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Abstract

Given a negatively curved geodesic metric space M, we study the asymptotic pene-
tration behaviour of geodesic lines of M in small neighbourhoods of closed geodesics
and of other compact convex subsets of M. We define a spiraling spectrum which
gives precise information on the asymptotic spiraling lengths of geodesic lines around
these objects. We prove analogs of the theorems of Dirichlet, Hall and Cusick in this
context. As a consequence, we obtain Diophantine approximation results of elements
of R, C or the Heisenberg group by irrational quadratic ones. '

1 Introduction

Let M be a finite volume connected complete Riemannian manifold with dimension n at
least 2 and sectional curvature at most —1. Let e be an end of M, and let C be a closed
geodesic in M. One of the aims of this paper is to study the asymptotic spiraling behavior
of the (locally) geodesic lines in M starting from e around the closed geodesic C'.

Just for the sake of normalization, fix a Margulis neighbourhood N of the cusp e in
M (see for instance [BK]). Let Lky (M) be the set of geodesic lines starting from e that
first meet ON at time 0, and do not converge to a cusp of M. Let dy be the Hamenstadt
distance on Lky (M) (see [HP2]), which is a natural distance inducing the compact-open
topology on Lky (M), and which coincides with the induced Riemannian distance on the
first intersection points with 9N if N has constant curvature.

Let Lky (M) be the (countable, dense) set of elements p in Lky (M) that spiral
indefinitely around C, i.e. such that lim; . d(p(t),C) = 0. For every r in Lky c(M),
let D(r) be the shortest length of a path between ON and C' which is homotopic (while its
endpoints stay in ON and C respectively), for any ¢ big enough, to the path obtained by
following r from r(0) to r(¢), and then a geodesic between r(t) and its closest point on C'.
This number D(r) naturally measures the wandering of r in M before 7 seriously starts to
spiral indefinitely around C. See the end of Section 3 for explicit computations when M
is locally symmetric.

We define the spiraling constant around C' of £ € Lky (M) by

= lim inf POy (e, r),
O = i ol By € NVET)

which measures how well £ is approximated by geodesic lines spiraling indefinitely around
C, and, when small, says that, asymptotically, £ has long periods of time during which it
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spirals around C. We define the spiraling spectrum around C in M by
Spy (M) = {c(§) : &€ Lky(M) — LkNyc(M)} .
Here is a sample of our results.

Theorem 1.1 (Dirichlet-type theorem) The spiraling spectrum Spy (M) is a bounded
subset of [0, +o0].

Theorem 1.2 (Cusick-type and Hall-type theorem) If M has constant curvature,
then the spiraling spectrum SpN7C(M) 1s closed. If, in addition, the dimension of M is at
least 3, then the spectrum contains an interval [0, c] for some ¢ > 0.

When C is replaced by a cusp (and spiraling a long time around C' is replaced by
having a long excursion in a fixed cusp neighborhood), the analogous results are motivated
by Diophantine approximation results: see for instance [For, Coh, Pat, Sul, Ser, Haa, CF,
Vul, Dal|, below in this introduction, and Remark 3.3. In that context, the boundedness
of the spectrum was proved in [HP2, Theorem 1.1, the closedness of the spectrum was
shown in [Mau]|, and the existence of a Hall ray was proved in [PP2, Theorem 1.6|.

Although our arithmetic applications are going to be in the setting defined at the
beginning of this introduction, our results are true in much more general situations (see
the beginning of Section 3). In particular, M does not need to have a cusp (and for instance
could be compact): we may replace e by a point g in M, and then consider the geodesic
rays starting from xg. Or M could be allowed to have a compact totally geodesic boundary,
and we may replace e by a connected component dgM of OM, considering the geodesic rays
starting from a point of dyM perpendicularly to dgM. Furthermore, C' can be replaced
by a connected embedded totally geodesic submanifold of positive nonmaximal dimension,
or by the convex core of a precisely invariant quasifuchsian subgroup (see for instance
[MT] for definitions). The theorems 1.1 and 1.2 remain valid under certain more general
hypotheses on M (see the theorems 4.4, 4.8 and Corollary 5.5 for statements). Section 5,
where we prove the existence of Hall rays in spiraling spectra, relies on [PP2|. In Section
4.4, we also give upper bounds on the spiraling spectra in several classical examples.

To conclude this introduction, we give Diophantine approximation results which fol-
low from the above theorems in Riemannian geometry. Recall that for x € R — Q, the
approzimation constant of x by rational numbers is

2‘x_37
q

(@) = p,qélZn,lqlgioo 1
and that the Lagrange spectrum is Spg = {c(§) : £ € R — Q}. Numerous properties of
the Lagrange spectrum are known (see for instance [CF[). In particular, Spq is bounded
(Dirichlet 1842), has maximum % (Korkine-Zolotareff 1873, Hurwitz 1891), is closed (Cu-
sick 1975), contains a Hall ray, i.e. a maximal non trivial interval [0, ] (Hall 1947), with
p = 491993569/ (2221564096 + 2837481/468) (Freiman 1975). Also, recall Khintchine’s
result [Khi| saying that almost every real number is badly approximable by rational num-
bers. The following result, which is a quite particular case of the results of Section 6, gives
analogous Diophantine approximation results of real numbers by (families of) irrational
quadratic elements.



