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Abstract

In this paper, we adopt a decision theoretic view to Bayesian adaptive estimation.
We extend the framework to situations where each observable variable is associated
with a certain random cost of observation and consider the goal of maximizing the
expected utility of a sequential experiment that ends when the total cost overruns a
given budget. For example, the cost could be defined as the random time taken by each
trial in an experiment, and one might wish to maximize the expected total information
gain over as many trials as can be completed in 15 minutes. We propose a trial
placement rule that maximizes the expected immediate gain in utility divided by the
expected cost of observation. This myopic rule is shown to be asymptotically optimal
under certain conditions and it is expected to work well in the same situations where
the greedy immediate gain maximization works in the absence of costs. However, by
simple concerete examples, we also show that the ubiquitous greedy information gain
maximization strategy can in fact be arbitrarily much worse than the optimal strategy
for a certain number of trials.
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1 Introduction

The topic of this paper is Bayesian estimation of an unobservable random variable Θ
based on a sequence yx1, . . . , yxT

of independent (given θ) realizations from some condi-
tional densities p(yxt | θ) indexed by trial placements xt, each of which can be adaptively
chosen from some set Xt ⊂ X based on the outcomes y := (yx1 , . . . , yxt−1) of the earlier
observations.1

We assume that the goal of choosing the placements is to maximize the expected value
of some utility function (DeGroot, 1970) of the knowledge about Θ, which under the
Bayesian framework can always be formulated as a function of the (random) posterior
distribution θ 7→ p(θ | YX1, . . . , YXt). Hence, the utility after the t-th observation is given
by the random variable

Ut := u[ θ 7→ p(θ | YX1 , . . . , YXt) ],

where u is the utility function, and the goal is to maximize E(UT ) under some constraints
such as a given total number T of trials or a given total budget for the costs associated
with each observation.

In the rest of this section, we review relevant literature under the decision theoretic
view. In Section 2, we further illustrate the concepts with several concerete examples.
Finally, in Section 3, we consider the extension of the framework to the situation where
the observation of each random variable is associated with a certain random cost. In an
appendix, we go through the measure theoretic technicalities that are mostly avoided in
the main text. In particular, we explicitly formulate the regularity conditions that are
needed for Bayesian estimation.

1.1 Psychophysics

In psychophysics, Bayesian adaptive estimation was first considered by Watson and Pelli
(1983) for estimation of an observer’s “threshold” α of detecting a stimulus of given in-
tensity x. The dichotomous result of detecting (1) or not detecting (0) the stimulus is
assumed to be distributed as

p(yx | θ) =

{

ψθ(x), yx = 1,

1 − ψθ(x), yx = 0,

where ψθ is some sigmoidal function described by the four parameters θ = (α, β, γ, δ),
where α is the threshold, β determines the slope at the threshold, γ is the guessing rate,
and δ is the lapsing rate, see Fig. 1.

Watson and Pelli (1983) assume that only the α component is unknown and define the
loss function (negative of a utility function) as the variance of the posterior distribution
of α. Their adaptive method places each test intensity xt at the mode of the posterior
distribution p(α | y). However, King-Smith (1984; King-Smith et al., 1994) discovered
that placement at the mean is more efficient and that it is even more efficient to use the
implicit rule of choosing xt so as to minimize the expected posterior variance after the
observation of Yxt .

1Note that in some experiments, one can observe multiple independent (given θ) copies of the same

random variable Yx. However, instead of complicating the general notation with something like Y
(t)

xt
, we

rely on the fact that the set X can explictly include separate indices for any identically distributed copies,

for example, one might have [Y(x,t) | θ]
i.i.d.
∼ [Y(x,t′) | θ] for all t, t′ ∈ N. Hence, we can keep the simple

notation with no loss of generality.
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Figure 1: An illustration of a typical psychometric function relating stimulus intensity x
to the oberver’s probability of detecting it.

Kontsevich and Tyler (1999) consider simultaneous estimation of both the threshold
α and the slope β. As the variance does not easily generalize into a loss function of
multivariate uncertainty (it would require arbitrary weighting of the uncertainties along
each dimension), Kontsevich and Tyler instead use the (differential2) Shannon (1948)
entropy

H(Θ) = −
∫

p(θ) log p(θ)dθ, (1)

which is well-defined for multivariate θ, too. Their adaptive method chooses each place-
ment so as to minimize the expected posterior entropy of (α, β) after the observation of
Yxt. This is a more elegant solution than the asymptotically justified explicit rules (e.g.,
King-Smith and Rose, 1997; Snoeren and Puts, 1997) that have been used before.

In recent works (Kujala and Lukka, 2006; Lesmes et al., 2006) the same algorithm is
generalized to multivariate placements x ∈ X = R

2, too. We do not go into any details
here, as in the present theoretical framework X is considered just as an unstructured set
and so there is no conceptual difference to the univariate placement case.

1.2 The greedy startegy

The implicit placement rules mentioned above are special cases of a greedy strategy, which
chooses each placement so as to optimize the expected immeadiate gain in utility after the
next observation:

xt := arg max
x∈Xt

E(Ut | y, Xt = x)

= arg max
x∈Xt

E(Ut − Ut−1 | y, Xt = x).

2We use the same notation
R

f(θ)p(θ)dθ for both the continuous case and the discrete case, in which
it corresponds to a sum. This is measure-theoretically justified as “dθ” can be considered as the counting
measure in the discrete case. Thus, following Lindley (1956), even though we use the familiar notation, we
are in fact working in full measure-theoretic generality, allowing the density p(θ) to be w.r.t. any measure
“dθ”. See Sec. B for the technical details.
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As the value of Ut−1 will be known at the time of choosing xt, maximizing the expected
change of utility is equivalent to maximizing its expected value. This strategy can be
applied in any model for any utility function, but it is generally not the globally optimal
strategy except when the experiment consists of exactly one trial.

Remark 1.1. Strictly speaking it is possible that no maximum of the expected utility
exists, in which case one should generally choose such a placement that yields an expected
gain sufficiently close to the supremum (DeGroot, 1970).

1.3 The entropy loss function and mutual information

The entropy loss function (1) has some remarkable properties which sometimes go un-
noticed by authors. Most imporantly, the expected difference between the prior entropy
and the posterior entropy given Yx is parametrization3 invariant (Lindley, 1956). Hence,
even though the value Ut of the utility function defined as the (negative of the) entropy
as well as its change Ut − Ut−1 do depend on the parametrization chosen for θ, the ex-
pected change E(Ut − Ut−1 | y, Xt = x) is parametrization invariant; it corresponds to
the information-theoretic mutual information4

I(Θ;Yx | y) = H(Θ | y) − E[H(Θ | y, Yx)] (2)

of Θ and Yx (given y). Indeed, the mutual information generally defined as

I(A;B) :=

∫∫

p(a, b) log
p(a, b)

p(a)p(b)
da db

is insensitive to any one-to-one transformations of A and B, and as defined, it is obviously
symmetric, which yields the identity

H(A) − E[H(A | B)] = I(A;B) = I(B;A) = H(B) − E[H(B | A)],

which holds whenever the differences are defined, i.e., not ∞ − ∞ or −∞ − (−∞) (see
Cover and Thomas, 1991). Thus, the mutual information represents the expected amount
of information that the observation of one random variable gives about the other. This
expected amount is always nonnegative even though the entropy might actually increase
in case an “unexpected” outcome is observed.

1.4 Calculating expected information gain

Making use of the symmetry of the mutual information, Kujala and Lukka (2006) write
the objective function (2) as

I(Θ;Yx | y) = H(Yx | y) − E[H(Yx | Θ, y)]. (3)

This formulation is usually more convenient than (2) as the distribution of Yx given θ is
typically much simpler than that of Θ given yx. For example, in the case of dichotomous
results, this yields the convenient expression

I(Θ;Yx | y) = h

(∫

Pr{Yx = 1 | θ}p(θ | y)

)

−
∫

h(Pr{Yx = 1 | θ})p(θ | y)dθ,

3In the measure-theoretic framework, “parametrization” can be interpreted as the choice of the domi-
nating measure “dθ” w.r.t. which the density p(θ) is taken.

4In our notation H(A | . . . ) always denotes the conditional entropy of A given the (possibly random)
conditioning values [. . . ]. Thus, H(A | . . . ) will be a random variable if any of its conditioning values are
random variables unlike in the unfortunate standard notation where an expectation is implicitly taken over
the conditioning values. Also, I(Θ; Yx | y) denotes the mutual information of the random variables Θ | y
and Yx | y, that is, both Θ and Yx are conditioned on y. This is standard notation.
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where5 h(p) := −p log p − (1 − p) log(1 − p) is the entropy of a binary distribution with
probabilities p and 1 − p. Thus, only expectations over the (sequential) prior p(θ | y)
are needed which allows for efficient computation. For example, given an (approximately)
i.i.d. sample {θi}N

i=1 drawn from p(θ | y), the objective function can be approximated as

I(Θ;Yx | y) ≈ h

(

1

N

N∑

i=1

Pr{Yx = 1 | θi}
)

− 1

N

N∑

i=1

h(Pr{Yx = 1 | θi}).

