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Abstract

Adaptation in learning games typically aims for a certain success rate as-
sumedly ideal for learning. However, simple counterexamples show that any suc-
cess rate by itself cannot guarantee learning results. Instead, we propose that the
tasks that yield the most information about the student’s skills would also facil-
itate learning. This approach naturally avoids exceedingly easy and exceedingly
difficult tasks as their results are predictable and thus uninformative. However,
as failures can lower motivation, we propose the more child-friendly objective of
maximizing the information gain divided by the failure rate. We apply these
principles to a model of idiosyncratic item responses.

Keywords: Bayesian adaptive estimation, mutual information, item response theory,
adaptive learning game, educational game, E-learning, Hidden Markov Model, Fast
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1 Introduction

In the recent years, there has been an increasing interest in computerized learning
games (Ketamo, 2003; Manske and Conati, 2005; Wilson et al., 2006; Lyytinen et al.,
2007). In these games, the driving principle for optimizing learning appears to be that
if the number of mistakes is too high or if it takes the student too long to complete
tasks, the learning material is too difficult, and if the number of mistakes is very low
or it takes very little time for the student to complete tasks, the learning material is
too easy (Ketamo, 2003).
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Thus, the adaptation logic typically follows some variation of the ad hoc algorithm
that increases the difficulty of the learning tasks after correct answers and decreases
it after incorrect answers. The algorithm is tuned so as to yield around 75%, 80%, or
some such percentage of correct answers. While this simple logic may work reasonably
well when the learning material has only one adaptable dimension of difficulty, it runs
into trouble when the learning material is more complicated.

Wilson et al. (2006) model multiple dimensions of difficulty of the learning material
by applying ad hoc formulas to update estimates of the student’s success probability
over the “learning space” with these dimensions. The adaptation logic aims at keeping
the success probability around 75%. Although this is welcome multidimensional gen-
eralization, the algorithm is relatively complicated with many tuning constants and is
not based on a statistical model; the only explicit principle underlying the adaptation
logic is still a certain prescribed success rate (even though the algorithm may implicitly
implement other principles).

An average success rate around certain numbers may be necessary for efficient learn-
ing, but it is certainly not sufficient; for example, alternating exceedingly easy and
exceeding difficult tasks in 3:1 proportion, or always giving a multiple-choice task with
three correct choices within four identical (unmarked) options, will yield a 75% success
rate, but these tasks are obviously suboptimal for learning. To avoid such pathologies,
the adaptation principles should be based on a full-blown statistical model of the stu-
dent’s skills as well as the task rather than on simple estimates of success probability
or response times.

Principled Bayesian student models are already becoming prevalent in the field (e.g.,
Manske and Conati, 2005), but they have mostly been used for offering individualized
support for the student rather than actively choosing the most effective learning ma-
terial. An interesting approach by Stacey et al. (2003) suggests the use of cognitive
conflict to facilitate learning, that is, choosing learning material that the student is
likely to get wrong due to misconceptions. However, there is an obvious conflict with
keeping the student motivated and therefore it is not immediately clear how this ap-
proach would generalize the simple principle of a certain average success rate.

In this paper, we propose general principles of adaptation that are applicable in any
Bayesian student model. In the following sections, we first describe Bayesian adaptive
estimation framework and propose our principles of adaptation as an extension of it.
Then, we present an example model and apply the principles to it using some novel com-
putational techniques. Finally, we evaluate the resulting algorithm using simulations
and results from a pilot study with a real computerized learning game and real students.
We conclude with a discussion of the philosophy behind our proposed principles.

2 Bayesian adaptive estimation

The ad hoc adaptation rules generally used in adaptive teaching systems are analo-
gous to the staircase method of measurement (see Treutwein, 1995), in which a sensory
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detection threshold is estimated by increasing the stimulus intensity after each cor-
rectly detected stimulus and decreasing it after each undetected stimulus. The staircase
method is not very efficient for measurement, often wasting several trials before reach-
ing the overall scale of the threshold and then moving randomly around the optimal
measurement points.