For every real irrational quadratic number a over Q, let a® be its Galois conjugate.
Let ap be a fixed real irrational quadratic number over Q. Let &,, = PSLa(Z) - {ap, af}
be its (countable, dense in R) orbit for the action by homographies and anti-homographies

of PSLy(Z) on RU {oo}. For instance, if ¢ is the Golden Ratio 1+2\/5, then &} is the set of

real numbers whose continued fraction expansion ends with an infinite string of 1’s.
For every z € R— (QU&,, ), define the approzimation constant of x by elements of &,,,

as | |
T —«
Cap(T) = lim inf _—
0 (@) a€bny : la—a7|—0 | — ]’

and the corresponding approzimation spectrum, by
SPay = {cap(x) : x€e R—(QUE,)} .-

Theorem 1.3 Let ag be a real irrational quadratic number over Q. Then Sp,,, is a closed
bounded subset of [0, +o0] .

Furthermore, let 1 : 0, +00[ — ]0, 400 be a map such that t — log(y(e™*)) is Lipschitz.
If fol Y(t) dt diverges (resp. converges), then for Lebesgue almost all x € R,
o |z — of
lim inf —— =0 (resp. = +00) .
acbus Tanbel 0 Plla—ae]) 0 oD = +e0)

In this particular case, the last statement can be derived from [BV] or [DMPV]. Except
for the following result, we do not know the maximum K, of Sp,,, (an analog of Hurwitz’s

constant), though Ko, < (1 +v/2)v/3 = 4.19 for any ag, see Section 4.4.

Proposition 1.4 For the Golden Ratio ¢ = 1+72\/57 we have Ky =1 — 1/4/5 ~ 0.55, and
Ky is not isolated in Sp,,, -

There are many papers on the Diophantine approximation of real numbers by algebraic
numbers. After pioneering work by Roth and Wirsing, the seminal papers by Davenport
and Schmidt [DS1, DS2| proved, in particular, Dirichlet type theorems, on which Bugeaud-
Teulié [BT] improve to show the following: Let Qquaq be the set of real irrational quadratic
numbers over QQ, and denote by H(«) the naive height of an algebraic number « (the
maximal absolute value of the coefficients of its minimal polynomial over Z). For every
real irrational nonquadratic number x, they proved that

o 3+2\/5
(bgff(l(zw)) |t —a| < 400,

and that for every € > 0, for Lebesgue almost every x in R,

lim inf
ae@quad : H(a)—>+oo

lim inf H(a)* |z —a] =0.
O‘e(@quad : H(OL)—>+OO

We refer to [Bug| and its impressive bibliography for further references. But note that none
of the works that we know of is approximating by elements in the orbit under integral
homographies of a given algebraic number; almost all of them are approximating using
(a simple function of) the naive height as a complexity, but none using our complexity



h(a) = 1/|ac — a?|. This complexity (see [BPP] for an algebraic interpretation) behaves
very differently from the naive height H(«), even in such an orbit, see Section 6.1.

In Section 6, expanding Theorem 1.3, we will give arithmetic applications analogous
to the results of Dirichlet, Cusick, and Khintchine for the Diophantine approximation of
points of R (resp. C, the Heisenberg group Heisa,—1) by classes of irrational quadratic
elements over Q (resp. over imaginary quadratic extensions of ), and Hall’s result in C
and Heiso,,—1.
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2 Preliminaries

Throughout the paper, (X, d) will be a proper CAT(—1) geodesic metric space, and Joo X
its boundary at infinity. We use [BH| as a general reference for this section. Unless
otherwise stated, balls and horoballs are closed.

Let I" be a discrete group of isometries of X. The limit set of I" is denoted by AI'. The
conical limit set of I' is denoted by A.I'. When AI' contains at least two points, the convex
hull of AT is denoted by €T. The group I' is convez-cocompact if AT' contains at least two
points, and if the action of I' on €T" has compact quotient.

We will say that a subgroup H of a group G is almost malnormal if, for every g in
G — H, the subgroup gHg~' N H is finite. We refer for instance to [HP5, Prop. 2.6] for a
proof of the following well known result.

Proposition 2.1 Let I'g be a convex-cocompact subgroup of I'. The following assertions
are equivalent.

(1) Ty is almost malnormal in T';

(2) the limit set of Ty is precisely invariant under Ty, i.e. for every v € I' — Ty, the set
Alo N ~yAT g is empty;

(8) €T N~ETy is compact for every v € ' — T'y;

(4) for every € > 0, there exists k = k(e) > 0 such that diam(AETo Ny A ETo) < k
for every y € I' = T'y. O

For every £ in 0,X, the Busemann function at £ is the map (¢ from X x X to R
defined by

Bele,y) = lim_d(z,€) - d(y, &)

for any geodesic ray t — & ending at &.
Let C be a nonempty closed convex subset of X. We denote by 0,,C its set of points
at infinity, and by 0C its boundary in X. The closest point map of C is the map w¢ :
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(X U0xX) — (C'U0xC) which associates to a point x € X its closest point in C' in the
usual sense, which fixes all points of 0,C, and which associates to a point £ € Jse X — 05cC
the point of C' which minimizes the map z +— [(¢(x,z0) for any zo in X. This map is
continuous.

As in [HP5], we define the distance-like map do : (00X —8000)2 — [0, +00[ associated
to C as follows: For £,£ € 00X — 0xC, let & = m (), 2’ = 7o (€') be their closest points
in C. Let &,& : [0, +00[ — X be the geodesic rays starting at z, 2’ and converging to &, &’
as t — oo. Let

do(6,¢) = lim ezd&&)—t, (-1-)

t—-+4o00

The distance-like map is invariant by the diagonal action of the isometries of X preserving
C, and generalizes the visual and Hamenstddt distances: If C consists of a single point zx,
then d¢ is the visual distance on 0xc X based at z (see for instance [Boul), and we denote it
by d;. For balls, the distance-like map is a positive constant multiple of the visual distance
based at their center. If C is a horoball with point at infinity &y, then d¢ is the Hamenstddt
distance on 0o X — {0}, and we also denote it by dg, sc to put the emphasis on &.