This was used by Kujala and Lukka (2006) in a sequential Monte Carlo implementation
of the greedy algorithm.

The same idea generalizes to any finite number of outcomes:

I(Θ;Yx | y) =
∑

yx

g

(∫

p(yx | θ)p(θ | y)

)

−
∫
∑

yx

g(p(yx | θ))p(θ | y)dθ,

≈
∑

yx

g

(

1

N

N∑

i=1

p(yx | θi)

)

− 1

N

N∑

i=1

∑

yx

g(p(yx | θi)),

where g(p) = −p log(p). Although this formulation has not yet been used in any published
works, it could be directly applied to, for example, the choice model and MCMC algorithm
used in (Kujala et al., submitted).

Not only is (3) usually computationally more convenient than (2), but there is also a
theoretical advantage. If Yx is dichotomous or has a finite number of possible values, the
entropies on the right side of (2) will always be finite, and the expression is well-defined
unlike (2) which may come out ∞−∞ or −∞− (−∞) for some parametrizations of θ. Of
course, if both Yx and Θ have an infinite number of possible values, then either formulation
may fail for some parametrization. Nonetheless, the mutual information itself is always
well-defined (see Sec. B.2 for the measure-theoretic details). Hence, Kolmogorov (1956)
argues that it is in fact the mutual information that is the fundamental concept of the
theory of information.

Remark 1.2. Although the information gain may theoretically be infinite (e.g., Y =
Θ ∼ Uniform[0, 1] yields I(Θ;Y ) = ∞), that will never happen in a realistic model as the
observation of any real quantity Y is always subject to some measurement error.

1.5 Nuisance variables and utility weights

In some cases, one might be interested only in the value of some component Θ1 of Θ =
(Θ1,Θ2) even if its other components Θ2 are unknown, too. In that case, one can define
the utility function as the (negative of the) marginal entropy

Ut = −H(Θ1 | YX1, . . . , YXt)

of the interesting variables. The expected change of entropy still corresponds to the mutual
information

E(Ut − Ut−1 | y) = I(Yx; Θ1 | y)

and hence enjoys the same parametrization invariance properties.

5We shall assume base e logarithm in all expressions, but we will give numerical results in bits, i.e., we
define bit := log 2.
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More generally, a parametrization-invariant objective function can always be defined
as an arbitrary function

f(I(Yx;T1(Θ) | y), . . . , I(Yx;Tn(Θ) | y))

of mutual informations, where T1, . . . , Tn can be any functions (e.g., Tk can be the compo-
nent mappings Tk(Θ) = Θk). In particular, the maximizer x of any linear combination of
marginal entropies (a class of utility functions used in the method of Tanner et al., 2005,
also mentioned by Paninski, 2005)

Ut = −
∑

k

wk H(Θk | YX1, . . . , YXt)

given y and Xt = x is insensitive to the parametrization of Θ as the expected gain in
utility

E(Ut − Ut−1 | y) =
∑

k

wk I(Yx; Θk | y)

is a (linear) function of parametrization-invariant mutual informations.
However, the expected change of any nonlinear function of entropies no longer corre-

sponds to a function of mutual informations and hence does not inherit the parametrization
invariance. Conversely, maximization of a nonlinear combination of mutual informations
generally does not correspond to the maximization of the expected value of any utility
function.

While nuisance variables do not pose any conceptual problems, they can complicate
the practical computations. It is usually computationally easier to apply (3) to Θ than any
subset of its components, as integration out of the nuisance variables from the model at
each trial interacts badly with the computational conveniences that (3) provides over (2).
Furthermore, as we shall see in the following, the greedy algorithm typically works best
when information about the nuisance variables is included in the utility function (although
the greedy strategy can fail in that case, too, as we shall see).

1.6 Global strategies

Any adaptive (or non-adaptive) placement strategy defines a decision function

d : Yd → X ∪ {λ} : (yx1 , . . . , yxt−1) 7→ xt,

whose domain Yd is the set of possible sequences of trial results (including the empty
sequence) and whose value is the next placement or the special value λ which flags the
end of the experiment. Now we can define the random variable

Yd := (YX1 , . . . , YXT
) ∈ Yd

denoting the outcome of the whole adaptive experiment following the decision function d,
where T is the possibly random time index of the trial that ends the experiment.

The fact that the whole adaptive experiment can be seen as just one observation Yd

implies that all the parametrization-invariance results of the entropy loss function apply
to the whole-experiment startegies as well, regardless of whether the termination rule is
adaptive or not, as long as the experiment eventually terminates (and even that is not
strictly necessary if the value of the utility function converges with probability one). One
could even allow randomized decision functions mapping to distributions over X ∪ {λ}
instead of deterministic values. However, as randomized decisions will generally gain
nothing over deterministic ones (DeGroot, 1970), we shall only consider deterministic
decision functions except for one reference to a random termination rule in Sec. 3.1 (where
the randomness is outside the experimenter’s control).
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1.7 The globally optimal strategy

The optimal strategy is obviously to maximize the expected utility after the observation
of the whole experiment result Yd w.r.t. the decision function d. For example, in the case
of dichotomous results and constant experiment length T , the decision function defines
a binary decision tree with 2T − 1 nodes, each denoting the next placement in a certain
situation. Thus, the optimal strategy can in theory be found by optimizing over these
2T − 1 parameters. In practice, the exponentially growing number of parameters makes
the optimal strategy generally intractable very soon as T grows (although in some special
cases the globally optimal strategy can be found analytically).

To improve the efficiency of the greedy algorithm in practice, one could try to apply it
to the observable variables Yd indexed by d varying in the set of decision trees of a certain
small depth. For example, King-Smith et al. (1994) have implemented this strategy for a
two-step “look-ahead” in a psychometric estimation procedure. However, their simulations
indicated that the improvement over the one-step greedy strategy was generally small
(compared to the one-step method after 16 trials, the two-step method yielded the same
accuracy at 15.97 trials for γ = 0.03, δ = 0.01 and at 15.6 trials for γ = 0.5, δ = 0.01).
Still, much larger improvements may be possible in other models.

1.8 Non-adaptive and batch strategies

Lindley (1956) considers the case where i.i.d. copies of the same random variable Yx are

observed sequentially and shows that the expected information gain I(Y
(1)
x , . . . , Y

(t)
x ; Θ)

over t observations is a concave function of t, i.e., the expected information gains from
each additional observation are non-increasing. Note that it is possible that the first
observation of some Yx is expected to yield more information than the first observation
of Yx′ , but that over repeated i.i.d. observations, Yx′ would be more informative than the
same number of observations of Yx (this is the case in the example of Sec. 2.1).

In recent works, Müller et al. (2004) and Amzal et al. (2006) consider Monte Carlo
simulation methods for optimal experiment design under a given set of adjustable param-
eters, such as the placements x1, . . . , xT of all trials in a non-adaptive experiment. These
methods may also be useful for such adaptive designs where one has to choose the place-
ments for a batch of n trials simultaneously. In that case, one could apply the optimal
design algorithm for each batch within a greedy strategy that considers each batch as a
single trial. In theory, the same simulation methods could be applied to the complete
design d of an adaptive experiment, too, although the exponential number of parameters
would become a problem soon as discussed above.

2 Examples

The greedy algorithm of optimizing the expected immediate gain is ubiquitous in practical
applications of Bayesian adaptive estimation. However, little is known about its relative
efficiency compared to other strategies. The only definitive result so far appears to be that
under certain regularity conditions, the greedy strategy can be shown to be asymptotically
more efficient than any non-adaptive strategy (Paninski, 2005).

In this section, through simple concrete examples, we demonstrate in particular that

1. the per-trial efficiency of batch strategies generally deteriorates rapidly as the batch
size increases,
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Figure 2: A simplified version of the psychometric model shown in Fig. 1 with an infinite
slope at the thershold θ.

2. although the greedy algorithm usually works, it can be arbitrarily much worse than
the globally optimal strategy, and

3. even the globally optimal strategy can apparently fail due to the fact that the entropy
loss function can be inappropriate in certain situations.

2.1 A simplified psychometric model

Example 2.1. Suppose that for all x ∈ R, Yx ∈ {0, 1} is a dichotomous random variable
defined by

Pr{Yx = 1 | θ} =

{

a, x < θ,

b, x ≥ θ

for some 0 ≤ a < b ≤ 1, see Fig. 2. While this model is simple, it does have the important
feature that there is uncertainty of the results due to both the fact that Θ is unknown
and the fact that for a given θ, the result [Yx | θ] is random. This model differs from the
typical psychometric model only in that, due to the infinite slope at the threshold, the
obtainable information gains do not decrease over time as the scale of uncertainty reduces.
However, this detail is not very important during the first few trials, and therefore this
example serves to illustrate the relative efficiencies of different placement strategies that
can be expected in a typical psychophysical experiment and explain the success of the
greedy strategy.

