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Abstract. We prove a sharp upper bound for the approximation
error E|g(X) − g(X̂)|p in terms of moments of X − X̂, where X

and X̂ are random variables and the function g is a function of
bounded variation. We apply the results to the approximation of
a solution of a stochastic differential equation at time T by the
Euler scheme, and show that the approximation of the payoff of
the binary option has asymptotically sharp strong convergence rate
1/2. This has consequences for multilevel Monte Carlo methods.

1. Introduction

1.1. Motivation. In the theory of mathematical finance, the compu-
tation of expected values of payoffs by Monte Carlo methods and the
use of backward stochastic differential equations (BSDEs) are of par-
ticular importance. It turns out that in both areas a certain inequality
plays an essential role:E|g(XT ) − g(Xπ

T )|p ≤ C |π|γ , (1.1)

where γ > 0, 1 ≤ p < ∞, XT is a diffusion, and Xπ
T is an approximation

of XT corresponding to a partition π of the interval [0, T ] with mesh
size |π|, e.g. the Euler scheme.

The approximation of solutions of SDEs is related to the multilevel
Monte Carlo method introduced by M. Giles [7], [8]. One purpose of the
multilevel Monte Carlo method is to approximate the expected payoff
of an option with a small computational cost. Giles’ method requires
estimates for the variance of g(XT )− g(Xπ

T ) for possibly non-Lipschitz
payoff functions g. Part of the motivation for our work is to investigate
in detail the variance in the case of the Euler scheme and the payoff of
the binary option.

Consideration of the inequality (1.1) is motivated also by discretiza-
tion schemes for BSDEs, where the function g appears in the terminal
condition. The inequality is responsible for the coupling of the forward
and backward part of some recent numerical algorithms in simulation
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of BSDEs, and strongly affects the precision of the backward algorithm.
This is exploited by C. Geiss and S. Geiss [6].

If the function g is Lipschitz, then the inequality (1.1) reduces to the
strong convergence rate of the underlying scheme. However, the binary
option with payoff function g(x) = χ[K,∞) is of importance in both areas
mentioned above, and gives a primary example of a situation where an
estimate of type (1.1) is needed for a non-Lipschitz function. Our aim
is to show that we can get substantial information about (1.1), for a
large class of functions g, from existing results on strong convergence of
approximation schemes for the solutions of SDEs. This is particularly
important in the case that the strong convergence rates are basically
the only information available about the scheme.

1.2. Convergence of the Underlying Scheme. There exists an ex-
tensive literature on approximation schemes for stochastic differential
equations. P. E. Kloeden and E. Platen [18] show that any order of
strong convergence can be achieved by the strong Itô-Taylor approxi-
mations, i.e. for any order γ > 0 there exists a scheme Xπ such thatE( sup

0≤t≤T
|Xt − Xπ

t |
)

< C |π|γ .

The most common examples are the Euler scheme and the Milstein
scheme, which have the order of strong convergence 1/2 and 1, respec-
tively. Errors with respect to both global and pointwise error criteria
are considered by N. Hofmann, T. Müller-Gronbach, and K. Ritter in
[13, 14], Hofmann and Müller-Gronbach in [15], and Müller-Gronbach
in [20, 21]. The latest result concerning the pointwise error is due to
Müller-Gronbach [21], where the author defines certain classes of con-
vergence schemes and finds optimal (adaptive) schemes for each class.

Another point of view is to relax the continuity assumptions of the
coefficients σ and b, and consider the convergence of the Euler scheme.
I. Gyöngy and N. Krylov [10], Gyöngy [11] and D. J. Higham et al.
[12] have presented results in this direction.

1.3. Main Results. We develop in Theorem 2.4 a general principle
that gives a sharp upper bound for the functional E|g(X) − g(X̂)|p in

terms of moments of X−X̂ . Here X and X̂ are random variables and g
is a function of bounded variation, e.g. the payoff of the binary option.
The principle implies that if approximations (Xπ

t )t∈[0,T ] satisfy

||XT − Xπ
T ||p ≤ C1

p |π|γ (1.2)

for some γ > 0 and all 1 ≤ p < ∞, thenE|g(XT ) − g(Xπ
T )|p ≤ C2

p |π|γ−ε (1.3)