Although d¢ is not always an actual distance on 0 X — 0xC, it follows from [HP5,
Lemma 2.3 (4)] that for every e > 0, there exists n > 0 such that for every £, ¢, ¢” in
OscX — 0xC, if de(&,€') < mand de(€,€")} < n, then de(€,€”) < e. In particular, the
family of subsets

1
W = {(6,€) € (00X - 0:0)* + do(6.€) < ——=1}}
{ n {(gag)e(oo 00 ) C(§’§)<’I’L—|—1 neN
is a countable separating system of entourages of a metrisable uniform structure on 9, X —
0o0C' (see [Bou, TG II.1]), whose induced topology is the usual one, by [HP5, Lemma 2.3
(1)], and which is invariant by the diagonal action of the isometries of X preserving C'.

The crossratio of four pairwise distinct points a, b, ¢, d € 0o X is

.
la,b,¢,d] = 5 lim d(at, ce) —d(ct, by) + d(be, dr) — d(dy, ar), (-2-)
where ay, b, ¢, d; are any geodesic rays converging to a,b, ¢, d, respectively. For the exis-
tence of the limit and the properties of the crossratios, see |Ota| where the order convention
is different, and [Bou| whose crossratio is the exponential of ours; we will be using the same
expression as in [HP1, PP2|. If 2y € X, then

dyo(cya) dyo(d,b)
b,c,d] = log L\ 0\&;0)
[a,b,¢,d] = log Ay (,b) doy (d, a)

If H is a horosphere with center £ € 0o, X, then for a,b, c,d € 0, X — {¢},

dp(e,a) dy(d,b)
b,e,d =1 .
[a7 y G, ] Og dH(C, b) dH(d, a)

If £ and a coincide, the above expression simplifies as follows, see [PP2, Section 3.1]:

dp(d,b)

[€,b,¢,d] =log m .



Let £ € X U0 X. We say that a geodesic line p : | — 0o, +00[ — X (resp. geodesic ray
P [to, +oo] — X) starts from ¢ if £ = p(—o0) (resp. £ = p(wo)). We denote by Tle the
space of geodesic rays or lines starting from &, endowed with the compact-open topology.
If e >0 and A is a subset of X, we denote by #(A the (closed) e-neighborhood of 4 in X.

In [PP2], the penetration of geodesic rays and lines in neighbourhoods of convex sub-
sets of X was studied by means of penetration maps. We now recall the definitions of
three classes of such maps (¢, cepy, ftpy, - TélX — [0,400], where C is the (closed) e-
neighborhood of a closed convex subset in X for some € > 0, and L is a geodesic line in
X, with endpoints L1, Lo.

(1) The penetration length map £c associates to every p in Tle the length of the in-
tersection of C' and of the image of p. (This intersection is connected by convexity;
there was the assumption in [PP2] that £ ¢ C'U OC, which is not necessary here.)

(2) The fellow-traveller penetration map ftp;, is defined by

ftpr, : p = d(wL(€), mr(p(+00)))

with the convention that this distance is +o0 if 71, (§) or 71, (p(400)) is in O X (there
was the assumption in [PP2| that £ ¢ A4cLUOL where € > 0 was arbitrary but fixed,
which is not necessary here).

(3) When & € 05X, the crossratio penetration map crp; is defined by

ctpy 1 p > max {07 [€7L1,p(+00), L2]> [@LQ,P(“‘OO)a Ll]} )

if &, p(+00) ¢ {L1, Lo}, and ctpy(p) = +oo otherwise (there was the assumption in
[PP2]| that £ ¢ OL, which is not necessary here).

It is shown in Section 3.1 of [PP2] (and it is easy to see that the result is still true if
¢ € AN.LUOJL) that the above maps are continuous and that, for every e > 0, we have,
with the convention that x —y = 0 if x = y = 400, the following inequalities

Iftrr — Crizlloc = sup [ftpp(p) — Lan(p)] < 2¢i(e) + 2¢, (-4-)
pETEIX

where ¢ (€) = 2argsinh(cothe€), and when £ € 0 X,

llevp, — ftorlloe = sup evpr(p) — ftpr(p)| < 4log(1+ v2) . (-5-)
peTle

In constant curvature, the crossratio penetration map has the following geometric inter-
pretation (see for instance |Bea, §7.23-7.24|, and [Fen, §V.3], for related formulas). Recall
that the complex distance £+ i6 between two oriented geodesic lines v and L (in this order)
in Hp is defined as follows. It is 0 + 40 if they are simultaneously asymptotic at 4+-o0c or at
—o00, and 0 + ¢m if the terminal point at infinity of one is the original point at infinity of
the other. Otherwise, if [p, q] is the common perpendicular arc (with p = ¢ the common
intersection point of v and L if they intersect), where p € L, then ¢ = d(p,q) and 6 is the
angle at p between the parallel transport of v along [p, ¢] and L.



Lemma 2.2 Let vy and L be oriented geodesic lines in Hyg with pairwise distinct endpoints
vY_,v+ and L_, Ly, respectively, and with complex distance £ + i0. Then

cosh ¢ + cos 6
= Loy v4s L] = —log ——F——.
In particular,
he+
ctpy (1) = max {0, — log w} _

Proof. Using isometries, we may assume that v and L are both contained in the upper
halfspace model of H% that the common perpendicular segment [p,q] is on the vertical
axis, with p at Euclidean height one and ¢ above p, and that 4 is a positive real number.
By an easy computation, we then have

v+ — =] | L+ — L_| 4et cosh/ + cos 0

=log ——— =—1lo
= Lof[Le—ao] — Pl e P T T T e

The result follows. g

[FY—; L—77+7 L+] = 1Og

Note that in H]%, we have £ > ( if and only if # =0 or § = 7.