2.1.1 Success of the greedy strategy

Using (3), the expected information gain of observing Yx given any prior data y =
(yx1, . . . , yxt−1) can be calculated as

I(Yx; Θ | y) = H(Yx | y) − E[H(Yx | Θ, y)]

= h(a+ (b− a) Pr{Θ ≤ x | y})
− (h(a) + (h(b) − h(a)) Pr{Θ ≤ x | y}),

(4)
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which depends on the placement x and the prior data y only through z := Pr{Θ ≤ x | y}.
Assuming that the prior on Θ is absolutely continuous w.r.t. the Lebesgue measure, the
same will be true for the posterior given y, and one can always choose x so as to attain
any value of z ∈ [0, 1]. As (4) is continuous on the compact interval z ∈ [0, 1], it attains
a maximum value (which is independent of any prior data). It follows that the greedy
strategy yields the maximum expected total information gain over any given constant
number of trials.

Let us then find the value(s) of z that maximize (4). Obviously the expression is
smooth and positive (assuming a 6= b) for z ∈ (0, 1) and zero for z = 0 or z = 1. Hence,
the expression can attain a maximum value only at critical points z ∈ (0, 1). The derivative
w.r.t. z is

h′(a+ (b− a)z)(b − a) − (h(b) − h(a)),

where h′(p) = log(1/p − 1). The derivative is zero iff

log

(
1

a+ (b− a)z
− 1

)

=
h(b) − h(a)

b− a
,

and so the maximum value is attained at the unique point

z∗ =

1

1 + exp
(

h(b)−h(a)
b−a

) − a

b− a
. (5)

The value at this point is (after some algebra)

I(Yx∗ ; Θ | y) = log

(

1 + exp

(
h(b) − h(a)

b− a

))

− (1 − a)h(b) − (1 − b)h(a)

b− a
. (6)

2.1.2 Non-adaptive and batch strategies

Let us then consider non-adaptive strategies with a set of n placements x1 ≤ · · · ≤ xn to
be chosen before the experiment. Denoting g(p) = −p log p, zk := Pr{Θ ≤ xk}, z0 = 0,
and z1 = 1, the expected information gain can be written as

I(Yx1, . . . , Yxn ; Θ) = H(Yx1 , . . . , Yxn) − E[H(Yx1, . . . , Yxn | Θ)]

=
∑

yx1

· · ·
∑

yxn

g





∫

p(θ)dθ

n∏

j=1

p(yxj
| θ)



−
n∑

j=1

E[H(Yxj
| Θ)]

=
1∑

y1=0

· · ·
1∑

yn=0

g









n∑

k=0

(zk+1 − zk)
n∏

j=1







a, j ≤ k, yj = 1,

1 − a, j ≤ k, yj = 0,

b, j > k, yj = 1,

1 − b, j > k, yj = 0,









−
n∑

k=1

[h(a) + (h(b) − h(a))zk]

= −(Mz + v) · log(Mz + v) − u · z − c =: f(z)

for some matrix M ∈ R
2n×n, vectors v ∈ R

2n

and u ∈ R
n, and constant c ∈ R, where

z = (z1, . . . , zn) ∈ R
n and the log function is applied elementwise to Mz + v ∈ [0, 1]2

n

.
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The gradient of the function is

∇f(z) = −MT




log(Mz + v) +






1
...
1









− u

and the Hessian matrix is

Hf(z) = −MTdiag(inv(Mz + v)
︸ ︷︷ ︸

≥1

)M,

where inv denotes elementwise inverse. As the Hessian is negative definite (M has full
rank given a 6= b), the function is strictly concave and therefore has a unqiue maximizer
in the compact convex set 0 ≤ z1 ≤ · · · ≤ zn ≤ 1, which can be found using, for example,
Newton’s iteration z(t+1) = z(t) − λ[Hf(z(t))]−1∇f(z(t)), (where at each step t we try
λ = 1, 0.1, 0.01, . . . until z(t+1) is within the convex feasible set).

While this linear algebraic formulation appears simple, it should be noted that the
matrix M has an exponential number of rows. Thus, this deterministic approach will
only work up to around n = 20. Beyond that, one may have to resort to a Monte Carlo
approach to simulate the expected results of each possible set of placements as discussed
in Sec. 1.8.

Finally, let us consider a non-adaptive design where n i.i.d. trials are conducted with
the same placement x. Conceptually, this is just a restricted special case of the general
non-adaptive design considered above, but instead of the 2n different outcomes, one can
now consider a binomial distribution of the number of 1-results. However, as this still does
not lead to a closed form solution, we do not go into the details.

2.1.3 Comparison

The optimal placements of the three strategies for n = 1, . . . , 9 are shown in Fig. 3.
Apparently the efficiency of the non-adaptive strategies decreases rapidly relative to the
optimal strategy as n increases. The reasons for this are intuitively simple: when a is
close to zero and b close to one, the adaptive strategy can sequentially bisect the range
down to one of 2n distinct sections, yielding n bits of information, while the non-adaptive
strategy can only divide the range to n+ 1 distinct sections yielding at most log2(n + 1)
bits of information and the single-placement strategy with only 2 sections tops off at 1 bit.
However, as the guessing and lapsing rates increase, the differences between the strategies
become smaller. For example, with a = .5 and b = .8, one could present batches of 3
identical trials with only a small loss in efficiency compared to the fully adaptive strategy.

The optimal adaptive placement (5) appears to be close to the median of the distribu-
tion of [Θ | y] under several values of a and b. With two-alternative forced choice design
(i.e., guessing rate a = 1/2), the optimal placement tends to z = 0.6 as b→ 1, and for any
a and b, the placement z is within [1/e, 1 − 1/e] ≈ [.3679, .6321].

2.2 Trade-off between guessing and lapsing rates

Often one can affect the guessing and lapsing rates by the design of the experiment. Obvi-
ously if both can be decreased, then the informativity of the experiment should increase.
But what if the guessing rate can only be decreased at the cost of a higher lapsing rate, or
vice versa? In this section we give a definitive answer under Lindley’s (1956) method of
comparing experiments, that is, we determine when one experiment is more informative
than the other regardless of the prior information.
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Figure 3: Illustrations of the placements and efficiency of the optimal adaptive design
(squares), optimal non-adaptive design (circles), and optimal single-placement repeated
observations design (crosses) in the model shown in Fig. 2. These are the optimal place-
ments assuming a uniform prior for Θ on [0, 1]. For any other (absolutely continuous)
prior, the placements are obtained by interpreting the values on the y-axis as the fractiles
Pr{Θ ≤ xk | y}, which also yields the not shown optimal adaptive placements for n > 1.
The circles are almost but not exactly evenly spaced for each n. The crosses approach a
gain of 1 bit and placement at 0.5 as n→ ∞.
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Theorem 2.1. Let Ya,b be a dichotomous random variable depending on another random
variable Θ ∈ [0, 1] through the conditional distribution

Pr{Ya,b = 1 | θ} = a+ (b− a)θ,

where a, b ∈ [0, 1] and a 6= b. If both of the inequalities

a(1 − a)

(b− a)2
≤ a′(1 − a′)

(b′ − a′)2
(7)

b(1 − b)

(b− a)2
≤ b′(1 − b′)

(b′ − a′)2
, (8)

are satisfied, then I(Ya′,b′ ; Θ) ≤ I(Ya,b; Θ) regardless of the distribution of Θ. If, in addition,
the inequality in (7) or (8) is strict, then I(Ya′,b′ ; Θ) < I(Ya,b; Θ) provided that Θ is not
concentrated on a single point. If (7) holds with < and (8) holds with > (or vice versa),
then, depending on the distribution of Θ, either one of I(Ya,b; Θ) and I(Ya′,b′ ; Θ) can be
strictly larger than the other.

Proof. The mutual information can be written as

I(Ya,b; Θ) = H(Ya,b) − E[H(Ya,b | Θ)]

= h(a+ (b− a) E[Θ]) − E[h(a+ (b− a)Θ)]

= ha,b(E[Θ]) − E[ha,b(Θ)], (9)

where

h(x) = −x log x− (1 − x) log(1 − x),

ha,b(x) = h(a+ (b− a)x).

As h′′(x) = −1/(x(1 − x)), we obtain the expression

h′′a,b(x) = h′′(a+ (b− a)x)(b− a)2

= − (b− a)2

[a+ (b− a)x][1 − a− (b− a)x]
,

which is continuous on x ∈ (0, 1). Thus, Lemma A.1 implies that the conclusion I(Ya′,b′ ; Θ) ≤
I(Ya,b; Θ) follows if h′′a,b(x) ≤ h′′a′,b′(x) for all x ∈ (0, 1). But this inequality is equivalent
to

[a+ (b− a)x][1 − a− (b− a)x]

(b− a)2
≤ [a′ + (b′ − a′)x][1 − a′ − (b′ − a′)x]

(b′ − a′)2

which is linear (the second order terms cancel) and therefore holds for all x ∈ (0, 1) if
and only if it holds at the end points x ∈ {0, 1}. This is precisely the condition given
by (7) and (8) in the statement of the theorem. Furthermore, if the linear inequality is
strict at either end point, then it is strict at every x ∈ (0, 1) and Lemma A.1 implies
I(Ya′,b′ ; Θ) < I(Ya,b; Θ).

