x
.

Our main result is that the smooth random variables f(Xt1 , . . . , Xtn) are
dense in the space D1,2 de�ned via the chaos expansion. This implies that
de�ning D as an operator on the smooth random variables as in De�nition
3.2 below and taking the closure leads to the same result as de�ning D using
Itô's chaos expansion (see De�nition 2.1).

The paper is organized as follows. In Section 2 we shortly recall Itô's
chaos expansion, the de�nition of the Malliavin derivative and some related
facts. The third and fourth section focus on the introduction of the Malliavin
derivative operator on smooth random variables and the determination of its
closure. Applying the denseness result from the previous section we show in
Section 5 that Lipschitz functions map from D1,2 into D1,2.

2 The Malliavin derivative via Itô's chaos ex-

pansion

We assume a càdlàg Lévy process X = (Xt)t≥0, on a complete probability
space (Ω,F ,P) with Lévy triplet (γ, σ2, ν) where γ ∈ R, σ ≥ 0 and ν is the
Lévy measure. Then X has the Lévy-Itô decomposition

Xt = γt+ σWt +

∫
[0,t]×{|x|≥1}

xdN(t, x) +

∫
[0,t]×{0<|x|<1}

xdÑ(t, x),

where W denotes a standard Brownian motion, N is the Poisson random
measure associated with the process X and Ñ the compensated Poisson
random measure, dÑ(t, x) = dN(t, x)−dtdν(x). Consider the measures µ on
B(R),

dµ(x) := σ2dδ0(x) + x2dν(x),
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and m on B(R+ × R), where R+ := [0,∞),

dm(t, x) := dtdµ(x).

For B ∈ B(R+ × R) such that m(B) <∞ let

M(B) = σ

∫
{t∈R+:(t,0)∈B}

dWt + lim
n→∞

∫
{(t,x)∈B:1/n<|x|<n}

xdÑ(t, x),

where the convergence is taken in L2(Ω,F ,P). Now EM(B1)M(B2) =
m(B1∩B2) for all B1, B2 withm(B1) <∞ andm(B2) <∞. For n = 1, 2, . . .
write

Ln
2 := L2

(
(R+ × R)n,B(R+ × R)⊗n,m⊗n

)
.

For f ∈ Ln
2 Itô [4] de�nes a multiple integral In(f) with respect to the random

measure M . It holds In(f) = In(f̃), a.s., where f̃ is the symmetrization of
f ,

f̃(z1, . . . , zn) =
1

n!

∑
π∈Sn

f(zπ(1), . . . , zπ(n)) for all zi = (ti, xi) ∈ R+ × R,

and Sn denotes the set of all permutations on {1, . . . , n}.
Let (FX

t )t≥0 be the augmented natural �ltration of X. Then (FX
t )t≥0 is

right continuous ([9, Theorem I 4.31]). Set FX :=
∨

t≥0FX
t . By Theorem 2

of Itô [4] it holds the chaos decomposition

L2 := L2(Ω,FX ,P) =
∞⊕

n=0

In(Ln
2 ),

where I0(L
0
2) := R and In(Ln

2 ) := {In(fn) : fn ∈ Ln
2} for n = 1, 2, . . . . For

F ∈ L2 the representation

F =
∞∑

n=0

In(fn),

with I0(f0) = EF, a.s., is unique if the functions fn are symmetric. Further-
more,

‖F‖2
L2

=
∞∑

n=0

n!‖f̃n‖2
Ln

2
.
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De�nition 2.1 Let D1,2 be the space of all F =
∑∞

n=0 In(fn) ∈ L2 such that

‖F‖2
D1,2

:=
∞∑

n=0

(n+ 1)!‖f̃n‖2
Ln

2
<∞.

Set L2(m⊗ P) := L2(R+ ×R×Ω,B(R+ ×R)⊗FX ,m⊗P). The Malliavin
derivative operator D : D1,2 → L2(m⊗P) is de�ned by

Dt,xF :=
∞∑

n=1

nIn−1(f̃n((t, x), ·)), (t, x, ω) ∈ R+ × R× Ω. (1)

We consider (as Solé et al. [12]) the operators D·,0 and D·,x, x 6= 0 and
their domains D0

1,2 and DJ
1,2. For σ > 0 let D0

1,2 consist of random variables
F =

∑∞
n=0 In(fn) ∈ L2 such that

‖F‖2
D0

1,2
:= ‖F‖2

L2
+

∞∑
n=1

n · n!‖f̃n1I(R+×{0})×(R+×R)n−1‖2
Ln

2
<∞.