3 The approximation and spiraling spectra

In this section, we set up the general framework for our approximation results. We begin
by the definition of the quadruples of data that we study.

The definition of 2. Let T be a discrete group of isometries of a proper CAT(—1) geodesic
space X. Let I'g be an almost malnormal convex-cocompact subgroup of infinite index in
I' and let Cy = €Ty. Let Cy be a nonempty closed convex subset of X, with stabilizer
I in I'. Assume that Cy does not contain €T, that I'ao\OC is compact, and that the
intersection of Co and vCy is nonempty for only finitely many classes [y] in T'so\I'/T.
We will denote the quadruple of data (X,T',T9,Co) by 2.

As ATy has at least two points and since I'g has infinite index in I', note that I is
nonelementary. By Proposition 2.1 (3) and since Cj is noncompact, the subgroup Ty is
the stabilizer of Cp in I'. By the discreteness of I' and the cocompactness of I'g, a compact
subset of X intersects only finitely many vCy for v € I'/T'.

Recall that the distance between two subsets A, B of X is d(A, B) = inf,capep d(a, b).
For every r = [7] in T'so\I'/T'y, define

D(r) = d(Coo,7Co)
7



which does not depend on the choice of the representative ~ of r. Using a convexity
argument, the cocompactness of the action of I'y, on dC and the fact that only finitely
many translates of Cy meet a given compact subset, it follows that Coo N vCy is empty if
and only if D(r) > 0, and that then 0,Co NY05Cp is also empty. For the same reasons,
the following result also holds, see [HP5, Lemma 4.1| for a proof in the case I'g = I'.

Lemma 3.1 For every T > 0, there are only finitely many elements r in To \I' /Ty such
that D(r) <T. O

Lemma 3.2 The set of double cosets T'oo\I'/Ty is infinite.

Proof. We first claim that there exists a hyperbolic element v in I' whose attractive fixed
point 4+ does not belong to JxxCo. The limit set AL is the closure of the set of attractive
fixed points of elements of T', since T" is nonelementary. Thus, if no such ~y, exists, AT is
contained in JxCxs, which contradicts the hypotheses on & by the convexity of Cy.

By Lemma 2.1 (2), and since T" # Ty, there exists 7/ € T such that the repulsive fixed
point v_ of v does not belong to 4'AT'g. Hence the sequence of closed subsets ("Y' Co)nen
of the compact space X U 05X converges to the singleton {4} as n goes to +o0o. This
implies that D([y"y']) = d(Cwo,¥™'Cp) converges to +oo as n goes to +o0o. In particular,
the set {D(r) : 7 € ['so\I'/I'o} is infinite, and the result follows. O

The link of 2 (which depends only on X, T" and C) is
Lkoo = Too\ (Al — 9o Cio).

The quotient space I'no\ (A" — 05Cxo), which contains Lk, is compact, since the closest
point map from 0,0 X — 05Cos to 0C4 is continuous and I'y.-equivariant. Furthermore,
Lk is dense in I'oo\ (Al = 05cC). For every r = [7] in I'so\I'/Tg such that D(r) > 0, let

A'r = Tco ('Yaoo CO)

be the image by the canonical projection o : Al — 05oCoo — LKoo of 795cCo = vAlLy.
Note that 70, Cy is indeed contained in A.I" since I'g is convex-cocompact, and that 9,,Cxo
is disjoint from v0,,Cy if D(r) > 0. Furthermore, the sets A, are compact subsets of Lk,
that are pairwise disjoint by Lemma 2.1 (2), and the union

Lkooo = | | A, (-6-)
r€lo\I'/To, D(r)>0

is dense in Lks,. In this this paper, we study how dense Lk ¢ is in Lkeo.

Let do : (OsoX — 050Co0)? — [0, 4+00| be the distance-like map of Cys, and let dy, be
its quotient map on Lk, which defines, as in Section 2, a metrisable uniform structure on
Foo\ (00X — 050Cx), inducing the quotient topology. We endow the double coset space
I'oo\I'/Ty with the Fréchet filter of the complements of the finite subsets, and denote by
limrinf f(r) the lower limit of a real valued map f along this filter. The approzimation

constant of £ € Lko, — Lkoo o is

¢(€) = lim inf ePMd (€, A,) (-79)



and the subset of [0, +00] defined by
Sp(2) = {c(§) + § € Lkoo — Lkoooof

is called the approzimation spectrum of points of Lk, by points of Lk o. We define the
Hurwitz constant of & as
Kg =sup Sp(2) € [0, +0] .

Remark 3.3 Let us give some background and motivations for the terminology introduced
in this paper: In the definition of the quadruple of data 2, let us specialise to the situation
when X is a Riemannian manifold with pinched negative curvature and I' is geometrically
finite. If we change the assumptions on I'g and ', such that I'g = I' is the stabilizer of a
parabolic fixed point £, of I' and C' is the maximal precisely invariant horoball centered
at €, then we recover the framework of Diophantine approximation in negatively curved
manifolds that was developped in [HP2, HP3, HP4, PP2, PP1|. In this situation, Iy is
not convex-cocompact and Cy = Cy,, and the new quadruple does not have the properties
we require of the quadruples of data in this paper. However, if we take Lkoo = I'oo\ AL,
Apy) = Tooy(4+00), Lkoo o = Moo (I' - 00), all the constructions in Section 3 are still valid.