Bayesian adaptive estimation can be much more efficient, as it can efficiently use
the information provided by all earlier trials even when the information is too scarce
to obtain meaningful estimates of the parameters. The underlying Bayesian model
(Watson and Pelli, 1983) can be represented graphically as

Θ
ւ ↓ ց

rx1
rx2

. . . rxI

, (1)

where rx1
, rx2

, . . . , rxI
are the trial results (with contents x1, x2, . . . , xI) having a

known statistical dependence p(rx | θ) on the unknown parameter Θ that is being
estimated1. Assuming a prior distribution p(θ) for the unknowns Θ, Bayes’ formula
yields the posterior distribution

p(θ | y) =
p(y | θ)p(θ)

p(y)
=

[

I
∏

i=1

p(rxi
| θ)

]

p(θ)

∫

[

I
∏

i=1

p(rxi
| θ)

]

p(θ)dθ

of the unknowns Θ given the data y = (rx1
, . . . , rxI

).

2.1 Mutual information

For each prospective trial content x to be presented next, the information theoretic
mutual information

I(Rx; Θ | y) :=

∫∫

p(rx, θ | y) log
p(rx, θ | y)

p(rx | y)p(θ | y)
drx dθ

(given the previously observed results y) of the unknown variables Θ and the (random)
result Rx of the next trial provides an elegant way of quantifying the trial’s expected
informativity in light of all prior information (Lindley, 1956; MacKay, 1992). The
“greedy” measurement strategy of always presenting the content x yielding the highest
value of I(Rx; Θ | y) works well in practice, even though it is not necessarily optimal

1Following standard notation, upper case letters denote random variables and lower case letters
their values. However, we differ from the common notation p(r | x, θ) and instead use the notation
p(rx | θ) of (Kujala and Lukka, 2006), indexing a set of distinct result variables with the content x.
This notation works better with the information-theoretic notation of the next section.
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when the experiment consists of more than one trial. Variations of this general formu-
lation have been applied successfully in several different fields, including psychometric
measurement (Kontsevich and Tyler, 1999), machine learning (MacKay, 1992), student
assesment (Liu, 2005), etc.

For dichotomous results Rx ∈ {0, 1}, the mutual information is conveniently com-
puted (Kujala and Lukka, 2006) as

I(Rx; Θ | y) = H(Rx | y)−H(Rx | Θ, y), (2)

where

H(Rx | y) = h

(
∫

p(Rx = 1 | θ)p(θ | y)dθ

)

,

H(Rx | Θ, y) =

∫

h(p(Rx = 1 | θ))p(θ | y)dθ,

and h(p) = −p log p − (1 − p) log(1 − p) denotes the entropy of a binary distribution
with probabilities p and 1− p.

2.2 Adaptation in teaching systems

In measurement, the adaptation’s only goal is to optimize the measurement efficiency.
In a teaching system, there can be several goals, but the most important is the opti-
mization of the learning result.

Adaptive Bayesian methodology can be used to quickly find a desired difficulty
level for the learning material in a manner similar to a binary search. The general
framework automatically allows more than one “dimension of difficulty” of the content
to be adapted simultaneously, making it relatively easy to enforce a certain success rate
after enough information has been accumulated. However, whether a certain success
rate should be aimed for, or if there is some more important principle for optimal
learning is open to question.

In fact, we emphasize the auxiliary goal of good measurement efficiency instead.
Information of student’s skills is valuable for analysis and feedback, and at least some
measurement information is necessary for optimization of the learning effects anyway.
The key hypothesis of our proposed approach is that the trial contents that are good
for measurement, which is highly desirable in its own right, would also be among those
that are the most efficient for learning.

