SHARP ASYMPTOTIC BEHAVIOR FOR THE SOLUTIONS OF
DEGENERATE AND SINGULAR PARABOLIC EQUATIONS

PETRI JUUTINEN AND PETER LINDQVIST

ABSTRACT. We study the asymptotic behavior, as t — oo, of the solutions to the
evolutionary p-Laplace equation

vy = div(|Vo" "> Vo)

with time-independent lateral boundary values. We obtain the sharp decay rate of
maxgzen|v(z,t) — u(x)|, where u is the stationary solution, both in the degenerate
case p > 2 and in the singular case 1 < p < 2. A key tool in the proofs is the Moser
iteration, which is applied to the difference v(z,t) — u(z). In the singular case we
construct an example proving that the celebrated phenomenon of finite extinction
time, valid for v(z,t) when u = 0, does not have a counterpart for v(zx,t) — u(z).

1. INTRODUCTION

The asymptotic behavior of the solutions of the evolutionary p-Laplace equation
(1.1) v = div(|VoP2Vv)

as t — oo is a much studied question. It is clear that u(x) = tlim v(z,t) should be a
—00

solution to the stationary problem
(1.2) div(|Vu[P~2Vu) =0

under natural assumptions. The case when the domain is the whole R™ x (0, 00) is
well understood, see e.g. [10], [14], [5], [11]. Also the case © x (0,00) when v = 0 on
the lateral boundary 92 x (0, 00) is much studied. In both cases explicit comparison
functions are available.

The objective of our note is the sharp decay rate of

t —
max[v(z, t) — u(z)]

as t — oo, without the assumption u = 0 on 9. We assume that ) has finite volume.
In the linear case p = 2 superposition reduces this to the situation with zero boundary
values. However, the nonlinearity of the equation (1.1) causes technical difficulties for
other values of p. In the degenerate case p > 2 the sharp decay rate is O(t‘l/ (7’_2)) as
t — o0o. The right decay rate is easy to obtain for the L"-norm, 2 < m < oo, but the
passage to the above L°°-norm is demanding in the range p < n. Our proof is based
on the Moser iteration, which, of course, is well known for solutions. However, we will
apply the method to the difference v(x,t) — u(x), which itself is not a solution, thus
bounding the L norm in terms of the L? norm. A special feature in the structure of
the equation makes this possible. In passing, we mention that this approach does not
appear to work for the rather similar looking equations

v = A(|v\m*1v)
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and
dlv|P~2v
ot
having non-constant lateral boundary values.
Then we turn to the singular case! max{1
estimate

= div(|Vo[P2Vv)

, HQ—J:‘Q} < p < 2. We first prove the decay

max |[v(z,t) — u(z)| < Ce ™,
e

Here we have detected a phenomenon that is surprising at first sight. It is known that
with zero lateral boundary values (which implies u = 0) there is a finite extinction
time: v(x,t) = 0 when ¢ > T, see [6, Chapter VII|. However, in general, it is not true
that v(z,t) = u(z) after some time T™*. To show this, we have constructed an example
with no better than exponential decay. Thus the situation with zero lateral boundary
values is, indeed, quite special and different from the general case. This interesting
phenomenon indicates that our study completes the existing theory.
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2. DEFINITIONS AND MAIN RESULTS

To be on the safe side, we first define the concept of solutions. They are the usual
weak solutions belonging to a Sobolev space. Let €2 be a bounded domain in the
Euclidean space R™ and consider the space-time cylinder © x (0,00). In the case p > 2
we say that v € LI (0,00; W'P(Q)) is a solution to (1.1) if

(2.1) / /(—vgpt + |Vu|P~2Vv - V) dz dt = 0
0 Jo

for each ¢ € C§°(Q2 x (0,00)). The singular case 1 < p < 2 requires an extra a priori
summability, for example v € L52.(0, 00; L*(Q)) will do. In particular, we always have

IThe case p < max{1, Tf—fg} seems to be somewhat unsettled, and we do not consider it in our
study.
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t
/2/ (02—|—|Vv]p) dx dt
t1 Q

is finite for any 0 < t; < to < 0co. By the regularity theory we may assume that the
solutions are continuous, see [6].

