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Abstract. Knowledge about large-scale and long-term dynamics of (natural) popula-

tions is required to assess the efficiency of control strategies, the potential for long-term

persistence, and the adaptability to global changes such as habitat fragmentation and

global warming. For most natural populations, such as pest populations, large-scale

and long-term surveys cannot be carried out at a high resolution. For instance, for

population dynamics characterised by irregular abundance explosions, i.e. outbreaks,

it is common to report detected outbreaks rather than measuring the population den-

sity at every location and time event. Here, we propose a mechanical-statistical model

for analysing such outbreak occurrence data and making inference about population

dynamics. This spatio-temporal model contains the main mechanisms of the dynamics

and describes the observation process. This construction enables us to account for the

discrepancy between the phenomenon scale and the sampling scale. We propose the

Bayesian method to estimate model parameters, pest densities and hidden factors, i.e.

variables involved in the dynamics but not observed. The model was specified and

used to learn about the dynamics of the European pine sawfly (Neodiprion sertifer Ge-

offr., an insect causing major defoliation of pines in northern Europe) based on Finnish

sawfly data covering the years 1961–1990. In this application, a dynamical Beverton-

Holt model including a hidden regime variable was incorporated into the model to deal

with large variations in the population densities.
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1 Introduction

Knowledge about the large-scale dynamics of pests such as forest insects is especially

needed to determine efficient control strategies and to predict changes in population

densities caused by environmental variation like global warming. For producing such

knowledge, collecting and analysing spatio-temporal data on pest dynamics over a large

region and along several decades is useful, but monitoring densities of pest populations

at a high resolution and at a large spatio-temporal scale is often difficult (very expen-

sive) or even impossible. In contrast, binary data indicating occurrences of outbreaks

are crude but are more readily available for longer time spans. In Finland, for instance,

detected occurrences of pine sawfly (Neodiprion sertifer) outbreaks were gathered at

the municipality level across three decades (1961-1990). Thus, for each year and each

municipality, we know whether or not an outbreak of pine sawfly was detected and

we know the values of some covariates which are expected to be related to the pest

dynamics.

In this communication, we are interested in the information about pest dynamics

which can be gleaned from binary data indicating occurrences of local and annual out-

breaks. Such binary data can be analysed directly using regression models to learn why

outbreaks occur; see for example Virtanen et al. (1996). Such data can also be used to

better understand hidden underlying processes by applying an ‘inverse approach’ which

consists of inferring about hidden processes of the dynamics based on observed patterns

(Grimm et al., 2005; Wiegand et al., 2003). Following this approach, we developed a

mechanical-statistical model incorporating a model of the pest dynamics and a model of

the observation process. The mechanical part of the model contains knowledge about

the main mechanisms of the dynamics (e.g. growth, density-dependence and migra-

tion), as well as unknowns which must be inferred. The statistical part of the model

makes the link between the dynamics and the observations. This hierarchical approach

combining a process model and a data model, sometimes called ‘physical-statistical

modelling’ or ‘state-space modelling’, has been formalised and applied in environmen-

tal science (Berliner, 2003; Campbell, 2004; Wikle, 2003a) and ecology (Buckland et al.,

2004; Rivot et al., 2004; Wikle, 2003b).

There is often a problem of scale when trying to learn about hidden processes of a

large-scale dynamics based on occurrence data. This issue is called ‘change of support’

(Chilès and Delfiner, 1999; Wikle, 2003b) and arises when the phenomenon scale and

the sampling scale do not coincide. Indeed, data on pest outbreaks are often collected at

the level of administrative units (low resolution), but the dynamics may show variations

at a finer resolution. In the case studied below, for instance, an outbreak detected in a

municipality does not occur within the whole municipality but only in some restricted

parts of it. The mechanical-statistical model that we propose here was developed as an

analysis tool making the phenomenon scale and the sampling scale compatible. This
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compatibility is made possible by the hierarchical structure of the model in which a

data model and a process model are explicitly specified (see Wikle, 2003b; Wikle and

Berliner, 2005). For discussions about discrepancies between the scales of phenomenon,

sampling and analysis, see Dungan et al. (2002) in ecology and Soubeyrand et al. (2007)

in epidemiology.

The spatial resolution of our mechanical-statistical model is the same as the one of

the data set, i.e. the unit, but the model construction originates from the dynamics at

the subunit level. The model can be briefly described as follows:

• Statistical part. The administrative (or observation) units are divided into sub-

units of equal size, and the outbreak occurrences in the observation units are

modelled conditionally on the pest abundances in the subunits. This model is

stochastic to account for undetected outbreaks.

• Mechanical part. Subsequently, the pest abundances in subunits are modelled as

a stochastic process conditional on covariates and past abundances in subunits.

Three difficulties arise in the development of the mechanical part: (i) abundances in

subunits are not observed and form a hidden process whose dimensionality (i.e. the

number of unknowns) can be much larger than the number of observations; (ii) observed

covariates are only measured at the unit level; (iii) there may be spatio-temporal het-

erogeneity which is not explained by the observed covariates. In order to overcome

difficulties (i) and (ii), the following approximation is made: pest abundances in sub-

units are modelled conditionally on pest densities in the past and covariate values at

the unit level (and no longer at the subunit level). The pest density in a unit is defined

as the mean of pest abundances in the corresponding subunits. In order to overcome

difficulty (iii), additional hidden processes representing unobserved covariates are in-

corporated into the model.

