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Abstract. We study the asymptotic behavior, as t → ∞, of the solutions to the
evolutionary p-Laplace equation

vt = div(|∇v|p−2∇v)

with time-independent lateral boundary values. We obtain the sharp decay rate of
maxx∈Ω|v(x, t) − u(x)|, where u is the stationary solution, both in the degenerate
case p > 2 and in the singular case 1 < p < 2. A key tool in the proofs is the Moser
iteration, which is applied to the difference v(x, t) − u(x). In the singular case we
construct an example proving that the celebrated phenomenon of finite extinction
time, valid for v(x, t) when u ≡ 0, does not have a counterpart for v(x, t)− u(x).

1. Introduction

The asymptotic behavior of the solutions of the evolutionary p-Laplace equation

(1.1) vt = div(|∇v|p−2∇v)
as t → ∞ is a much studied question. It is clear that u(x) = lim

t→∞ v(x, t) should be a
solution to the stationary problem

(1.2) div(|∇u|p−2∇u) = 0

under natural assumptions. The case when the domain is the whole Rn × (0,∞) is
well understood, see e.g. [10], [14], [5], [11]. Also the case Ω × (0,∞) when v = 0 on
the lateral boundary ∂Ω × (0,∞) is much studied. In both cases explicit comparison
functions are available.

The objective of our note is the sharp decay rate of

max
x∈Ω

|v(x, t)− u(x)|
as t→∞, without the assumption u = 0 on ∂Ω. We assume that Ω has finite volume.
In the linear case p = 2 superposition reduces this to the situation with zero boundary
values. However, the nonlinearity of the equation (1.1) causes technical difficulties for
other values of p. In the degenerate case p > 2 the sharp decay rate is O(t−1/(p−2)) as
t→∞. The right decay rate is easy to obtain for the Lm-norm, 2 ≤ m <∞, but the
passage to the above L∞-norm is demanding in the range p < n. Our proof is based
on the Moser iteration, which, of course, is well known for solutions. However, we will
apply the method to the difference v(x, t) − u(x), which itself is not a solution, thus
bounding the L∞ norm in terms of the Lp norm. A special feature in the structure of
the equation makes this possible. In passing, we mention that this approach does not
appear to work for the rather similar looking equations

vt = ∆(|v|m−1v)

Date: June 19, 2008.
2000 Mathematics Subject Classification. 35K55, 35K65, 35B40.
Key words and phrases. evolutionary p-Laplace equation, asymptotic behavior, Moser iteration.

1



2 PETRI JUUTINEN AND PETER LINDQVIST

and
∂|v|p−2v

∂t
= div(|∇v|p−2∇v)

having non-constant lateral boundary values.
Then we turn to the singular case1 max{1, 2n

n+2} < p < 2. We first prove the decay
estimate

max
x∈Ω

|v(x, t)− u(x)| ≤ Ce−λt.

Here we have detected a phenomenon that is surprising at first sight. It is known that
with zero lateral boundary values (which implies u ≡ 0) there is a finite extinction
time: v(x, t) = 0 when t ≥ T ∗, see [6, Chapter VII]. However, in general, it is not true
that v(x, t) ≡ u(x) after some time T ∗. To show this, we have constructed an example
with no better than exponential decay. Thus the situation with zero lateral boundary
values is, indeed, quite special and different from the general case. This interesting
phenomenon indicates that our study completes the existing theory.
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2. Definitions and main results

To be on the safe side, we first define the concept of solutions. They are the usual
weak solutions belonging to a Sobolev space. Let Ω be a bounded domain in the
Euclidean space Rn and consider the space-time cylinder Ω× (0,∞). In the case p > 2
we say that v ∈ Lp

loc(0,∞;W 1,p(Ω)) is a solution to (1.1) if

(2.1)
∫ ∞

0

∫

Ω
(−vϕt + |∇v|p−2∇v · ∇ϕ) dx dt = 0

for each ϕ ∈ C∞0 (Ω × (0,∞)). The singular case 1 < p < 2 requires an extra a priori
summability, for example v ∈ L∞loc(0,∞;L2(Ω)) will do. In particular, we always have

1The case p < max{1, 2n
n+2

} seems to be somewhat unsettled, and we do not consider it in our

study.
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that the integral
∫ t2

t1

∫

Ω

(
v2 + |∇v|p) dx dt

is finite for any 0 < t1 < t2 < ∞. By the regularity theory we may assume that the
solutions are continuous, see [6].

The lateral boundary values are taken in Sobolev’s sense. Thus we require that
v(x, t) − u(x) ∈ W 1,p

0 (Ω) for a.e. time t. In fact, we may as well have two time
dependent solutions v = v(x, t) and u = u(x, t) of (1.1). The decay of |v(x, t)−u(x, t)|
is studied under the assumption v − u ∈ Lp

loc(0,∞;W 1,p
0 (Ω)). We do not prescribe

initial values.
Our main results read as follow:

Theorem 2.1. Let Ω be a bounded domain in Rn and 2 < p <∞. Let u be a solution
to the stationary problem (1.2) in Ω and let v be a solution to (1.1) in Ω× (0,∞) such
that v − u ∈ Lp

loc(0,∞;W 1,p
0 (Ω)). Then there exists a constant C = C(p, n,Ω) such

that

sup
x∈Ω

|v(x, t)− u(x)| ≤ Ct
1

2−p for t > 0.

Notice that the costant C above is numerical. However, in the singular case below
also a quantity L, depending on the solution itself, is present.