The lateral boundary values are taken in Sobolev’s sense. Thus we require that
v(z,t) —u(x) € Wol’p(Q) for a.e. time ¢. In fact, we may as well have two time
dependent solutions v = v(z,t) and u = u(x,t) of (1.1). The decay of |v(z,t) — u(x,t)|
is studied under the assumption v —u € LI (0, c0; W& P(©2)). We do not prescribe
initial values.

Our main results read as follow:

that the integral

Theorem 2.1. Let 2 be a bounded domain in R™ and 2 < p < co. Let u be a solution
to the stationary problem (1.2) in Q and let v be a solution to (1.1) in 2 x (0,00) such
that v —u € LV, (0,00; Wy ?(Q)). Then there exists a constant C = C(p,n,Q) such
that
1
sup [v(z,t) —u(x)| < Ctrr fort > 0.
zeQ
Notice that the costant C' above is numerical. However, in the singular case below

also a quantity L, depending on the solution itself, is present.

Theorem 2.2. Let Q2 be a bounded domain in R™ and max{1, HZT’_LZ} <p<2 Letu
be a solution to the stationary problem (1.2) in Q and let v be a solution to (1.1) in
Q x (0,00) such thatv—u € L2, (0,00; W, ?(Q)). Then there exists A = A(p,n, Q) such

that for all t > 27 > 0 we have

£) —u(w)| < C(EL) T [lu — MG
Sup [v(z,t) —u(z)] < CQEL) @9 |lu — v 2@qx e 277,
where K = nQ—fr‘Q and
2
L= va”ip(gx{f})'

As mentioned in the introduction, both Theorems 2.1 and 2.2 are sharp. The relevant
examples are given in Section 6.

Finally, we recall the following elementary vector inequalities that are used fre-
quently: for all a,b € R"™ we have

(2.2) 22P|g — bfP < (|afP"2a — [bP~%b) - (a — b)

if 2 <p< oo, and

—b?
@ = b (a2 — 1bP2) - (a—b),

(2.3) (p— 1)W <

if 1 < p < 2. (As a matter of fact, our approach is rather versatile and it works just
as well for equations of the form

vy = div Az, V),

where A(z, Vv) satisfies standard growth conditions and a counterpart of (2.2) or

(2.3)).
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3. NORM DECAY ESTIMATES

We begin by establishing decay estimates for the norms [|u — v|[mQx (), 1 <m <
o0. The idea is to show that t + [[u—v||Lm@x{s}) obeys a certain differential inequality.
Similar reasoning has been used for example in [3] and [6], but under the additional
assumption u = 0.

3.1. The degenerate case.

Proposition 3.1. Let u,v be weak solutions of the p-parabolic equation, p > 2, in
Q x (0,00) such that u —v € LY (0, o0; Wol’p(Q)). Then there exists a constant C' =

loc

C(p,n, Q) such that for any 1 < m < oo

, po1 a1
|u — vl Lm@xft,}) < min { lw = vl L @x t1}), Cmr=2 (ta — t1)2‘p}

for all 0 <ty <t <oco. In particular, t — |lu —v||pmQx{}) 8 non-increasing for any
1 <m < oo and also for m = oo.

Proof. For m > 1, let
0= [ Jute.t) = ol )" da
Q

Then, using the equation and (2.2), we formally obtain

Gty =m [ Ju= o2 = o) = ) da

(3.1) =m(l—m) / lu — v]m72(\Vu|p72Vu — |[Vu[P72Vv) - V(u — v) dz
Q
<Cm(1 —m) / = o™ 2|V (1 — )P de
Q

Let us denote w = |u — v|. Since

V5 (m“’ 2) "2V,

we infer by using the elliptic Sobolev inequality and Holder’s inequality that

d
— I (t) < 1— w™ P2
g fm(®) s Cm( (m-l—p—2> o v
m+p—2
<Cm(l—m ( > (/wmdaz>
m-+p—2 Q
m—+p—2
m(t m
(m +p— 2) €)
for a positive constant C' = C'(p,n,2). In other words, we have shown that
d 2—p m—1
3.2 —[Im ¢ 7] >0
(3:2) dt ®) (m+p—2)P

for all t € (0,00). This formal computation can be made rigorous by resorting to
Steklov averages, see e.g. [6].
Upon integration, (3.2) yields