The resulting model is hierarchical. We use a Bayesian procedure based on Markov

chain Monte Carlo (MCMC, Robert and Casella, 1999) to make inferences about pest

densities, covariate effects, hidden processes reflecting unobserved covariates, and un-

known parameters.

The model and the Bayesian procedure were applied to the dynamics of the Euro-

pean pine sawfly in Finland based on outbreak data collected annually for three decades

(1961–1990) at the municipality level. The shapes of the model components were spec-

ified to account for particular features of the dynamics. In particular, the forward

function reflecting mortality and reproduction processes between two successive years

was modelled by a modified Beverton-Holt model fluctuating between two regimes, low

and high, which may depend on predation pressure and climatic conditions, for ex-

ample. The regime variables were not observed and were assumed to form a hidden

process.

In sum, the contribution of the proposed approach is threefold. The hierarchical
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structure of the model enables us to handle the discrepancy between the data scale

and the dynamics scale. Making an approximation in the mechanical part of the

model allows the dimensionality of the unknowns to be reduced and, consequently,

permits reasonable inferences. Incorporating hidden processes into the model enables

the investigation of unobserved underlying factors influencing the dynamics. Thus, our

modelling approach enables us to infer about the main mechanisms governing the large-

scale dynamics (but not those governing the micro-scale dynamics, mainly because of

the (necessary) approximation which is made).

In the following, we describe the mechanical-statistical model in a generic context

(Section 2) and then present the estimation procedure (Section 3). Next, the model

is used to analyse the dynamics of the European pine sawfly in Finland (Section 4)

where we focus on (i) the influence of observed covariates on the pest dynamics and

(ii) the temporal and spatial dependencies not explained by the observed covariates.

This study is completed by a discussion (Section 5).

2 Mechanical-statistical model

2.1 Context and notations

Spatial and temporal resolutions. Here we assume that space and time are dis-

crete. The study region is divided into I spatial units labelled by i, and each unit is

divided into Ji subunits of equal sizes. The pairs (i, j) are used to denote the subunits

(i = 1, . . . , I and j = 1, . . . , Ji). In the following, the unit corresponds to the resolution

at which data are collected whereas the subunit corresponds to the resolution at which

the dynamics is modelled. In the sawfly example, units are municipalities and subunits

are pine areas of one hectare.

Let t = 0, . . . , T index the time; the interval between t and t + 1 corresponds to the

duration of one life cycle, typically one year.

Dynamics variables. The non-negative variable Sijt denotes the pest abundance in

subunit (i, j) at time t. This quantity is assumed to correspond to a fixed stage of the

life cycle. Let St = {Sijt : i = 1, . . . , I, j = 1, . . . , Ji} be the set of pest abundances in

all the subunits at time t. The non-negative variable S̄it defined by

S̄it =
1

Ji

Ji
∑

j=1

Sijt

is the pest density in unit i at time t. Let S̄t = {S̄it : i = 1, . . . , I} be the set (or map)

of pest densities in all the units at time t.

The vector Zijt is assumed to encode environmental characteristics of subunit (i, j)

that influenced mortality and reproduction processes during the time interval (t− 1, t].

Let Zt = {Zijt : i = 1, . . . , I, j = 1, . . . , Ji}. We also introduce the aggregated variables
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Z̄it whose components are scalar functions (e.g. mean or median) of the corresponding

components of Zijt (j = 1, . . . , Ji). Let Z̄t = {Z̄it : i = 1, . . . , I}.

Data variables. The binary variable Yit is equal to one if a pest outbreak was de-

tected at time t in unit i and zero otherwise. The spatial extent of an outbreak may

be smaller than the unit area. So, formally, an outbreak is detected in unit i if there

is a subunit (i, j) such that the event Sijt > d occurs and is observed, where d > 0 is

a threshold over which the pest abundance is considered as high. A difference is made

between “Sijt > d occurs” and “Sijt > d is detected” because some of the subunits and

times such that Sijt > d may be unobserved during the survey.

In addition, some components of Z̄it are observed and are denoted by Z̄
(o)
it (see

Section 3 for the distinction between observed and hidden components).

2.2 Model for the observation process

We first introduce an auxiliary variable: for subunit (i, j) and time t, Yijt indicates if

the event Sijt > d occurred and was observed. By assuming that the intensity and

efficiency of the survey are uniform in space and time, the detection variables Yijt are

independently drawn from Bernoulli distributions conditional on pest abundances Sijt,

Yijt | Sijt ∼
indep.

Bernoulli {κ1(Sijt > d)} , (1)

where κ ∈ [0, 1] is the probability of observing Sijt > d if this event occurs, and 1(E)

is the indicator function taking value one if event E occurs and zero otherwise.

The distributions of the observed detection variables Yit at the unit level are then

obtained by aggregation of the subunit detection variables. Under the assumption made

above and conditionally on pest abundances St, the binary variables Yit are independent

and drawn from Bernoulli distributions

Yit | St ∼
indep.