Finally, if h′′a,b(0) < h′′a′,b′(0) and h′′a,b(1) > h′′a′,b′(1) (or vice versa), then one can
apply Lemma A.1 to nonsingular distributions supported on sufficiently small ranges [0, ǫ]
and [1 − ǫ, 1] to show that both I(Ya,b; Θ) > I(Ya′,b′ ; Θ) and I(Ya,b; Θ) < I(Ya′,b′ ; Θ) are
possible.

Corollary 2.2. If a′ 6= b′ and [a′, b′] ⊂ [a, b] ⊂ [0, 1], then I(Ya,b; Θ) ≥ I(Ya′,b′ ; Θ).

13



Proof. Given b ∈ [b′, 1], the inequality

a(1 − a)

(b− a)2
≤ a′(1 − a′)

(b′ − a′)2

obviously holds at a = a′. Differentiating the left side w.r.t. a yields

(1 − 2a)(b− a)2 − a(1 − a)(−2)(b − a)

(b− a)4
=

(b− a) + 2a(1 − b)

(b− a)3
≥ 0

and thus extends the inequality for all a ∈ [0, a′]. The inequality (8) holds analogously.

2.3 Exploration versus exploitation

Example 2.2. Suppose Yn is a dichotomous random variable depending on the random
variables Θ and M through the conditional distribution

Pr{Yn = 1 | θ,m} =

{

θ + (1 − θ) 1
n , n ≤ m,

1
n , n > m.

Here n is the number of alternatives in a multiple choice task and Θ represents the prob-
ability that the observer knows the correct answer to each question. If the correct answer
is not known, the observer is assumed to guess. Increasing n decreases the probability of
guessing correctly, but we also assume that there is an unknown maximum number M ≥ 2
of choices that the observer can handle before being overwhelmed in which case the answer
will be random again. This leads to a kind of trade-off between the guessing and lapsing
rate.

Assuming that Θ and M are independent, we have

Pr{Yn = 1 | θ} = Pr{n ≤M}
[

θ + (1 − θ)
1

n

]

+ Pr{n > M} 1

n

=
1

n
+ Pr{n ≤M}n− 1

n
θ.

Using the notation of Theorem 2.1, we see that [Yn | θ] ∼ [Ya,b | θ] for a = 1/n and
b−a = Pr{n ≤M}(n−1)/n. Assuming that M ∈ {2, . . . , N}, we have [Y2 | θ] ∼ [Y1/2,1 | θ]
and so, I(Y2; Θ) > I(Yn; Θ) if

1 =
1
2(1 − 1

2 )

(1 − 1
2)2

<
1
n(1 − 1

n)
(
Pr{n ≤M}n−1

n

)2

and

0 =
1(1 − 1)

(1 − 1
2)2

≤ [. . . ](1 − [. . . ])
(
Pr{n ≤M}n−1

n

)2

which is equivalent to

Pr{n ≤M} < 1√
n− 1

.

This is satisfied for all n ≥ 2, if, for example, we define the distribution of M by

p(m) ∝
{

1/m, m = 2, . . . , 7,

0, otherwise.
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For this prior distribution of M , maximization of I(Yn; Θ) yields n = 2 regardless of the
distribution of Θ. But as Y2 does not depend on M , the posterior distribution of M given

the the result y2 remains unchanged and so I(Yn; Θ | y(1)
2 , . . . , y

(t)
2 ) is always maximized

by n = 2, and the greedy algorithm will only present trials with n = 2. This is clearly
suboptimal in the long run as there is a positive probability that M > 2. Presenting
some trials with n > 2 first would allow estimating M . Once the value is known with
high enough confidence, the rest of the trials can be presented with the optimal number
of choices n = M .

It is often suggested that the objective function of the greedy algorithm should combine
both the expected gain of utility as well as the expected gain of information about all
unknowns as it might lead to better gains of utility in the following trials (e.g., Verdinelli
and Kadane, 1992). Thus, even though M is a nuisance variable we are not interested
in estimating, it turns out that it would still be more efficient in the long run to apply
the greedy algorithm to minimization of H(Θ,M | y) instead of H(Θ | y). Indeed, this
strategy appears to be asymptotically optimal in the sense that the distribution of the
placements eventually converges to M provided that Θ > 0.6

However, even if the utility function is defined as the information gained about all
unobservable variables, the greedy strategy can still be arbitrarily much worse than the
optimal strategy:

Example 2.3. Suppose that each of Θ ∼ Uniform[0, 1] and Φn ∼ Uniform{1, . . . , n} for
n ∈ {1, 2, . . . } are independent, unobsorvable variables. The observable variables are given
by Yn,x,a,b ∈ {−1, 0, . . . , 2n−1 − 1}, n, x ∈ {1, 2, . . . }, a, b ∈ [0, 1], where

Yn,x,a,b =







0, x = Φn, Θ < a,
⌊

2n Θ−a
b−a

⌋

, x = Φn, a ≤ Θ < b,

2n − 1, x = Φn, Θ ≥ b,

−1, otherwise.

In this model, the posterior of Θ given any observations y will always be a uniform
distribution on some interval [a, b]. For any given n, if one knows or guesses correctly the
value of Φn, then observation of Yn,x,a,b with x = Φn reduces the posterior interval [a, b]
to some of its 2n subdivisions and thus yields n new bits of information about Θ (as well
as confirms the value of Φn if it was uncertain). An incorrect guess yields no information
about Θ, but decreases the set of possible values of Φn by one. However, as there is no
randomness in the observed variables given the hidden state, the expected information
gain of both Θ and Φ := (Φ1,Φ2, . . . ) for a given n and any untried value of x is most
conveniently calculated as

I(Yn,x,a,b; Θ,Φ | y) = H(Yn,x,a,b | y) − E[H(Yn,x,a,b | Θ,Φ,y)]
︸ ︷︷ ︸

=0

=
1

n−mn
log 2n + h

(
1

n−mn

)

, (10)

where mn denotes the number of incorrect values of Φn already tried, and where we have
split the computation of the entropy into two cases according as the outcome is −1 or
≥ 0 (the entropy of the first case is zero, the entropy of the latter case is log 2n, and the

6We do have not have a rigorous proof of this result, but it is what happens in simulations.
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Figure 4: A two-threshold version of the model shown in Fig. 2.

uncertainty between these two cases corresponds to the latter term of the expression).
Initially mn = 0 for all n, in which case (10) is maximized by n = 2. This maximum value
is 2 bits (.5 chance of guessing the correct value of Φ2, in which case two bits of Θ are
obtained, and in either case, the value of Φ2 ∈ {1, 2} is learned which yields another bit).
Observing this variable does not change the optimal informativity for n 6= 2 nor does it
change it for n = 2 as the optimal gain is still 2 bits after the value of Φ2 has been learned.
Thus, if I(Yn,x,a,b; Θ,Φ) is maximized at every step, only trials with n = 2 will ever be
presented, each yielding exactly 2 bits of new information.

However, the optimal measurement strategy in this model strongly depends on the
total number of trials that the experiment will include. If there are T trials, then a good
strategy would be to spend (at most) T/2 trials to find the value of ΦT/2 after which the
remaining trials will each yield T/2 bits of information. The total information gain will
thus be at least (T/2)(T/2) = T 2/4 bits while the greedy one-step strategy will only yield
2T bits.

2.4 Inappropriate utility function

Example 2.4. Suppose Yx is a dichotomous random variable depending on two thresholds
Θ1 ∈ (0, 1) and Θ2 ∈ (1, 2) through the conditional distribution

Pr{Yx = 1 | θ1, θ2} =







a1, x < θ1, x ∈ (0, 1),

b1, x ≥ θ1, x ∈ (0, 1),

a2, x < θ2, x ∈ (1, 2),

b2, x ≥ θ2, x ∈ (1, 2),

see Fig. 4.

In this model, there are essentially two independent subproblems, the estimation of
Θ1 and the estimation of Θ2. Indeed,

I(Yx; Θ1,Θ2 | y) =

{

I(Yx; Θ1 | y1), x ∈ (0, 1),

I(Yx; Θ2 | y2), x ∈ (1, 2),
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where y1 denotes the trial results placed on (0, 1) and y2 those placed on (1, 2), and so we
have two independent instances of the single-threshold problem solved in Sec. 2.1. As the
optimal gain (6) for each subproblem only depends on the values of a1, b1 or a2, b2, one of
three things will happen: either the inequeality

max
x∈(1,2)

I(Yx; Θ1,Θ2 | y) > max
x∈(0,1)

I(Yx; Θ1,Θ2 | y)

always holds, it always holds in the reverse direction, or equality always holds. In the first
mentioned case, if one uses the joint entropy H(Θ1,Θ2 | y) as the loss function, then only
the second threshold will ever be estimated. This is intuitively not the desired result.

However, even though Paninski (2005) presents this example as a failure of the greedy
information maximization strategy, that is not the true cause of the problem as the greedy
strategy is in fact optimal for minimizing the specified loss function. Instead, the true
problem is inappropriateness of the loss function.

To avoid the problem, one might instead use the loss function

max{H(Θ1 | y),H(Θ2 | y)}.