Indeed, optimization of the expected information gain of each trial appears to avoid
naturally trial contents that are extremely difficult or extremely easy as the model can
predict the results of such trials to be correct or incorrect and so the actual answers
would yield little new information. This alogrithm can be seen as a formalization of
some aspects of the cognitive conflict approach pursued by Stacey et al. (2003): material
that best differentiates between alternative hypotheses about student’s conceptions is
preferred.
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However, there is one obvious flaw in pure optimization of the information gain as
a general principle: the trial contents may be too difficult to keep children motivated,
even though these contents might still be efficient for learning if the child would keep
playing. In the following subsection, we propose a principled solution.

2.3 Child-friendly measurement principle

It is generally agreed that failures of a child may lower her motivation and therefore
the more failures there are the less motived the child may become. In order to maintain
motivation in a teaching system, we propose the following adjustment of the pure
measurement goal: instead of simply optimizing the expected information gain of each
trial, we optimize the expected gain divided by the expected cost measured as the
estimated probability of an incorrect answer. In other words, we try to obtain as much
measurement information as possible per each failure of the child. Thus, instead of
maximizing I(Rx; Θ | y), the content x is chosen so as to maximize

I(Rx; Θ | y)

E(Cx | y)
,

where the expected value of the cost Cx = [Rx = 0] in light of the previously observed
data y is given by

E(Cx | y) =

∫

p(Rx = 0 | θ)p(θ | y)dθ.

The formal justification for this heuristic and conditions for its optimality as a strategy
for optimizing the total gain per total cost ratio will be dealt with in another paper
(Kujala, 2008).

On a more practical side, the reader may wonder what happens if the expected
probability of failure is zero for some content. In that case, there would be no cost
of presenting that content and if it was expected to give even the slightest amount
of information, it would always be presented. However, a realistic model is bound to
assume some probability of careless mistakes and therefore the expected cost should
never be zero.

In a task where accuracy of answers is not an issue, one could instead define the
cost Cx as the response time, assuming that the longer a student has to struggle with
the response, the less motivated she might become. In that case, there would be no
conflict with the measurement goal — the most information per time unit would also
be ideal for measurement.

3 A model of idiosyncratic item responses

To test the proposed child-friendly adaptation principle, we formulated a Bayesian
model of a student and a task used in the Literate (Ekapeli) learning game (Lyytinen
et al., 2007). The task is described in Fig. 1.
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Example trial

Category Target Choice-set

1 a a s

10 l m n l r

26 out oot out ouk oup

94 kattarmo kattarmo kattairmo katarmo

Figure 1: In the pilot game implementing our proposed child-friendly adaptation prin-
ciple, all possible learning tasks are divided into 94 categories of increasing difficulty,
ranging from phonetically distinct letters to long, minimally distinct (in the Finnish
language context) pseudowords. The target is presented auditorily and the subject’s
task is to choose the corresponding graphemic representation from the visually pre-
sented choices. The number of choices can vary within one category. After each trial,
brief feedback is given to facilitate learning. As the Finnish writing system is practically
100% consistent (each letter has its own phoneme and each phoneme its own letter),
learning the core knowledge of reading by this kind of drilling should be possible.

3.1 The model

The learning material is divided into categories k = 1, . . . , K, where all content within
one category is assumed to be equally difficult. The unknown difficulty of each category
is denoted by Θk and the unknown overall skill of the student is denoted by B (upper
case β). The result Rk,n of an n-choice trial with content from category k is assumed
to be distributed as

p(Rk,n = 1 | θk, β) = ψn(β − θk),

where Rk,n = 1 denotes success and Rk,n = 0 failure.
The link function ψn is given by

ψn(x) =
1

n
+

n

n− 1
·

1− δ

1 + exp(c log2(n/2)− x)
,

where δ = 0.05 is the probability of an incorrect answer due to careless mistakes and
the lower asymptote is given by 1/n, the probability of guessing correctly (see Fig. 2).
Additionally, the parameter c = 2 shifts the threshold slightly to the right for large
numbers of choices, modeling the fact that a large number of choices may overwhelm a
student whose ability only just meets the difficulty of the task. The parameters δ and
c could also be estimated, but for now, we have used constant values.