Bernoulli {P (Yit = 1 | Si1t, . . . , SiJit)} , (2)

with success probabilities

P (Yit = 1 | Si1t, . . . , SiJit) = 1 −

Ji
∏

j=1

{1 − κ1(Sijt > d)}. (3)

This expression was obtained as follows: the events Yit = 1 and
∑Ji

j=1 Yijt ≥ 1 are

identical, hence the success probability is equal to P
(

∑Ji

j=1 Yijt ≥ 1
∣

∣

∣
Si1t, . . . , SiJit

)

which is equal to 1 −
∏Ji

j=1 P (Yijt = 0 | Sijt) using equation (1).

2.3 Dynamical model for pest abundances in subunits

As the probabilistic behaviour of the observed detection variables are conditional on

pest abundances in subunits, we now build a model for the abundances, that is to say,

a model for the spatio-temporal pest dynamics.
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The conditional expectation E(Sijt | St−1,Zt), denoted Ec(Sijt) for short, of pest

abundance in (i, j) at time t given past abundances St−1 and subunit factors Zt is

assumed to satisfy

Ec(Sijt) = f(Sij,t−1, Zijt)
(

1 − wij→V(i,j)

)

+
∑

(i′,j′)∈V(i,j)

f(Si′j′,t−1, Zi′j′t)wi′j′→ij. (4)

The terms appearing in this equation, thereafter called space-time dynamic equation,

have the following meanings:

• The quantity f(Sij,t−1, Zijt) is the potential pest abundance generated at time t

by pests in subunit (i, j) at time t − 1. The function f reflects mortality and

reproduction processes between observation times t − 1 and t. It is called the

forward function. The presence of Zijt as an argument of f is to show that

mortality and reproduction may be influenced by local environmental conditions.

Here, f is unspecified for sake of generality, but its shape will be specified in the

case-study.

• The weights wij→V(i,j) and wi′j′→ij reflect population transfers between sub-

units and successive years (e.g. migrations of pests and predators, spread of

(un)favourable conditions). More precisely, wi′j′→ij reflects the transfer from

(i′, j′) to (i, j) between times t−1 and t. The weight wij→V(i,j) =
∑

(i′,j′)∈V(i,j) wij→i′j′

reflects the transfer from (i, j) to other subunits; V(i, j) is the set of all the sub-

units within all the units, except subunit (i, j). The migration probabilities are

assumed to be independent of t.

Equation (4) gives the conditional expected value of Sijt. In order to account

for additional local variability, stochasticity is introduced in the dynamical model.

Conditional on past abundances St−1 and subunit factors Zt, Sijt are assumed to be

drawn from the independent gamma distributions with shape parameters Ec(Sijt)
1−γ

and scale parameters Ec(Sijt)
γ (γ ∈ R)

Sijt | St−1,Zt ∼
indep.

Gamma
(

Ec(Sijt)
1−γ , Ec(Sijt)

γ
)

. (5)

The expected value of a variable with gamma distribution being equal to the product

of the shape and scale parameters, equation (5) is consistent. The conditional variance

of Sijt is the product of the shape parameter and the squared scale parameter, V (Sijt |

St−1,Zt) = Ec(Sijt)
1+γ . So, parameter γ modulates the dispersion of the probabilistic

distribution of Sijt and especially the risk of extreme events such as high abundances

which correspond to strong outbreaks.

2.4 Approximation of the space-time dynamic equation

Let us first motivate the approximation. If the migration probabilities wi′j′→ij and

the forward function f were specified up to unknown parameters, then the hierarchical
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model constructed from distributions (2) and (5) could be directly fitted to data in

order to infer about the dynamics. Indeed, pest abundances Sijt could be viewed as

random effects forming a hidden process, and a Monte Carlo based method (Robert

and Casella, 1999; Wei and Tanner, 1990) could be applied to infer about the process

and the unknown parameters. However, in such a hierarchical model, the number of

random effects can be very large compared to the number of observations (in the case-

study more than 120,000 subunits scattered in the 431 municipalities are considered

and there are 30 years of data) and, consequently, the estimation procedure can be

unfeasible.

Hence, we adopt the following strategy. The space-time dynamic equation (4) is

approximated using auxiliary variables, namely the pest densities S̄it = (1/Ji)
∑Ji

j=1 Sijt

in the units. Under this approximation, the distribution of the binary observation

process can be given conditionally on the densities in units. Because these densities

are unobserved, they are treated as random effects whose number is the same as the

number of observations (431 municipalities × 30 years in the application). Under

this new hierarchical model, a Monte Carlo based inference method can reasonably be

applied.

To approximate the space-time dynamic equation, it is assumed that the inter-

subunit transfer weights wi′j′→ij are symmetric and that the forward function f is

continuously differentiable. Then, a first-order Taylor’s expansion yields an approxi-

mation of Ec(Sijt) given by

Ēc(Sijt) = f(S̄i,t−1, Z̄it) +
I
∑

i′=1

{f(S̄i′,t−1, Z̄i′t) − f(S̄i,t−1, Z̄it)}wi→i′ , (6)

where wi→i′ is the transfer weight from unit i to unit i′. Recall that S̄i,t−1 is the pest

density in unit i at time t − 1 and Z̄it encodes mean environmental characteristics of

unit i influencing the dynamics between times t−1 and t. So, Ec(Sijt) is approximated

by the sum of a mean effect f(S̄i,t−1, Z̄it) and relative fluxes of pests between units.