In that case, both thresholds would be estimated to the same accuracy, but the propor-
tion of trials spent on the more difficult-to-estimate threshold would be larger. This is
intuitively the desired result.

3 Random cost of observation

In this section, we consider the situation where the observation of Yx is associated with
some random cost Cx ≥ 0, which given the value of Yx, is independent of Θ and the results
and costs of any other observations:

Θ
ւ ↓ ց

Yx Yx′ . . .
↓ ↓
Cx Cx′ . . .

The technical requirement that Cx depends on Θ only through Yx is satisfied in particular
if Cx is a component of Yx. Thus, it leads to no loss of generality if the incurred costs are
observable.

Costs of observation have been considered by DeGroot (1970) in several examples and
Paninski (2005) mentions a special case where a certain price C(xt−1, xt) has to be paid
for each change of the state of the “observational apparatus” from xt−1 to xt. What is
common to all these examples is that the proposed objective function is based on some
difference of the expected gain and the cost. However, there is the obvious problem of
having to equate the units of gain with the units of the cost. In the following, we take a
different approach by considering the ratio of the gain and cost instead.

3.1 Obtaining the best value for money

Intuitively, we would like to maximize the unit price of the information, the amount of
information given by the experiment divided by the total cost of conducting it. However,
in some practically interesting situtations there may be a positive probability that the
actual cost is zero (even if its expectation is positive), and therefore it generally does not
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make sense to talk about the expected unit price over one trial or any predetermined
number of trials as there will be a positive probability that the total cost is zero and so
the expectation of the total gain divided by the total cost will be infinite.

To avoid this instability, the goal can be operationally defined either as

1. maximizing the expected amount of information given by an experiment that termi-
nates when the total cost overruns a certain predetermined budget, or

2. minimizing the expected cost of an experiment that terminates when a predetermined
amount of information has been obtained.

Both definitions are reasonable, but the first one is more elegant in that it corresponds
to the plain expected information maximization goal with an adaptive termination rule
as dicussed in Sec. 1.6. Hence, the optimal strategy under that goal is insensitive to the
parametrization used to define the differential entropy measure of information. In con-
trast, simple counterexamples show that the second definition does not have this desirable
property.

Remark 3.1. In the statement of the problem, we do not require the cost Cx to be
observable. However, for the experiment to actually terminate when the budget is overrun,
either the actual costs must be observable, or alternatively, any further trials could simply
fail after the budget is overrun. In the latter case, the adaptive termination rule would be
random. In either case, the actual costs are irrelevant to the final Bayesian estimates of
Θ as they are assumed to depend on Θ only through the fully observable results Yx.

Remark 3.2. Obviously exact maximization of the expected information gain under a
given budget is generally intractable for the same reasons that the usual constant number
of trials case is. However, even if the information gains and costs associated with each
Yx were known time-invariant constants, the problem of fitting the best value in a given
constant budget would still be intractable — it is equivalent to the knapsack problem
which is NP hard (see, Garey and Johnson, 1979). The heuristic we shall present is in
fact similar to the heuristics used to find approximate solutions to the knapsack problem
although we have the additional complications of randomness and the generally intractable
sequential changes.

3.2 Heuristics

Let us define random variables denoting the gain and cost of the t-th observation:

Gt := Ut − Ut−1 = u[ θ 7→ p(θ | YX1 , . . . , YXt) ] − u[ θ 7→ p(θ | YX1 , . . . , YXt−1) ],

Ct := CXt .

Assuming for a moment that the cost Cx is defined as the time taken by the observation
of Yx, one might think that choosing x so as to maximize the expected rate of information
gain

E

(
Gt

Ct

∣
∣
∣ y, Xt = x

)

(11)

over the duration Ct of the next observation would be a good heuristic. While this formu-
lation indeed yields the best unit price over the next trial (ignoring the potential division
by zero problem), it generally falls short of this goal in a sequential experiment. Over
a constant unit of time, repeated i.i.d. observations of Yx are expected to result in each
outcome (yx, cx) being observed for a total duration proportional to p(yx, cx | y)cx. Thus,
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to estimate the average rate of gain obtainable from Yx, the expectation should be taken
over the distribution

p(yx, cx | y)cx
∫∫

p(yx, cx | y)cx dyx dcx

instead. This leads to the objective function

∫∫ [
uy,yx − uy

cx

]
p(yx, cx | y)cx

∫∫
p(yx, cx | y)cx dyx dcx

dyx dcx =
E(Gt | y, Xt = x)

E(Ct | y, Xt = x)
, (12)

where we denote uy = u[ θ 7→ p(θ | y) ]. With the entropy utility function (1), this can be
written in the convenient form

I(Yx; Θ | y)

E(Cx | y)
. (13)

Remark 3.3. Unlike the situation in the pure information maximization case, maximiza-
tion of (12) does not correspond to maximization of the immeadiate expected utility.
Thus, it is not the prototypical greedy algorithm, but it is still myopic in the sense that it
expects the future sets of possible expected gains and costs to be similar to those of the
current trial.

3.3 Conditions for asymptotic optimality

The following proposition implies that maximization of (12) is the asymptotically optimal
strategy if the set of the distributions of [Gt | y, Xt = x] and [Ct | y, Xt = x] over all
possible values of x do not change over time as each new outcome is added to the data
y. That is, the same distributions of gain and cost are allowed to be associated with
different x at different times as long as these x’s at different times are in a one-to-one
correspondence.

Proposition 3.1. Suppose that the random variables G and C have finite expectations
E(G) and E(C) 6= 0. Then, almost surely (i.e., with probability 1)

lim
n→∞

G1 + · · · +Gn

C1 + · · · + Cn
=

E(G)

E(C)
,

where Gk and Ck denote i.i.d. copies of G and C, respectively.

Proof. Having finite expectations, the i.i.d. sequences Gk and Ck satisfy the strong law of
large numbers:

lim
n→∞

1

n

n∑

k=1

(Gk − E(Gk))
a.s.
= 0,

lim
n→∞

1

n

n∑

k=1

(Ck − E(Ck))
a.s.
= 0.

Thus,

lim
n→∞

∑n
k=1Gk

∑n
k=1Ck

= lim
n→∞

1
n

∑n
k=1(Gk − E(Gk)) + E(G)

1
n

∑n
k=1(Ck − E(Ck)) + E(C)

a.s.
=

E(G)

E(C)
.

Under certain side conditions, optimality of the strategy can also be shown under the
weaker assumption that the objective function always has the same maximum value α
regardless of the past data:
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Theorem 3.2. Suppose that for some σ2 <∞,
{

Var(Gt | y, Xt = x) < σ2,

Var(Ct | y, Xt = x) < σ2,

for all sets y of past observations and all placements x of the next trial and

lim inf
t→∞

C1 + · · · + Ct

tρ
a.s.

> 0

for some ρ > 1/2. If there exists a constant value α > 0 such that

max
x∈Xt

E(Gt | y, Xt = x)

E(Ct | y, Xt = x)
= α (14)

for all sets y of past observations, then defining Xt as the maximizer of (14) is asymptot-
ically optimal in the sense that with this strategy, the distribution of

G1 + · · · +Gt

C1 + · · · + Ct

converges to the constant α as t→ ∞, while with any other strategy,

lim
t→∞

Pr

{
G1 + · · · +Gt

C1 + · · · + Ct
≤ α+ ǫ

}

= 1

for all ǫ > 0.

Proof. Assuming that Xt is always chosen as the maximizer of (14), the sequences Yt :=
YXt and Zt := Gt −αCt satisfy the assumptions of Lemma A.2 with µk = 0 and σ2

k = 4σ2.
Thus,

Var(Z1 + · · · + Zt) ≤ 4tσ2,

whence

Var

(
Z1 + · · · + Zt

tρ

)

≤ 4t1−2ρσ2 → 0

as t → ∞, which implies that the distribution of (Z1 + · · · + Zt)/t
ρ converges to the

constant E[(Z1 + · · · + Zt)/t
ρ] = 0. Expanding the definition of Zt, this means

G1 + · · · +Gt

tρ
− α

C1 + · · · + Ct

tρ
P−→ 0.

Division by (C1 + · · · + Ct)/t
ρ, which is almost surely larger than some positive constant

for all but a finite number of indices t, yields

G1 + · · · +Gt

C1 + · · · + Ct

P−→α.

To prove the latter part of the theorem, let the logic of choosing Xt now be arbitrary. The
sequence Z ′

t := G′
t − αCt, where we use the upwards adjusted gains

G′
t := Gt + E(αCt −Gt | YX1, . . . , YXt)

︸ ︷︷ ︸

≥0 by (14)

,

satisfies the assumptions of the lemma with the same constants as the optimal case, and
repeating the analogous steps, we obtain

G1 + · · · +Gt

C1 + · · · + Ct
≤ G′

1 + · · · +G′
t

C1 + · · · + Ct

P−→α.
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3.4 The simplified psychometric model

We shall extend the model of Sec. 2.1 with random costs Cx associated with observing
Yx. Recall that in this model, for all x ∈ R, Yx ∈ {0, 1} is a dichotomous random variable
defined by

Pr{Yx = 1 | θ} =

{

a, x < θ,

b, x ≥ θ,

for some a, b ∈ [0, 1]. Let us then assume that the distribution of the random cost Cx is
fully determined by the value of Yx, i.e., it does not depend directly on x. Then,

E(Cx | θ) =

{

ca, x < θ,

cb, x ≥ θ

for some ca and cb, which we assume to be positive to avoid pathological cases.

