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Abstract. We establish necessary conditions for domains Ω ⊂ Rn

which admit the pointwise (p, β)-Hardy inequality

|u(x)| ≤ CdΩ(x)1−β/pM2dΩ(x),q

`
|∇u|dΩ

β/p´
(x), u ∈ C∞

0 (Ω),

where 1 < q < p, dΩ(x) = dist(x, ∂Ω), and MR,q is a maximal operator.
In particular, the complement of such a domain must have, even locally,
Hausdorff dimension strictly greater than n− p + β.

1. Introduction

In this paper, we consider pointwise (p, β)-Hardy inequalities for functions
u ∈ C∞0 (Ω). That is, for given 1 < p < ∞ and β ∈ R we ask for some
exponent 1 < q < p and a constant C > 0 such that the inequality

(1) |u(x)| ≤ CdΩ(x)1−
β
p

(
sup

r<2dΩ(x)

∫
B(x,r)

|∇u(y)|qdΩ(y)β q
p dy

)1/q

holds at x ∈ Ω. Here we denote dΩ(x) = dist(x, ∂Ω). Such weighted inequal-
ities were introduced in [5] following the considerations in the unweighted
case β = 0, conducted by Haj lasz [2] and Kinnunen and Martio [4]. It is easy
to see, using the boundedness of maximal operators, that if the pointwise
(p, β)-Hardy inequality (1) holds for a function u ∈ C∞0 (Ω) at every x ∈ Ω
with constants 1 < q < p and C1 > 0, then u satisfies the usual (weighted)
(p, β)-Hardy inequality∫

Ω
|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω
|∇u(x)|p dΩ(x)β dx

with a constant C = C(C1, n, p, q) > 0. See [5] and references therein for
more results and the origins of these Hardy inequalities.

If Ω  Rn is a domain and (1) holds for all u ∈ C∞0 (Ω) and all x ∈ Ω with
same constants 1 < q < p and CΩ > 0, we say that Ω admits the pointwise
(p, β)-Hardy inequality. In [5], sufficient conditions for a domain to admit
the pointwise (p, β)-Hardy inequality were given. These were closely related
to the (local) Hausdorff dimension of the boundary (or the complement)
of Ω. We mention, for example, that each simply connected planar John
domain admits the pointwise (p, β)-Hardy inequality whenever 1 < p < ∞
and β < p − 1, and a von Koch -type snowflake domain Ω ⊂ R2 admits
the pointwise (p, β)-Hardy inequality if (and only if) 1 < p < ∞ and β <
p− 2 + dim(∂Ω).
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The main purpose of this paper is to show that size estimates of the
above type are indeed necessary for weighted pointwise Hardy inequalities;
the unweighted case has been considered in [6]. Our main result can be
stated as follows:

Theorem 1.1. Suppose that a domain Ω ⊂ Rn admits the pointwise (p, β)-
Hardy inequality. Then there exist a constant C > 0 and an exponent λ >
n− p+ β such that

(2) Hλ
∞
(
B(w, r) ∩ Ωc

)
≥ Crλ

holds for every w ∈ Ωc and r > 0.

Here Hλ
∞(A) is the λ-dimensional Hausdorff content of the set A ⊂ Rn,

see Section 2. It is immediate that if (2) holds for some w and r, then the
Hausdorff dimension of B(w, r) ∩ Ωc is at least λ > n− p+ β. Moreover, if
β < p−1 (so that p−β > 1) and (2) holds for all w ∈ Ωc and all r > 0, then
it is well-known that Ωc satisfies a uniform capacity density condition: Ωc is
uniformly (p− β)-fat (see e.g. [7] or [4] for the definition). Notice also that
the fact that we must have β < p in pointwise Hardy inequalities is implicit
in Theorem 1.1, since (2) can not hold in Rn for any λ > n. Hence, for a
fixed 1 < p < ∞, the relevant values of β in pointwise Hardy inequalities
lie between p − n and p, as every proper subdomain Ω ( Rn admits the
pointwise (p, β)-Hardy inequality when β < p− n (cf. [5]).