For ν 6= 0, let DJ
1,2 be the set of F ∈ L2 such that

‖F‖2
DJ

1,2
:= ‖F‖2

L2
+

∞∑
n=1

n · n!‖f̃n1I(R+×R0)×(R+×R)n−1‖2
Ln

2
<∞,

where R0 := R \ {0}. If both σ > 0 and ν 6= 0, then it holds

D1,2 = D0
1,2 ∩ DJ

1,2. (2)

In case ν = 0, D·,0 coincides with the classical Malliavin derivative DW

(see, for example, [8]) except for a multiplicative constant, DW
t F = σDt,0F .

In the next lemma we formulate a denseness result which will be used to
determine the closure of the Malliavin operator from De�nition 3.1 below.

Lemma 2.2 Let L ⊆ L2 be the linear span of random variables of the form

M(T1 × A1) · · ·M(Tn × An), n = 1, 2, . . .

where the A′
is are �nite intervals of the form (ai, bi] and the T ′is are �nite

disjoint intervals of the form Ti = (si, ti]. Then L is dense in L2, D1,2, D0
1,2

and DJ
1,2.
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Proof. 1◦ First we consider the class of all linear combinations of

M(B1) · · ·M(Bn) = In(1IB1×···×Bn),

n = 1, 2, . . . , where the sets Bi ∈ B(R+ × R) are disjoint and ful�ll the con-
dition m(Bi) <∞. It follows from the completeness of the multiple integrals
in L2 (see [4, Theorem 2]) that this class is dense in L2. Especially, the class
of all linear combinations of 1IB1×···×Bn with disjoint sets B1, . . . , Bn of �nite
measure m is dense in Ln

2 = L2 ((R+ × R)n,B(R+ × R)⊗n,m⊗n) . Let Hn be
the linear span of 1I(T1×A1)×···×(Tn×An) where Ai = (ai, bi] and Ti = (si, ti].
One can easily see that Hn is dense in Ln

2 as well: Because m is a Radon
measure, there are compact sets Ci ⊆ Bi such that m(Bi \ Ci) is su�ciently
small to get

‖1IB1×···×Bn − 1IC1×···×Cn‖Ln
2
< ε

for some given ε > 0. Since the compact sets (Ci) are disjoint one can �nd
disjoint bounded open sets Ui ⊇ Ci such that ‖1IC1×···×Cn−1IU1×···×Un‖Ln

2
< ε.

For any bounded open set Ui ⊆ (0,∞)× R one can �nd a sequence of 'half-
open rectangles' Qi,k = (si

k, t
i
k]× (ai

k, b
i
k] = T i

k ×Ai
k, such that Ui =

⋃∞
k=1Qi,k

(taking half-open rectangles Qx ⊆ Ui with rational 'end points' containing
the point x ∈ Ui gives Ui =

⋃∞
Qx⊆Ui

Qx).
Hence for su�ciently large Ki's one has

‖1IU1×···×Un − 1ISK1
k=1 Q1,k×···×

SKn
k=1 Qn,k

‖Ln
2
< ε

where the Qi,k's can now be chosen such that they are disjoint. This implies
that the linear span of 1IQ1×···×Qn where the Qi's are of the form Ti × Ai is
dense in Ln

2 .
2◦ For the convenience of the reader we recall the idea of the proof of

Lemma 2 [4] to show that the intervals Ti can be chosen disjoint. Consider

1I(T1×A1)×···×(Tn×An), (3)

with µ(A1) > 0, . . . , µ(An) > 0, where (Ti × Ai) ∩ (Tj × Aj) = ∅ for i 6= j.
Assume, for example (all other cases can be treated similarly), that T1 =
· · · = Tm =: T while Tm, . . . , Tn are pairwise disjoint. Given the expression

1I(T×A1)×···×(T×Am)×(Tm+1×Am+1)×···×(Tn×An)

choose an equidistant partition (Ej)
k
j=1 of T so that |Ej| = |T |

k
and set

c := µ(A1) · · ·µ(An)|Tm+1| · · · |Tn|.
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Now

1I(T×A1)×···×(T×Am)×(Tm+1×Am+1)×···×(Tn×An)

=
k∑

j1,...,jm=1

all ji distinct

1I(Ej1
×A1)×···×(Ejm×Am)×(Tm+1×Am+1)×···×(Tn×An)

+
k∑

j1,...,jm=1

ji not distinct

1I(Ej1
×A1)×···×(Ejm×Am)×(Tm+1×Am+1)×···×(Tn×An)

= S1 + S2,

where S1 is a sum of indicator functions with disjoint time intervals. We
complete the proof by observing that

‖S2‖2
Ln

2
=

k∑
j1,...,jm=1

ji not distinct

m(Ej1 × A1) · · ·m(Ejm × Am)

×m(Tm+1 × Am+1) · · ·m(Tn × An)

= c

k∑
j1,...,jm=1

ji not distinct

|Ej1| · · · |Ejm|

= c

(
km −m!