In our application, there are K = 94 categories, approximately ordered by difficulty,
but we do expect some idiosyncratic deviations from this ordering. Therefore, we
assume the prior distributions

Θk ∼ N(µk, σ
2
k)

for the difficulties, where µk = 15 + 2k and σk = 5 for k = 1, . . . , 94 (see Fig. 3). The
unknown skill B is assumed to be distributed uniformly on [0, 220]. The attainable
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Figure 3: A realization drawn from the assumed prior distribution of catergory diffi-
culties, illustrating the type of idiosyncratic deviations that the model anticipates from
the ideal ordering of the categories.
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values of the number of choices n ∈ {2, . . . , 7} vary between the categories; in some
categories, there are only two-choice minimum pair trials, while in other categories, a
larger selection of distractor items may be available. All distractors are assumed to be
equally discriminable from the target so that we can ignore the specific answer and just
model its correctness.

3.2 Bayesian estimation using convolutions

Given any independent prior distributions pB(β) and pk(θk) for the unknown parame-
ters, the joint prior is

p(β, θ) = pB(β)
∏

k

pk(θk).

Suppose we have observed the sequence y := (k1, n1, r1), . . . , (kI , nI , rI) of trial results.
Then, the likelihood of the parameter values β and θ = (θ1, . . . , θK) given the data y is

p(y | β, θ) =
∏

k

fk(β − θk),

where

fk(xk) :=

I
∏

i=1











ψni
(xk), ri = 1, ki = k,

1− ψni
(xk), ri = 0, ki = k,

1, ki 6= k

is the likelihood of the random variable Xk := B −Θk. It follows that the posterior is
given by

p(β, θ | y) =
pB(β)

∏

k fk(β − θk)pk(θk)
∫

pB(β)
∏

k

[∫

fk(β − θk)pk(θk)dθk

]

dβ
. (3)

Using the convoulution operator defined as

(f ∗ g)(y) :=

∫

f(y − x)g(x)dx,

the inner integrals in the denominator of (3) can be written as (fk ∗ pk)(β). It turns
out that we can integrate out any variables in the posterior using convolutions. Thus,
the marginal posterior of B is

p(β | y) =

∫

p(β, θ | y)dθ =
pB(β) [

∏

k fk ∗ pk] (β)dβ
∫

pB(β) [
∏

k fk ∗ pk] (β)dβ
,

and similarly, the marginal posterior of Θl is

p(θl | y) =

∫

[

∏

k 6=l fk ∗ pk

]

(β)fl(β − θl)pl(θl)dβ
∫

pB(β) [
∏

k fk ∗ pk] (β)dβ

=
pl(θl)

(←−
fl ∗

[

∏

k 6=l fk ∗ pk

])

(θl)
∫

pB(β) [
∏

k fk ∗ pk] (β)dβ
,

where we denote
←−
f (x) = f(−x).
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3.3 Adaptive trial placement

As the trial result Rk,n depends on the unknown variables only through Xk, we have

I(Rk,n;B,Θ | y) = I(Rk,n;Xk | y).

This is analogous to the well-known fact that I(Y ; Θ) = I(T (Y ); Θ) if T is a sufficient
statistic of the data Y depending on an unknown parameter Θ (Cover and Thomas,
1991, p. 37), although in this context Xk as a function of (Θ, B) is the sufficient statistic,
that is, the roles of the parameters and the data are reversed here (which is fine as the
mutual information is symmetric). Thus, we only need to find the posterior distribution
of Xk given y to be able to compute the expected information gain of observing Rk,n

next.
Changing variables to (B,X), the prior is

p(β, x) = pB(β)
∏

k

pk(β − xk),

and the likelihood is p(y | β, x) =
∏

k fk(xk), yielding the posterior

p(β, x | y) =
pB(β)

∏

k fk(xk)pk(β − xk)
∫

pB(β) [
∏

k fk ∗ pk] (β)dβ
.