This may be a crude approximation, but it enables us to (i) catch the main temporal

and spatial dependencies of the studied dynamics and (ii) link the pest abundances

with the observed covariates.

2.5 Expression of the hierarchical model

Based on the approximation made above, it is now possible to build a hierarchical

model consisting of (i) a model for the dynamics of pest densities S̄it in units, and (ii) a

model for the observed detection variables Yit conditional on the pest dynamics at the

unit resolution.

Replacing Ec(Sijt) by Ēc(Sijt) implies that the conditional distributions of pest
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abundances Sijt in subunits are now given by

Sijt | S̄t−1, Z̄t ∼
indep.

Gamma
(

Ēc(Sijt)
1−γ , Ēc(Sijt)

γ
)

, (7)

and that the conditional distribution of pest densities S̄it = (1/Ji)
∑Ji

j=1 Sijt is

S̄it | S̄t−1, Z̄t ∼
indep.

Gamma
(

Ēc(Sijt)
1−γ , Ēc(Sijt)

γ
)

.

Hence, the conditional expected value of Sit, denoted by Ēc(S̄it) = E(Sit | S̄t−1, Z̄t), is

equal to Ēc(Sijt). Consequently, the dynamical model for the pest densities in units is

S̄it | S̄t−1, Z̄t ∼
indep.

Gamma
(

Ēc(S̄it)
1−γ , Ēc(S̄it)

γ
)

(8)

Ēc(S̄it) = f(S̄i,t−1, Z̄it) +

I
∑

i′=1

{f(S̄i′,t−1, Z̄i′t) − f(S̄i,t−1, Z̄it)}wi→i′ . (9)

From equations (3) and (7), it can be shown that the outbreak-detection variables

Yit conditional on the past pest densities S̄t−1 in units and mean environmental factors

Z̄it are independently drawn from Bernoulli distributions

Yit | S̄t−1, Z̄t ∼
indep.

Bernoulli
{

P (Yit = 1 | S̄t−1, Z̄t)
}

(10)

with success probabilities

P (Yit = 1 | S̄t−1, Z̄t) =1 −
{

1 − κP (Sijt > d | S̄t−1, Z̄t)
}Ji

=1 −

[

1 − κ

{

1 − FĒc(S̄it)γ

(

d

Ēc(S̄it)

)}]Ji

,
(11)

where Fx is the cumulative distribution function of the gamma distribution with shape

parameter x−1 and scale parameter x. Whereas in equation (3) the probability of a

detected outbreak in a unit is conditional on pest abundances Sijt in the corresponding

subunits, in equation (11) the probability of a detected outbreak is conditional on S̄t−1

and Z̄t which characterise the distribution of Sijt. The advantage of the approximation

is that it is possible to replace the actual values of pest abundances by characteristics

of their probability distribution. Consequently, the pest abundances in subunits no

longer appear in the model, and are replaced by pest densities in units.

Equations (8) and (9) model the pest dynamics at the unit resolution, whilst equa-

tions (10) and (11) model the observed detection variables conditional on this dynam-

ics. This set of equations defines the mechanical-statistical model which can be used

to analyse data on outbreak detections and infer the large-scale pest dynamics.

3 Bayesian formulation of the model and inference method

Consider a situation where the outbreak-detection variables Yit, the unit sizes Ji and

some of the environmental factors grouped in the vectors Zit are observed, and the aim
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is to infer the dynamics of pest densities, the effects of observed covariates, the hidden

processes reflecting unobserved covariates, and the unknown parameters. We adopt the

Bayesian approach and implement it using an MCMC algorithm using the following

notations and assumptions. The environmental factors are denoted separately with

respect to their observation status. A mark (o) is used to denote observed factors and

a mark (h) is used to denote hidden factors. For example, Z̄
(o)
it and Z̄

(h)
it stand for the

components of Z̄it which are observed and hidden, respectively (Z̄it = (Z̄
(o)
it , Z̄

(h)
it )). A

priori, the hidden factors Z̄
(h)
it are assumed to be independently drawn from a given

parametric model. In addition, the forward function f and the migration probabilities

wi→i′ are assumed to have parametric forms. The parameters of f , wi→i′ and Z̄
(h)
it ,

together with parameter γ and κ, introduced in the previous section, are grouped into

the vector θ. Besides, S̄ denotes the set of pest densities from time t = 0 to time

t = T − 1 in all the units; Y, Z̄(o) and Z̄(h) denote, respectively, the sets of outbreak-

detection variables, observed factors and hidden factors from time t = 1 to time t = T

in all the units. There is a time lag between the sets S̄ on one hand and Y, Z̄(o) and

Z̄(h) on the other because of the conditioning on the past which can be seen in (9). The

vector Z̄ denotes the union of Z̄(o) and Z̄(h).