for any 0 < ε < γ and for any function of bounded variation g. In other
words, the convergence result (1.2) automatically gives a convergence
rate in (1.3) that is arbitrarily close to the original rate.
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For the Euler scheme, where we have γ = 1/2, and for a sufficiently
small mesh size we show in Theorem 4.4 that in the estimate (1.3), the
convergence rate 1/2 − ε can be replaced with 1/2 − C(− log |π|)−1/3,
which converges to 1/2 as the mesh size decreases. This we show to be
asymptotically sharp in Theorem 6.2, where we obtain a lower bound
for the approximation error by considering the geometric Brownian mo-
tion. We also apply Theorem 4.4 to the multilevel Monte Carlo method
and get an improvement in the mean square error of the multilevel es-
timator. These results are achieved under certain conditions on the
SDE, including the existence of a bounded density for the solution XT .

Similar results concerning the Euler scheme have been independently
obtained by M. Giles, D. J. Higham and X. Mao [9], who show the con-
vergence rate 1/2− ε for binary options, as well as results for different
option types. The estimate for the binary option is now developed
further by our Theorem 4.4.

1.4. Organization of the Paper. The main result for functions of
bounded variation, Theorem 2.4, is presented in Section 2. Its proof
is postponed to Appendix A. The setting for stochastic differential
equations and the application to strong Itô-Taylor approximations is
presented in Section 3. Section 4 contains more specific results obtained
for the Euler scheme, and the application to multilevel MC method
follows in Section 5. A lower bound for the approximation error in the
case of Euler scheme is given in Section 6.

This paper is a reduced version of [1], which presents a generalization
of (1.3) to a larger class of functions.

2. Functions of Bounded Variation and Moments of
Random Variables

Suppose that we have a probability space (Ω,F ,P) and two random

variables X, X̂ : Ω → R. Consider X̂ to be an approximation of X in
the Lp-norm. We find an estimate for the functional E|g(X) − g(X̂)|
in terms of the pth moment of X−X̂ , where g is a real valued function
of bounded variation. Let us first recall the definitions of the spaces
BV and NBV .

Definition 2.1. Let

Tf(x) := sup
N∑

j=1

|f(xj) − f(xj−1)|,

where the supremum is taken over N and all partitions −∞ < x0 <
x1 < . . . < xN = x, be the total variation function of f . Then we say
that f is a function of bounded variation, f ∈ BV , if

V (f) := lim
x→∞

Tf(x)
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is finite, and call V (f) the (total) variation of f .

Definition 2.2. Let NBV , where N stands for normalized, be the set
of functions f ∈ BV such that f is left-continuous and f(x) → 0 as
x → −∞.

Example 2.3. Let g = χ[K,∞) be the payoff function of the binary option.
Then g ∈ BV , Tg = g, and V (g) = 1.

Theorem 2.4. The following assertions hold:

(i) Suppose that X and X̂ are random variables and X has a
bounded density fX. If g ∈ BV and 1 ≤ q < ∞, then for
any 1 ≤ p < ∞ we haveE|g(X) − g(X̂)|q ≤ 3q+1V (g)q (sup fX)

p
p+1

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
p+1

p
.

(ii) The power p
p+1

of the Lp-norm is optimal, i.e. if p
p+1

≤ r < ∞
andE|χ[K,∞)(X) − χ[K,∞)(X̂)| ≤ C(X, K, p, r)

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣
r

p

for all random variables X and X̂, then r = p
p+1

.

(iii) Let X be a random variable. If there exist p0 > 0 and BX > 0
such thatE|χ[K,∞)(X) − χ[K,∞)(X̂)| ≤ BX

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
p+1

p

for all p0 ≤ p < ∞, all K ∈ R and all random variables X̂,
then X has a bounded density.

Proof. The proof is presented in Appendix A. �

3. Setting for SDEs

The results of Section 2 can be applied directly to the pointwise
approximation of solutions of stochastic differential equations. We start
by defining the setting.

We fix a terminal time T > 0 and suppose that (Wt)t∈[0,T ] is a stan-
dard one-dimensional Brownian motion defined on a complete filtered
probability space (Ω,F ,P, (Ft)t∈[0,T ]), where the filtration is the aug-
mentation of the natural filtration of W and F = FT .