Theorem 2.2. Let Ω be a bounded domain in Rn and max{1, 2n
n+2} < p < 2. Let u

be a solution to the stationary problem (1.2) in Ω and let v be a solution to (1.1) in
Ω×(0,∞) such that v−u ∈ Lp

loc(0,∞;W 1,p
0 (Ω)). Then there exists λ = λ(p, n,Ω) such

that for all t > 2τ > 0 we have

sup
x∈Ω

|v(x, t)− u(x)| ≤ C(tL)−
pκ

4(p−κ) ‖u− v‖L2(Ω×{τ})e
−λL( t

2
−τ),

where κ = 2n
n+2 and

L = ‖∇v‖p−2
Lp(Ω×{τ}).

As mentioned in the introduction, both Theorems 2.1 and 2.2 are sharp. The relevant
examples are given in Section 6.

Finally, we recall the following elementary vector inequalities that are used fre-
quently: for all a, b ∈ Rn we have

(2.2) 22−p|a− b|p ≤ (|a|p−2a− |b|p−2b
) · (a− b)

if 2 < p <∞, and

(2.3) (p− 1)
|a− b|2

(|a|+ |b|)2−p
≤ (|a|p−2a− |b|p−2b

) · (a− b),

if 1 < p < 2. (As a matter of fact, our approach is rather versatile and it works just
as well for equations of the form

vt = divA(x,∇v),
where A(x,∇v) satisfies standard growth conditions and a counterpart of (2.2) or
(2.3)).
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3. Norm decay estimates

We begin by establishing decay estimates for the norms ‖u− v‖Lm(Ω×{t}), 1 < m <
∞. The idea is to show that t 7→ ‖u−v‖Lm(Ω×{t}) obeys a certain differential inequality.
Similar reasoning has been used for example in [3] and [6], but under the additional
assumption u ≡ 0.

3.1. The degenerate case.

Proposition 3.1. Let u, v be weak solutions of the p-parabolic equation, p ≥ 2, in
Ω × (0,∞) such that u − v ∈ Lp

loc(0,∞;W 1,p
0 (Ω)). Then there exists a constant C =

C(p, n,Ω) such that for any 1 < m <∞

‖u− v‖Lm(Ω×{t2}) ≤ min
{
‖u− v‖Lm(Ω×{t1}), Cm

p−1
p−2 (t2 − t1)

1
2−p

}

for all 0 < t1 < t2 <∞. In particular, t 7→ ‖u− v‖Lm(Ω×{t}) is non-increasing for any
1 < m <∞ and also for m = ∞.

Proof. For m > 1, let

Im(t) =
∫

Ω
|u(x, t)− v(x, t))|m dx.

Then, using the equation and (2.2), we formally obtain

d

dt
Im(t) =m

∫

Ω
|u− v|m−2(u− v)(ut − vt) dx

=m(1−m)
∫

Ω
|u− v|m−2

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v) dx

≤Cm(1−m)
∫

Ω
|u− v|m−2|∇(u− v)|p dx.

(3.1)

Let us denote w = |u− v|. Since

|∇wm−2
p

+1|p =
(
m+ p− 2

p

)p

wm−2|∇w|p,

we infer by using the elliptic Sobolev inequality and Hölder’s inequality that

d

dt
Im(t) ≤Cm(1−m)

(
p

m+ p− 2

)p ∫

Ω
wm+p−2 dx

≤Cm(1−m)
(

p

m+ p− 2

)p (∫

Ω
wm dx

)m+p−2
m

=Cm(1−m)
(

p

m+ p− 2

)p

Im(t)
m+p−2

m

for a positive constant C = C(p, n,Ω). In other words, we have shown that

(3.2)
d

dt

[
Im(t)

2−p
m

]
≥ C

m− 1
(m+ p− 2)p

for all t ∈ (0,∞). This formal computation can be made rigorous by resorting to
Steklov averages, see e.g. [6].

Upon integration, (3.2) yields

Im(t2)
2−p
m ≥ Im(t1)

2−p
m + C

m− 1
(m+ p− 2)p

(t2 − t1),
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that is,

Im(t2)
1
m ≤

[
Im(t1)

2−p
m + C

m− 1
(m+ p− 2)p

(t2 − t1)
] 1

2−p
.

Since the exponent 1
2−p is negative, this inequality implies the desired estimate. ¤

A solution to (1.1) does not, in general, belong to Lp(0,∞;W 1,p(Ω)). For example,
if u ∈W 1,p(Ω) is a stationary solution, it is obvious that the integral

∫ ∞

0

∫

Ω
|u(x)|p dx dt

is finite only if u ≡ 0. However, the following is true:

Corollary 3.2. Let u and v be as in Proposition 3.1. Then∫ ∞

τ

∫

Ω

(
|u− v|p + |∇u−∇v|p

)
dx dt

is finite for any τ > 0.

Proof. In view of Proposition 3.1, we have∫ ∞

τ

∫

Ω
|u− v|p dx dt =

∫ ∞

τ
Ip(t) dt ≤ C

∫ ∞

τ
t

p
2−p dt <∞.