In particular, let X be the upper halfplane model of the real hyperbolic plane Hﬁ, let
I' = PSLy(Z), let C, be the horoball in X of points having Euclidean height at least 1, let
I’y = ' be the cyclic group generated by z +— z + 1, and let 2 = (X,I',T,'s,). Then
(see [HP2, section 2.3|, [PP1]) Lkoo = (R — Q)/Z; for every r = [y] € I'oo\(I' = ') /oo,
we have D(r) = 2logq if yoo = p/q with p € Z and g € N — {0} relatively prime; for every
¢ € R—Q, the approximation constant ¢(§ mod Z) is the classical approximation constant
of the irrational number ¢ by rational numbers; the approximation spectrum Sp(Z) is
the classical Lagrange spectrum, and the Hurwitz constant K4 is the classical Hurwitz
constant % (see the introduction for the definition of these objects).

7]

The end of this section is devoted to the study of geometric examples.

Let M be a nonelementary complete connected Riemannian manifold with sectional
curvature at most —1, and dimension at least 2. Let Ay be a closed geodesic in M, not
necessarily simple (for more general Agy’s, as for instance in the introduction, we refer to
the general setup). Let A, be a closed codimension 0 submanifold of M with smooth
connected compact locally convex boundary, disjoint from Ay.

Recall that a locally geodesic ray p in M is recurrent if, as a map from [0, +00[ to M,
it is not proper, i.e. if there exist a compact subset K of M and a sequence (t,)nen in
[0, +00[ converging to +oo such that p(t,) € K for every n. We say that a locally geodesic
ray p in M spirals around Ay if d(p(t), Ap) converges to 0 as t goes to +o0.

Let Lkg__ (M) be the set of recurrent locally geodesic rays starting perpendicularly
from 0As and exiting Ao, and let Lka__ 4,(M) be the subset of elements of Lk (M)
that spiral around Ag. Recall that a geodesic line in a complete simply connected manifold
that crosses a horosphere perpendicularly starts from (up to time reversal) the point at
infinity of this horosphere. Hence when A, is a small Margulis neighborhood N, of
a cusp ey with compact boundary, it is equivalent to require that a geodesic ray exits
perpendicularly from A., or that the negative subray of the geodesic line containing it is
a minimizing geodesic ray starting from the boundary of N, and converging to eqo.

For every p,p’ in Lky__ (M), and every ¢ € [0 + oo[, let ¢; be the shortest length of a
path homotopic (relative to the endpoints) to the path obtained by following (the inverse
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of) p from p(t) to p(0), then following a shortest path contained in A between p(0) and
0'(0), then following p’ from p/(0) to p'(t); define

da(p,p) = lim ezbi—t (-8-)
t—+o00
(We will show below that the limit does exist). For every 7 in Lka_ a,(M), let D(7) be the
shortest length of a geodesic segment [a,b] with a in 0A, b in Ay such that there exists
a (locally) geodesic ray p starting from b, contained in Ay, such that the path obtained by
following [a, b] from a to b and then p is properly homotopic to 7 while its origin remains
in As. The spiraling constant around Ag of an element & of Lk (M) is

c(§) = lim inf P < 7,

and the subset of [0, 400] defined by

SP Ao (M) = {c(€) + € € Lka, (M) — Lka,, 1, (M)}

is called the spiraling spectrum of geodesic rays in Lk4 (M) around Ap. These notions
coincide with the similarly named ones in the introduction if M has finite volume and A
is the chosen Margulis neighborhood of the cusp e.

To see the connection with the framework outlined at the beginning of this section, we
may define a quadruple of data

D, Ao,As = (X, T, T, Cx)

as follows. If M — M is a universal Riemannian covering of M with covering group T,
let X = €T be the convex hull of T, let I'g be the cyclic group which is the stabilizer in
" of a fixed lift of Ag to M, and let Cw be the intersection with X of a fixed connected
component of the preimage of Ay, in M. s

Note that the image in M of a geodesic ray p in M is recurrent if and only if the endpoint
at infinity of p is a conical limit point of I'. Consider the map ® from A.I' — J5Cx to
Lk, (M), which associates to an element & of A.I' — 05 Cs the image in M of the geodesic
ray in X starting from the closest point on Cy to £ and converging to £. By taking the
quotient by I', this map induces a homeomorphism ® : Lk,, — Lk (M), which maps
Lkooo to Lka. 4,(M). By construction, the map ® preserves the maps do and 64, (which
proves that the limit in (- 8-) exists).

For every 7 in Lka__ a,(M), by definition of Lk o (see Equation (-6-)), there exists a
unique 7 in Iy, \I'/T'y such that ®~1(7) belongs to A,. The map 7+ r from Lka__ 4,(M)
to ['oo\I'/Tg satisfies D(r) = D(7); the complementary subset in I'no\I'/T'y of its image is
finite, since there are only finitely many r € I'so\I'/T'g such that D(r) < 0; every point in
the image has at most two preimages, since A, has at most two points.

Hence, for every £ in Lk, we have by construction ¢(§) = ¢(®(&)). Therefore, as ® is
surjective,

Sp(@M7A07Acx>) = SpAoo,Ag(M) ) (_9_)

and we conclude that to obtain results on the spiraling spectrum, it is sufficient to prove
results on the approximation spectrum.