Interestingly, if the pointwise (p, β)-Hardy inequality holds in a domain
Ω ⊂ Rn, we not only obtain the conclusion of Theorem 1.1 — a uniform
density condition for the complement of Ω — but also a stronger density
condition where the complement of Ω is considered only as “seen” from
within the points inside the domain. To this end, we let D(x) denote the
x-component of B(x, 2dΩ(x)) ∩ Ω for points x ∈ Ω. Then, if Ω admits the
pointwise (p, β)-Hardy inequality, there exists some λ > n − p + β and a
constant C > 0 such that

(3) Hλ
∞
(
∂D(x) ∩ ∂Ω

)
≥ CdΩ(x)λ

for every x ∈ Ω; see Theorem 3.1. This complements the results in [5] on
sufficient conditions for pointwise Hardy inequalities. We refer to estimates
of the type (3) as inner boundary density conditions.

In order to obtain the above results in the case β < 0 we need a mea-
sure theoretic result which is given in Lemma 4.1, and could also be of
independent interest. The claim is, roughly, that a uniform Minkowski-type
density for some λ0 > 0 implies uniform λ-Hausdorff content densities for
every λ < λ0. See Section 2 for definitions and Lemma 4.1 for the precise
statement.

This paper is organized as follows. In Section 2, we introduce the no-
tation and terminology used in the rest of the paper and also record some
preliminary results. Then, in Section 3, we prove our main results, and in
fact give some more quantitative formulations of the necessary conditions for
pointwise Hardy inequalities. Finally, Section 4 is devoted to the statement
and the proof of Lemma 4.1 mentioned above.
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2. Preliminaries

Our notation is pretty standard. The open ball with center x ∈ Rn and
radius r > 0 is denoted B(x, r), and the corresponding closed ball is B(x, r).
If B = B(x, r) is a ball and L > 0, we denote LB = B(x, Lr). When A ⊂ Rn,
|A| is the n-dimensional Lebesgue measure of A, ∂A is the boundary of A,
and the complement of A is Ac = Rn \ A. If 0 < |A| < ∞ and f ∈ L1(A),
we denote

∫
Af dx = 1

|A|
∫
A f dx. Also, χ

A
: Rn → {0, 1} is the characteristic

function of A. The Euclidean distance between two points, or a point and a
set, is denoted d(·, ·). When Ω  Rn is a domain, i.e. an open and connected
set, and x ∈ Ω, we also use notation dΩ(x) = d(x, ∂Ω). In the rest of the
paper we always assume that Ω  Rn, so that ∂Ω 6= ∅. The support of a
function u : Ω → R, spt(u), is the closure of the set where u is non-zero. We
let C > 0 denote various positive constants which may vary from expression
to expression.

The λ-Hausdorff content of a set A ⊂ Rn is defined by

Hλ
∞(A) = inf

{ ∞∑
i=1

rλ
i : A ⊂

∞⋃
i=1

B(zi, ri)
}
,

where zi ∈ A and ri > 0, and the Hausdorff dimension of A ⊂ Rn is then

dimH(A) = inf
{
λ > 0 : Hλ

∞(A) = 0
}
.

As it turns out, we need a similar notion for the case where all the covering
balls are required to be of the same radius. Notice that in the following our
terminology differs a bit from the standard one. When A ⊂ Rn and r > 0,
we denote

Mλ
r (A) = inf

{
Nrλ : E ⊂

N⋃
i=1

B(zi, r), zi ∈ A
}
.

Using this notation, we define, in analog with the λ-Hausdorff content, the
λ-Minkowski content of A ⊂ Rn by

Mλ
∞(A) = inf

r>0
Mλ

r (A).

The corresponding dimension, the usual lower Minkowski dimension, is given
by

dimM(A) = inf
{
λ > 0 : Mλ

∞(A) = 0
}
.

For the record, we recall that the upper Minkowski dimension of A ⊂ Rn is

dimM(A) = inf
{
λ > 0 : lim sup

r→0
Mλ

r (A) = 0
}
.

Note that always dimH(A) ≤ dimM(A) ≤ dimM(A), where both inequalities
can be strict; cf. [8, Ch. 5].

Let us extend the notation D(x), used in the Introduction, in the follow-
ing way: When x ∈ Ω and L ≥ 1, we let DL(x) denote the x-component
of the open set B(x, LdΩ(x)) ∩ Ω; thus always B(x, dΩ(x)) ⊂ DL(x) ⊂
B(x, LdΩ(x)). This notation is used e.g. in the following lemma, which is
similar to a part of the main result from [6]. Here the result is reformulated
for Minkowski contents instead of Hausdorff contents. The proof, which we
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omit here, is however almost identical to the proof in [6] up to the obvious
modifications.