On the other hand, we infer from (3.1) that

d

dt
I2(t) ≤ −C

∫

Ω
|∇u−∇v|p dx,

which, upon integration, yields
∫ T

τ

∫

Ω
|∇u−∇v|p dx dt ≤ C

(
I2(τ)− I2(T )

)
≤ CI2(τ) ≤ CIp(τ)

2
p

for any 0 < τ < T <∞. ¤

If u ≡ 0, then it follows from (3.1) and the monotonicity of t 7→ ∫
Ω|∇v(x, t)|p dx

that
‖∇v‖Lp(Ω×{t}) ≤ Ct

1
2−p ,

that is, we have an estimate for the decay of energy. It is not known to us whether a
similar estimate holds for ‖∇v −∇u‖Lp(Ω×{t}) in general.

Remark 3.3. It is illuminating to examine the proof of Proposition 3.1 in the case
p = 2. Then one obtains

d

dt
Im(t) =

4(1−m)
m

∫

Ω
|∇|u− v|m2 |2 dx,

which, in view of the fact that

(3.3)
∫ |∇ψ|2 dx∫ |ψ|2 dx ≥ λ1,

where ψ ∈W 1,2
0 (Ω) and λ1 is the first eigenvalue of the Laplacian, gives

d

dt
Im(t) ≤ 4(1−m)

m
λ1Im(t).

Upon integration, this leads to the exponential rate of convergence in Lm-norm. How-
ever, the estimate does not remain stable as m → ∞, although it is known by other
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means that for the heat equation one has exponential rate of convergence also in L∞-
norm. It is important to notice that in the calculation above the only inequality occurs
when we apply (3.3) to the function |u− v|m2 .

In order to make things even more concrete, let us choose u ≡ 0 and v(x, t) =
e−λ1tϕ1(x), where ϕ1 is a (positive) first eigenfunction of the Laplacian, that is, ∆ϕ1 +
λ1ϕ1 = 0 in Ω. Then v is a solution to the heat equation, and by the reasoning above
we have

d

dt
Im(t) =

4(1−m)
m

e−mλ1t

∫

Ω
|∇(ϕ

m
2
1 )|2 dx.

However, a direct calculation yields

d

dt
Im(t) =

d

dt

(∫

Ω
|e−λ1tϕ1|m dx

)

= − λ1me
−mλ1t

∫

Ω
|ϕ

m
2
1 |2 dx,

so that ∫
Ω|∇(ϕ

m
2
1 )|2 dx

∫
Ω|ϕ

m
2
1 |2 dx

=
λ1m

2

4(m− 1)
.

In particular, the Rayleigh quotient of ϕ
m
2
1 grows linearly as m→∞. Incidentally, this

is the kind of improvement (in the case p = 2) over (3.3) that would allow us to pass
to the limit as m→∞ in the proof of Proposition 3.1.

3.2. The singular case. The quantity L in the next proposition depends on the
”energy” of the solutions. Further estimates of L are given in Remark 3.5.

Proposition 3.4. Let u, v be weak solutions of the evolutionary p-Laplace equation,
2n

n+2 ≤ p < 2, n ≥ 2, in Ω× (0,∞) such that u− v ∈ Lp
loc(0,∞;W 1,p

0 (Ω)). Then there
exists a constant C = C(p, n,Ω) > 0 such that for any m > 1

‖u− v‖Lm(Ω×{t2}) ≤ ‖u− v‖Lm(Ω×{t1})e
−CL

m
(t2−t1) for all 0 < t1 < t2 <∞,

where

L =
[
ess sup
t1≤t≤t2

(‖∇u‖Lp(Ω×{t}) + ‖∇v‖Lp(Ω×{t})
)]p−2

.

Proof. We proceed as in the proof of Proposition 3.1 and denote

Im(t) =
∫

Ω
|u(x, t)− v(x, t))|m dx.

Instead of (3.1), we now obtain
d

dt
Im(t) =m(1−m)

∫

Ω
|u− v|m−2

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v) dx

≤Cm(1−m)
∫

Ω
|u− v|m−2 |∇(u− v)|2

(|∇u|+ |∇v|)2−p
dx

=C
1−m

m

∫

Ω

|∇|u− v|m2 |2
(|∇u|+ |∇v|)2−p

dx,

(3.4)

where integration by parts and (2.3) were used. Since
∫

Ω
|∇|u− v|m2 |p dx ≤

(∫

Ω

|∇|u− v|m2 |2
(|∇u|+ |∇v|)2−p

dx

) p
2 (∫

Ω
(|∇u|+ |∇v|)p dx

) 2−p
2
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by Hölder’s inequality, we infer from the elliptic Sobolev inequality that
∫

Ω

|∇|u− v|m2 |2
(|∇u|+ |∇v|)2−p

dx ≥
(∫

Ω
|∇|u− v|m2 |p dx

) 2
p

(∫

Ω
(|∇u|+ |∇v|)p dx

) p−2
p

≥C
(∫

Ω
|u− v|mp∗

2 dx

) 2
p∗

(∫

Ω
(|∇u|+ |∇v|)p dx

) p−2
p

≥C
(∫

Ω
|u− v|m dx

) [
‖∇u‖Lp + ‖∇v‖Lp

]p−2

(3.5)

where p∗ = pn
n−p ≥ 2 because p ≥ 2n

n+2 .
Combining (3.4) and (3.5) leads to the estimate

d

dt
Im(t) ≤ C

1−m

m
L(t)Im(t)

where

L(t) =
[
‖∇u‖Lp(Ω×{t}) + ‖∇v‖Lp(Ω×{t})

]p−2
.