We consider a diffusion process X, which is a solution to
{

dXt = σ(t, Xt) dWt + b(t, Xt) dt,

X0 = x0

(3.1)

with x0 ∈ R and continuous coefficients σ, b : [0, T ] × R → R. We
assume that for f ∈ {σ, b} there exist constants CT and α ≥ 1

2
such

that

(i) |f(t, x)| ≤ CT (1 + |x|),
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(ii) |f(t, x) − f(t, y)| ≤ CT |x − y|
(iii) |f(t, x) − f(s, x)| ≤ CT (1 + |x|)|t − s|α.

Assumptions (i) and (ii) imply the existence of a unique adapted strong
solution X of the SDE (3.1), see e.g. [17]. Note also that (ii) and (iii)
imply (i). Moreover, we assume that

(iv) XT has a bounded density.

Remark 3.1. Assumption (iv) is satisfied if we assume that σ, b ∈
C∞

b ([0, T ] × R) and σ satisfies the uniform ellipticity condition, i.e.
there exists a constant β such that

σ(t, x) ≥ β > 0 for all (t, x) ∈ [0, T ] ×R.

See [5, p. 263]. Another sufficient condition is given by Caballero et
al. [4, Theorem 2]. They assume that σ and b are C2 in x, the second
derivatives have polynomial growth, the functions |σ(0, x)|, |σx(t, x)|,
|b(0, x)| and |bx(t, x)| are bounded, andE(∣∣∣∣∫ t

0

σ(s, Xs)
2 ds

∣∣∣∣
−p0/2

)
< ∞

for some p0 > 2 and for all t ∈ (0, T ]. Then there exists a continuous
density fXt of Xt such that for all p > 1

fXt(x) ≤ Cp

∣∣∣∣∣

∣∣∣∣∣

(∫ t

0

σ(s, Xs)
2 ds

)−1/2
∣∣∣∣∣

∣∣∣∣∣
p

for some constant Cp > 0.

Denote by π a partition 0 = t0 < t1 < . . . < tn = T of the interval
[0, T ], and let

|π| = max
0≤i<n

|ti+1 − ti|
be the mesh size of π. Moreover, denote an approximation of X corre-
sponding to π by Xπ. As an immediate consequence of Theorem 2.4,
we can derive

Corollary 3.2. Let X be the solution of the equation (3.1), 1 ≤ q < ∞,
and g ∈ BV . Suppose that XT has a bounded density, 1 ≤ p < ∞, and
Xπ

T is an approximation of XT such that

||XT − Xπ
T ||p ≤ Cp |π|γ (3.2)

for some γ > 0 and some constant Cp ≥ 0. ThenE|g(XT ) − g(Xπ
T )|q ≤ 3q+1 (sup fXT

)
p

p+1 V (g)qC
p

p+1
p |π|

γp
p+1 .

Remark 3.3. Assuming that (3.2) holds for all 1 ≤ p < ∞, Corollary
3.2 gives the asymptotic convergence rate γ − ε for any ε > 0 and is
applicable to all appropriate strong Taylor approximation schemes, see
[18]. Two such schemes are the well known Euler and Milstein schemes.
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For the Euler scheme the rate of strong convergence is γ = 1/2, which is
later given in Theorem 4.3. Under certain assumptions, for the Milstein
scheme it is γ = 1 [19, p. 140].

4. Euler Scheme

In case of the Euler scheme, Corollary 3.2 gives the convergence rate
1
2
−ε. In this section we improve it by replacing ε by an explicit formula

in terms of log |π| for small mesh size |π|. First recall the definition:

Definition 4.1 (Euler scheme). Let XE be the Euler scheme relative
to π, i.e. XE

0 = x0, and for i = 0, . . . , n − 1,

XE
ti+1

= XE
ti

+ b(ti, X
E
ti

)(ti+1 − ti) + σ(ti, X
E
ti

)(Wti+1
− Wti).

Given the values at the partition points, we also define the Euler scheme
in continuous time by setting

XE
t = XE

tk
+ σ(tk, X

E
tk

)(Wt − Wtk) + b(tk, X
E
tk

)(t − tk)

for t ∈ (tk, tk+1).

Remark 4.2. The Euler approximation of XT , denoted XE
T , always

depends on the corresponding partition π. This is omitted from the
notation for simplicity.

The improvement of Corollary 3.2 in the case of the Euler scheme is
based on the following statement.

Theorem 4.3. If the assumptions (i) and (ii) in Section 3 hold, and
1 ≤ p < ∞, then

∣∣∣∣

∣∣∣∣ sup
0≤t≤T

|Xt − XE
t |
∣∣∣∣

∣∣∣∣
p

≤ eMp2 |π| 12 ,

where the constant M > 0 depends at most on x0, T and CT .