Example 1: Spiraling around a closed geodesic in a real hyperbolic manifold
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We will use the upper halfspace model of the real hyperbolic n-space Hf, so that
Do = R"1 U {00}. Let I' be a non elementary discrete subgroup of isometries of HZ.
Assume that oo is a parabolic fixed point of I', with stabilizer I'o,, and that the interior of
the horoball 77 of points of Euclidean height at least one is precisely invariant under I'
(i.e. for all v € I'=T', the horoballs 7 and .74 have disjoint interior). When I is torsion-
free and has finite covolume, & covers a Margulis neighborhood of a cusp of I'\Hg. Define
Coo = 74 NET, and assume that ', \0C is compact (for instance if I' is geometrically
finite, and in particuar if I' has finite covolume). Let vy be a hyperbolic element of I, with
translation axis Cy. Let I'g be the stabilizer of Cy in I', which contains the cyclic group
generated by 7o as a subgroup of finite index. The quadruple = (¢T,T', Ty, Cw) satisfies
the hypotheses of the beginning of the section.

For every + in T', let v+ be the fixed points of the

\ Coo hyperbolic element yyoy~!. If  is the double coset of
v in T \I'/Ty, and if D(r) = d(Cx,vCoh) > 0, then
1 D(r){ by an easy computation in hyperbolic geometry
7Co 1
- Rr-1 D(r) = —log g lv+ — -1l (-10-)
0 V- T+
where || - || is the standard Euclidean norm on R*~1.

Let Zr, be the set of fixed points of the conjugates of vy, endowed with its Fréchet filter.
For every o € Zr,, let a* be the other endpoint of the translation axis of a conjugate of g
containing « at infinity. The distance-like map d¢__ coincides with the Hamenstédt distance
doo.o.; on the limit set AT. In R"! = . HE — {00}, the Hamenstidt distance dy g4
coincides with the Euclidean metric (see for instance [HP2|). For every ¢ in A.I' — Zr,
and o € %r,, define ¢, + i, to be the complex distance between the oriented geodesic
lines from oo to £ and from a* to a. Note that £+ = £, and 0, = 6, 4+ m. Then, we have
by Equation (- 10-), by Equation (-3-) and by Lemma 2.2, respectively,

¢(T€) = liminf 2 M = liminf 2e [°*%2"] — liminf cosh/, — cosf, . (-11-)
CMGEGZFO HO[ — Oz*” Oée%r‘o OLE«@FO

Furthermore, by definition, Sp(2) = { ¢(£) : £ € To\(Al — Zr,) }-

Example 2: Spiraling around a closed geodesic in a complex hyperbolic mani-
fold

Let n > 2. The elements of C*~! are identified with their coordinate column vectors
and for every w,w’ in C"~!, we denote by w*w’ their standard Hermitian product, where
w* is the conjugate transpose of w, and |w|? = w*w.

Let H be the Siegel domain model of the complex hyperbolic n-space. Its underlying
manifold is

HE = {(wo,w) € Cx C"* : 2Re wy — |w[* > 0} .

The complex hyperbolic distance dgz is defined by the Riemannian metric

o
(2Re wo — |w|?)?

dst = (dwy — dw* w)((dwy — w* dw) + (2Re wo — |w|?) dw* dw)

(see for instance [Gol, Sect. 4.1]). The complex hyperbolic space has constant holomorphic
sectional curvature —1, hence its real sectional curvatures are bounded between —1 and

11



—%. If we want to consider H: as a CAT(—1) space, we will use the distance djy, = %dHn.
C C

The boundary at infinity of Hf is
oo HE: = {(wo,w) € Cx C"™' : 2Re wp — |w|* = 0} U {0} .
The horoballs centered at oo in H are the subspaces
K, = {(wg,w) € Cx C"! : 2Rewy — |w|* > s},

for s > 0. The submanifold {(wo, w) € H : w = 0}, with the induced Riemannian metric,
is the right halfplane model of the real hyperbolic plane with constant curvature —1, and
it is totally geodesic in Hf:. Hence the map ¢y : R — H defined by ¢ : t — (e7%,0) is a
unit speed geodesic line for dyy, starting from oo, ending at (0,0) € OxcH and meeting
the horosphere 0.4 at time t = 0. In particular, the distance between two horospheres
centered at oo is

sz (0.6, 0.) = | og(s' /). (- 12-)

Let G s be the group of isometries of Hf preserving (globally) s%. The Cygan distance
doyg (see for instance [Gol, page 160]) is the unique distance on O HE — {oo} invariant
under G, such that

deyg((wo, w), (0,0)) = v/2Jwol-

Similarly, we introduced in [PP2, Lem. 6.1] the modified Cygan distance d’cyg, as the unique
distance on O H — {oo} invariant under Gy such that

dl(?yg((w(]aw)? (070)) =V 2‘w0| + ‘w|2

Let I" be a discrete subgroup of isometries of Hf with finite covolume. Assume that oo
is a parabolic fixed point, whose stabilizer in I' we denote by 'y, such that the horoball
%5 is precisely invariant under I'o,. Let 7o be a hyperbolic element of I', with translation
axis Cy. Let I'g be the stabilizer of Cp in I'. The quadruple 2 = (Hg,I",I'g, #3) satisfies
the hypotheses of the beginning of the section.

In the following result, we compute the associated map D : I'o,\I'/Tg — R where
D([)) = diy (H3,1Co).

Lemma 3.4 If [y] € T \I'/To and D([y]) > 0 then, with v+ the fized points of the
hyperbolic element vyoy~", we have

1doye(v-,7+)?
D = —log——yer 0 TP
([’7]) ? 2 dleg(,y—7FY+)

Proof. Identify HE U 0Hg with its image in the projective space P, (C) by (wo,w) +—
[wo:w:1] and oo+ [1:0:0].