Hence we have
d

dt

[
log Im(t)

]
≤ C

1−m

m
L(t)

that upon integration gives

log Im(t2)− log Im(t1) ≤ − C
m− 1
m

∫ t2

t1

[
‖∇u‖Lp + ‖∇v‖Lp

]p−2
dt

≤ − C
m− 1
m

[
ess sup
t1≤t≤t2

(‖∇u‖Lp + ‖∇v‖Lp)
]p−2

(t2 − t1),

or, equivalently,
Im(t2) ≤ Im(t1)e−C m−1

m
L(t2−t1).

Raising both sides to the power 1
m yields the desired estimate. ¤

Remark 3.5. (i) If u = u(x) is a stationary solution, then, formally, vt ≡ 0 on
∂Ω × (0,∞) because the lateral boundary values of v are time-independent. This
implies that t 7→ ∫

Ω|∇v(x, t)|p dx is non-increasing, cf. [8]. Hence we have

ess sup
t1≤t≤t2

(‖∇u‖Lp(Ω×{t}) + ‖∇v‖Lp(Ω×{t})
)

= ‖∇u‖Lp(Ω×{t1}) + ‖∇v‖Lp(Ω×{t1})

≤ 2 ‖∇v‖Lp(Ω×{t1}),

where the last inequality holds because u minimizes the energy I(ψ) =
∫
Ω|∇ψ|p dx

over all functions ψ for which u− ψ ∈W 1,p
0 (Ω).

(ii) Proposition 3.4 holds (essentially with the same proof) in the case n = 1 for all
1 < p < 2.

(iii) If both v and u are Lipschitz continuous, then for all 1 < p < 2 we obtain the
estimate

‖u− v‖Lm(Ω×{t2}) ≤ ‖u− v‖Lm(Ω×{t1})e
−CL′

m
(t2−t1)

where L′ = (‖∇v‖∞ + ‖∇u‖∞)p−2.

4. The Moser iteration

Since the constants in the estimates of Section 3 blow up as m→∞, the passage to
the case m = ∞ requires additional work.
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4.1. The degenerate case.

Proposition 4.1. Let u, v be weak solutions of the evolutionary p-Laplace equation,
p ≥ 2, in Ω×(0,∞) such that u−v ∈ Lp

loc(0,∞;W 1,p
0 (Ω)). Then there exists a constant

C = C(p, n,Ω) > 0 such that for all T > 0

(4.1) ess sup
t≥T

‖u− v‖n+p− 2n
p

L∞(Ω×{t}) ≤
C

T
1+n

p

∫ T

T/2

∫

Ω
|u− v|p dx dt.

The first step of the proof is the following Caccioppoli estimate for the difference
u− v:

Lemma 4.2. Let u and v be as above. Then there is C = C(p) > 0 such that for any
α > 1 and 0 < t1 < t2 <∞, we have

ess sup
t1≤t≤t2

(∫

Ω
ζ|u− v|α dx

)
+

C(α− 1)α
(p− 2 + α)p

∫ t2

t1

∫

Ω
ζ|∇|u− v| p−2+α

p |p dx dt

≤ 2
∫ t2

t1

∫

Ω
|ζt||u− v|α dx dt.

(4.2)

Here ζ = ζ(t) is any non-negative Lipschitz continuous function so that ζ(t1) = 0.

Remark 4.3. Notice that the usual integral with ∇ζ does not show up. This is due
to the fact that u − v = 0 on the lateral boundary, which allows us take ζ to be
independent of x. This in turn has the effect that under Moser iteration the domain
does not shrink in the space variable x, only the time interval is reduced.

The proof of Lemma 4.2. Let

ψ(x, t) = |u(x, t)− v(x, t)|α−2(u(x, t)− v(x, t))ζ(t),

where α > 1. By using ψ (after taking a Steklov average) as a test function both for
u and for v, and subtracting the resulting equations we obtain

0 =
∫ t2

t1

∫

Ω

(−ψt(u− v) +
(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ψ)

dx dt

+
t2/

t1

∫

Ω
ψ(u− v) dx.

(4.3)

Let us first investigate the part involving ψt. We have, upon denoting w = u− v, that
∫ t2

t1

−ψtw dt = −
∫ t2

t1

w
∂

∂t
(|w|α−2wζ) dt

= −
t2/

t1

|w|αζ +
∫ t2

t1

|w|α−2wζwt dt

= −
t2/

t1

|w|αζ +
1
α

∫ t2

t1

ζ
∂

∂t
|w|α dt

= −
t2/

t1

|w|αζ +
1
α

t2/

t1

ζ|w|α − 1
α

∫ t2

t1

ζt|w|α dt.
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Hence
∫ t2

t1

∫

Ω
−ψtw dxdt+

t2/

t1

∫

Ω
ψw dx =

1
α




t2/

t1

ζ|w|α −
∫ t2

t1

ζt|w|α dt

 ,

and (4.3) and (2.2) then yield

1
α

t2/

t1

∫

Ω
ζ|w|α dx+ C(α− 1)

∫ t2

t1

∫

Ω
|w|α−2ζ|∇w|p dx dt

≤ 1
α

∫ t2

t1

∫

Ω
|ζt||w|α dx dt.

(4.4)

Select ζ ≥ 0 so that ζ(t1) = 0. Since for any t1 ≤ τ ≤ t2
∫

Ω
ζ(τ)|w(x, τ)|αdx =

τ/

t1

∫

Ω
ζ(t)|w|α dx ≤

∫ t2

t1

∫

Ω
|ζt||w|α dx dt

by (4.4), we infer that

1
α

ess sup
t1≤t≤t2

(∫

Ω
ζ|w|α dx

)
+ C(α− 1)

∫ t2

t1

∫

Ω
|w|α−2ζ|∇w|p dx dt

≤ 2
α

∫ t2

t1

∫

Ω
|ζt||w|α dx dt.