Lemma 2.1. Let Ω ⊂ Rn be a domain and assume that there exists a
constant C0 > 0 such that, for some L > 1 and some 0 ≤ λ ≤ n,

Mλ
∞
(
∂DL(x) ∩ ∂Ω

)
≥ C0dΩ(x)λ

for every x ∈ Ω. Then there exists a constant C = C(C0, L, n, λ) > 0 such
that

Mλ
∞
(
B(w, r) ∩ Ωc

)
≥ Crλ

for every w ∈ Ωc and r > 0.

Actually, by the assumption λ ≤ n, we may choose the constant C in
Lemma 2.1 to be independent of λ.

To simplify the notation of pointwise Hardy inequalities we recall the
definitions of maximal functions. The classical restricted Hardy-Littlewood
maximal function of f ∈ L1

loc(Rn) is defined by

MRf(x) = sup
0<r<R

∫
B(x,r)

|f(y)| dy ,

where 0 < R ≤ ∞ may depend on x. The well-known maximal theorem of
Hardy, Littlewood and Wiener (see e.g. [9]) states that if 1 < p < ∞, we
have ||MRf ||p ≤ C(n, p)||f ||p for all 0 < R ≤ ∞.

When 1 < q < ∞, we define MR,qf =
(
MRf

q
)1/q. With the help of

maximal functions the pointwise (p, β)-Hardy inequality (1), for a function
u ∈ C∞0 (Ω), now reads

(4) |u(x)| ≤ CdΩ(x)1−
β
pM2dΩ(x),q

(
|∇u|dΩ

β/p
)
(x),

where 1 < q < p.
Let us now begin the considerations on necessary conditions for these

pointwise Hardy inequalities. The next lemma records the fact that (4)
makes sense only if β < p.

Lemma 2.2. Let 1 < p < ∞ and let x0 ∈ Ω. If β ∈ R is such that the
pointwise (p, β)-Hardy inequality (4) holds at x0 with constants 1 < q < p
and C0 > 0 for all u ∈ C∞0 (Ω), then β < p.

Proof. To prove the lemma, it is enough to show that the pointwise (p, p)-
Hardy inequality fails at x0 ∈ Ω, since then, by [5, Lemma 3.2], the pointwise
(p, β)-Hardy inequality can not hold for any β ≥ p.

Pointwise Hardy inequalities are local, so we may assume that Ω is a
bounded domain; if this is not the case, we may instead consider Ω∩B(0, R)
for some R > 0 large enough. Denote Aj =

{
x ∈ Ω : 2−j ≤ dΩ(x) < 2−j+1

}
for j ∈ N, and define

uj(x) = min
{

1, 2j max{0, dΩ(x)− 2−j}
}
,

so that uj is a Lipschitz function with compact support in Ω, and, moreover,
|∇uj(x)| ≤ 2j for a.e. x ∈ Aj , and elsewhere |∇uj(x)| = 0. Also, for j large
enough, uj(x0) = 1. Since Ω is bounded, it is clear that |Aj | → 0 as j →∞.
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Thus the right-hand side of the pointwise (p, p)-Hardy inequality for uj at
x0, with j ∈ N so large that 2−j < dΩ(x0)/2, could be estimated as follows:

dΩ(x)1−
p
p

(
sup

r<2dΩ(x)

∫
B(x,r)

|∇uj(y)|qdΩ(y)p q
p dy

)1/q

≤ CdΩ(x0)−n/q

(∫
Aj

|∇uj(y)|qdΩ(y)q dy

)1/q

≤ CdΩ(x0)−n/q
(
|Aj | 2jq 2−jq

)1/q

≤ CdΩ(x0)−n/q|Aj |1/q j→∞−−−→ 0.

But uj(x0) = 1 for large j, so the pointwise (p, p)-Hardy inequality fails
to hold for the functions uj with a uniform constant. Using standard ap-
proximation, and the fact that functions uj are constant in a neighborhood
of x0, it is now easy to find smooth test functions for which the pointwise
(p, p)-Hardy inequality does not hold with a uniform constant either. �

On the other hand, if n ≥ 2, 1 < p < ∞ and β < p are given, there
exists, by the results in [5], a domain Ω ⊂ Rn which admits the pointwise
(p, β)-Hardy inequality. Hence the conclusion of Lemma 2.2 is in this sense
the best possible. For instance, in the plane one can choose such a domain
Ω to be a snowflake-type domain with dimH(∂Ω) > 2− p+ β.