The posterior joint distribution of the hidden processes S̄, Z̄(h) and the parameter

vector θ is proportional to

P (S̄, Z̄(h), θ | Y, Z̄(o)) ∝ P (Ȳ | S̄, Z̄, θ)P (S̄ | Z̄, θ)P (Z̄(h) | Z̄(o), θ)P (θ | Z̄(o)).

The right-hand side terms of this posterior are constructed using the model assump-

tions. Thus, the conditional distribution of Y satisfies

P (Y | S̄, Z̄, θ) =

I
∏

i=1

T
∏

t=1

P (Yit | S̄t−1, Z̄t, θ),

where P (Yit | S̄t−1, Z̄t, θ) is the Bernoulli probability distribution (10).

Because of the iterative structure of the dynamical model for pest densities (see

equations (8) and (9)), the conditional distribution of S̄ is proportional to

P (S̄ | Z̄, θ) ∝ P (S̄0)

I
∏

i=1

T−1
∏

t=1

P (S̄it | S̄t−1, Z̄t, θ),

where P (S̄0) denotes the prior of the initial conditions and P (S̄it | S̄t−1, Z̄t, θ) is the

gamma density (8).

As the hidden factors are mutually independent and independent of the observed

factors, the conditional distribution of Z̄(h) simplifies into

P (Z̄(h) | Z̄(o), θ) =

I
∏

i=1

T
∏

t=1

P (Z̄
(h)
it | θ),
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where P (Z̄
(h)
it | θ) stands for the model of the hidden factors mentioned at the beginning

of this section.

It is also assumed that the prior distribution of the parameters is independent of

the observed factors and simplifies to P (θ | Z̄(o)) = P (θ).

The posterior distribution given above can be computed via an MCMC method us-

ing a Metropolis-Hastings algorithm for updating the hidden processes and the parame-

ters at each iteration (Robert and Casella, 1999). In order to speed up the algorithm, a

block-acceptance strategy based on the decomposition of the posterior distribution can

be adopted. Appendix A shows how the algorithm was implemented for the case-study

carried out below.

4 Application: large-scale dynamics of pine sawfly

4.1 Ecological context and data

The European pine sawfly (Neodiprion sertifer) is a defoliating insect which has four

life stages: eggs inserted into pine needles (overwintering stage), larvae feeding on pine

needles, cocoons located in the upper layers of soil, and flying adults which oviposit

in the autumn. The sawfly population is endemic in Finland but its dynamics is

characterised by irregular outbreaks (Juutinen, 1967; Hanski, 1987).

During 1961-1990 in Finland, sawfly outbreaks were recorded at the municipality

level by forest owners, forest authorities and the Finnish Forest Research Institute

(METLA). An outbreak was detected in a municipality if a pine stand with a strong

intensity of sawfly-damage was observed. Such a level of damage occurs when the

density of larvae feeding on the pines is clearly higher than in the endemic situation.

The spatial extent of an outbreak can vary from only few hectares to thousands of

hectares of pine forest (Juutinen and Varama, 1986). Generally, the outbreak areas are

rather small, but in some cases, over 25% of the pine forests within a municipality can

suffer from outbreaks.

Figure 1 provides graphical descriptions of the outbreak data. Twenty one munici-

palities in the north and south-west (those with shading lines) were removed from the

study to improve homogeneity in the data. Indeed, in the northernmost municipalities

the life cycle of sawflies can be longer than in the other municipalities, and in the

archipelago in the southwest, the lake ratio which is used as a covariate (see below)

is not characteristic because of the presence of the sea. Outbreaks were detected in

29 of the 30 study years and in 52% of the municipalities. The total occurrence rate

of detected outbreaks is 5.7%. There are strong spatial and temporal heterogeneity:

outbreaks occur most frequently in southern Finland (Fig. 1 a) and there seems to be

some degree of synchrony in the outbreaks, their frequency being highest around 1960,

1980 and 1990 (Fig. 1 b). Outbreak periods usually have short durations (Fig. 1 c),
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whereas the distribution of periods without outbreak is more or less uniform if we do

not consider the municipalities without outbreak during the study period (Fig. 1 d).
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Figure 1: Summary statistics of outbreak data. (a) Spatial variation in the proportion

of years with detected outbreaks; municipalities covered by shading lines were removed

from the study. (b) Temporal variation in the proportion of municipalities with detected

outbreaks. (c) Distribution of durations of outbreak periods at the municipality level

(an outbreak period is a set of consecutive years along which outbreaks were detected

in a given municipality). (d) Distribution of durations of periods without detected

outbreak at the municipality level.

Among the factors which directly or indirectly cause variation in sawfly densities at

various scales are winter temperature, predation, virus, parasitoid, soil property, needle

quality and acid rain (Hanski, 1987, 1990; Larsson and Tenow, 1984; Larsson et al., 2000;

Neuvonen et al., 1990; Saikkonen and Neuvonen, 1993; Saikkonen et al., 1995; Virtanen

et al., 1996). Here we analyse the effects of three environmental factors expected to be

related to the sawfly dynamics and collected at the municipality resolution.