(
k

m

))(
|T |
k

)m

= c|T |m
(

1−
(

1− 1

k

)
· · ·
(

1− m− 1

k

))
→ 0

for k →∞.

3◦ The denseness of Hn in Ln
2 implies that L is dense in L2 and D1,2. The

remaining cases follow from the fact that

‖fn1I(R+×{0})×(R+×R)n−1‖Ln
2
≤ ‖fn‖Ln

2

and

‖fn1I(R+×R0)×(R+×R)n−1)‖Ln
2
≤ ‖fn‖Ln

2
.

�
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3 The Malliavin derivative as operator on S
Let C∞

c (Rn) denote the space of smooth functions f : Rn → R with compact
support.

De�nition 3.1 A random variable of the form F = f(Xt1 , . . . , Xtn), where
f ∈ C∞

c (Rn), n ∈ N, and t1, . . . , tn ≥ 0, is said to be a smooth random
variable. The set of all smooth random variables is denoted by S.

De�nition 3.2 For F = f(Xt1 , . . . , Xtn) ∈ S we de�ne the Malliavin deriva-
tive operator D as a map from S into L2(m⊗P) by

Dt,xf(Xt1 , . . . , Xtn)

:=
n∑

i=1

∂f

∂xi

(Xt1 , . . . , Xtn)1I[0,ti]×{0}(t, x)

+
f(Xt1 + x1I[0,t1](t), . . . , Xtn + x1I[0,tn](t))− f(Xt1 , . . . , Xtn)

x
1IR0(x)

for (t, x) ∈ R+ × R.

We have the following result.

Lemma 3.3 It holds DF = DF in L2(m⊗ P) for all F ∈ S.

Since for f(Xt1 , . . . , Xtn) ∈ S one has

E
∫

R+

|Dt,0f(Xt1 , . . . , Xtn)|2dt <∞

and

E
∫

R+×R0

|Dt,xf(Xt1 , . . . , Xtn)|2dm(t, x) <∞

Lemma 3.3 follows for the canonical Lévy space from [12, Proposition 3.5]
and [12, Proposition 5.5].

A proof of Lemma 3.3 for the situation where the Lévy process (Xt) is
a square integrable pure jump process which has an absolutely continuous
distribution can be found in [6].
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An outline of the proof in the general case is given in the appendix. Like
in [6, Proposition 8] one can derive from the proof an explicit form for the
functions (fn) of the chaos expansion f(Xt1 , . . . , Xtk) =

∑∞
n=0 In(fn),

fn((s1, x1), . . . , (sn, xn))

= E
∑

I⊂{1,...,n}∪∅

(−1)n−|I|

n!

f(Xt1 +
∑

i∈I xi1I[0,t1](si), . . . , Xtk +
∑

i∈I xi1I[0,tk](si))

x1 · · ·xn

,

with the convention that to get fn((s1, x1), . . . , (si, 0), . . . , (sn, xn)) one has
to take the limit lim|xi|↓0 fn((s1, x1), . . . , (sn, xn)).

Especially, we conclude from the fact that any F ∈ L2 ⊇ S has a
unique chaos expansion that also DF does not depend on the representation
F = f(Xt1 , . . . , Xtn).

Using the equality of D and D on S and the fact that S is closed with
respect to multiplication we are now able to reformulate Proposition 5.1 of
[12] for our situation:

Corollary 3.4 For F and G in S it holds

Dt,x(FG) = GDt,xF + FDt,xG+ xDt,xFDt,xG

for m⊗ P−a.e. (t, x, ω) ∈ R+ × R× Ω.

4 The closure of the Malliavin derivative oper-

ator

The operator D : S → L2(m ⊗ P) is closable, if for any sequence (Fn) ⊆ S
which converges to 0 in L2 such that D(Fn) converges in L2(m⊗P), it follows
that (DFn) converges to 0 in L2(m⊗P). As we know from the previous section
that D and D coincide on S ⊆ D1,2, it is clear that D is closable and the
closure of the domain of de�nition of D with respect to the norm

‖F‖D :=
[
E|F |2 + E‖DF‖2

L2(m)

] 1
2 ,

is contained in D1,2. What remains to show is that the closure is equal to
D1,2.

Theorem 4.1 The closure of S with respect to the norm ‖ · ‖D = ‖ · ‖D1,2 is
the space D1,2.
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Theorem 4.1 implies that the Malliavin derivative D de�ned via Itô's chaos

expansion and the closure of the operator L2 ⊇ S D→ L2(m ⊗ P) coincide.
Before we start with the proof we formulate a Lemma for later use.