2-p 2-p m—1
In(t2) 7 = In(t) 7 + O

[

(ta —t1),
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that is,
1 2-p m—1 5
m < m — —_—
Ln(t2)7 < [Im(t2) 5 + Comapmpte—w]™"
Since the exponent ﬁ is negative, this inequality implies the desired estimate. O

A solution to (1.1) does not, in general, belong to LP(0, co; W1P(Q)). For example,
if u € WHP(Q) is a stationary solution, it is obvious that the integral

/0 b /Q u(z)|P da dt

is finite only if ©w = 0. However, the following is true:

Corollary 3.2. Let u and v be as in Proposition 3.1. Then

/ / (\u—v\p+\Vu—Vv|p>d:rdt
T Q

Proof. In view of Proposition 3.1, we have

//\u—v\pd:cdt:/ Ip(t)dtgc/ t77 dt < oco.
T Q T T

On the other hand, we infer from (3.1) that
d
—Ih(t) < —C’/ |\Vu — V|l dz,
dt Q

which, upon integration, yields

1s finite for any T > 0.

hSEIN

T
/ /\vu ~VoPdedt < O(Lr) - B(T)) < OI(r) < Chy(7)
T Q
forany 0 <7 < T < o0. O

If u = 0, then it follows from (3.1) and the monotonicity of ¢ — [,|Vv(x,t)[P dx
that

1
[Vl Loax ) < Ct2e,
that is, we have an estimate for the decay of energy. It is not known to us whether a
similar estimate holds for [[Vv — Vul|p(qx ) in general.

Remark 3.3. It is illuminating to examine the proof of Proposition 3.1 in the case
p = 2. Then one obtains

4
dt

which, in view of the fact that

4(1 — m
L) = 2= 19— o3 2 de,
m Q

JIVY]? dx
f‘l/]|2 dr Z /\17

where ¢ € VVO1 ’Q(Q) and Ap is the first eigenvalue of the Laplacian, gives

d 4(1 —m)

Ghn(®) < M)

Upon integration, this leads to the exponential rate of convergence in L™-norm. How-
ever, the estimate does not remain stable as m — oo, although it is known by other

(3.3)
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means that for the heat equation one has exponential rate of convergence also in L>°-
norm. It is important to notice that in the calculation above the only inequality occurs
when we apply (3.3) to the function |u —v|%.

In order to make things even more concrete, let us choose u = 0 and v(z,t) =
e Mty (x), where @ is a (positive) first eigenfunction of the Laplacian, that is, Ap; +
A1 = 0in Q. Then v is a solution to the heat equation, and by the reasoning above
we have p A1

Gitm(t) = et | 9 ds

However, a direct calculation yields

d d
7Im - -\t m
' = </§2|e a1 d:U)

m
= — Alme_mAlt/\gaf |2dx,
Q

so that .
fQ‘v(@f )|2 dx o Apm?

Jolo? e Am—1)

In particular, the Rayleigh quotient of ¢ 2 grows linearly as m — oo. Incidentally, this
is the kind of improvement (in the case p = 2) over (3.3) that would allow us to pass
to the limit as m — oo in the proof of Proposition 3.1.

3.2. The singular case. The quantity L in the next proposition depends on the
“energy” of the solutions. Further estimates of L are given in Remark 3.5.

Proposition 3.4. Let u,v be weak solutions of the evolutionary p-Laplace equation,

nQ—fQ <p<2,n>2 i Qx(0,00) such that u—v € L} (0,00; Wol’p(Q)). Then there
exists a constant C = C(p,n,Q) > 0 such that for any m > 1

_CLy,_
lu = vl pm@x gty < llu—vllpm@xqeype = 270 for all 0 <ty <ty < o0,

where

p—2
L- [ sup (IVall @iy + IVoll i) |-

t1 <t<to

Proof. We proceed as in the proof of Proposition 3.1 and denote

I,(t) = /Q|u(x,t) —v(x,t))|™ dx.