3. Main results

In this section we give the precise formulations and proofs of our main
results. The key point here is that the pointwise (p, β)-Hardy inequality
in Ω ⊂ Rn implies that ∂Ω satisfies an inner density condition for some
exponent λ > n−p+β (Theorem 3.1). The density of the complement of Ω
(Theorem 1.1) is then obtained as a consequence of the boundary density,
as explained at the end of this section.

Theorem 3.1. Suppose that a domain Ω ⊂ Rn admits the pointwise (p, β)-
Hardy inequality. Then there exist an exponent λ > n−p+β and a constant
C > 0, both depending only on n and the data associated with the pointwise
(p, β)-Hardy inequality, such that

(5) Hλ
∞
(
∂D2(x) ∩ ∂Ω

)
≥ CdΩ(x)λ

for every x ∈ Ω. In particular,

dimH(∂D2(x) ∩ ∂Ω) > n− p+ β

for every x ∈ Ω.

The proof of Theorem 3.1 is somewhat different depending whether β ≥
0 or β < 0. In the the former case the theorem follows from the next
quantitative lemma. The estimate (6) below is an improvement on the
results in [6] even in the unweighted case.

Lemma 3.2. Let 1 < p < ∞ and β ≥ 0, and let x0 ∈ Ω. Suppose that
the pointwise (p, β)-Hardy inequality (4) holds at x0 for all u ∈ C∞0 (Ω)
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with constants 1 < q < p and C0 > 0. Then there exists a constant C =
C(C0, n, p, β) > 0 such that

(6) Hλ
∞
(
∂D3(x0) ∩ ∂Ω

)
≥ CdΩ(x0)λ,

where λ = n− q + q
pβ > n− p+ β.

Proof. By Lemma 2.2 we must have β < p. Using this fact it is easy to see
that p− β > q − q

pβ, and thus λ = n− q + q
pβ > n− p+ β.

Then let x0 ∈ Ω be as in the assumptions of the lemma. Denote E =
∂D3(x0) ∩ ∂Ω, R0 = dΩ(x0), and let {Bi}N

i=1, where Bi = B(wi, ri) with
wi ∈ E and ri > 0, be a covering of E; we may assume that the covering is
finite by the compactness of E.

It is now enough to show that there exists a constant C = C(C0, n, p, β) >
0, independent of the particular covering, such that

(7)
N∑

i=1

ri
λ ≥ CR0

λ.

But if ri ≥ R0/4 for some 1 ≤ i ≤ N , then (7) holds e.g. with the constant
C = 4−n, and the claim follows.

We may hence assume that ri < R0/4 for all 1 ≤ i ≤ N . Now, let us
define a function ϕ : Rn → R by

ϕ(x) = min
1≤i≤N

{
1, r−1

i d(x, 2Bi)
}

and let ψ ∈ C∞0 (B(x0, 3R0)) be such that 0 ≤ ψ ≤ 1 and ψ(x) = 1 for all
x ∈ B(x0, 2R0). Then u = ψ ϕχ

D3(x0)
is a Lipschitz function with compact

support in Ω. Since ri < R0/4 for all 1 ≤ i ≤ N , we have that

(8) d(x0, 3Bi) > R0/4

for all 1 ≤ i ≤ N , and thus u(x0) = 1 by the definition of u.
Using standard approximation we can find smooth test functions vj ∈

C∞0 (Ω) such that vj(x0) = u(x0) = 1 for all j ∈ N and, by the facts that the
Lipschitz function u is constant in B(x0, R0/4) and has a compact support,

lim sup
j→∞

M2dΩ(x),q

(
|∇vj |dΩ

β/p
)
(x0) ≤ 2M2dΩ(x),q

(
|∇u|dΩ

β/p
)
(x0).

It follows that the pointwise (p, β)-Hardy inequality (4) also holds for u at
x0, with a constant depending only on C0.