• Extreme winter temperature (EWT). The critical temperature for the death of

N. sertifer eggs is about −36◦C (Austar̊a, 1971; Virtanen et al., 1996). For each

municipality and year, we consider as a covariate the occurrence of tempera-

tures below −36◦C, defined as EWTs. To build this covariate, the minimum

winter temperature (MWT) was collected for the study period at 24 meteorolog-
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Figure 2: Maps of environmental factors. Left: Proportion of winters with minimum

temperatures below −36◦C. Centre: Ratio of pine area over total area at the munici-

pality level. Right: Ratio of lake area over total area at the municipality level.

ical stations (NORDKLIM, www.smhi.se/hfa coord/nordklim). Then, the MWT

was interpolated at the municipality barycentres using kriging with linear trend

(Chilès and Delfiner, 1999). Finally, the occurrence of EWT was simply obtained

by thresholding: it is equal to one if the interpolated MWT was below −36◦C

and zero otherwise. Figure 2 (left) shows the spatial variations of the proportion

of EWTs.

• Pine ratio. The ratio of pine area over total area of a given municipality is as-

sumed to be constant during the study period and is based on the 8th National

Forest Inventory which was carried out during 1986–1994 (VM18, wwww.metla.fi/metinfo/vmi;

see Figure 2, centre).

• Lake ratio. The ratio of lake area over total area of a given municipality is assumed

to be constant during the study period and is based on the official statistics of the

National Land Survey of Finland (NLSF, www.maanmittauslaitos.fi/default.asp?id=894;

see Figure 2, right).

4.2 Model specification and prior distributions

To adapt the model to the sawfly case-study, the mechanical-statistical model was

specified as follows:

Space and time. The units are the municipalities and the subunits are areas of

one hectare covered by pines. Hence, the number Ji of subunits in municipality i is

12



the number of hectares covered by pine in this municipality. In addition, time t = 0

corresponds to year 1960, and times t = 1, . . . , T correspond to the period 1961–1990

for which data are available.

Sawfly densities and outbreak threshold. In this study, the sawfly density Sit

is assumed to correspond to the density of cocoons which should effectively estimate

the density of larvae which feed on pine needles and which cause defoliation. Indeed,

most of the feeding occurs at the last larval stage, just before the formation of cocoons

(defoliation caused by small larvae which died is neglected but most needle consumption

occurs when larvae are large; see Larsson and Tenow, 1979).

As mentioned previously, outbreaks were detected by observing the level of defolia-

tion. Based on available data, defoliation is at the “outbreak level” when the abundance

of cocoons in the subunit of one hectare was about 106 or more (cf. Hanski, 1987). This

number corresponds to the threshold d incorporated in the model of the observation

process. So, up to a multiplicative factor of one million, the outbreak threshold is fixed

to d = 1. Thereafter, the unit of the abundances (resp. densities) is the million (resp.

million per hectare).

Transfer weights. The transfer weight wi1→i2 between municipalities i1 and i2 is

assumed to decrease with distance ∆i1i2 between the municipality centres and to be

zero if this distance is greater than a threshold δ. Its parametric shape is given by

wi1→i2 =
exp(−∆i1i2/ω)1(∆i1i2 < δ)

∑I
i=1 exp(−∆i1i/ω)1(∆i1i < δ)

,

where ω is a positive parameter. In the estimation algorithm, δ was fixed at 20km

(using a threshold enables us to keep the computations in the estimation procedure

moderate).

Forward function. For the forward function f , we specify a parametric shape which

accounts for heterogeneity not explained by the observed factors. With this shape, the

system can fluctuate between two regimes: one under which outbreaks are not expected

(endemic situation), and the other under which outbreaks are possible (epidemic situa-

tion); see Section 5 for a discussion of the two-regimes assumption. Thus, f is assumed

to satisfy

f(S̄i,t−1, Z̄it) =
exp(α′Z̄

(o)
it )S̄i,t−1

1 + βHit

1 β1−Hit

0 exp(α′Z̄
(o)
it )S̄i,t−1

, (12)

where the so-called observed factors Z̄
(o)
it have four components: the constant value

one, the occurrence of EWT, the pine ratio and the lake ratio (see above); α is a vector

of unknown real parameters (α′ is the transpose of α whose dimension is four); Hit
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is an unknown binary (0/1) variable modelling the fluctuation between low and high

regimes; β1 and β0 are positive unknown parameters.

Let us explain equation (12). If migrations are neglected, then the space-time

dynamic equation (9) becomes

Ēc(S̄it) ≈ f(S̄i,t−1, Z̄it) =
aS̄i,t−1

1 + bS̄i,t−1
,

where a = exp(α′Z̄
(o)
it ) and b is equal to aβ1 if Hit = 1 and aβ0 if Hit = 0. This is

a Beverton-Holt model (Geritz and Kisdi, 2004) parametrised by a which represents

the annual growth rate if the saturation factors are neglected, and b which accounts

for saturation factors. However, our dynamic model is not a simple Beverton-Holt

model because parameters a and b can vary in time and space (also because the model

accounts for stochasticity and spatial transfers). Parameter a depends on the observed

factors Z̄
(o)
it . Parameter b enables the model to fluctuate between two regimes of sawfly

density: a low one (outbreaks not expected) and a high one (outbreaks possible). The

difference between the two regimes increases with the discrepancy between β0 and β1.