Instead of (3.1), we now obtain

%Im(t) =m(l— m)/]u — "2 (|VuP2Vu — |VoP72Vv) - V(u — v) dx
Q
_ V(u—v)?
(3.4) = m( m)/Q‘u U| (|Vu‘_|_|vv|)27p X
1—m |V|u— |22
=C d
TN TR

where integration by parts and (2.3) were used. Since

2—p

P
/|v|u_v|2“|pdx< / [Vie—vlz? </ <|Vu|+|Vv|>Pdw)2
Q ~ \Ja (|Vu| +|Vu|)2p Q
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by Hoélder’s inequality, we infer from the elliptic Sobolev inequality that

p—2

m 2
|V|u—o|z|? </ m >p</ >p
dx > Viu—v|2|Pde Vu| + |Vv])? dx
| o de > ([ vl — ol [ (vul+ 190

> o [lu-o d) ([ awul+ 9oty dm)

p—2
>C (/ lu — v\mdm> |:”VU||LP + HVUHLp}
Q

where p* = %fp > 2 because p > nQ—fr‘Q

Combining (3.4) and (3.5) leads to the estimate

%Im(t) < Cl_TmL(t)Im(t)

where
p—2
L(#) = [IVull oo + 190l oo i)

Hence we have p )
-m
. < -
7 [log Im(t)} <C L(t)

m
that upon integration gives

m—1 % p—2
log I (t2) — log In(t1) < — C*— / (IVulli + Vol | at
t1

IN

m—1 P2
-C - [esssup (IIVullLr + ||Vv||Lp)] (ta —t1),

t <t<to
or, equivalently,
In(ta) < I (t1)eC 5 Elt=t),
Raising both sides to the power % yields the desired estimate. O

Remark 3.5. (i) If v = wu(x) is a stationary solution, then, formally, v, = 0 on
082 x (0,00) because the lateral boundary values of v are time-independent. This
implies that t — [,|Vu(z,t)[P dz is non-increasing, cf. [8]. Hence we have

esssup (|Vullzex i) + IVl zrx ) = IVUulle@xin ) + V0l e@xia )

t1 <t<to
<2[|Vv|[ze@x{t:})s

where the last inequality holds because u minimizes the energy I(¢) = [|V¥|P da

over all functions 1 for which v — ¢ € VVO1 P(Q).

(ii) Proposition 3.4 holds (essentially with the same proof) in the case n = 1 for all
1l<p<?

(iii) If both v and w are Lipschitz continuous, then for all 1 < p < 2 we obtain the
estimate

_cL ¢y, _
HU_UHLW(QX{t2}) S ”u — U”Lm(QX{tl})e m (ta—t1)

where L' = (||Vv||oo + || V]| oo )P 2.

4. THE MOSER ITERATION

Since the constants in the estimates of Section 3 blow up as m — oo, the passage to
the case m = oo requires additional work.
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4.1. The degenerate case.

Proposition 4.1. Let u,v be weak solutions of the evolutionary p-Laplace equation,
p>2,inQx(0,00) such that u—v € L7 (0, 00; Wol’p(Q)). Then there exists a constant

loc

C =C(p,n,Q) > 0 such that for all T >0

n+p— 22 C T
4.1 esssup ||u — v||; o0 f gn/ /u—vpdxdt.
(4.1) Ss | I Loe (0 1) % Jos Q| |

The first step of the proof is the following Caccioppoli estimate for the difference
U — v

Lemma 4.2. Let u and v be as above. Then there is C = C(p) > 0 such that for any
a>1and0 <ty <ty < oo, we have

C(Oé — 1)04 /t2 / p—2+a
ess su uw—v|%dx | + ————F— Viu—v| » |Pdxdt
T (/Q ¢ | ) (p—2+a) Jy QC| | | |

to
§2/ /|Ct||u—v]°‘da:dt.
t1 Q

Here ¢ = ((t) is any non-negative Lipschitz continuous function so that ((t1) = 0.

(4.2)

Remark 4.3. Notice that the usual integral with V({ does not show up. This is due
to the fact that u — v = 0 on the lateral boundary, which allows us take ( to be
independent of . This in turn has the effect that under Moser iteration the domain
does not shrink in the space variable x, only the time interval is reduced.

The proof of Lemma 4.2. Let
(@, t) = [u(z,t) — vz, )] (u(z,t) —v(z, )(1),

where o > 1. By using ¢ (after taking a Steklov average) as a test function both for
u and for v, and subtracting the resulting equations we obtain

t2
0= / / (—te(u— ) + (|VuP~*Vu — |[VoP72V0) - Vi) dz dt
t1 Q

+7/Qz/1(u—v)dx.