3.4.1 Optimal strategy under varying costs

The expected information gain, as before, is given by

I(Yx; Θ | y) = H(Yx | y) − E[H(Yx | Θ, y)]

= h[a+ (b− a) Pr{Θ ≤ x | y} − [h(a) + (h(b) − h(a)) Pr{Θ ≤ x | y}]

and so the objective function is

I(Yx; Θ | y)

E(Cx | y)
=
h(a+ rz) − (ha + hrz)

ca + crz
,

where we denote z := Pr{Θ ≤ x | y}, r := b − a, ha := h(a), hr := h(b) − h(a), and
cr := cb − ca. Thus, the objective function depends on the prior and the placement x
only through z, which can attain any value in [0, 1] provided that the prior distribution
is absolutely continuous w.r.t. the Lebesgue measure. The function is zero for z ∈ {0, 1}
and positive for z ∈ (0, 1). Therefore, the optimum can be found at a critical point of the
objective function.

Differentiating w.r.t. z yields

(h′(a+ rz)d− hr)(ca + crz) − (h(a+ rz) − ha − hrz)cr
(ca + crz)2

The denominator is finite and positive and the numerator equals

crha − cahr + rh′(a+ rz)(ca + crz) − crh(a+ rz)

= crha − cahr + r[log(1 − a− rz) − log(a+ rz)](ca +�
�crz)

+ cr[(a+��rz) log(a+ rz) + (1 − a−��rz) log(1 − a− rz)]

= crha − cahr + (cra− car) log ω + (car − cra+ cr) log(1 − ω)

= cbh(a) − cah(b) + (cba− cab) log ω + (cb(1 − a) − ca(1 − b)) log(1 − ω),

where we denote ω := a+ rz = Pr{Yx = 1 | y}. It is easy to verify by differentiating and
simplifying that the above expression is monotone for ω between a and b and therefore
has a unique zero corresponding to the maximum value of the objective function.

Placing the next trial at this optimum is by Theorem 3.2 the asymptotically optimal
strategy as it yields the same maximum value of the objective function at every trial
regardless of the past data (and it is easy to show that the other assumptions of the
theorem hold, too).
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3.4.2 Specific examples

Assuming now Cx = 1, i.e., constant cost, we have ca = cb = 1 and the optimality
condition becomes

h(a) − h(b) + (a− b) log ω + (b− a) log(1 − ω) = 0,

whence

log
1 − ω

ω
=
h(b) − h(a)

b− a
,

which yields the optimizer

ω∗ =
1

1 + exp

(
h(b) − h(a)

b− a

) .

This result we have already seen in Sec. 2.1, although here we have adopted ω instead of
z = (w − a)/(b − a) as the parameter.

If we assume instead that Cx = [Yx = 0], i.e., each 0-result costs one unit, we have
ca = 1 − a and cb = 1 − b, and the equation becomes

0 = (1 − b)h(a) − (1 − a)h(b)

+ ((1 − b)a− (1 − a)b) log ω

+ ((1 − b)(1 − a) − (1 − a)(1 − b)) log(1 − ω)

= (1 − b)h(a) − (1 − a)h(b) + (a− b) log ω,

which yields the optimizer

ω∗ = exp

(

−(1 − a)h(b) − (1 − b)h(a)

b− a

)

.

This definition of cost was in fact used by Kujala et al. (2008) in a child-friendly
mesaurement formulation, which assumes a cost on each failure of a child due the fact
that failures can lower motivation. If a child can only tolerate a certain number of failures,
then this formulation should yield the maximum amount of information before that limit
is reached.

3.4.3 Non-adaptive and batch strategies

The discussion of Sec. 2.1 generalizes directly. Denoting

I(Yx1 , . . . , Yxn ; Θ) = f(z) = −(Mz + v) · log(Mz + v) − u · z − c,

and

E(Cx) = g(z) = ca + (cb − ca)

n∑

k=1

zk,

we have

∇(f/g)(z) =
g(z)∇f(z) − f(z)∇g(z)

g(z)2
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and

H(f/g)(z) =
1

g(z)4

[

(∇g(z)∇f(z)T + g(z)Hf(z) −∇f(z)∇g(z)T − f(z)Hg(z))g(z)2

− (g(z)∇f(z) − f(z)∇g(z))2g(z)∇g(z)T
]

=
Hf(z)

g(z)
− ∇g(z)

g(z)

∇f(z)T

g(z)
− ∇f(z)

g(z)

∇g(z)T
g(z)

+ 2
f(z)

g(z)

∇g(z)
g(z)

∇g(z)T
g(z)

,

where ∇g(z) = (cb − ca, . . . , cb − ca) and Hg(z) = 0.
Although it is not obvious from this expression, the Hessian of the objective function

f/g was in practice always negative definite and so Newton’s iteration worked fine here,
too. However, we have no formal proof that the found optimum is in fact the global
optimum when n > 1.

We do not go into any details of the single placement strategy x1 = · · · = xn here
either.

3.4.4 Comparison

Figure 5 illustrates the optimal placements under the three strategies when each 0-result
costs one unit.

Comparing the optimal adaptive placements in Figs. 3 and 5 supports the characteri-
zation given in (Kujala et al., 2008): while pure information maximization works much like
binary search, roughly bisecting the uncertainty distribution at each step, the cost-aware
variation instead chooses the placement at a certain lower percentile closer to the easier
end.

The exact percentile of the optimal placement seems to depend mostly on the lapsing
rate 1 − b and less on the guessing rate a. This dependence was to be expected: if there
is going to be a large probability of careless mistakes anyway, then it does not pay off to
make the trials very easy, and conversely, if careless mistakes are unlikely, then the easiest
trials will be virtually free and the placements close to that end will yield the best value
for money even though the gains over one trial are smaller.

The placements of the non-adaptive strategy are no longer close to evenly spaced.
Instead, they cluster near the easier end.

3.5 Discussion

So far, we have only considered discrete cost variables explicitly. An obvious topic for
future work is calculation of the objective function (13) for some response time model
with the cost Cx defined as the response time. In any experiments where the placement
of a trial can affect its duration, this formulation can increase the efficiency per time unit
over the pure information maximization greedy algorithm. In particular, in an n-choice
task, the response times generally increase with n, and so a smaller value of n might turn
out to be optimal even though it yields a higher guessing rate. However, the resulting
time-efficiency also depends on any pre-stimulus delays, which should be included in the
cost.

A Lemmas

In this section, we give proofs for some intuitively true results used in the main text.
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Figure 5: Optimal placements and the corresponding optimal expected gain per exepcted
cost ratios for the optimal adaptive strategy (squares), optimal non-adaptive strategy (cir-
cles), and optimal single-placement repeated observations strategy (crosses) under random
cost of observation defined as Cx = [Yx = 0] (i.e., each 0-result costs one unit) in the model
of Figs. 2 and 3. The interpretation of the placement values is the same is in Fig. 3.
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Lemma A.1. Let X be a real-valued random variable and let the functions f, g : [a, b] → R

be continuous and twice continuously differentiable on (a, b). If Pr{X ∈ [a, b]} = 1 and
f ′′(x) ≤ g′′(x) for all x ∈ (a, b), then

E[f(X)] − f(E[X]) ≤ g[f(X)] − g(E[X]).

The analogous result holds for “<” provided that X is not concentrated on a point.

Proof. Suppose x0 := E[X] ∈ (a, b) (otherwise X is concentrated on either a or b and the
result is trivial). Then, f ′′(x) ≤ g′′(x) implies

f ′(x) − f ′(x0) =

∫ x

x0

f ′′ ≤
∫ x

x0

g′′ = g′(x) − g′(x0)

for x ∈ (x0, b) and the inequality is reversed for x ∈ (a, x0). Integrating both sides again
yields ∫ x

x0

[f ′(t) − f ′(x0)]dt ≤
∫ x

x0

[g′(t) − g′(x0)]dt

for all x ∈ (a, b), which implies

f(x) − f(x0) − (x0 − x)f ′(x0) ≤ g(x) − g(x0) − (x0 − x)g′(x0)

for all x ∈ [a, b] (the inequeality extends to the endpoints as every term is continuous in
x). Substituting the random variable X for x and taking the expectation of both sides,
we obtain

E[f(X)] − f(x0) − (x0 − E[X])f ′(x0) ≤ E[g(X)] − g(x0) − (x0 − E[X])g′(x0),

which implies the statement. The “<” version is a simple modification.

Lemma A.2. Suppose Yk and Zk are sequences of random variables such that Zk is
independent of Z1, . . . , Zk−1 given y1, . . . , yk−1 and

{

E(Zk | y1, . . . , yk−1) = µk,

Var(Zk | y1, . . . , yk−1) ≤ σ2
k,

for all values of k and y1, . . . , yk−1. Then,

Var(Z1 + · · · + Zk) ≤ σ2
1 + · · · + σ2

k

for all k.