Proof. We omit the proof, and refer the reader to [2, pp. 275-276],
where the result is stated without computing the constant explicitly.
See also [1, Theorem A.1]. �

Using the information about the constant in Theorem 4.3, we can
write an extended version of Corollary 3.2 for the Euler scheme:

Theorem 4.4. Let 1 ≤ p < ∞ and g ∈ BV . Then there exists
m ∈ (0, 1) such that for |π| < m we haveE|g(XT ) − g(XE

T )|p ≤ 3p(sup fXT
∨
√

sup fXT
)V (g)p |π|

1
2
− 2+M

(− log|π|)1/3 ,

where the constant M = M(x0, T, CT ) is taken from Theorem 4.3.
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Proof. By Theorem 2.4, Theorem 4.3, and the formula a
q

q+1 ≤ a ∨ √
a

for a > 0 and q ≥ 1, we get that for all 1 ≤ q < ∞ and p ≥ 1,E|g(XT ) − g(XE
T )|p ≤ 3p+1(sup fXT

∨
√

sup fXT
)V (g)peMq2· q

q+1 |π|
q

2(q+1)

≤ 3p+1(sup fXT
∨
√

sup fXT
)V (g)peMq2 |π|

q
2(q+1) .

Now choose q such that

4q(q + 1)2 = − log |π|
for |π| ≤ m with m = e−16. This gives q3 ≤ − log |π| and q2 ≤
(− log |π|)2/3. Thus we have

eMq2 ≤ eM(− log|π|)2/3

= |π|−M(− log|π|)−1/3

and

1

2(q + 1)
=

√
q

− log |π| ≤
√

(− log |π|)1/3−1 = (− log |π|)−1/3.

Using the above we get

3eMq2 |π|
q

2(q+1) = 3eMq2 |π|
1
2
− 1

2(q+1) ≤ 3 |π|
1
2
− 1+M

(− log|π|)1/3 ≤ |π|
1
2
− 2+M

(− log|π|)1/3 ,

where in the last step we used the inequality

3 |π|
1

(− log|π|)1/3 ≤ 1

for |π| < m. We conclude thatE|g(XT ) − g(XE
T )|p ≤ 3p(sup fXT

∨
√

sup fXT
)V (g)p |π|

1
2
− 2+M

(− log|π|)1/3 .

�

Remark 4.5. We could apply a similar technique to the Milstein scheme
or any other strong Taylor approximation, if we proved the Lp-estimate
corresponding to Theorem 4.3 with an explicit constant.

5. Application to the Multilevel Monte Carlo Method

The multilevel Monte Carlo method introduced by Giles [7] requires a
variance estimate for the difference of the payoff and its approximation.
Corollary 3.2 gives the parameter β = γ−ε in [7, Theorem 3.1 iii)] in the
case of a payoff of bounded variation, especially for the binary option,
and any approximation scheme satisfying the moment estimate (3.2).
We now show how our estimate on the Euler scheme, Theorem 4.4,
applies in this setting. In the following, we strictly keep the notation
of Giles and refer the reader to [7] for details.

For the Euler scheme (and for simplicity for T = 1) and a fixed step
size parameter M ≥ 2 we can replace condition iii) in [7, Theorem 3.1]
by

iii) V [Ŷl] ≤ c2N
−1
l M

− l
2
+ A l

((l log M)∨B)1/3 ,
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where A, B > 0 depend at most on the diffusion X and M . Us-
ing the computation in the proof of [7, Theorem 3.1] for α = 1 and
β = 1/2, we obtain that the computational complexity is bounded by

c4ε
− 5

2 , whereas the mean square error of the multilevel estimator can
be bounded from above as follows:E[(Ŷ − E[P ])2] ≤ ε2

2
+

ε2

2
Φ(ε).

Here

Φ(ε) := (1 − M− 1
4 )M−

L(ε)
4

L(ε)∑

l=0

M
l
4
+(Dl

2
3 ∨E),

where D, E > 0 depend at most on the diffusion X and M , and

L(ε) :=

⌈
log(

√
2c1ε

−1)

log M

⌉

with c1 > 0 taken from [7]. We note that for all δ > 0,

lim
ε↓0

Φ(ε)εδ = 0.

This follows from the definition of Φ and the inequality (6) in [7], which
says that

ε√
2M

< c1M
−L(ε) ≤ ε√

2
.