After noticing that

|w|α−2|∇w|p =
(

p

p− 2 + α

)p

|∇|w| p−2+α
p |p,

this reads

ess sup
t1≤t≤t2

(∫

Ω
ζ|w|α dx

)
+

C(α− 1)α
(p− 2 + α)p

∫ t2

t1

∫

Ω
ζ|∇|w| p−2+α

p |p dx dt

≤ 2
∫ t2

t1

∫

Ω
|ζt||w|α dx dt.

¤
We have arrived at an estimate for w of a kind from which an L∞-estimate is known

to follow via Moser iteration. For the reader’s convenience we write down the details,
beginning with the parabolic Sobolev inequality. For the proof, see e.g. [6, Chapter I].

Theorem 4.4. There exists a constant γ = γ(n, p, r) > 0 such that for all f ∈
L∞(t1, t2;Lr(Ω)) ∩ Lp(t1, t2;W

1,p
0 (Ω)),

∫ t2

t1

∫

Ω
|f |q dx dt ≤ γq

(∫ t2

t1

∫

Ω
|∇f |p dx dt

) (
ess sup
t1≤t≤t2

∫

Ω
|f |r dx

) p
n

,

where
q = p

(
1 +

r

n

)
.

The proof of Proposition 4.1. We apply the parabolic Sobolev inequality with the fol-
lowing choices: f = |w| p−2+α

p , where, as before, w = u − v, and r = pα
p−2+α , which

implies that

q = p

(
1 +

pα

n(p− 2 + α)

)
.
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Hence we obtain the estimate
∫ t2

t1

∫

Ω
|w|p−2+α(1+ p

n
) dx dt ≤ γq

(∫ t2

t1

∫

Ω
|∇|w| p−2+α

p |p dx dt
)

×
(

ess sup
t1≤t≤t2

∫

Ω
|w|α dx

) p
n

.

(4.5)

Notice that α ∈]1,∞[ implies r ∈] p
p−1 , p[ and

p

(
1 +

p

n(p− 1)

)
≤ q ≤ p

(
1 +

p

n

)
.

In particular, this means that above γq can be replaced by a constant S > 0 that
depends only on n and p, and not on α.

Let T > 0 and Tk = T (1 − 2−k), and choose ζk to be a piece-wise linear function
that satisfies 




ζk(t) = 0 for t ≤ Tk,
ζk(t) = 1 for t ≥ Tk+1,
|ζ ′k(t)| ≤ Tk+1 − Tk = 2k+1

T .

Let also t2 > T . By combining (4.5) and (4.2), we have

∫ t2

Tk+1

∫

Ω
|w|p−2+α(1+ p

n
) dx dt ≤SCαp−2

(∫ t2

Tk

∫

Ω
|ζ ′k||w|α dx dt

)1+ p
n

≤SCαp−2

(
2k+1

T

)1+ p
n

(∫ t2

Tk

∫

Ω
|w|α dx dt

)1+ p
n

.

Thus, denoting β = 1 + p
n ,

(4.6)

(∫ t2

Tk+1

∫

Ω
|w|p−2+αβ dx dt

) 1
β

≤ (
SCαp−2

) 1
β

2k+1

T

∫ t2

Tk

∫

Ω
|w|α dx dt

for k = 1, 2, 3, . . . .
We start the iteration from k = 1, α1 = p, in which case (4.6) reads

(∫ t2

T2

∫

Ω
|w|p−2+pβ dx dt

) 1
β

≤ (
SCpp−2

) 1
β

22

T

∫ t2

T1

∫

Ω
|w|p dx dt.

Then for k = 2, α2 = p− 2 + pβ < nβ2, we have

(∫ t2

T3

∫

Ω
|w|(p−2)(1+β)+pβ2

dx dt

) 1
β2

≤ (
SCpp−2

) 1
β

22

T

(
SC(nβ2)p−2

) 1
β2

(
23

T

) 1
β

×
∫ t2

T1

∫

Ω
|w|p dx dt

≤ (
SCnp−2

) 1
β

+ 1
β2

22+ 3
β

T
1+ 1

β

β
(p−2)( 1

β
+ 2

β2 )

×
∫ t2

T1

∫

Ω
|w|p dx dt,
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and for k = 3, α3 = (p− 2)(1 + β) + pβ2 < nβ3 the estimate takes the form
(∫ t2

T4

∫

Ω
|w|(p−2)(1+β+β2)+pβ3

dx dt

) 1
β3

≤ (
SCnp−2

) 1
β

+ 1
β2 + 1

β3
22+ 3

β
+ 4

β2

T
1+ 1

β
+ 1

β2

× β
(p−2)( 1

β
+ 2

β2 + 3
β3 )

∫ t2

T1

∫

Ω
|w|p dx dt.

Since β = 1 + p
n > 1, the series

∑ 1
βk and

∑ k
βk are convergent. Moreover,

αk+1 = (p− 2)(1 + β + β2 + · · ·+ βk−1) + pβk =
n

p
(p− 2)(βk − 1) + pβk,

so that
αk+1

βk
→ n+ p− 2n

p
as k →∞.