Proof. By induction: for k = 1, we have trivially Var(Z1) ≤ σ2
1 , and for any k > 1, the

variance can be split as

Var(Z1 + · · · + Zk) = Var(Z1 + · · · + Zk−1) + Var(Zk)

+ 2Cov(Zk, Z1 + · · · + Zk−1),

where our induction assumption is

Var(Z1 + · · · + Zk−1) ≤ σ2
1 + · · · + σ2

k−1.
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Denoting y = (y1, . . . , yk−1), the assumptions on the conditional statistics yield

Var(Zk) =

∫

E(Z2
k | y)p(y)dy −

(∫

E(Zk | y)p(y)dy

)2

=

∫
[
Var(Zk | y) + µ2

k

]
p(y)dy − µ2

k ≤ σ2
k,

which gives the induction step as Cov(Zk, Z1 + · · · + Zk−1) equals
∫

E(Zk(Z1 + · · · + Zk−1) | y)p(y)dy − E(Zk) E(Z1 + · · · + Zk−1)

=

∫

E(Zk | y) E(Z1 + · · · + Zk−1 | y)p(y)dy − E(Zk) E(Z1 + · · · + Zk−1)

= µk

∫

E(Z1 + · · · + Zk−1 | y)p(y)dy − µk E(Z1 + · · · + Zk−1) = 0.

B Technicalities

In the main text, we have avoided all measure-theoretic techinicalities and implicitly as-
sumed certain regularity conditions. In this section we make these assumptions explicit.
The same conditions must have been implicitly assumed in other works, too, as without
them the mutual information I(Yx; Θ) does not make sense and even Bayes’ theorem does
not generally hold.

B.1 Preliminaries

Let (Ω,F ,Pr) be a probability space. A random variable is a measurable mapping X :
Ω → X to some measurable space (X,X ) (usually the real line R equipped with the Borel
σ-algebra B(R)). The distribution of the random variable is the measure PX : S 7→
Pr(X−1(S)) induced on X .

If X : Ω → X and Y : Ω → Y are random variables such that PX,Y ≪ µ× ν for some
σ-finite measures µ : X → [0,∞] and ν : Y → [0,∞], then X and Y are said to have a
joint density p = dPX,Y /d(µ × ν). By Fubini’s theorem, the marginal distributions can
then be written as

PX(U) = PX,Y (U × Y) =

∫

x∈U

[∫

y
p(x, y)dν(y)

]

dµ(x),

PY (V ) = PX,Y (X × V ) =

∫

y∈V

[∫

x
p(x, y)dµ(x)

]

dν(y),

which implies the existence of the marginal densities

pX =
dPX

dµ
=

∫

y
p(·, y)dν(y),

pY =
dPY

dν
=

∫

x
p(x, ·)dµ(x).

For brevity, we leave out the subscript of the density when it matches the arguments, i.e,
instead of pX(x), we write simply p(x). When there is no confusion about the dominating
measure µ, we will write dx instead of dµ(x) (this is done everywhere in the main text,
in particular, the differential entropy can be w.r.t. any measure, not just the Lebesgue
measure).
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A transition measure from (Y,Y) to (X,X ) is any function µ : Y×X → [0,∞] satisfying
the following axioms:

1. for any y ∈ Y, the function S 7→ µ(y, S) is a measure on X ,

2. for any S ∈ X , the function y 7→ µ(y, S) is Y-measureable.

The product of a transition measure µ : Y × X → [0,∞] and a σ-finite measure ν : Y →
[0,∞] is given by

(µ× ν)(S) :=

∫

µ(y, Sy)dν(y)

for all S ∈ X ⊗Y, where Sy := {x : (x, y) ∈ S}. The product is a measure on X ⊗Y. If a
transition measure PX|Y : Y ×X → [0,∞] satisfying

PX,Y = PX|Y × PY

exists, then it is called a conditional distribution of X given Y . We will also use the
shorthand PX|y := PX|Y (y, ·). Note that a conditional distribution always exists for a
random variable in (Rn,B(Rn)), (R∞,B(R∞)), or any other complete separable metric
space, but there are spaces where its existence is not guaranteed (Shiryaev, 1996).

If a conditiondal distribution PX|Y exists and satisfies

PX|y(S) =

∫

S
p(x | y)dµ(x)

for all S ∈ X , y ∈ Y for some measurable function (x, y) 7→ p(x | y) and some measure µ
(which need not be σ-finite), then p(x | y) is called a conditional density of X given y. If
the joint density p = dPX,Y /d(µ× ν) exists for some σ-finite µ and ν, then a conditional
density can always be obtained by

p(x | y) :=







p(x, y)

p(y)
, p(y) > 0,

0, p(y) = 0.

(The value chosen for p(y) = 0 is immaterial as the conditional density is only determined
µ× PY -a.e.)

B.2 Regularity conditions for Bayesian estimation

The following theorem gives a set of equivalent conditions under which we can avoid the
potential problems of nonexistent distributions or densities.

Theorem B.1. Let X : Ω → X and Y : Ω → Y be random variables. Then, the following
are equivalent:

1. X and Y have a joint density (which is by definition w.r.t. a σ-finite product measure
µ× ν),

2. PX,Y ≪ PX × PY ,

3. X has a conditional density p(x | y) w.r.t. a σ-finite measure µ,

4. X has a conditional distribution PX|Y such that PX|y ≪ PX for all y,
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5. X has a conditional distribution PX|Y and a marginal density p(x) w.r.t. a (not
necessarily σ-finite) measure µ such that PX|y ≪ µ for all y.

Furthermore,

6. if the above conditions hold for X and Y , then they also hold for X ′ = F (X) and
Y ′ = G(Y ) where F : X → X

′ and G : Y → Y
′ are any measurable functions.

Remark B.1. The conditions of this theorem are precisely those under which Bayes’
formula

p(x | y) =
p(y | x)p(x)

∫
p(y | x)p(x)dx

for conditional densities holds (it derives from condition 1 and implies condition 4).

Remark B.2. These conditions are also precisely those under which the Radon-Nikodým
derivative in the measure-theoretic definition of the mutual information

I(X;Y ) =

∫

dPX,Y log
dPX,Y

d(PX × PY )

exists7 (condition 2). Therefore, even though one might be able to work with conditional
distributions directly, if one’s utility function is the information gain, then Yx and Θ in the
main text must still satisfy these conditions for all x for the problem to be well-defined.

Remark B.3. If Yx and Θ satisfy these conditions for all x, then one can apply Bayes’
formula to any finite set y = {yxt}T

t=1 of results sequentially. This implies that PΘ|y ≪ PΘ

for all y (condition 4) and as this condition makes no reference to the distribution of y, it
follows that regardless of the decision function d (which determines the distribution of the
placements X1, . . . ,XT ), the whole-experiment outcome variable Yd (which has a generally
random number T of individual observations) has a joint density with Θ as long as the
experiment terminates with probability one. Thus, the expected information gain I(Θ;Yd)
for the whole experiment is formally well-defined (although its value may still come out
∞). However, if there is a positive probability that the experiment does not terminate,
then it is possible that no joint density of Θ and Yd exists, even for constant placements
(Example B.2 below).

Proof. 2 ⇒ 5: Using the joint density p := dPX,Y /d(PX × PY ), we obtain the induced
marginal density p(x) w.r.t. the measure PX and the conditional density p(x | y),
which induces a conditional distribution PX|y ≪ PX .

5 ⇒ 4: Denoting N := {x ∈ X : p(x) = 0 }, we have

0 =

∫

N
p(x)dµ(x) = PX(N) =

∫

PX|y(N)dPY (y),

which implies PX|y(N) = 0 for PY -a.e. y. However, as PX|y is only determined for
PY -a.e. y, we are free to modify it so that PX|y(N) = 0 for all y. We will show that
this PX|y is dominated by PX for all y. Let S ∈ X be such that PX(S) = 0. Then,
we have

0 = PX(S \N) =

∫

S\N
p(x)
︸︷︷︸

>0

dµ(x),

which implies µ(S \ N) = 0. As PX|y ≪ µ, we have PX|y(S \ N) = 0, but as also
PX|y(N) = 0, we obtain PX|y(S) = 0. Thus, PX|y ≪ PX for all y.

7In case PX,Y is singular w.r.t. PX × PY , Kolmogorov (1956) defines I(X; Y ) = ∞.
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4 ⇒ 3: Choose µ = PX .

3 ⇒ 1: By the definition of conditional density, we have

PX,Y (S) =

∫

S
p(x | y)dµ(x)dPY (y).

Thus, p(x | y) is a joint density of X and Y w.r.t. the σ-finite measure µ× PY .