Lemma 4.2 For ϕ ∈ C∞
c (R) and partitions πn := {s = tn0 < tn1 < · · · <

tnn = u} of the interval [s, u] it holds for ψ(x) := xϕ(x) that

D1,2 − lim
|πn|→0

( n∑
j=1

ψ(Xtnj
−Xtnj−1

)− E
n∑

j=1

ψ(Xtnj
−Xtnj−1

)

)
=

∫
(s,u]×R

ϕ(x) dM(t, x),

where |πn| := max1≤i≤n |tni − tni−1|.

Proof. To keep the notation simple, we will drop the n of the partition points
tnj . Notice that

∫
(s,u]×R ϕ(x) dM(t, x) = I1(1I(s,u] ⊗ ϕ). We set

Gn :=
n∑

j=1

ψ(Xtj −Xtj−1
)− E

n∑
j=1

ψ(Xtj −Xtj−1
)

and

G :=

∫
(s,u]×R

ϕ(x) dM(t, x).

Choose functions βm ∈ C∞
c (R) such that 0 ≤ βm ≤ 1 and βm(x) = 1 for

|x| ≤ m, the support of βm is contained in {x; |x| ≤ m+ 2} and ‖β′m‖∞ ≤ 1.
As ψ(Xtj −Xtj−1

)βm(Xtj−1
) ∈ S, we get from Lemma 3.3 that

Dt,xψ(Xtj −Xtj−1
)βm(Xtj−1

) = Dt,xψ(Xtj −Xtj−1
)βm(Xtj−1

). (4)

One easily checks that L2−limm→∞ ψ(Xtj−Xtj−1
)βm(Xtj−1

) = ψ(Xtj−Xtj−1
)

and the limit of (4) in L2(m⊗P) is Dt,xψ(Xtj −Xtj−1
) = Dt,xψ(Xtj −Xtj−1

).
So we can write Dt,xG

n explicitly as

Dt,x

(
n∑

j=1

ψ(Xtj −Xtj−1
)

)

=
n∑

j=1

ψ′(Xtj −Xtj−1
)1I(tj−1,tj ]×{0}(t, x)

+
n∑

j=1

ψ(Xtj −Xtj−1
+ x)− ψ(Xtj −Xtj−1

)

x
1I(tj−1,tj ]×R0(t, x).
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Moreover, we have Dt,xI1(1I(s,u] ⊗ ϕ) = 1I(s,u](t)ϕ(x) m−a.e. Using the gen-
eral fact that for any F ∈ D1,2 with expectation zero it holds ‖F‖2

D1,2
≤

2‖DF‖2
L2(m⊗P) we obtain

‖G−Gn‖2
D1,2

≤ 2‖DG−DGn‖2
L2(m⊗P)

= 2σ2E
∫

R+

n∑
j=1

1I(tj−1,tj ](t)
[
ϕ(0)− ψ′(Xtj −Xtj−1

)
]2
dt

+2E
∫

R+×R0

n∑
j=1

1I(tj−1,tj ](t)
[
ϕ(x)−Dt,xψ(Xtj −Xtj−1

)
]2
dm(t, x)

= 2σ2E
∫

R+

n∑
j=1

1I(tj−1,tj ](t)
[
ϕ(0)− ψ′(Xtj −Xtj−1

)
]2
dt

+2E
∫

R+×R0

n∑
j=1

1I(tj−1,tj ](t)[ψ(x)− ψ(Xtj −Xtj−1
+ x)

+ψ(Xtj −Xtj−1
)]2dtdν(x)

→ 0

as n → ∞ because of dominated convergence and the a.s. càdlàg property
of the paths of (Xt). Indeed, one can use the estimates

|ϕ(0)− ψ′(y)| ≤ ‖ϕ‖∞ + ‖ψ′‖∞,

|ψ(x)− ψ(y + x) + ψ(y)| ≤ (‖ϕ‖∞ + ‖ψ′‖∞ + 3‖ψ‖∞)(|x| ∧ 1)

and the fact that
∫

R(x2 ∧ 1)dν(x) < ∞. Moreover, for |πn| → 0 the càdlàg
property of the paths implies the pointwise convergence in t ∈ (s, u] of the
expressions

n∑
j=1

1I(tnj−1,tnj ](t)
[
ϕ(0)− ψ′(Xtnj

−Xtnj−1
)
]2 → [ϕ(0)− ψ′(Xt −Xt−)

]2
(note that ϕ(0)− ψ′(0) = 0), and

n∑
j=1

1I(tnj−1,tnj ](t)[ψ(x)− ψ(Xtnj
−Xtnj−1

+ x) + ψ(Xt −Xt−)]2

→ [ψ(x)− ψ(Xt −Xt− + x) + ψ(Xt −Xt−)]2.
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Because the set {t > 0; Xt−Xt− 6= 0} is at most countable for càdlàg paths
the assertion follows. �

Proof of Theorem 4.1. According to Lemma 2.2 it is su�cient to show that
an expression like M(T1 × A1) · · ·M(Tn × An), where the A′

is are bounded
Borel sets and the T ′is �nite disjoint intervals, can be approximated in D1,2

by a sequence (Fk)k ⊆ S.