Thus, the marginal posterior of xl is given by

p(xl | y) =
fl(xl)

(

←−pl ∗
[

pB

∏

k 6=l fk ∗ pk

])

(xl)
∫

pB(β) [
∏

k fk ∗ pk] (β)dβ
.

Note the “dualism” of the prior and likelihood between the two parameterizations,
which is apparent in the expressions of p(xl | y) and p(θl | y).

As per (2), the expected information gain of observing Rk,n next can be computed
as

I(Rk,n;Xk | y) = H(Rk,n | y)−H(Rk,n | Xk, y),

where

H(Rk,n | y) = h

(
∫

p(Rk,n = 1 | xk)p(xk | y)dxk

)

= h

(
∫

ψn(xk)p(xk | y)dxk

)

,

H(Rk,n | xk, y) =

∫

h(p(Rk,n = 1 | xk))p(xk | y)dxk

=

∫

h(ψn(xk))p(xk | y)dxk,

and the expected cost, the probability of a failure, is given by

E(Cx | y) = p(Rk,n = 0 | y) = 1−

∫

ψn(xk)p(xk | y)dxk.

The resulting adaptation tree for the first 6 trials is shown in Fig. 4 for both the child-
friendly and the pure information maximization strategies.
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Figure 4: Six first layers of the adaptation trees of the pure information maximization
principle and the child-friendly variation applied to the model. The edges between the
nodes indicate correct (1) and incorrect (0) answers and each node shows the category
number of the trial to be presented next. The pure information maximization works
similar to a binary search in the first few steps. The child-friendly variation, however,
tests a category much closer to the easier end at each step and thereby yields a higher
proportion of correct answers. In these first layers, the number of choices for each trial
is always the maximum possible for that category and is not indicated. As the estimate
of the skill level gets more accurate, the child-friendly variation begins to present trials
with lower than the maximum number of choices. In the child-friendly tree, the two
nodes marked with � have the exact same data (but in a different order) on the paths
leading to them and so the subtrees rooted at these nodes are identical.
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3.4 Practical implementation using FFT

If we discretize β and θk using a uniformly pitched sampling, the convolutions can be
efficiently computed using the Fast Fourier Transform (Cooley and Tukey, 1965). By
precomputing the functions al =

∏

k<l fk∗pk and bl =
∏

k>l fk∗pk for all l = 1, . . . , K at
each trial, the expressions

∏

k 6=l fk ∗ pk = albl can be evaluated quickly for all different
l = 1, . . . , K. The whole Bayesian updating, computation of marginal distributions,
and evaluation of the expected information gain for all possible k and n can be done in
O(KNM logM) time and O(KM) space, where K is the number of categories, N is
the number of different numbers of choices in a trial and M is the number of discretized
values of the β and θk variables.

In practice, the computations took only about a second per trial (with K = 94,
M = 6, and M = 1024) which is a huge speedup over the naive implementation with a
(K + 1)-dimensional parameter-hypercube, which with its O(KNMK+1) running time
per trial would become impractical already at around K = 3 with present computers.

This idea is similar to the speedups presented in (Kujala and Lukka, 2006).

3.5 Dynamic changes

In Bayesian adaptive estimation, the underlying model has traditionally been static,
that is, it is assumed that the measured variables do not change over time. This is of
course an inappropriate assumption for a learning game, but can be assumed to hold
within one session (around 35 trials) of the game. Thus, we assume a static model
within one session but anticipate changes in the true values of the parameters between
sessions.