We shall now show, with the help of (4) for u, that the estimate (7) holds.
First, denote Ai = 3Bi \ 2Bi. Then

spt(|∇u|) ∩B(x0, 2R0) ⊂
N⋃

i=1

Ai

and, in fact,

(9) |∇u(y)|q ≤
N∑

i=1

r−q
i χ

Ai
(y)
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for a.e. y ∈ B(x0, 2R0). But if χ
Ai

(y) 6= 0 for some 1 ≤ i ≤ N , we must
have that dΩ(y) ≤ 3ri, and hence, by the assumption β ≥ 0, we obtain from
(9) that

(10) |∇u(y)|qdΩ(y)β q
p ≤ C

N∑
i=1

r
−q+β q

p

i χ
Ai

(y)

for a.e. y ∈ B(x0, 2R0) with C = 3β.
Then observe that since spt(|∇u|)∩B(x0, 2R0) ⊂

⋃N
i=1 3Bi, it follows from

(8) that we must have r > 1
4R0 in order to obtain something positive when

estimating the maximal function of |∇u|qdΩ
β q

p at x0. Thus the pointwise
(p, β)-Hardy inequality and (10) imply that (recall λ = n− q + β q

p)

1 = |u(x0)|q ≤ C0
qR0

q− q
p
β
M2R0

(
|∇u|qdΩ

β q
p
)
(x0)

≤ CR0
q− q

p
β sup

1
4
R0≤r≤2R0

(
r−n

∫
B(x0,r)

|∇u(y)|qdΩ(y)β q
p dy

)

≤ CR0
q− q

p
β−n

∫
B(x0,2R0)

|∇u(y)|qdΩ(y)β q
p dy

≤ CR0
−λ

N∑
i=1

|Ai| r
−q+β q

p

i ≤ CR0
−λ

N∑
i=1

ri
λ.

(11)

Since q < p, it is easy to see that we may choose the constant C in (11) so
that C = C(C0, n, p, β) > 0. This proves that the estimate (6) holds at x0

with the exponent λ. �

Remark. It is obvious from the proof that we may replace D3(x0) in the
lemma by any DL(x0), where L > 2.

In the case β < 0 we obtain first, as in Lemma 3.2, the following a
priori weaker result for Minkowski contents. To prove Theorem 3.1, we
then use Lemma 4.1, which is postponed until the next section, to pass from
Minkowski contents to Hausdorff contents.

Lemma 3.3. Let 1 < p < ∞ and β < 0, and let x0 ∈ Ω. Suppose that
the pointwise (p, β)-Hardy inequality (4) holds at x0 for all u ∈ C∞0 (Ω)
with constants 1 < q < p and C0 > 0. Then there exists a constant C =
C(C0, n, p, β) > 0 such that

Mλ
∞
(
∂D3(x0) ∩ ∂Ω

)
≥ CdΩ(x0)λ

where λ = n− q + q
pβ > n− p+ β.

Proof. First, it is now obvious that λ > n− p+ β since β < 0. We proceed
as in the proof of Lemma 3.2, but now we cover the set E = ∂D3(x0) ∩ ∂Ω
by balls Bi = B(wi, r), all of the same radius r > 0 and with center points
wi ∈ E for 1 ≤ i ≤ N . We may again assume that r < dΩ(x0)/4. After
defining the function u as in the proof of Lemma 3.2 we obtain that

|∇u(y)|q ≤
N∑

i=1

r−qχ
Ai

(y)



8 JUHA LEHRBÄCK

for a.e. y ∈ B(x0, 2dΩ(x)). But now, if |∇u(y)| 6= 0, we have by the definition
of u that dΩ(y) ≥ r. Since β < 0, it follows that

(12) |∇u(y)|qdΩ(y)β q
p ≤ C

N∑
i=1

r
−q+β q

pχ
Ai

(y)

for a.e. y ∈ B(x0, 2dΩ(x)) ; recall that Ai = 3Bi \ 2Bi. Hence, using the
pointwise (p, β)-Hardy inequality and (12) just as in the proof of Lemma
3.2, we conclude that

1 = |u(x0)|q ≤ C0
qdΩ(x0)q− q

p
β
M2dΩ(x0)

(
|∇u|qdΩ

β q
p
)
(x0)

≤ · · · ≤ CdΩ(x0)−λ
N∑

i=1

rλ,

where C = C(C0, n, p, β) > 0 is independent of r > 0 and the particular
covering. This yields the desired Minkowski content estimate. �

Proof of Theorem 3.1. Let us first remark that if

(13) Hλ
∞
(
∂DL(x) ∩ ∂Ω

)
≥ C0dΩ(x)λ,

where L > 1, holds for every x ∈ Ω, and if L′ > 1, then (13), but with
L replaced by L′, holds for every x ∈ Ω as well, with a constant C =
C(C0, L, L

′) > 0. This is trivial if L′ ≥ L. On the other hand, if L′ < L
and x0 ∈ Ω, take w ∈ ∂Ω such that d(x0, w) = dΩ(x0), and choose x =
x0 + L−L′

L−1 (w − x0). Then DL(x) ⊂ DL′(x0), and the claim follows with
simple calculations.

In particular, if β ≥ 0, and Ω ⊂ Rn admits the pointwise (p, β)-Hardy
inequality, it follows from Lemma 3.2 that there exists an exponent λ >
n − p + β such that (13), with L = 3, holds for every x ∈ Ω. Hence also
the estimate (5) (i.e. (13) with L = 2) holds for every x ∈ Ω with this same
exponent λ and a constant depending only on n and the given data.

In the case β < 0, the pointwise (p, β)-Hardy inequality implies, by
Lemma 3.3 and Lemma 2.1, that there exists C1 = C1(C0, n, p, β) > 0
such that

(14) Mλ0
∞
(
B(w, r) ∩ Ωc

)
≥ C1r

λ0

for every w ∈ Ωc and r > 0, where λ0 = n− q + q
pβ. Now choose

ε = λ0 − (n− p+ β) = p− q − β + β q
p > 0

and take λ satisfying λ0 − ε/2 < λ < λ0. Using Lemma 4.1 we obtain from
(14) that

(15) Hλ
∞
(
B(w, r) ∩ Ωc

)
≥ C2 r

λ

for every w ∈ Ωc and r > 0, where C2 = C2(C1, n, p, q, β) > 0. In particular,
it follows from (15) that Ωc is uniformly (p−β−ε/2)-fat (cf. for example [6]
and notice that p−β− ε/2 > 1 by the choice of ε). Hence, by the results in
[2], Ω admits the pointwise (p − β − ε/2, 0)-Hardy inequality. But now we
are back in the case β ≥ 0, and by the first part of the proof we conclude
that the inner boundary density (5) holds for every x ∈ Ω with the exponent
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λ = n − p + β + ε/2 and a constant C > 0, both depending only on n and
the associated data. �

Regarding Theorem 1.1, the case β < 0 was already proved as a part
of the proof of Theorem 3.1 ; see equation (15). For β ≥ 0, Theorem 1.1
follows from Theorem 3.1 and the fact that Lemma 2.1 also holds when Mλ

∞
is replaced by Hλ

∞; this is in fact the original result from [6].

4. From Minkowski to Hausdorff

Here we explain how to obtain uniform density conditions for Hausdorff
contents if one already has such a condition for some λ0-Minkowski content.
For our purposes it is sufficient to acquire Hausdorff content estimates for all
exponents λ < λ0 , as is the case in the next lemma. Nevertheless, it would
be interesting to know if it is possible to extend this result also to include
the end-point exponent λ0. We remark that a λ-Hausdorff content density
condition trivially implies a similar density condition for the λ-Minkowski
content.

Lemma 4.1. Let E ⊂ Rn be a closed set. Assume that there exist 0 < λ0 ≤
n and C0 > 0 such that

(16) Mλ0
∞
(
B(w, r) ∩ E

)
≥ C0 r

λ0

for all w ∈ E and r > 0. Then, for every 0 < λ < λ0, there exists a constant
C = C(C0, λ0, λ, n) > 0 such that

(17) Hλ
∞
(
B(w, r) ∩ E

)
≥ C rλ

for all w ∈ E and r > 0.

Proof. The essential idea of the proof is similar to the proof of [3, Thm. 4.1].
Namely, we construct, using (16) repeatedly, a Cantor-type subset which is
then shown to satisfy the λ-Hausdorff density condition (17).