1◦ In this step we want to show that it is enough to approximate

I1(1IT1 ⊗ ϕ1) · · · I1(1ITn ⊗ ϕn), (5)

by (Fk)k ⊆ S where ϕi ∈ C∞
c (R). Since the intervals Ti are disjoint the

de�nition of the multiple integral implies that

M(T1 × A1) · · ·M(Tn × An) = In(1IT1×A1 ⊗ · · · ⊗ 1ITn×An) a.s.

By the same reason,

I1(1IT1 ⊗ ϕ1) · · · I1(1ITn ⊗ ϕn) = In((1IT1 ⊗ ϕ1)⊗ · · · ⊗ (1ITn ⊗ ϕn)) a.s.

We have

‖In(1I(T1×A1)×···×(Tn×An))− In((1IT1 ⊗ ϕ1)⊗ · · · ⊗ (1ITn ⊗ ϕn))‖2
D1,2

≤ (n+ 1)!‖1I(T1×A1)×···×(Tn×An) − (1IT1 ⊗ ϕ1)⊗ · · · ⊗ (1ITn ⊗ ϕn)‖2
Ln

2

≤ (n+ 1)!|T1| · · · |Tn|‖1IA1×···×An − ϕ1 ⊗ · · · ⊗ ϕn‖2
Ln

2 (µ⊗n).

The last expression can be made arbitrarily small by choosing ϕi such that
‖1IAi

− ϕi‖L1
2(µ) is small. For example, for each i there are compact sets

Ci
1 ⊆ Ci

2 ⊆ · · · ⊆ Ai and open sets U i
1 ⊇ U i

2 ⊇ · · · ⊇ Ai such that

µ(U i
k \ Ci

k) → 0

as k → ∞. By the C∞ Urysohn Lemma ([3], p. 237) there is for each k a
function ϕi

k ∈ C∞
c (R) such that 0 ≤ ϕi

k ≤ 1, ϕi
k = 1 on Ci

k and supp(ϕi
k) ⊂

U i
k. Then

‖1IAi
− ϕk

i ‖2
L1

2(µ) ≤ µ(U i
k \ Ci

k) → 0

as k →∞.

12



2◦ Now we use Lemma 4.2 to approximate the expression (5) by a sequence
(Fk)k ⊆ S. For i = 1, . . . , n set ψi(x) := xϕi(x) and

Gk
i :=

k∑
j=1

1I{tj ,tj−1∈T̄i}ψi(Xtj −Xtj−1
)− E

k∑
j=1

1I{tj ,tj−1∈T̄i}ψi(Xtj −Xtj−1
).

The partition πk = {0 ≤ tk0 ≤ . . . ≤ tkk} can be chosen such that all end
points of the closed intervals T̄i belong to πk. Put

fk(Xt0 , . . . , Xtk) := Πn
i=1G

k
i

and notice that fk ∈ C∞(Rk+1). Setting x−1 := 0 and αm(x0, . . . , xk) :=
Πk

i=0βm(xi−xi−1) where the (βm) are taken from the proof of Lemma 4.2 we
have fk(x)αm(x) ∈ C∞

c (Rk+1). By dominated convergence one can show that
D1,2− limm→∞ fk(Xt0 , . . . , Xtk)αm(Xt0 , . . . , Xtk) = fk(Xt0 , . . . , Xtk). Because
the intervals (Ti) are disjoint it follows that the product rule holds in our
case:

DΠn
i=1G

k
i =

n∑
i=1

Gk
1 · · ·Gk

i−1(DG
k
i )G

k
i+1 · · ·Gk

n m⊗ P− a.e. (6)

Indeed, because of Dt,xG
k
i = (Dt,xG

k
i )1ITi

(t) it follows

x(Dt,xG
k
i )1ITi

(t)(Dt,xG
k
j )1ITj

(t) = 0 m⊗ P− a.e.

for any i 6= j. Equation (6) follows then by induction. Let

Gi := I1(1ITi
⊗ ϕi).