The specifc dynamic formulation we propose is a Hidden Markov Model (HMM),
that is, it is assumed that the student has a certain state θt (corresponding to both β
and θ in the present model) that can change over time, but so that given the current
state θt, the following random state Θt+1 is independent of the past states θt−1, θt−2, . . .
(i.e., there is no memory of the past states other than what is encoded in the present
state). This measurement model can be represented graphically as

Θ0 → Θ1 → Θ2 → Θ3 → . . .
↓ ↓ ↓
y1 y2 y3

, (4)

where yt indicates the observed data for each session t. In this general formulation, we
allow Θt to have any structure, the only assumption being the Markov (no-memory)
property. Therefore, we use the term HMM to describe the general formulation although
specific models of this formulation may be better described as Dynamic Bayesian Net-
works (DBNs) as some authors reserve the term HMM only for models with a single
(discrete) variable.

In the implementation of our specific model, at the end of each session, we throw
away any posterior interdependencies between B and the Θk, that is, we replace their
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joint posterior with the product of its marginals. This slight deviation from the ideal
Bayesian model is needed to maintain the simple form (3) of the posterior for the next
session, where we assume that the true difficulties Θk of the categories and the skill B
of the student may have changed from those of the previous session according to certain
transition densities Tk(θ

′
k | θk) and TB(β ′ | β). This yields the following priors for the

next session:

p′k(θ
′
k) :=

∫

Tk(θ
′
k | θk)pk(θk | y)dθk,

p′B(β ′) :=

∫

TB(β ′ | β)pB(β | y)dβ.

The specific transition densities we use in the pilot version of the game are defined
so that

B′ | β ∼

{

N[0,220](β, σ
2), with probability 0.8,

Uniform[0, 220], with probability 0.2,

(where N[0,220] denotes a normal distribution such that any value falling below 0 or
above 220 is mirrored back in, i.e., transitions going outside the range bounce back)
and

Θ′
k | θk ∼ N[0,220](sk(θk − µk) + µk, σ

2),

where σ = 3 determines the expected magnitude of the transitions and the constant

sk :=

(

1−
σ2

σ2
k

)1/2

is chosen so that without new observations from this category, the distribution of Θk

eventually converges back to its prior. Thus, in addition to small changes to the skill and
difficulties, we expect that the student’s skill may occasionally jump to any value. That
way the model can keep up if the student happens to learn (or forget) outside the game.
These transition densities can be efficiently applied by using the FFT convolution.

This complete description of our implementation of the model serves to show that
the inherent computational complexity of the proposed principles can be overcome in
a practical way. There is a lot more that could be said about the rationale and details
of these design choices, but it is beyond the scope of the present paper.

3.6 Evaluation

As both variations of the algorithm look only one trial ahead (greedy optimization)
they are only approximations to the truly optimal strategy under their assumptions.
Therefore, we compared the true measurement efficiencies of both algorithms under
various session lengths. The results shown in Fig. 5 confirm that the child-friendly
variation indeed yields better estimation efficiency per the number of mistakes of the
child while the pure information maximization strategy is more efficient per the number
of trials.
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Figure 5: Accuracy of the final skill estimate computed as the posterior mean based
on the data from a session (hypothetically) terminated after the nth trial (top) or the
nth mistake (bottom). Average over (4×) 1000 simulation runs. As expected, the pure
information maximization strategy yields the best estimation efficiency per number of
trials whereas the child-friendly variation yields the best efficiency per the number of
mistakes.
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Figure 6: Comparison of the success rates yielded by the two variations of the algorithm.
The child-friendly variation appears to yield reasonable success rates just by following
its implicit logic. The slight deviation of the real data results from the simulated ones
is mostly due to a few students whose skills were apparently far below the simulated
range. The difference between the upper and lower panels indicates that the assumed
value of δ has a significant effect on the resulting success rate. However, for a given
assumed value of δ, varying the simulated true value of δ between .05 and .15 had
almost no effect on the distributions (around ±.01 shift of the modes). The lower panel
also shows the results from an ad-hoc adaptation algorithm implemented in another
pilot version of the game (see text).
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In the pilot game, each session terminates after 30 correct answers2, which usually
happens at around 35 trials, but the player is free to continue for as many sessions
as she wishes. We simulated (4×) 100 players for up to 10 sessions following this
session termination rule and drawing the true values of the skill and difficulties from the
assumed priors and transition densities. Additionally, the simulation was stopped early
if the skill of the simulated player drifted outside the range [µ1, µ94]. Figure 6 depicts
the resulting distribution of average success rates in one session. The real data also
shown there are from 28 real players totaling approximately the same number of sessions
as the simulated data. The smooth lines are beta densities fitted to the histogram data.
The results for just the first simulated session of each player were practically identical to
those of the full data so the exact type of true dynamics is apparently not important for
the resulting success rate under these conditions. However, as mentioned in the figure
caption, the boundary effects at the upper and lower range of skills are significant for
the resulting success rate.