Let us first investigate the part involving ;. We have, upon denoting w = u — v, that

(4.3)

1)

to 8
—wdt = —/t wa(\w\a_QwC) dt

t1
to to
= — /]w|°‘§+/ ]w|0‘72w(wt dt
t1
t1

to
1 [ 9
== [lul¢+— [ Cofwldt
& (6% t1 8t

to 1 to 1 to
== Jlwl¢H = [l =~ [ Glulat
t1 o t1 a 1
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Hence

to to 1 to to
/ /—wtwd:rdt+//wwdx: /C|w\0‘— Celw|*dt |,
t1 Q f Q « f t1

and (4.3) and (2.2) then yield

to n
1 2
/C/gmwhm+wxa—1x/ /}wPQQwadxﬁ
« 4 Q t1 Q
I
g/‘/mmwmw
« t1 Q

Select ¢ > 0 so that ((¢1) = 0. Since for any t; < 7 < t9

/Q <<r>\w<x,r>\adx=t1/7 /Q C(t)w]® d < / /Q Cillw|” de dt

by (4.4), we infer that
to
—esssup </ C]w|adac) +C(a—1) / /]w|“ 2|\ Vwl|P da dt
&ty <t<to

g/(/mmwmw
atl Q

After noticing that

(4.4)

P _
0] VwlP = (p) Vw5
P—2+«

Claa—1)a /t2/ P
esssu w|dr | + ———— V]w
t1<t<t12)(/Q<| | ) (p—2+a) Jy QC’ ol
t2
§2/ /]Ct|]w|°‘dxdt.
t1 Q

We have arrived at an estimate for w of a kind from which an L°°-estimate is known
to follow via Moser iteration. For the reader’s convenience we write down the details,
beginning with the parabolic Sobolev inequality. For the proof, see e.g. [6, Chapter I].

this reads

—24a
p |Pdxdt

O

Theorem 4.4. There exists a constant v = ~y(n,p,r) > 0 such that for all f €
Lty tg; LT () N LP(t, a3 Wy P (),

to to %
/ /]f\qudt < A4 (/ /\Vf|pdmdt> <esssup/\f|’"da:) ,
t1 Q t1 Q t1<t<te JQ

where ,

g=p <1 + —) .
The proof of Proposition 4 1. We apply the parabolic Sobolev inequality with the fol-
lowing choices: f = ]w| , where, as before, w = u — v, and r = p_;_‘m, which

implies that

q:p(”wﬁw)'
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Hence we obtain the estimate

to t2 _
/ /|w]p_2+a(1+5)d:rdt <1 </ /|V|w|P i
t1 Q t1
<esssup/\w]a dw)
t1 <t<to

Notice that a €]1, oo implies r €] L7, p[ and

p(14 0y ) <asr(1+2).

In particular, this means that above ¢ can be replaced by a constant S > 0 that
depends only on n and p, and not on a.

Let T > 0 and T}, = T(1 — 27%), and choose (;. to be a piece-wise linear function
that satisfies

+a
[P dx dt)
(4.5)

Ck(t) =0 for t < Ty,

G(t) =1 for t > Ty,
k+1
()] < Tosr — T = 2.

Let also to > T'. By combining (4.5) and (4.2), we have

t2 1+3
/ /]w|p_2+a(1+z)dac dt <SCaP~? </ /|C,’€Hw|°‘dac dt)
Tk+1 Q
< SCaP~ 2< 7 > (/ /|w\adxdt> :

Thus, denoting 3 =1+ £,

l k
2 +1
(4.6) (/ /|w|P—2+aﬁ dxdt) < (SCa?7?) 5 / /|w|adxdt
Tra1 JQ Q

fork=1,2,3,....
We start the iteration from k = 1, ay = p, in which case (4.6) reads

1

< /T :2 /Q Jw|P~2+PP da:dt) < (SCpr?) / / |w|P da dt.