We observe that Gk
1, . . . , G

k
n as well as Gk

1, . . . , G
k
i−1, DG

k
i , G

k
i+1, . . . , G

k
n are

mutually independent by construction. Hence in order to show L2− conver-
gence of these products it is enough to prove L2−convergence for each factor.
From Lemma 4.2 we obtain that Gk

i → Gi in D1,2 for all i = 1, . . . , n, so that

L2(m⊗ P)− lim
|πk|→0

Gk
1 · · ·Gk

i−1(DG
k
i )G

k
i+1 · · ·Gk

n

= G1 · · ·Gi−1(DGi)Gi+1 · · ·Gn.

Consequently, we have found a sequence (Fk) ⊆ S given by

Fk = fk(Xt0 , . . . , Xtk)αmk
(Xt0 , . . . , Xtk)

where the mk's are chosen in a suitable way that converges to expression (5)
in D1,2. �
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Corollary 4.3 The set S of smooth random variables is dense in L2, D0
1,2

and DJ
1,2.

Proof. The denseness in L2 is clear. To show that S is dense in D0
1,2

assume F ∈ D0
1,2 has the representation F =

∑∞
n=0 In(fn). For a given

ε > 0 �x Nε such that ‖
∑∞

n=Nε
In(fn)‖D0

1,2
< ε. From F ∈ L2 we con-

clude FNε :=
∑Nε

n=0 In(fn) ∈ D1,2. By Theorem 4.1 we can �nd a sequence
(Fk) ⊆ S converging to FNε in D1,2 and therefore also in D0

1,2. In the same
way one can see that S is dense in DJ

1,2. �

5 Lipschitz functions operate on D1,2

Lemma 5.1 Let g : R → R be Lipschitz continuous with Lipschitz constant
Lg.

(a) If σ > 0, then g(F ) ∈ D0
1,2 for all F ∈ D0

1,2 and

Dt,0g(F ) = GDt,0F dt⊗ P− a.e., (7)

where G is a random variable which is a.s. bounded by Lg.

(b) If ν 6= 0, then g(F ) ∈ DJ
1,2 for all F ∈ DJ

1,2, where

Dt,xg(F ) =
g(F + xDt,xF )− g(F )

x
(8)

for m⊗P-a.e. (t, x, ω) ∈ R+ × R0 × Ω.

Proof. We will adapt the proof of Proposition 1.2.4 [8] to our situation.
Corollary 4.3 implies that there exists a sequence (Fn) ⊆ S of the form
Fn = fn(Xt1 , . . . , Xtn) which converges to F in D0

1,2. Like in [8] we choose
a non-negative ψ ∈ C∞

c (R) such that supp(ψ) ⊆ [−1, 1] and
∫

R ψ(x)dx = 1
and set ψm(x) := mψ(mx).

Then gm := g ∗ ψm is smooth and converges to g uniformly. Moreover,
‖g′m‖∞ ≤ Lg. Hence gm ◦ Fn = gm(fn(Xt1 , . . . , Xtn)) ∈ S and (gn(Fn)) con-
verges to g(F ) in L2.
Moreover,

E
∫

R+

|Dt,0gn(Fn)|2dt

14



= Eg′n(Fn)2

∫
R+

∣∣ n∑
i=1

∂

∂xi

fn(Xt1 , . . . , Xtn)1I[0,ti](t)
∣∣2dt

≤ L2
g ‖Fn‖2

D0
1,2
.

Since we have convergence of (gn(Fn)) to g(F ) in L2 and it holds

sup
n
‖gn(Fn)‖2

D0
1,2
<∞,

Lemma 1.2.3 [8] states that this implies that g(F ) ∈ D0
1,2 and that (D·,0 gn(Fn))

converges to D·,0 g(F ) in the weak topology of L2(Ω;L2(R+ × {0})). Now
E|g′n(Fn)|2 ≤ L2

g implies the existence of a subsequence (g′nk
(Fnk

))k which
converges to some G ∈ L2 in the weak topology of L2. One can show that
|G| ≤ Lg a.s. Hence for any element α ∈ L∞(Ω;L2(R+ × {0})) we have

lim
k→∞

E
∫

R+

g′nk
(Fnk

)(Dt,0 Fnk
)α(t)dt

= lim
k→∞

E
(
g′nk

(Fnk
)

∫
R+

(Dt,0 Fnk
)α(t)dt

)
= lim

k→∞
E
(
g′nk

(Fnk
)

∫
R+

(Dt,0 F )α(t)dt

)
= E

(
G

∫
R+

(Dt,0 F )α(t)dt

)
,

since |Eg′nk
(Fnk

)
∫

R+
(Dt,0 Fnk

−Dt,0 F )α(t)dt| ≤ Lg‖α‖L2(Ω;L2(R+))‖Fnk
−F‖D0

1,2

converges to zero for k →∞ and
∫

R+
(Dt,0 F )α(t)dt ∈ L2 because ‖α‖L2(R+×{0})

is �nite. Consequently,

E
∫

R+

(
Dt,0 g(F )

)
α(t)dt = E

∫
R+

G(Dt,0 F )α(t)dt

which implies Dt,0 g(F ) = GDt,0 F dt⊗ P− a.e.