Figure 6 also shows the success rate that resulted from an ad hoc adaptation logic
implemented in another pilot version of the game. That version used roughly the same
categories of content, but presented only trials of one category within one session.
Within each session, the difficulty was controlled by adapting the number of choices
according to the ad hoc rules discussed in the introduction. The game advanced to the
next category only after a certain low percentage of mistakes was reached in the current
category. The early categories were too easy for many children, which yielded the large
probability mass near the 100% success rate. Also, for some children some categories
were exceptionally difficult within their position in the ordering, which resulted in the
long left tail of the distribution as the children struggled through these categories.
The Bayesian principles avoid all these problems by anticipating deviations from the
difficulty order of the categories and by freely moving between the categories in each
session. However, at this point we do not have an objective comparison of the induced
learning effects between the different adaptation principles.

4 Discussion

Learning is a cumulative process and so the specific effects of a single learning trial are
difficult to assess. Even if such effects could be accurately modeled, their interactions
would likely be complicated. Therefore, we do not model any explicit effect of the
presentation of a certain content, that is, the true state of the student in the future is
not assumed to explictly depend on the contents of the past trials. We do anticipate the
possibility of changes in the state of the student, but we do not expect that exposures to
certain content would automatically trigger certain changes. Instead, we have adopted
a less explicit but more easily quantifiable view on the induced learning effects.

Analogous to the fact that measurements of a physical system can alter its state,

2This termination rule may seem a bit odd, but it has little significance in the Bayesian framework
and therefore its rationale is not important here.
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measurements of student’s skills can alter her state. We assume that conducting the
measurements where there is the most uncertainty about the student’s skills would yield
the best chances of the student learning. For example, if the prerequisites of a certain
task have not been learned, there is little uncertainty about the task’s result and so
its measurement would be useless; similarly, if a certain task is already mastered, there
is little uncertainty about its prerequisites and so their measurement would be useless.
This reasoning leads to our proposed principle of optimizing the measurement efficiency
as a means of optimizing the learning results.

Apart from suitable learning material, another important factor for learning is moti-
vation — too many failures of a student should be avoided. Assuming that the chances
of learning are proportional to the amount of measurement information given by the
results of the learning tasks, and inversely proportional to the number failures of the
student, the mathematically optimal teaching strategy is to optimize the information
gain divided by the number of failures.

This formulation exemplifies the philosophy behind our approach: instead of enforc-
ing ad hoc constraints on content selection, we aim at modeling the phenomena behind
the constraints so that the mathematical solution to the optimization problem yields
the desired behavior without any post hoc adjustments.

Our proposed principle of child-friendly adaptation is general, applicable in any
Bayesian model having the notion of a success or failure of the student in each learning
task. The example model we presented illustrates that the proposed principle can be
expected to work generally in a sensible way without any tuning parameters, simply
by following its implicit internal logic. It should be noted, however, that if the student
model does not adequately capture the structure of the learning material, then the
proposed principle cannot be expected to work very well. For example, if there is no
prior information about the relative difficulties of different tasks, then the model has no
way of knowing which ones might be suitable for the student without trying all of them
in an arbitrary order until one is found. Thus, even though the principles themselves
are completely general, they do not obviate the need to carefully develop an appropriate
student model for the specific problem.
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