To begin with, we fix 0 < λ < λ0 and then choose K ∈ N so large that

λ <
λ0 logK

logK − logC0 + log 10λ0

(notice that we may assume C0 < 1). Also denote m = 10(K/C0)1/λ0 ,
so that λ < logK/ logm < λ0 . Now let w ∈ E and R > 0, and take
B0 = B(w,R). It suffices to show that (17) holds for this closed ball with a
constant independent of w and R, since then the claim follows easily for all
open balls as well. Using the standard 5r-covering theorem (cf. [9, pp. 9-10])
and the assumption (16), we find closed balls Bi = B(zi, r1), i = 1, 2, . . . , n0,
with zi ∈ E ∩ B0 and r1 = Rm−1, such that the balls 2Bi are pairwise
disjoint, E ∩B0 ⊂

⋃
i 10Bi, and, by (16),

n0(10r1)λ0 ≥ C0R
λ0 .

By the choices of r1 = Rm−1 and K we see that n0 ≥ K. We then proceed
with the balls Bi for i = 1, . . . ,K.

In the next step we find balls Bi1i2 = B(zi1i2 , r2), i1 = 1, 2, . . . ,K and
i2 = 1, 2, . . . , ni1 , where zi1i2 ∈ E ∩Bi1 and r2 = Rm−2, such that, for each
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i1 = 1, 2, . . . ,K, the balls 2Bi1i2 are pairwise disjoint, E∩Bi1 ⊂
⋃

i2
10Bi1i2 ,

and, by (16),
ni1(10r2)λ0 ≥ C0r1

λ0 .

Again, ni1 ≥ K for every i1 = 1, . . . ,K, and we continue with the balls
Bi1i2 = B(zi1i2 , r2), where now i1, i2 = 1, 2, . . . ,K. Notice that since 2Bi1 ∩
2Bj1 = ∅ whenever i1 6= j1 , and clearly 2Bi1i2 ⊂ 2Bi1 for every i1, i2 =
1, . . . ,K, we have in fact that all the balls 2Bi1i2 , i1, i2 = 1, . . . ,K, are
pairwise disjoint.

Continuing in this way recursively, we find in the k:th step of the con-
struction a collection of closed balls Bi1i2...ik , where ij = 1, . . . ,K for j ∈
{1, . . . , k − 1} and ik = 1, . . . , ni1i2...ik−1

, with center points zi1i2...ik ∈ E ∩
Bi1i2...ik−1

and all of radius rk = Rm−k, satisfying the following properties:
The balls 2Bi1i2...ik are pairwise disjoint,

E ∩Bi1i2...ik−1
⊂
⋃
ik

10Bi1i2...ik ,

and, by (16),
ni1i2...ik−1

(10rk)λ0 ≥ C0rk−1
λ0 .

Since (rk−1/rk)λ0 = mλ0 , we have, like before, that ni1i2...ik−1
≥ K for all

i1i2 . . . ik−1, where ij = 1, . . . ,K for j ∈ {1, . . . , k − 1}. We continue with
the balls Bi1i2...ik , where now i1, i2, . . . , ik = 1, 2, . . . ,K.

We then define

Ẽ =
∞⋂

k=1

K⋃
i1,...,ik=1

Bi1i2...ik ,

so that Ẽ ⊂ E∩B0 is a compact Cantor-type set. Proceeding as in the proof
of Theorem 4.1. in [3] we let µ denote the equally distributed probability
measure on Ẽ (see also [1, pp. 13-14]). In particular, µ(E∩Bi1i2...ik) = K−k

for every i1, i2, . . . , ik = 1, 2, . . . ,K. Now, if x ∈ Rn and r < R, we choose
k ∈ N such that Rm−k ≤ r < Rm−k+1. Then there exists a constant
C1 = C1(n,m) > 0 such that B(x, r) intersects at most C1 of the balls
Bi1i2...ik from the k:th step of the construction. Thus, by the definition of µ
and the choice of k,

(18) µ(B(x, r)) ≤ C1K
−k ≤ C1m

−k log K/ log m ≤ C1(r/R)λ,

where we have used the fact λ < logK/ logm.
Finally, let {B(zi, ri)}i be a covering of E ∩ B(w,R). We may clearly

assume that ri < R for each i. Hence, using the properties of the measure
µ, especially (18), we conclude that

1 = µ
(
B(w,R) ∩ E

)
≤
∑

i

µ(B(zi, ri)) ≤
∑

i

C1

(ri
R

)λ
.

It is then clear that

Hλ
∞
(
B(w,R) ∩ E

)
≥ CRλ,

where C = C−1
1 > 0 now depends only on C0, λ0, λ, and n. �
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