(b) Let (Fn)n ⊆ S be a sequence such that DJ
1,2 − limFn = F. Since the

expression Z(t, x) := g(F+xDt,xF )−g(F )

x
1IR+×R0(t, x) is in L2(m⊗P) it is enough

to show that (Dgn(Fn)1IR+×R0) converges in L2(m ⊗ P) to Z where (gn) is
the sequence constructed in (a). Choose T > 0 and L > 0 large enough and
δ > 0 su�ciently small such that

lim sup
n

E
∫

([0,T ]×{δ≤|x|≤L})c

|Z(t, x)|2 + |Dt,xgn(Fn)|2dm(t, x) < ε.

Then, for n ≥ n0,

‖Z −Dgn(Fn)1IR+×R0‖2
L2(m⊗P)
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≤ ε

+2E
∫

[0,T ]×{δ≤|x|≤L}
|Z(t, x)− g(Fn + xDt,xFn)− g(Fn)

x
|2dm(t, x)

+8δ−2Tµ({δ ≤ |x| ≤ L})‖g − gn‖2
∞.

Hence we obtain (8) from the Lipschitz continuity of g and the uniform
convergence of gn to g. �

Proposition 5.2 Let g : R → R be Lipschitz continuous. Then F ∈ D1,2

implies g(F ) ∈ D1,2, where Dg(F ) is given by (7) and (8).

Proof. The assertion is an immediate consequence from Lemma 5.1 and (2).
�

6 Appendix

Proof of Lemma 3.3. We denote by Jn(fn) the multiple integral∫
R+×R

∫
[0,tn)×R

· · ·
∫

[0,t2)×R
fn((t1, x1), . . . , (tn, xn)) dM(t1, x1) · · · dM(tn, xn),

where for the de�nition of a stochastic integral with respect to M we refer
to [1]. It holds

In(f̃n) = n!Jn(f̃n). (9)

Let us �rst prove on S a Clark-Ocone-Haussman type formula that uses D.
For u ∈ Rk and s ∈ R+ denote ξ(u, s) := 2πi

∑k
j=1 uj1I[0,tj ](s) and

η(u, t) :=
σ2

2

∫ t

0

ξ2(u, s)ds+ γ

∫ t

0

ξ(u, s)ds

+

∫ t

0

∫
R0

(
exξ(u,s) − 1− xξ(u, s)1I{|x|<1}

)
dν(x)ds.

By the Fourier inversion formula (see, for example, [1] or [3]) it holds for
f ∈ C∞

c (Rk) that

f(Xt1 , . . . , Xtk) =

∫
Rk

f̂(u)e2πi
Pk

j=1 ujXtj du

=

∫
Rk

f̂(u)eη(u,T )YT (u)du,
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where T = max{t1, . . . , tk} and

Yt(u) = e2πi
Pk

j=1 ujXtj∧t−η(u,t), for t ∈ [0, T ].

From Itô's formula we obtain

Yt(u) = 1 +

∫ t

0

Ys−(u)ξ(u, s) σdWs

+

∫
(0,t]×R0

Ys−(u)
(
exξ(u,s) − 1

)
dÑ(s, x),

so that

f(Xt1 , . . . , Xtk)

=

∫
Rk

f̂(u)eη(u,T ) du (10)

+

∫
Rk

f̂(u)eη(u,T )

(∫ T

0

Ys−(u)ξ(u, s) σdWs

)
du (11)

+

∫
Rk

f̂(u)eη(u,T )

(∫
(0,T ]×R0

Ys−(u)
(
exξ(u,s) − 1

)
dÑ(s, x)

)
du. (12)

Since E exp{2πi
∑k

j=1

(
ujXtj

)
} = eη(u,T ), it follows by Fubini's theorem that

(10) = E
∫

Rk

f̂(u)e2πi
Pk

j=1 ujXtj du = Ef(Xt1 , . . . , Xtk).

Using the fact that (Yt)t∈[0,T ] is a square integrable martingale, we obtain
by the conditional theorem of Fubini (see, e.g., [1]) and Fubini's theorem for
stochastic integrals (see, e.g., [10]) that

(11) =

∫ T

0

E
[∫

Rk

YT (u)f̂(u)eη(u,T )ξ(u, s) du

∣∣∣∣Fs−

]
σdWs.