The value of Hit indicates which regime takes place in municipality i between times t−1

and t. Hence, we obtain a sort of dynamic Beverton-Holt model whose shape is changed

in time and space because of variations in local and annual conditions. The concept of

equilibrium which comes with the Beverton-Holt model ((a − 1)/b is the equilibrium

density) also must be updated: in the classical Beverton-Holt model, the equilibrium is

stable; in our model, the stability of the equilibrium (a− 1)/b depends on the stability

of factors Z̄
(o)
it and Hit. For example, if a is constant and greater than one and if

the probability that Hit = 1 is very low, then b usually equals β0 and, consequently,

(a − 1)/β0 may be viewed as a quite stable equilibrium, but not (a − 1)/β1.

Prior distributions. The variables Hit are unobserved and correspond to the hidden

factors denoted by Z̄
(h)
it in the Bayesian formulation of the model. We chose independent

Bernoulli priors for Hit (i = 1, . . . , I, t = 1, . . . , T ) with success probability η ∈ [0, 1];

we chose an improper uniform prior on R for logit(η).

Informative priors for β0 and β1 were chosen from data on the number of cocoons

per hectare at the low and high regimes. From equation (12), the saturation value when

Hit = 1 (high regime) is 1/β1. Indeed, a/b is the saturation value for a Beverton-Holt

model parametrised by a and b. We associate this saturation value with the carrying

capacity of the pine forest which is about 107 cocoons per hectare, that is to say ten

fold the outbreak abundance (106 cocoons in one hectare, see above). Thus, 1/β1 is

about tenfold the threshold d = 1 (i.e. β1 ≈ 0.1) and so we chose a Gaussian prior for

log(β1) with mean log(0.1) and standard deviation 0.1. The logarithm transformation

was used because β1 is positive. When Hit = 0 (low regime), the saturation value is

1/β0. No direct information is available on the carrying capacity in the low regime.
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However, as the endemic density is about 104 cocoons per hectare, we considered that

the carrying capacity in low regime is about 5×104, that is to say 0.05-fold the outbreak

abundance (106). It follows that β0 is approximately equal to 20, and we specified a

Gaussian prior for log(β0) with mean log(20) and standard deviation 0.1.

Because there was no information on other dynamics parameters and the initial

sawfly densities, we chose an improper uniform prior on R
6+I for the four components

of α, log(ω), γ and log(S̄i0) (i = 1, . . . , I) (we recall that γ modulates the dispersion

of the sawfly density distribution (see equation (8)). The logarithm transformation

was used for the positive quantities. There was also no information on the probability

κ of detecting an outbreak in a subunit if the outbreak actually occurs, except that

this probability is small. Specifying a vague prior for this parameter yields identifica-

tion problems for the other model parameters so we specified an informative prior by

assuming that about 20% of the one-hectare outbreaks are detected. We chose a Gaus-

sian prior for logit(κ) with mean logit(0.2) and standard deviation 0.01 (this choice is

discussed in Section 5).

4.3 Results

Output of the MCMC algorithm (see Section 3 and Appendix A) applied to the sawfly

data set are presented here.

Example of dynamics within a municipality. Figure 3 illustrates the restoration

of the temporal dynamics within a municipality, namely Kauhajoki which contains

649ha of pine forest and is located in the West of Finland. We clearly see two sorts

of distributions for the cocoon abundance (Fig. 3 left): some which are concentrated

on low values and the others with a greater dispersion and a tail (above the detection

threshold one) with a significant mass. Besides, for years with detected outbreaks,

the posterior probability of high regime is one; For the other years, this probability

fluctuates at lower values (Fig. 3 right).

Effects of observed covariates. We see on Figure 4 (four left panels) that the

occurrence of extreme winter temperature (EWT) had a negative effect on the growth

rate between successive years, whereas the ratio of lake area had a positive effect. The

ratio of pine forest had no significant effect (the value zero is clearly within the posterior

distribution).

The unsaturated annual growth rate exp(α′Z
(o)
it ) (see equation (12)), whose poste-

rior distribution is displayed in Figure 4 (right), is a function of the observed factors.

The relative influences of the three factors in the unsaturated annual growth rate can

be assessed by comparing the following sums of squares. The sum of squares of the

linear predictor α′Z
(o)
it has posterior median and 95% posterior interval 660 [470;990].

The contribution of the occurrence of EWT to this sum has posterior median and 95%
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Figure 3: Temporal dynamics within the municipality Kauhajoki. Left: Posterior

median of the distribution of cocoon abundances in the subunits of 1ha for each year.

Right: Posterior probabilities that the municipality is in high regime (Hit = 1) for each

year. On both plots the black dots indicate the years with detected outbreaks.

posterior interval 140 [40;325]. For the pine ratio and the lake ratio, these quantities

are, respectively, 75 [10;185] and 430 [275;685]. Thus, a large part of the variation in

the unsaturated annual growth rate is explained by the lake ratio and the occurrence

of EWT.