Thus we finally arrive at the estimate

(4.7) ess sup
T≤t≤t2

‖w‖n+p− 2n
p

L∞(Ω×{t}) ≤ C

(
1
T

)n+p
p

∫ t2

T
2

∫

Ω
|w|p dx dt,

where C > 0 depends only on p and n, and t2 > T > 0. Observe that the power of 1
T

comes from
1 +

1
β

+
1
β2

+ · · · = 1
1− 1

β

=
n+ p

p
.

The estimate (4.1) is obtained from (4.7) by letting t2 → T and using the fact that
t 7→ ‖w‖L∞(Ω×{t}) is non-increasing (see Proposition 3.1). ¤

4.2. The singular case.

Proposition 4.5. Let u, v be weak solutions of the evolutionary p-Laplace equation,
max{1, 2n

n+2} < p < 2, in Ω× (0,∞) such that u− v ∈ Lp
loc(0,∞;W 1,p

0 (Ω)). Then there
exists a constant C = C(p, n,Ω) > 0 such that for all T > 0

ess sup
t≥T

‖u− v‖2
L∞(Ω×{t}) ≤

C

L
pκ

2(p−κ)

T
(2−p)κ−2p

2(p−κ)

∫ T

T
2

∫

Ω
|u− v|2 dx dt,

where κ = 2n
n+2 and

L =
[
ess sup

t≥T
2

(‖∇u‖Lp(Ω×{t}) + ‖∇v‖Lp(Ω×{t})
) ]p−2

.

The Caccioppoli estimate reads in the singular case as follows:

Lemma 4.6. Let u and v be as above, and w = u − v. Then for any α > 1 and
0 < t1 < t2 <∞, we have

ess sup
t1≤t≤t2

(∫

Ω
ζ|w|α dx

)
+ C

α− 1
α

L

(∫ t2

t1

∫

Ω
ζ|∇w α

2 |p dx dt
) 2

p
(∫ t2

t1

ζ dt

) p−2
p

≤ 2
∫ t2

t1

∫

Ω
|ζt||w|α dx dt,

(4.8)

Here ζ = ζ(t) is any non-negative Lipschitz continuous function so that ζ(t1) = 0 and

L =
[
ess sup
t1≤t≤t2

(‖∇u‖Lp(Ω×{t}) + ‖∇v‖Lp(Ω×{t})
) ]p−2

.
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Proof. We proceed as in the degenerate case p ≥ 2 and obtain

0 =
∫ t2

t1

∫

Ω

(−ψt(u− v) +
(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ψ)

dx dt

+
t2/

t1

∫

Ω
ψ(u− v) dx

(4.9)

with ψ(x, t) = |u(x, t) − v(x, t)|α−2(u(x, t) − v(x, t))ζ(t). The part involving ψt is
treated as before, so let us focus on the part involving ∇ψ. Following the proof of
Proposition 3.4, we have

∫ t2

t1

∫

Ω

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ψ dx dt

=(α− 1)
∫ t2

t1

ζ(t)
(∫

Ω
|u− v|α−2

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v) dx
)
dt

≥C(α− 1)
∫ t2

t1

ζ(t)
(∫

Ω
|u− v|α−2 |∇(u− v)|2

(|∇u|+ |∇v|)2−p
dx

)
dt

=C
α− 1
α2

∫ t2

t1

ζ(t)

(∫

Ω

|∇|u− v|α2 )|2
(|∇u|+ |∇v|)2−p

dx

)
dt.

(4.10)

Since
∫

Ω

|∇|u− v|α2 )|2
(|∇u|+ |∇v|)2−p

dx ≥
[
ess sup
t1≤t≤t2

(‖∇u‖Lp + ‖∇v‖Lp)
]p−2

(∫

Ω
|∇|u− v|α2 |p dx

) 2
p

for all t1 ≤ t ≤ t2, and

(∫ t2

t1

∫

Ω
ζ|∇|u− v|α2 |p dx dt

) 2
p

≤
(∫ t2

t1

ζ dt

) 2−p
p

(∫ t2

t1

ζ

(∫

Ω
|∇|u− v|α2 |p dx

) 2
p

dt

)

by Hölder’s inequality, (4.10) implies that
∫

Ω

∫ t2

t1

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ψ dx dt

≥Cα− 1
α2

L

(∫ t2

t1

∫

Ω
ζ|∇|u− v|α2 |p dx dt

) 2
p

(∫ t2

t1

ζ dt

) p−2
p

where L =
[
ess sup
t1≤t≤t2

(‖∇u‖Lp(Ω×{t}) + ‖∇v‖Lp(Ω×{t})
) ]p−2

. By combining this with

the estimates on the two remaining terms in (4.9) obtained already in the degenerate
case, we conclude that

ess sup
t1≤t≤t2

(∫

Ω
ζ|w|α dx

)
+ C

α− 1
α

L

(∫ t2

t1

∫

Ω
ζ|∇w α

2 |p dx dt
) 2

p
(∫ t2

t1

ζ dt

) p−2
p

≤ 2
∫ t2

t1

∫

Ω
|ζt||w|α dx dt,

as claimed. ¤
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The proof of Proposition 4.5. Let T > 0 and Tk = T (1− 2−k), and choose the cut-off
functions ζk as in the proof of Proposition 4.1, that is,





ζk(t) = 0 for t ≤ Tk,
ζk(t) = 1 for t ≥ Tk+1,
|ζ ′k(t)| ≤ Tk+1 − Tk = 2k+1

T .

Let also t2 ∈ (T, 3
2T ).