6. Lower bound

In this section we find a solution X1 (i.e. T = 1) of an SDE of
the type (3.1) such that it gives a lower bound for the approximation
error of the Euler scheme in Theorem 4.4. This is achieved by choosing
Xt = St, the geometric Brownian motion. Let St = eWt−t/2 for t ∈ [0, 1],
so that S is a solution of

St = 1 +

∫ t

0

Ss dWs,

and let Un := SE − S, where SE is the Euler scheme as defined in
Definition 4.1 corresponding to the equidistant partition of [0, 1], i.e.
π = (i/n)n

i=0.

Lemma 6.1. We have (W,
√

nUn) =⇒ (W, U) in the Skorohod topol-
ogy, where U is the unique strong L2-solution of the equation

Ut =

∫ t

0

Us dWs −
1√
2

∫ t

0

Ss dBs (6.1)

and B is a standard Brownian motion independent of W .

Proof. The statement is an immediate consequence of a result by Jacod
and Protter [16, Corollary 5.4]. �
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Theorem 6.2. There exists K0 > 0 such that

lim inf
n→∞

√
n sup

K≥K0

E|χ[K,∞)(S1) − χ[K,∞)(S
E
1 )| > 0,

where SE
1 is the equidistant Euler approximation of S1.

Remark 6.3. Theorem 6.2 states that the convergence rate in Theorem
4.4 is optimal up to the logarithmic term.

Proof of Theorem 6.2. Let us consider the setting of Lemma 6.1 and
the process U defined by the equation (6.1). If U1 = 0 a.s., then for all
t ∈ [0, 1] we have Ut = 0 a.s., which leads to a contradiction. ThereforeP (U1 > 0) > 0 or P (U1 < 0) > 0. If P (U1 > 0) > 0, then there exist
ε ∈ (0, 1], δ > 0 and K ≥ 1 + K0 with K0 > 0 such thatP (S1 ∈ [K − 1, K), U1 > ε) = δ.

The case P (U1 < 0) > 0 can be treated in a similar way by chang-
ing the condition U1 > ε to U1 < −ε. By Lemma 6.1 we know
that (W,

√
nUn) ⇒ (W, U) in the Skorohod topology. This implies

that (W1,
√

nUn
1 ) ⇒ (W1, U1), since the projection mapping π1, i.e.

the mapping α 7→ α(1) for a process α, is continuous in the Sko-

rohod topology. Because the function ex− t
2 is continuous, we have

(S1,
√

nUn
1 ) ⇒ (S1, U1). Therefore

lim inf
n→∞

P (S1 ∈ [K − 1, K),
√

n[SE
1 − S1] > ε

)

= lim inf
n→∞

P (S1 ∈ (K − 1, K),
√

n Un
1 > ε

)

≥ P (S1 ∈ (K − 1, K), U1 > ε)

= P (S1 ∈ [K − 1, K), U1 > ε) .

We see that there exists n0 ≥ 1 such that for all n ≥ n0P(S1 ∈ [K − 1, K), [SE
1 − S1] >

ε√
n

)
≥ δ

2
.

For any partition K − 1 = Km
0 < Km

1 < · · · < Km
m = K, we have

sup
l=1,...,m

P(S1 ∈ [Km
l−1, K

m
l ), [SE

1 − S1] >
ε√
n

)
≥ δ

2m
.

Now choose the partition (Km
l )m

l=1 to be equidistant with

1

m
≤ ε√

n
. (6.2)

Then there exists l0 ∈ {1, . . . , m} such that

δ

2m
≤ P(S1 ∈ [Km

l0−1, K
m
l0

), SE
1 > S1 +

ε√
n

)

≤ P (S1 < Km
l0

, SE
1 ≥ Km

l0

)
.
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Let m = ⌈√n/ε⌉, which satisfies the condition (6.2) for the mesh size.
Thus

δ

2⌈√n/ε⌉ ≤ P (S1 < Km
l0

, SE
1 ≥ Km

l0

)

≤ E|χ[Km
l0

,∞)(S1) − χ[Km
l0

,∞)(S
E
1 )|.

Since ⌈√n/ε⌉ ≤ 2
√

n/ε, we haveE|χ[Km
l0

,∞)(S1) − χ[Km
l0

,∞)(S
E
1 )| ≥ δ

2⌈√n/ε⌉ ≥ δε

4
√

n
.