Applying Theorem 8.22(e) of [3] and the Fourier inversion formula we rewrite
the inner integral as follows.∫

Rk

YT (u)f̂(u)eη(u,T )ξ(u, s) du

=
k∑

j=1

1I[0,tj ](s)

∫
Rk

2πiuj f̂(u) exp{2πi
k∑

j=1

ujXtj} du

=
k∑

j=1

1I[0,tj ](s)
∂f

∂xj

(Xt1 , . . . , Xtk).
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Similarly we can see that

(12) =

∫
(0,T ]×R0

E
[∫

Rk

f̂(u)eη(u,T )YT (u)
(
exξ(u,s) − 1

)
du

∣∣∣∣Fs−

]
dÑ(s, x),

where ∫
Rk

f̂(u)eη(u,T )YT (u)
(
exξ(u,s) − 1

)
du

=

∫
Rk

f̂(u)
(
e
2πi

Pk
j=1 uj(Xtj +x1I[0,tj ](s)) − e2πi

Pk
j=1 ujXtj

)
du

= f
(
Xt1 + x1I[0,t1](s), . . . , Xtk + x1I[0,tk](s)

)
− f (Xt1 , . . . , Xtk) .

Consequently, for F = f(Xt1 , . . . , Xtk) ∈ S it holds

F = EF +

∫
R+×R

E [Dt,xF |Ft− ] dM(t, x). (13)

Since Dt,xf(Xt1 , . . . , Xtk) ∈ S for any (t, x) ∈ R+×R, we obtain by iterating
equation (13) that

f(Xt1 , . . . , Xtk) = Ef(Xt1 , . . . , Xtk) +
∞∑

n=1

Jn (EDnf(Xt1 , . . . , Xtk)) ,

where

Dnf(Xt1 , . . . , Xtk) := D · · ·Df(Xt1 , . . . , Xtk).

Notice that EDnf(Xt1 , . . . , Xtk) is a symmetric function on (R+×R)n. The
relation (9) between the multiple and the iterated integral and equation (1)
imply

Dt,xJn (EDnf(Xt1 , . . . , Xtk)) = Jn−1

(
EDn−1Dt,xf(Xt1 , . . . , Xtk)

)
.

From Dt,xf(Xt1 , . . . , Xtk) ∈ L2(m⊗P) and

Dt,xf(Xt1 , . . . , Xtk) =
∞∑

n=1

Jn−1

(
EDn−1Dt,xf(Xt1 , . . . , Xtk)

)
it follows f(Xt1 , . . . , Xtk) ∈ D1,2 and

Dt,xf(Xt1 , . . . , Xtk) = Dt,xf(Xt1 , . . . , Xtk), m⊗P− a.e.

�

18



References

[1] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge
University Press, Cambridge, 2004.

[2] G. Di Nunno, Th. Meyer-Brandis, B. Øksendal and F. Proske. Malliavin
calculus and anticipative Itô formulae for Lévy processes. In�nite dimen-
sional analysis quantum probability and related topics, Volume 8; N:o 2,
235�258, 2005.

[3] G. Folland. Real analysis. Modern techniques and their applications.
John Wiley & Sons, New York, 1984.

[4] K. Itô. Spectral type of the shift transformation of di�erential process
with stationary increments. Trans. Amer. Math. Soc. 81, 253�263, 1956.

[5] J. Leon and J.L. Solé and F. Utzet and J. Vives. On Lévy processes,
Malliavin calculus and market models with jumps. Finance Stoch. 6 (2002)
197-225.

[6] A. Løkka. Martingale representation of functionals of Lévy processes.
Stochastic Analysis and Applications, Volume 22, Issue 4, 867�892, 2005.

[7] Y.J. Lee and H.H. Shih. Analysis of general Lévy white noise functionals.
J. Funct. Anal. 211 (2004) 1-70.

[8] D. Nualart. The Malliavin calculus and related topics. Springer-Verlag,
2006.

[9] P. Protter. Stochastic Integration and Di�erential Equations: A New
Approach. Springer, Berlin, 1995.

[10] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion.
Springer, Berlin, Heidelberg, New York, 1994.

[11] J. Solé, F. Utzet and J. Vives. Chaos expansion and Malliavin Calculus
for Lévy processes. In: Stochastic Analysis and Applications: The Abel
Symposium 2005. Springer, 2007

[12] J. Solé, F. Utzet and J. Vives. Canonical Lévy process and Malliavin
calculus. Stochastic Processes and their Applications 117, 165�187, 2007.

19