We begin the iteration with α1 = 2. Since p > 2n
n+2 , we have p

2 + p
n > 1, and the

Sobolev inequality, Theorem 4.4, yields
∫ t2

t1

∫

Ω
|w|2( p

2
+ p

n
) dx dt ≤ S

(∫ t2

t1

∫

Ω
|∇w|p dx dt

)(
ess sup
t1≤t≤t2

∫

Ω
|w|2 dx

) p
n

,

where again w = u− v. In view of (4.8), we thus have
∫ t2

T2

∫

Ω
|w|2( p

2
+ p

n
) dx dt ≤S C

L
p
2

(∫ t2

T1

∫

Ω
|ζ ′1||w|2 dx dt

) p
2
+ p

n
(∫ t2

T1

ζ1 dt

) 2−p
2

.(4.11)

Let β = p
2 + p

n and γ = 1 + 2
n , and observe that 2β = pγ. Using this new notation

(4.11) can be rewritten as
(∫ t2

T2

∫

Ω
|w|2β dx dt

) 1
β

≤ (CS)
1
β

L
1
γ

4
T
T

2−p
2β

∫ t2

T1

∫

Ω
|w|2 dx dt.

Next take α2 = 2β, whence
∫ t2

T3

∫

Ω
|w|2β2

dx dt ≤S
(∫

Ω

∫ t2

T3

|∇|w|β|p dx dt
)(

ess sup
T3≤t≤t2

∫

Ω
|w|2β dx

) p
n

≤ CS

L
β
γ

(∫ t2

T2

∫

Ω
ζ ′2|w|2β dx dt

)β (∫ t2

T2

ζ2 dt

) 2−p
2

by Sobolev inequality and (4.8), and hence
(∫ t2

T3

∫

Ω
|w|2β2

dx dt)
) 1

β2

≤ (CS)
1
β

+ 1
β2

L
1
γ
(1+ 1

β
)

22+ 3
β

T
1+ 1

β

T
2−p
2

( 1
β

+ 1
β2 )

∫ t2

T1

∫

Ω
|w|2 dx dt.

It should by now be clear how the iteration proceeds. Since

1 +
1
β

+
1
β2

+ · · · = β

β − 1
=

p

p− κ

and
1
β

+
1
β2

+ · · · = κ

p− κ
,

where κ = 2n
n+2 , the final estimate takes the form

ess sup
T≤t≤t2

‖w‖2
L∞(Ω×{t}) ≤

C

L
pκ

2(p−κ)

T
(2−p)κ−2p

2(p−κ)

∫ T

T
2

∫

Ω
w2 dx dt,

where we have also used the relation γ = 2
κ . ¤

5. The end game

We now complete the proofs of Theorems 2.1 and 2.2.
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5.1. The case 2 < p ≤ n. Let u and v be as in Theorem 2.1. By Proposition 3.1,
∫

Ω×{t}
|u− v|p dx ≤ Ct

− p
p−2 .

Thus we infer from Proposition 4.1 that

‖u− v‖n+p− 2n
p

L∞(Ω×{t}) ≤C
(

1
t

)1+n
p

∫ t

t
2

∫

Ω
|u− v|p dx ds

≤C
(

1
t

)1+n
p

∫ t

t
2

s
− p

p−2 ds

≤Ct−(n
p
+ p

p−2
)
.

Since
n

p
+

p

p− 2
=
n+ p− 2n

p

p− 2
,

we obtain
‖u− v‖L∞(Ω×{t}) ≤ Ct

− 1
p−2 ,

as desired. ¤

5.2. The case p > max{n, 2}. Here we do not need the Moser iteration. Let u and v
be as in Theorem 2.1, and let

Im(t) =
∫

Ω
|u(x)− v(x, t))|m dx

as before. By the estimate (3.1) in the proof of Proposition 3.1,

d

dt
I2(t) ≤ −C

∫

Ω
|∇(u− v)|p dx.

Since p > n,

‖u− v‖p
L∞(Ω×{t}) ≤ C

∫

Ω
|∇(u− v)|p dx,

and thus we have
d

dt
I2(t) ≤ −C‖u− v‖p

L∞(Ω×{t}).

Upon recalling that t 7→ ‖u− v‖L∞(Ω×{t}) is non-increasing, an integration yields

C(2t− t)‖u− v‖p
L∞(Ω×{2t}) ≤C

∫ 2t

t
‖u− v‖p

L∞(Ω×{s}) ds

≤ I2(t)− I2(2t)

≤ I2(t)
and hence

‖u− v‖p
L∞(Ω×{2t}) ≤

C

t
I2(t).

Combining this estimate with Proposition 3.1 finally gives

‖u− v‖L∞(Ω×{2t}) ≤ C

(
1
t
t

2
2−p

) 1
p

= Ct
1

2−p

as claimed.
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5.3. The case max{1, 2n
n+2} < p < 2. Let u and v be as in Theorem 2.2, and let τ > 0.

By Proposition 3.4 (see also Remark 3.5 (ii)),
∫

Ω
|u(x)− v(x, t)|2 dx ≤

(∫

Ω
|u(x)− v(x, τ)|2 dx

)
e−CL(t−τ)

for all t > 2τ . Since t 7→ ‖u − v‖L∞(Ω×{t}) is non-increasing, we thus infer from
Proposition 4.5 that

‖u− v‖2
L∞(Ω×{t}) ≤

C

L
pκ

2(p−κ)

t
(2−p)κ−2p

2(p−κ) ‖u− v‖2
L2(Ω×{τ})

∫ t

t
2

e−CL(s−τ) ds

≤C(tL)−
pκ

2(p−κ) ‖u− v‖2
L2(Ω×{τ})e

−CL( t
2
−τ),

where κ = 2n
n+2 and, in view of Remark 3.5,

L =
[
ess sup

s≥τ

(‖∇u‖Lp(Ω) + ‖∇v‖Lp(Ω×{s})
) ]p−2

≥ 2p−2‖∇v‖p−2
Lp(Ω×{τ}).