Therefore
√

n sup
K≥K0

E|χ[K,∞)(S1) − χ[K,∞)(S
E
1 )| ≥ δε

4

for all n ≥ n0, which implies the assertion. �

Appendix A. Proof of Theorem 2.4

The proof of Theorem 2.4 exploits the non-increasing rearrangement
of random variables, which we recall first. Using this, we formulate
in Lemma A.4 a statement for indicator functions that is analoguous
to Theorem 2.4 (i). Then we proceed with the proof of Theorem 2.4
(i), which is based on Lemma A.4 and the measure representation of a
function of bounded variation.

Definition A.1. The non-increasing rearrangement of a random vari-
able X, notated by X∗ : [0, 1] → R ∪ {+∞,−∞}, is defined

X∗(s) := inf{c ∈ R : P(X > c) ≤ s}.
Here we use the convention that inf ∅ = ∞.

Remark A.2. Definition A.1 is slightly different from the standard non-
increasing rearrangement as defined e.g. in [3], where the absolute value
of the function X is taken, and in fact defines the (1 − s) -quantile
of X. However, by analoguous arguments we can show the following
properties:

(i) X∗(1)=−∞ always, X∗(0) = ∞ if X is not essentially bounded,
and X∗(s) ∈ R for s ∈ (0, 1),

(ii) X∗ is right-continuous,
(iii) X∗ has the same distribution as X with respect to the Lebesgue

measure on [0, 1],

Definition A.3. Denote the minimal slope of the function X∗ from
the level K by dX : R→ [0,∞),

dX(K) := inf
s∈[0,1]
s 6=α(K)

{ |X∗(s) − K|
|s − α(K)|

}
,
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where
α(K) = P(X ≥ K).

Lemma A.4. Suppose that X is a random variable. Then the following
assertion holds: if X has a bounded density fX, then for all K ∈ R,
all random variables X̂ and all 0 < p < ∞ we haveE|χ[K,∞)(X) − χ[K,∞)(X̂)| ≤ 3DX(K)

p
p+1

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
p+1

p
,

where

DX(K) :=
1

dX(K)
∈ (0, sup fX ].

Remark A.5. Corresponding results for the functions χ(K,∞), χ(−∞,K]

and χ(−∞,K) are obtained by considering complements of the intervals

in the indicator functions and the random variables −X and −X̂ .

Remark A.6. We will only use the upper bound of the constant DX(K).
However, the information that DX(K) contains about K can be ex-
ploited. This could be an issue of further investigation.

Proof of Lemma A.4. Fix K ∈ R and 0 < p < ∞, and let X̂ be a
random variable such thatE|χ[K,∞)(X) − χ[K,∞)(X̂)| = ε

for some ε ∈ (0, 1]. Define ε1 := P(X ≥ K, X̂ < K) and ε2 := P(X <

K, X̂ ≥ K), so that ε = ε1 + ε2. Set α := α(K) = P(X ≥ K). Notice
that α − ε1 ≥ 0 and α + ε2 ≤ 1. NowE|X − X̂|p ≥ E|X − X̂|pχ{X≥K,X̂<K}∪{X<K,X̂≥K}

≥ E|X − K|pχ{X≥K,X̂<K}∪{X<K,X̂≥K}

= E|X − K|pχ{X≥K,X̂<K} +E|X − K|pχ{X<K,X̂≥K}.

Since X has a bounded density, we can find a number c0 ∈ [K,∞] such
that P(K ≤ X < c0) = ε1, and so |{K ≤ X∗ < c0}| = ε1. Note that
c0 may not be unique. However, {K ≤ X < c0} is a set of probability
ε1 where E|X − K|pχA is minimized over all A ⊂ {X ≥ K} withP(A) = ε1, which implies thatE|X − K|pχ{X≥K,X̂<K} ≥ E|X − K|pχ[K,c0)(X)

=

∫

[0,1]

|X∗(s) − K|pχ[K,c0)(X
∗(s)) ds =

∫ α

α−ε1

|X∗(s) − K|p ds

≥
∫ ε1

0

|dX(K)s|p ds =
dX(K)pεp+1

1

p + 1
.

Similar arguments show thatE|X − K|pχ{X<K,X̂≥K} ≥
∫ α+ε2

α

|X∗(s) − K|p ds ≥ dX(K)pεp+1
2

p + 1
.