1 ⇒ 2: Suppose that p = dPX,Y /d(µ × ν) exists for some σ-finite measures µ and ν and
let S ∈ X ⊗Y be an arbitrary measurable set such that (PX × PY )(S) = 0. We will
show that then PX,Y (S) = 0. Denoting

U := {x ∈ X : p(x) = 0 },
V := { y ∈ Y : p(y) = 0 },
N := (U × Y) ∪ (X × V ),

we have PX(U) = 0 and PY (V ) = 0. Furthermore,

0 = (PX × PY )(S \N) =

∫

S\N
p(x)
︸︷︷︸

>0

p(y)
︸︷︷︸

>0

d(µ× ν)(x, y)

implies that (µ× ν)(S \N) = 0, whence PX,Y (S \N) = 0. Thus,

PX,Y (S) ≤ PX,Y (S \N) + PX,Y (U × Y)
︸ ︷︷ ︸

=PX(U)

+PX,Y (X × V )
︸ ︷︷ ︸

=PY (V )

= 0.

2 ⇒ 6: Suppose that F : X → X
′ and G : Y → Y

′ are arbitrary measurable mappings.
We show that PX,Y ≪ PX × PY implies PF (X),G(Y ) ≪ PF (X) × PG(Y ). For any
S ∈ X ⊗ Y,

0 = (PF (X) × PG(Y ))(S) = (PX × PY )({(F−1(x), G−1(y)) : (x, y) ∈ S})

implies
0 = PX,Y ({(F−1(x), G−1(y)) : (x, y) ∈ S}) = PF (X),G(Y )(S),

where F−1 and G−1 denote the preimage sets.

The conditions of the theorem are mild, being satisfied whenever either X or Y is
discrete as well as in most practical situations with continuous random variables. However,
it precludes in particular the following example.

Example B.1. Suppose that X = Y ∼ Uniform[0, 1]. The conditional distribution
PX|y(S) = [y ∈ S] is singular w.r.t. dPX(x) = dm[0,1](x), where m[0,1] denotes the re-
striction of the Lebesgue measure to [0, 1], and thus condition 4 of Theorem B.1 is not
satisfied. The conditional density

p(x | y) = [x = y] :=

{

1, x = y

0, x 6= y

exists w.r.t. the counting measure, but this measure is not σ-finite when defined on the
measurable subsets of [0, 1], and so this density does not satisfy condition 3. Even though
the joint distribution can be written as

PX,Y (S) =

∫
[
∫

Sy

[x = y]d#(x)

]

dm[0,1](y),
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where # is the counting measure, the integrand [x = y] does not yield the joint density of
condition 1 as the product #×m[0,1] does not exist (the product measure is only defined
for σ-finite measures). Some authors do define the product measure more generally, but
even then, a joint density cannot be obtained as the function [x = y] is not integrable
w.r.t. # ×m[0,1] and so Fubini’s theorem does not hold for the iterated integral above.

Example B.2. Suppose that X ∼ Uniform[0, 1] and the random variables Yt ∈ {0, 1} for
t = 1, 2, . . . are defined as the binary representation of X. Then, although the conditional
density p(x | y1, . . . , yT ) w.r.t. the Lebesgue measure is well-defined for any finite set of
observations, the full sequence of results Y := {Yt}∞t=1 cannot have any joint density with
X, because by condition 6 of the theorem, that would imply that also the transformed
variable

Y ′ := F (Y ) :=

∞∑

t=1

2−tYt

would have a joint density with X = Y ′, which contradicts the negative result of the
previous example.

B.3 Generalization

For completeness, we present a generalization of Theorem B.1 to more than two random
variables. Although we make no use of it here, it may be useful elsewhere.

To state the generalization, we need another definition.

Definition B.1. A Bayes network is a directed acyclic graph representing a dependency
structure of a set X1, . . . ,Xn of random variables. Each random variable Xk is represented
by a node whose parents are its conditioning variables Xj(k,1), . . . ,Xj(k,nk), where we can
assume WLOG that j(k, i) < k for all i = 1, . . . , nk (topological sorting), so that the joint
distribution of X1, . . . ,Xn is given by the product

PX1,...,Xn =
∏

k

PXk|Xj(k,1),...,Xj(k,nk)
,

where one can interpret, e.g., PXk |Xj(k,1),...,Xj(k,nk)
= PXk|X1,...,Xk−1

and then apply the

transition measure product operator.

Theorem B.2. Let X1, . . . ,Xn be random variables. Then, the following are equivalent:

1. X1, . . . ,Xn have a joint density (which is by definition w.r.t. a σ-finite product mea-
sure µ1 × · · · × µn),

2. PX1,...,Xn ≪ PX1 × · · · × PXn ,

3. PX1,...,Xn is representable as a Bayes network where each conditional distribution
PXk|xj(k,1),...,xj(k,nk)

has a density w.r.t. a σ-finite measure µk,

4. PX1,...,Xn is representable as a Bayes network where each conditional distribution
PXk|xj(k,1),...,xj(k,nk)

is absolutely continuous w.r.t. PXk
.

5. PX1,...,Xn is representable as a Bayes network where each conditional distribution
PXk|xj(k,1),...,xj(k,nk)

is dominated by a (not necessarily σ-finite) measure µk w.r.t.

which there exists a marginal density p(xk).

Furthermore,
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6. if the above conditions hold for X1, . . . ,Xn, then they also hold for X ′
k = Fk(Xk),

where Fk : Xk → X
′
k are any measurable functions.

Proof. This proof is a straightforward generalization of the proof of Theorem B.1.
For brevity, we shall denote the parents of xk by x<k := (xj(k,1), . . . , xj(k,nk)).

2 ⇒ 5: The joint density p := dPX1,...,Xn/d(PX1 × · · · × PXn) induces for each k the
conditional density p(xk | x1, . . . , xk−1) w.r.t. the marginal distribution PXk

. Thus,
the required Bayes network is given by x<k := (x1, . . . , xk−1) for all k = 1, . . . , n.

5 ⇒ 4: Let k ∈ {1, . . . , n} be arbitrary. Denoting N := {xk ∈ Xk : p(xk) = 0 }, we have
by the definition of conditional distribution

0 =

∫

N
p(xk)dµ(xk) = PXk

(N) =

∫

X<k

PXk |x<k
(N)dPX<k

(x<k),

which implies PXk|x<k
(N) = 0 for PX<k

-a.e. x<k. However, as PXk|x<k
is only

determined for Px<k
-a.e. x<k, we are free to modify it so that PXk |x<k

(N) = 0
for all x<k. We will show that this PXk |x<k

is dominated by PXk
for all x<k. Let

S ∈ Xk be such that PXk
(S) = 0. Then, we have

0 = PXk
(S \N) =

∫

S\N
p(xk)
︸ ︷︷ ︸

>0

dµ(xk),

which implies µk(S \N) = 0. As PXk|x<k
≪ µk, we have PXk|x<k

(S \N) = 0, but as
also PXk |x<k

(N) = 0, we obtain PXk|x<k
(S) = 0. Thus, PXk|x<k

≪ PXk
for all x<k.

4 ⇒ 3: Choose µk = PXk
.

3 ⇒ 1: By the definition of the conditional densities and Fubini’s theorem, we have

PX1,...,Xn(S) =

∫

S

∏

k

p(xk | x<k)dµk(xk)

=

∫

S

[
∏

k

p(xk | x<k)

]

d(µ1 × · · · × µn)(x).

Thus,
∏

k p(xk | x<k) is a joint density of X1, . . . ,Xn w.r.t. the σ-finite measure
µ1 × · · · × µk.

1 ⇒ 2: Suppose that p = dPX1,...,Xn/d(µ1 . . . µn) exists for some σ-finite measures µ1, . . . , µn

and let S ∈ X1 ⊗ · · · ⊗ Xn be an arbitrary measurable set such that (PX1 × · · · ×
PXn)(S) = 0. We will show that then PX1,...,Xn(S) = 0. Denoting

Nk := {xk ∈ Xk : p(xk) = 0 },
N :=

⋃

k

X1 × · · · × Xk−1 ×Nk × Xk+1 × · · · × Xn,

we have PXk
(Nk) = 0 for all k. Furthermore,

0 = (PX1 × · · · × PXn)(S \N) =

∫

S\N

∏

k

p(xk)dµk(xk)

=

∫

S\N

[
∏

k

p(xk)

]

︸ ︷︷ ︸

>0

d(µ1 × · · · × µk)(x)
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implies that (µ1 × . . . µn)(S \N) = 0, whence PX1,...,Xn(S \N) = 0. Thus,

PX1,...,Xn(S) ≤ PX1,...,Xn(S \N) +
∑

k

PXk
(Nk) = 0.

2 ⇒ 6: Suppose that Fk : Xk → X
′
k are arbitrary measurable mappings. We show that

PX1,...,Xn ≪ PX1 ×· · ·×PXn implies PF1(X1),...,Fn(Xn) ≪ PF1(X1) ×· · ·×PFn(Xn). For
any S ∈ X1 ⊗ · · · ⊗ Xn,

0 = (PF1(X1) × · · · × PFn(Xn))(S)

= (PX1 × · · · × PXn)({ (F−1
1 (x1), . . . , F

−1
n (xn)) : x ∈ S })

implies

0 = PX1,...,Xn({ (F−1
1 (x1), . . . , F

−1
n (xn)) : x ∈ S }) = PF1(X1),...,Fn(Xn)(S),

where F−1
k denotes the preimage set.
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