Then for k =2, ap = p — 2+ pB < nB?, we have

L

to 5 32 1 23
(/ /’w|(p2)(1+ﬁ)+pﬁ da:dt) (SCpp ) (SC(nﬂ2)p 2) 52 ()
T3 JQ T

to
x/ |w|? dz dt

T JQ

=
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and for k =3, ag = (p — 2)(1 + 3) + pB% < nB? the estimate takes the form

2+3+4

1
. 1
/ 2 / | P28+ 28° gy ) < (SCnp_2)%+ﬁ%+ﬁ% - F

1 2 3
« gP DGt 5) / /\w|pdxdt.
Q

Since 3 =14 £ > 1, the series ) ﬁ—lk and ) % are convergent. Moreover,

a1 =P—2) A+ B+ 682+ 4+ +ppt = %(p— 2)(8" —1) + psF,

so that

Oég-}:l +p—— as k — oo
Thus we finally arrive at the estimate
+p—2n 1 anp t2
(4.7) gsitsgp ||wHLOO(QXp{t}) <C <T) /g /Q|w|1” dx dt,

where C' > 0 depends only on p and n, and to > T > 0. Observe that the power of %
comes from

1 1 n+p
b o= = .
CRNE 1-3 p
The estimate (4.1) is obtained from (4.7) by letting to — T and using the fact that
t = |lw||Leo(@x¢}) s non-increasing (see Proposition 3.1). O

4.2. The singular case.

Proposition 4.5. Let u,v be weak solutions of the evolutionary p-Laplace equation,
max{1, n+2} <p<2,inQx(0,00) such that u—v € LI (0, 00; Wol’p(Q)). Then there

loc

exists a constant C' = C(p,n,2) > 0 such that for all T >0

C (2 P)N 2p
esssup 4~ vl ey < T 707 / =P ds.

L 2(p—r)

_ 2n
where K = e and

p—2
L= [GSSSUP (IVull Lo s g3y + IV 0| 1o Qx{t}))} -
t>

The Caccioppoli estimate reads in the singular case as follows:

Lemma 4.6. Let v and v be as above, and w = u —v. Then for any a > 1 and
0 <ty <ty < oo, we have

ess sup </ C|wad$>
(4.8) t1<t<ts

2/ /\CtHwad:cdt,
t1 Q

Here ¢ = ((t) is any non-negative Lipschitz continuous function so that ((t1) = 0 and

-2

</ /C|Vw2\pda:dt>§ </:Cdt> ;

p—2
L= [5828111) (IVull Lo s g3y + IV 0| 1o Qx{t}))} -
1
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Proof. We proceed as in the degenerate case p > 2 and obtain

t2
0= / / (—e(u— ) + (|[VuP~*Vu — |[VoP72V0) - Vi) da dt
t1 Q

+7/91[)(u—v)d33

with ¥(z,t) = |u(x,t) — v(z,t)|* 2(u(z,t) — v(z,t))((t). The part involving vy is
treated as before, so let us focus on the part involving V). Following the proof of
Proposition 3.4, we have

(4.9)

to
/ /(|Vu]p2Vu—]Vv|p2Vv)-V¢dxdt
t1 Q

=(a—1) /t2 ¢(t) (/Q\u —0|*2(|VulP 2 Vu — |[VoP"2V0) - V(u — v) dx) dt

t1

(4.10) t 2
? a2 |V(u—0)
>Cla—1) /tl ¢(t) </Q|u—v| 2(|Vu\ V0 dm> dt
_a—1 " [V |u—v|2)?
e AL (/Q (V] + Vel dx) o
Since

e 2
|V]u —v|2)|? p—2 / N 2
> \V4 \V4 P
/Q (Va7 V)27 dx [(;sifggu ullze + || U||Lp):| Q|V|u v|2|P da

for all t;1 <t <t9, and

</:/S)C|V|U—v|3|”dxdt>; < (/:Cdt) v

by Holder’s inequality, (4.10) implies that

([ <tfme-ror)'

to
// (IVulP~2Vu — |Vo[P~2Vv) - Vi dz dt
QJty

—1 ([t . N
5 L(/ /C|V|u—v|2\pdxdt) </ Cdt>
o t1 Q t1

p—2
where L = [esssup (IVull Lo s g3y + HVU‘|LP(Q><{15})):| . By combining this with
t1<t<t2
the estimates on the two remaining terms in (4.9) obtained already in the degenerate

case, we conclude that

ess sup (/ C|w°‘dw> +C
t1 <t<tg Q

to
§2/ /]Ct|]w|0‘dxdt,
t1 Q

as claimed. O

>02

—2

a—1 t2 a ’ t2 5
L(/ /g|vu;z\pdxdt> (/ gdt)
« t1 Q t1
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The proof of Proposition 4.5. Let T > 0 and T, = T(1 — 2"“), and choose the cut-off
functions ( as in the proof of Proposition 4.1, that is,
CG(t)=0 for t < Ty,