1 0 0
Let (wo,w) € OsoHg: such that wy # 0. The projective action of g = [ 3~ Id 0

1w

wo  wo

is an isometry of (the image of) the Siegel domain, fixing the point (0,0) of O, Hf, and
mapping oo to (wg,w), hence sending the geodesic line between (0,0) and co to the one
between (0,0) and (wp,w). Therefore the map Yy : R — HE defined by

()= (0 =)
Twowk®) = 1+ wpel " 1 4 wopet
12




is a geodesic line with endpoints (wo,w) and (0,0) in OcHg. The point vy, (t) belongs
to the horosphere J7;), where

wo _ 2Re(wo(1 +wpet)) — [w|?  2e'|wy?

w 2
t) = 2R — = .
s(t) e(1+wget) ‘1+wget} 11+ etwp|? 11+ etwp|?

If wy = e’ (in polar coordinates) and if T' = ef, then

s(t) = 2Tr? .
T2r2 4+ 2Trcos ¢ + 1
The map ¢ — s(t) reaches its maximum at 7' = 1/r, that is at ¢ = —log|wg|, and its
maximum value is
oo lwol _ wol? _ 1doyg(0, (wo,w))t
T+ Bem g + /2 2y, 0, (wo, w) 2

The result then follows from Equation (-12-), since % and yCy are disjoint if and only if
5 < 2. g

In HZ with its CAT(—1) distance d]/HI{C” the distance-like map d_ coincides (as seen in
Section 2) with the Hamenstadt distance d g.75. Recall (see [HP3, Prop. 3.12]) that

1
doo.0.9t5 = 7 doyg - (-13-)

Let Zr, be the set of fixed points of the conjugates of 7y, endowed with its Fréchet filter.
For every a € %r,, let a* be the other endpoint of the translation axis of a conjugate of
~o containing « at infinity. We therefore have

Sp() = {e(Té) = liminf 3 TCre(® ) deelt0)

cEeANT —Z . -14-
aedr, doyg (o, a*)? § o} (-14-)

4 The basic properties of the approximation spectra

Let 2 = (X,I',T, Cx) be a quadruple of data as defined in Section 3. In this section, we
study the upper bound of the approximation spectrum Sp(Z) C R of &, and we give a
closedness result for Sp(2).

4.1 The nontriviality of the approximation spectra

A map f : [0,4+00[ — ]0,+00[ is called slowly varying if it is measurable and if there
exist constants B > 0 and A > 1 such that for every x,y in Ry, if |z — y| < B, then
fly) < Af(z). Recall that this implies that f is locally bounded, hence it is locally
integrable; also, if log f is Lipschitz, then f is slowly varying.

Let € be a positive real number, and let f, g : [0,400[—]0,+0o0[. A geodesic ray or
line p in X will be called (e, g)-Liouville if there exist a sequence (t,)nen of positive times
converging to +oo and a sequence (y,)nen of elements of T' such that p(t) belongs to
Ne(ynCo) for every t in [tn, ty, + g(tn)]. A geodesic ray or line p in X such that p(4o00) ¢
000 Coo Will be called f-well approzimated if there exist infinitely many 7 in I' /T’y such that

do (p(+00),7AT) < f(D([])) e PED .
The following result is proved in [HP5, Lemma 4.8|.
13



Lemma 4.1 Let f : [0,4+00] — ]0,1[ be slowly varying, and let g : t — —log f(t). Let
e > 0. There exists c = c(e, f) > 0 such that for every geodesic ray or line p in X such that
p(+00) ¢ 950Co0 U er ¥ 0Co, if p is (€, g)-Liowville, then p is (cf)-well approzimated,
and conversely, if p is (%f)-well approzimated, then p is (e, g)-Liouville. O

Our first result says in particular that {0} & Sp(Z). We refer to Section 5 for much
stronger results for particular cases of 2.

Proposition 4.2 The approzimation spectrum of & contains 0 as a nonisolated point, and
hence the Hurwitz constant of & is positive.

The following consequence, amongst other similar ones, follows from Equation (-9-).

Corollary 4.3 Let M be a nonelementary complete connected Riemannian manifold with
sectional curvature at most —1 and dimension at least 2. Let Ay be a closed geodesic in
M, and let Ao be a closed codimension 0 submanifold of M with smooth compact locally
convex boundary, disjoint from Ag. Then the spiraling spectrum Spy_ a,(M) around Ag
contains 0 as a nonisolated point. O

Proof of Proposition 4.2. Let us first prove that there exists an element v in I' — I'
such that d(Cp,vCp) and d(Cx,vCp) are both as big as we need.

By the lemmae 3.1 and 3.2, there exists a nontrivial double class [yo] € I's\I'/T'¢ such
that d(Coo,70C0) is big. Since 'y contains a hyperbolic element, there exists a hyperbolic
element 7, in I whose attractive fixed point (71)+ belongs to 790-Co, and in particular is
not in 0soCoo. As g ¢ I'g and Iy is almost malnormal, we have (71)+ ¢ 0-Co by Lemma
2.1 (2). Since (71)+ ¢ 0Co U 0sCx, then for n big enough, v = 7} is an element in
I' — Iy such that d(Cp,vCp) and d(Cw,vCp) are both big enough.

Now, let v be as above. Let [p, g] be the shortest segment between Cjy and vCp, with
p € Cy. Let a be a hyperbolic element in 'y with big translation length, and 8 = yay~!.
Let (k,)nen be a sequence of positive integers. In particular, L = d(p, q), L, = d(p, a*p)
and L = d(q, f*"q) are big (independently of (ky)nen).