12 RAINER AVIKAINEN

Thus E|X − X̂|p ≥ dX(K)p(εp+1
1 + εp+1

2 )

p + 1
≥ dX(K)pεp+1

2p(p + 1)
. (A.1)

The equation (A.1) givesE|χ[K,∞)(X) − χ[K,∞)(X̂)| = ε

≤ 2
p

p+1 (p + 1)
1

p+1

(
1

dX(K)

) p
p+1 (E|X − X̂|p

) 1
p+1

.

By elementary computations we can show that

2
p

p+1 (p + 1)
1

p+1 ≤ 2e
1
2e ≤ 3.

Recalling the definition of DX from Lemma A.4, we may writeE|χ[K,∞)(X) − χ[K,∞)(X̂)| ≤ 3DX(K)
p

p+1

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
p+1

p
.

Using the definition of X∗ and the boundedness assumption for the
density of X we see that 1/dX(K) ≤ sup fX . �

Proof of Theorem 2.4 (i). First we show the result for functions g ∈
NBV . By [22, Thm. 8.14] there is a unique signed measure µ such
that

g(x) = µ((−∞, x)) and |µ|((−∞, x)) = Tg(x),

where |µ| is the total variation measure of µ, and Tg was defined in
Definition 2.1. We consider the Jordan decomposition of µ , i.e. µ =
µ1−µ2, where µ1 = 1

2
(|µ|+µ) and µ2 = 1

2
(|µ|−µ) are positive measures.

Then |µ| = µ1 + µ2, and all three measures |µ|, µ1, and µ2 are finite
since |µ|(R) = V (g) < ∞. Thus we have

g(x) = µ((−∞, x)) =

∫R χ(−∞,x)(z) dµ(z) =

∫R χ(z,∞)(x) dµ(z).

By Lemma A.4 and Remark A.5,
∣∣∣
∣∣∣g(X) − g(X̂)

∣∣∣
∣∣∣
q

=

∣∣∣∣

∣∣∣∣
∫R χ(z,∞)(X) dµ(z) −

∫R χ(z,∞)(X̂) dµ(z)

∣∣∣∣

∣∣∣∣
q

=

∣∣∣∣

∣∣∣∣
∫R [χ(z,∞)(X) − χ(z,∞)(X̂)

]
dµ(z)

∣∣∣∣

∣∣∣∣
q

≤
∣∣∣∣

∣∣∣∣

∫R ∣∣∣χ(z,∞)(X) − χ(z,∞)(X̂)
∣∣∣ d|µ|(z)

∣∣∣∣

∣∣∣∣
q

≤
∫R ∣∣∣∣∣∣χ(z,∞)(X) − χ(z,∞)(X̂)

∣∣∣
∣∣∣
q

d|µ|(z)

≤ 3
1
q (sup fX)

p
q(p+1) V (g)

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
q(p+1)

p
,

which completes the proof for functions in NBV .
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Next, let g be an arbitrary function in BV . By [22, Thm. 8.13],
there exists a unique function g̃ ∈ NBV and a unique constant c ∈R such that g(x) = g̃(x) + c at all points of continuity of g, and
moreover, V (g̃) ≤ V (g) and g can have only countably many points
of discontinuity. Define ∪j∈J{aj} to be the set of these points and let
λj := g(aj) − g̃(aj) − c. Then we can write

g(x) = g̃(x) + c + ∆(x),

where

∆(x) :=
∑

j∈J

λjχ{aj}(x) =
∑

j∈J

λj

(
χ(−∞,aj ](x) − χ(−∞,aj)(x)

)
.

We define a measure
ν =

∑

j∈J

λjδaj
,

where δa is the Dirac measure in a. It follows from [22] that g(aj−)
exists. Thus we have g̃(aj) + c = g(aj−) and

|ν|(R) =
∑

j∈J

|λj| =
∑

j∈J

|g(aj) − g(aj−)| ≤ V (g).