Ck(t) =1 for t > Tk—i—la
k+1
G (0] < Ty — Ti = 25—

Let also t5 € (T, 37).
We begin the iteration with oy = 2. Since p >
Sobolev inequality, Theorem 4.4, yields

to to %
/ /\w[2(§+5)d:pdt <S8 </ /]Vw\pdxdt> <esssup/\wl2dx) ,
t1 JQ t1 JQ t1<t<ts JQ

where again w = u — v. In view of (4.8), we thus have
([au)”

t2 PP C t2 t2 2
(4.11) lw|?EF0) da dt < S— & |w|? da dt ¢ dt .
P 1
Ts [9] L2 Ty Q Ty

Let 6 =% + % and vy =1+ %, and observe that 23 = pv. Using this new notation
(4.11) can be rewritten as

n+2, we have £ + £ > 1, and the

+

[SIS]
33

1

to B
(/ /yw|2ﬁdxdt> g(csl) =T 2,8/ /|w\2dfcdt
T JQ L~ T

Next take ag = 203, whence

@[

p

to to n
/ /|w|252 dedt <S </ / |V |wl|P|P dz dt) esssup/|w|2’g dz
T3 Q QJTy T3<t<ta JQ

2—p

([ fmeraa) ([ )

by Sobolev inequality and (4.8), and hence

to B% (CS)%JFB% 22+%
(/ /yw|252 dxdt)) <0 e 52)/ /|w\2dxdt
7 Jo L7435 pits
It should by now be clear how the iteration proceeds. Since
1 1 I6] P
pt@ T -1 p—k
and
1 n 1 n K
g B p—K
where k = +2, the final estimate takes the form
C @-pr—2p [T 9
ess sup HwHLw(QX{t}) < ———T -5 / / w* dx dt,
T<t<ty L20—x) ZJa
where we have also used the relation v = % g

5. THE END GAME

We now complete the proofs of Theorems 2.1 and 2.2.
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5.1. The case 2 < p <n. Let u and v be as in Theorem 2.1. By Proposition 3.1,

/ |u—fu|pdx§Ct7P%2.
Qx{t}

Thus we infer from Proposition 4.1 that
t
/ /|u—v|pdxds
L Ja

+p—@ 1
[u U”LOO Qx{t} n

TL

’G

(i)
)

1 et _p_
<C n /3 =2 (s
3
<ot G,
Since
2
p p—2 p—2
we obtain
1
lu — v Lo ax ey < Ct P2,
as desired.

5.2. The case p > max{n,2}. Here we do not need the Moser iteration.

be as in Theorem 2.1, and let

:/|u(x) — oz, 6))|™ da
Q

as before. By the estimate (3.1) in the proof of Proposition 3.1,

EIQ( < —C/ |V (u—v)Pde.
dt Q

Since p > n,
= 0l s iy < C /Q V(- v)P da,

and thus we have

i]g(t) < —Cllu —

o UlZee @x i)

g

Let v and v

Upon recalling that ¢ — |[u — v[| o (@x{s}) I8 non-increasing, an integration yields

2t
C(2t = 1)][u = vl oy < C/t [ = 017 e (0 ) 5
<Ix(t) — I2(21)
< I1(t)
and hence
C

llu UHLoo(QX{Qt}) < *12@)-

Combining this estimate with Proposition 3.1 finally gives

1

1 2 \» 1
Hu — U”LOO(QX{Qt}) <C <tt2p> = (Ct2»

as claimed.
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5.3. The case max{1l, nz—fQ} < p < 2. Let u and v be as in Theorem 2.2, and let 7 > 0.
By Proposition 3.4 (see also Remark 3.5 (ii)),

/QU(a:) —o(z,t)dzx < </Q|u(x) _ U($,T)|2dx> ~CL(t—)

for all £ > 27. Since t +— |lu — v||Lec(x{s}) 18 non-increasing, we thus infer from
Proposition 4.5 that