6. The optimality of the decay rates

This section is devoted to some examles. We use the abbreviation

∆pv = div(|∇v|p−2∇v).
6.1. The degenerate case. Let 2 < p <∞ and consider a function v of the form

v(x, t) = w(x)T (t),

where w = 0 on ∂Ω. Then, formally,

vt(x, t) = w(x)T ′(t), ∆pv(x, t) = |T (t)|p−2T (t)∆pw(x),

and thus vt = ∆pv if

−∆pw = λw and
T ′

|T |p−2T
= −λ

for some λ ∈ R. The second differential equation can be written as
d

dt

[
1

2− p
|T (t)|2−p

]
= −λ,

which leads to

T (t) = ±
[
(p− 2)λt+ C

] 1
2−p

, t >
C

λ(2− p)
.

In order to find a non-trivial solution to the first equation −∆pw = λw, we minimize
the functional

I(φ) =
1
p

∫

Ω
|∇φ|p dx

over
Kp := {φ ∈W 1,p

0 (Ω): ‖φ‖L2(Ω) = 1}.
By standard theory, a minimizer w satisfies −∆pw = λw for some λ > 0. Moreover,
w 6= 0 since ‖w‖L2(Ω) = 1.

In conclusion, the function

v(x, t) = w(x)
[
(p− 2)λt

] 1
2−p

is a solution to (1.1) in Ω× (0,∞) and

sup
x∈Ω

|v(x, t)| = sup
x∈Ω

|v(x, t)− 0| = O(t
1

2−p ).
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Thus the decay rate obtained in Theorem 2.1 cannot be improved.

Remark 6.1. The separation of variables can be carried out also for 2n
n+2 < p < 2.

This results in the function

v(x, t) = w(x)
(
(2− p)

[
C − λt

]) 1
2−p

+
,

where w is again a minimizer of I(·) over Kp. Notice that v becomes extinct in finite
time.

6.2. The singular case. Let 2n
n+2 < p < 2, n ≥ 2, and consider the function

u(x) = |x| p−n
p−1 , x ∈ Ω := B(0, R) \B(0, r),

where, for given 0 < a < b, R and r are chosen to satisfy R
p−n
p−1 = a and r

p−n
p−1 = b.

Then u is a stationary solution to (1.1) in Ω, and it takes constant values a and b on
the two spheres that comprise ∂Ω.

Define

h(s) =
b− a

2π
sin

(
π

b− a
(s− a)

)
, s ∈ [a, b].

Then
(1) h(a) = h(b) = 0, h(s) ≥ 0,
(2) |h′(s)| ≤ 1

2 ,
(3) h′′(s) = − π2

(b−a)2
h(s)

for all s ∈ [a, b]. Now set

w(x, t) = u(x) + e−λth(u(x)), (x, t) ∈ Ω× (0,∞),

where λ > 0 is determined later. We have

wt = −λe−λth(u),

∇w =
[
1 + e−λth′(u)

]
∇u,

and
D2w =

[
1 + e−λth′(u)

]
D2u+ e−λth′′(u)∇u⊗∇u.

Thus

∆pw = |1 + e−λth′(u)|p−2
[
(1 + e−λth′(u))∆pu+ (p− 1)|∇u|pe−λth′′(u)

]

= − π2

(b− a)2
(p− 1)|∇u|pe−λth(u) |1 + e−λth′(u)|p−2,

and consequently

wt −∆pw = e−λth(u)
[
− λ+

π2

(b− a)2
(p− 1)|∇u|p |1 + e−λth′(u)|p−2

]

≤ e−λth(u)
[
− λ+

π2

(b− a)2
(p− 1)

(
n− p

p− 1

)p

b
p 1−n

p−n
1

2p−2

]

≤ 0

if λ > 0 is chosen large enough. Here the first inequality follows from

sup
x∈Ω

|∇u(x)| =
(
n− p

p− 1

)
r

1−n
p−1 =

(
n− p

p− 1

)
b

1−n
p−n
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and
|1 + e−λth′(u)| ≥ 1− e−λt|h′(u)| ≥ 1

2
.

Observe that since h(a) = h(b) = 0, v(x, t) = u(x) on ∂Ω × (0,∞). Now let v
be the solution to the evolutionary p-Laplace equation (1.1) in Ω × (0,∞) such that
v(x, t) = u(x) on ∂Ω×(0,∞) and v(x, 0) = w(x, 0) for x ∈ Ω. Then, by the comparison
principle,

v(x, t) ≥ w(x, t) = u(x) +
b− a

2π
e−λt

for all x for which |x| p−n
p−1 = a+b

2 . That is,

(6.1) sup
x∈Ω

|v(x, t)− u(x)| ≥ b− a

2π
e−λt.

This shows that the decay rate obtained in Theorem 2.2 cannot be improved.
In the case n = 1 we use the same argument with u(x) = |x|. The proof is even

simpler since sup
x∈Ω

|u′(x)| = 1.
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