For every n in N, define v,, = gF1a*1352aF2 ... gFnafn so that v9 = id and v, = fFrakt.
Consider the piecewise geodesic ray which is geodesic between the consecutive points

P, ¢, B, B D, b, - YD s VB 4 Y B D, Y, -

Then if A =min{L, L], L : n € N} is big enough, as the comparison angles at the above
points between the incoming and outgoing segments are at least 7/2 by convexity, this
piecewise geodesic ray is quasi-geodesic.

ozklp
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Hence, it stays at bounded distance (depending only on A) from a geodesic ray p* start-
ing from p. Note that, by convexity, the segments [y,,q, v.0%+1q] and [v,8%+1p, y,11D]
(which are long if the L!", L! are big) are contained in images under I" of Cjy. The point at
infinity £ of p* is in particular a conical limit point (since I'y is convex-cocompact, there
are points in one orbit under I' that accumulate to £ while staying at bounded distance
from p*). Up to taking the translation length of «, and hence A, big enough, the point
¢ belongs neither to 05Cxo, nor to any 7' 0-Cy for v/ € T' (otherwise, two copies of Cy
would be close for a too long time, contradicting Lemma 2.1 (4)). Hence the approximation
constant ¢(I'oo€) is well defined.

In order to apply Lemma 4.1, we fix € > 0. If the sequence (k;,)nen tends to +oo, then
the geodesic ray p* spends longer and longer time in the images by I" of the e-neighbourhood
of Cy. Thus, ¢(I'€) is equal to 0, by Lemma 4.1.

To prove that 0 is not isolated, take the sequence (ky)nen to be constant, with k; big
compared with x(e), L and the bounded distance between p* and the above quasi-geodesic.
In particular, p* is (e, g)-Liouville for g a constant map, having a big value if k; is big. By
Lemma 2.1 (4), since p* spends intervals of time of only bounded length outside I'.4.Cy,
the geodesic ray p* is not (e, g’)-Liouville for ¢’ > g a big enough constant map.

By Lemma 4.1, this implies that the approximation constant of (the image modulo I'
of) ¢ is positive, and small if &y is big. O

Remark. Let us notice here that the approximation constants are generically equal to 0,
hence that the non vanishing of an approximation constant is a quite rare behaviour. We
will make this explicit only in a particular case.

Assume that X is a Riemannian manifold and Cjy a geodesic line. For every v €
I\T'X, let & € I'x\0xX be the (orbit by T's, of the) endpoint of a geodesic line in
X whose tangent vector at the origin maps to v by the quotient by I'. (Several choices
are possible, but they will give the same approximation constant.) Let p be a (finite,
positive, Borel) measure on I'\T' X invariant and ergodic under the quotient geodesic flow
(¢t)ter. Assume that the support of p contains the orbit under I' of the lift of Cy to
T'X by its unit tangent vector, and that the (measurable) subset of unit vectors v such
that &, € Foo\((aooX —ATI)U OOOCOO) has measure 0. For instance, this is true if " has
finite covolume, g is the Liouville measure and Cy, is a precisely invariant horoball, or if
I" is cocompact and p is the maximal entropy measure, and C is the translation axis of
ahyperbolic element. The ergodicity assumption implies that {¢;v};cr+ is dense in the
support of p for almost every v. Recall that if two unit tangent vectors are very close,
then the geodesic lines they define are close for a long time. Hence for p-almost every v,
we have &, € I'oo\ (Al — 050Co) and ¢(&,) = 0.

4.2 The boundedness of the approximation spectra

If " is geometrically finite (see for instance |[Bow|), then there exists a I'-equivariant family
€ of horoballs centered at the parabolic fixed points of I', with pairwise disjoint interiors.
There are many possible choices for such an 7 (though only one maximal one if T' has
only one orbit of parabolic fixed points). In the computations of Section 4.4, we will choose
natural ones. We call Xy = €T — |J A the thick part of €T. Clearly, Xy is I'-invariant,
and I' acts isometrically on it. We call I'\ X the convex core of I'\ X.

The next result gives a sufficient condition for the Hurwitz constant of & to be finite.
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In particular, this condition is satisfied when X is a Riemannian manifold and I" has finite
covolume. Recall that the Hurwitz constant of & is

Kg =sup Sp(2) € [0,+0] .
Theorem 4.4 IfT' is geometrically finite, then Sp(2) is bounded, hence 0 < K¢ < 00.
The following consequence, amongst other similar ones, follows from Equation (-9-).

Corollary 4.5 Let M be a geometrically finite complete connected Riemannian manifold
with sectional curvature at most —1 and dimension at least 2. Let Ag be a closed geodesic
in M, and let Aso be a closed codimension O submanifold of M with smooth compact locally
convex boundary, disjoint from Ag. Then the spiraling spectrum Spy_ a,(M) around Ag
s bounded. O

Proof of Theorem 4.4. Let . be as above. Since Ay contains at least two points,
Cy is not contained in any element of 7, hence Cy intersects Xg. Since I' is geometrically
finite, the diameter A of the quotient metric space I'\ X is finite. For every £ € A.I' —
U«yel“ Y0Co, let pe be a geodesic ray starting from the closest point to £ on Cy and
converging to £&. As £ is a conical limit point, there exists a sequence of positive times
(tn)nen converging to 4oo such that pg(t,) € Xo for every n. Hence, there exists a
sequence of elements (7, )nen such that for every n in N,

d(pﬁ(tn)a'YnCO) <A.

For n big enough, the distance between t