C (2—p)r—2p t _CL(s—
= 0l ey S gt T u= ol [ O ds
L20—~) i

< C(tL)_% [ UH%Q(QX{T})B—CL(%T%

where xk = n2T7-12 and, in view of Remark 3.5,

p—2 _ _
L= [eSS sup ([|Vull e () + HVUHLP(QX{S}))} > 22| Vol o o)

s>T
6. THE OPTIMALITY OF THE DECAY RATES
This section is devoted to some examles. We use the abbreviation
Apv = div(|Vu|P 2 V).
6.1. The degenerate case. Let 2 < p < oo and consider a function v of the form
v(z,t) = w(x)T(t),
where w = 0 on 92. Then, formally,
vz, t) = w(@)T'(t),  Apv(,t) = [TE)PT() Apw(z),

and thus v; = Apv if

T/
—Ap’u} = \w and W = -\
for some A € R. The second differential equation can be written as
d 1
— | T@®)*P| = -\
i |5 TR =
which leads to
Qip C
Tt:i[p—Q)\t—i—C} , t> ——.
(1) =+[p-2) G

In order to find a non-trivial solution to the first equation —A,w = Aw, we minimize

the functional )
10) = [ Vol do
pJa
over )
Ky = {p € WP (Q): 14l 2(0) = 1}

By standard theory, a minimizer w satisfies —A,w = Aw for some A\ > 0. Moreover,
w # 0 since [Jw(|z2() = 1.

In conclusion, the function
1

(e, t) = w(z) [(p - Q)At} =

is a solution to (1.1) in Q x (0, 00) and
1
sup [v(z, t)| = sup [v(z, 1) — 0] = O(t77).
JPGQ er
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Thus the decay rate obtained in Theorem 2.1 cannot be improved.

Remark 6.1. The separation of variables can be carried out also for nz—" <p <2

12
This results in the function

vz, t) = w(z) ((2 —p) [(J - At])f” ,

where w is again a minimizer of I(-) over K. Notice that v becomes extinct in finite
time.

2n

s <p < 2, n > 2, and consider the function

6.2. The singular case. Let
u(@) = 2|, @ eQi=B(0,R)\B(,r),

where, for given 0 < a < b, R and r are chosen to satisfy Rr 1 = qand re1 = b.
Then u is a stationary solution to (1.1) in 2, and it takes constant values a and b on
the two spheres that comprise 0.

Define ;
h(s) = 2—7ra sin (bﬂa(s — a)> , s€la,b
Then
(1) h(a) = h(b) =0, h(s) >0,
(2) [W(s)] < 5,

w(z,t) = u(@) + e Mh(u(@),  (2.t) € @ x (0,00),
where A > 0 is determined later. We have

wy = —Xe Mh(u),

Vw = [1 + e”‘th'(u)} Vu,
and
D?*w = [1 + e_)‘th/(u)} D?*u+ e 0" (u)Vu ® Vu.
Thus
Apw =1+ M0 @)= (1+ M0 () Ayu + (p — 1) [TulPe ™ n"(u)|

7[.2

S el 1)|VuPe M h(u) |1+ e (u) P72,

and consequently

2

wi = Agw = Mh(u) | = A+ G u = DIvul |1+ NN ()P
2 p
- 7T n—mp 1on 1
<e th(u)[—)\—l—(b_a)Q(p—1)<p_1> bP'r 2p_2}

<0

n—p 1-n n—p 1-n
sup |Vu(x)| = < )rp—l = < >bp—n
zeﬂ‘ @) p—1 p—1
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and
14 e M ()] > 1 — e (u)] > %

Observe that since h(a) = h(b) = 0, v(x,t) = u(x) on 92 x (0,00). Now let v
be the solution to the evolutionary p-Laplace equation (1.1) in € x (0,00) such that
v(z,t) = u(x) on 92 x (0,00) and v(z,0) = w(z,0) for x € Q. Then, by the comparison
principle,

b—
v(z,t) > w(x,t) = u(x) + @ e—nt
27
for all 2 for which |z|»—1 = %, That is,
b—
(6.1) sup [v(z, t) — u(z)| > = Le M
xeQ) 2m
This shows that the decay rate obtained in Theorem 2.2 cannot be improved.
In the case n = 1 we use the same argument with u(z) = |z|. The proof is even
simpler since sup |[v/(z)| = 1.
€0
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