Now we may write

∆(x) =

∫R χ(−∞,z](x) − χ(−∞,z)(x) dν(z)

and compute, similarly to the NBV case, that
∣∣∣
∣∣∣∆(X) − ∆(X̂)

∣∣∣
∣∣∣
q
≤
∣∣∣∣

∣∣∣∣
∫R |χ(−∞,z](X) − χ(−∞,z](X̂)| d|ν|(z)

∣∣∣∣

∣∣∣∣
q

+

∣∣∣∣

∣∣∣∣

∫R |χ(−∞,z)(X) − χ(−∞,z)(X̂)| d|ν|(z)

∣∣∣∣

∣∣∣∣
q

≤
∫R ∣∣∣∣∣∣χ(−∞,z](X) − χ(−∞,z](X̂)

∣∣∣
∣∣∣
q

d|ν|(z)

+

∫R ∣∣∣∣∣∣χ(−∞,z)(X) − χ(−∞,z)(X̂)
∣∣∣
∣∣∣
q

d|ν|(z)

≤ 2 · 3 1
q (sup fX)

p
q(p+1) V (g)

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
q(p+1)

p
.

This, combined with the NBV result, implies that
∣∣∣
∣∣∣g(X) − g(X̂)

∣∣∣
∣∣∣
q

=
∣∣∣
∣∣∣g̃(X) − g̃(X̂) + ∆(X) − ∆(X̂)

∣∣∣
∣∣∣
q

≤
∣∣∣
∣∣∣g̃(X) − g̃(X̂)

∣∣∣
∣∣∣
q
+
∣∣∣
∣∣∣∆(X) − ∆(X̂)

∣∣∣
∣∣∣
q

≤ 3 · 3 1
q (sup fX)

p
q(p+1) V (g)

∣∣∣
∣∣∣X − X̂

∣∣∣
∣∣∣

p
q(p+1)

p
,

which gives the statement. �
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Proof of Theorem 2.4 (ii). To see the optimality of the power, we con-
struct an example where the lower bound given by equation (A.1) is
achieved. Suppose that Ω = [0, 1] is equipped with the Lebesgue mea-
sure, K = 1

2
and ε < 1. Letting X(ω) = ω we see that X has a bounded

density and dX(1
2
) = 1. Define

X̂ =






X, if ω ∈ [0, 1
2
− ε

2
) ∪ (1

2
+ ε

2
, 1],

X + ε
2
, if ω ∈ [1

2
− ε

2
, 1

2
],

X − ε
2
, if ω ∈ (1

2
, 1

2
+ ε

2
].

Then E|X − X̂|p = E ∣∣∣ε
2

∣∣∣
p

χ[ 1
2
− ε

2
, 1
2
+ ε

2
](X) =

εp+1

2p
,

so by the assumption we have for all 0 < ε < 1 that

ε = E|χ[ 1
2
,∞)(X) − χ[ 1

2
,∞)(X̂)| ≤ C(X, 1/2, p, r)

(
ε

p+1
p

2

)r

,

which implies r = p
p+1

. �

Proof of Theorem 2.4 (iii). Let δ > 0 and choose X̂ = X − δ. ThenE|χ[K,∞)(X) − χ[K,∞)(X̂)|
= P(X ≥ K, X − δ < K) +P(X < K, X − δ ≥ K)

= P(K ≤ X < K + δ),

so that by assumption, for p > p0, we haveP(K ≤ X < K + δ) ≤ BXδ
p

p+1 .

We let p tend to infinity and conclude thatP(K ≤ X < K + δ) ≤ BXδ.

Let N ⊂ R be a null set with respect to the Lebesgue measure and
let ε > 0. We can find a sequence (Ij) of open intervals such that
N ⊂ ⋃ Ij and

∑ |Ij | ≤ ε. Let LX be the law of X. Then we have

LX((a, b)) ≤ LX([a, b)) ≤ BX |b − a|
and

LX(N) ≤ LX

(
⋃

j

Ij

)
≤
∑

j

LX(Ij) ≤ BX

∑

j

|Ij| ≤ BXε.

This implies that LX(N) = 0, so LX is absolutely continuous with
respect to the Lebesgue measure. By the Radon-Nikodym theorem
there exists a probability density f : R→ [0,∞) such that

LX(M) =

∫

M

f(x) dx
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for all measurable M ⊆ R. Define a distribution function Φ : R→ [0, 1]
such that

Φ(t) =

∫ t

−∞

f(x) dx.

Then by [22, Thm. 8.17], we have that Φ′(t) = f(t) a.e. in R. On the
other hand, we have that

Φ′(t) = lim
h→0

Φ(t + h) − Φ(t)

h
≤ lim

h→0

BXh

h
= BX a.e. in R,

because Φ(t + h) − Φ(t) = LX((t, t + h)). Therefore we conclude that
f(t) ≤ BX a.e. in R. �
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