Spatial and temporal dependence. The posterior median of the transfer weight is

about half of the weight of no transfer for a municipality at 6km, the minimum distance

between municipality barycentres, and is about the tenth of the weight of no transfer

for a municipality at 20km (Fig 5, left).

We plotted the 95% posterior envelope of the forward function f (Fig. 5, right)

by accounting for the variation in the observed factors, the regime variable and the

parameters. As mentioned in Section 4.2, the degree of stability of each equilibrium

depends on the stability of the corresponding regime. The posterior median and the

95%-posterior interval of the probability that Hit = Hi,t+1 = 0 are 0.45 and [0.40;0.51].

The posterior median and the 95%-posterior interval of the probability that Hit =

Hi,t+1 = 1 are 0.12 and [0.09;0.15]. Thus, the low regime is quite stable whereas the

high regime is rather volatile.
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Figure 4: Effects of observed factors. Four left panels: Posterior distributions of the

components of α. Right panel: Posterior distribution of the unsaturated annual growth

rate exp(α′Z
(o)
it ) (i.e. when the saturation factors are neglected; see equation (12)). This

distribution accounts for the variation in the factors Z
(o)
it and the posterior distributions

of the components of α.

5 Discussion

We developed a mechanical-statistical approach to infer large-scale pest dynamics from

outbreak occurrence data collected at a crude (administrative) resolution. Our ap-

proach can be used to estimate the distributions of pest densities, the effects of observed

factors and the role of hidden factors. Furthermore, modelling the observation process

enables us to account for missed outbreaks and to handle the discrepancy between the

sampling scale and the dynamics scale. An approximation made in the model of the

dynamics reduces the dimensionality of unknowns.

Using model output for furthering the study. We illustrated the use of the

approach by applying it to data on outbreaks of the European pine sawfly in Finland.

Using the approach, we described the spatial and temporal dependence of the dynam-

ics and assessed the effects of covariates. The influence of extreme minimum winter

temperatures was revealed earlier by Virtanen et al. (1996) who considered only the

spatial variation in temperatures. The negative effect of EWT on outbreaks has a sim-

ple mechanistic explanation —the supercooling ability of N. sertifer eggs allows them

to survive in temperatures as cold as, but not colder than −36◦C (Austar̊a, 1971).

We used both spatial and temporal variations in our model. Nevertheless, minimum

winter temperatures can vary extensively at the landscape scale depending on the local
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Figure 5: Left: transfer weight (up to a multiplicative constant) against distance; the

solid line shows the posterior median and the dashed lines delimit the 95%-posterior

envelope. Example for the calculation of the transfer weights: if a given municipality

has two neighbour municipalities which are at 7.5km and 14km, respectively, then the

transfer weights for these municipalities are approximately 0.4/(1+0.4+0.2)=0.25 and

0.2/(1+0.4+0.2)=0.125. Right: 95%-posterior zone of the forward function f . This

zone accounts for the variation in the observed factors and regime variable as well as

the posterior distribution of the parameters. The dark grey subzone corresponds to the

high regime and the light grey subzone corresponds to the low regime. Note that the

scale of the axes is not linear.

topography (Virtanen et al., 1998) and it may be interesting to include topoclimatic

variation in future analyses.

In contrast to EWT, the positive effect of the lake ratio on pest density is not yet

well understood. Future studies could investigate whether climate, soil conditions and

landscape fragmentation associated with lakes play a direct or indirect role in sawfly

density. Probably the most parsimonious explanation for the lake ratio effect is that

small mammals which are important predators of sawfly cocoons easily become extinct

in the barren pine forests near lakes, and the recolonisation of this predator community

is slow in landscapes fragmented by lakes (Hanski, 1990).

Further investigations are also required to understand the variation in the estimated

transfer weights. These weights are probably too large to be solely explained by pest

migration and so the contributions of predator migration and virus spread should be

quantified.

The regime variable assigned to each municipality and each year is also a model

output which could be analysed to better understand the dynamics. In particular, it

may be useful to search for covariates, such as predator density, which are related to

this regime variable (note that the occurrence of extreme winter temperature, used in
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this study, is not significantly correlated with the regime variable).

The two-regimes assumption and beyond. We used a modified Beverton-Holt

model which fluctuates between two regimes: one under which the pest density is low

and the other under which the pest density can be high. The regime variable determines

the saturation level due to unobserved local conditions (e.g. predation pressure). The

two-regimes assumption follows the suggestion made by Hanski (1990): the dynamics

of Neodiprion sertifer should be studied in the context of metapopulations with alter-

native stable equilibria. However, the two-regime assumption is a simplification and

the reality is certainly more like a continuum of regimes. Nevertheless, this assumption

is commonly made in order to build tractable models and describe main changes in

dynamical systems; see Iglesias and Labarta (2002), van Dijk and Franses (1999) and

Wu et al. (2005) who discussed the two-regime (or two-state) approximation in physics,

economics and chemistry, respectively.

In our case, identifying covariates linked with the restored regime variable, as pro-

posed above, could help to refine the regime model. There seems to be some consensus

among ecologists that the low density equilibrium of pine sawflies is controlled by the

predation of cocoons by small mammals (e.g. Hanski, 1987; Larsson et al., 2000). On

the other hand, the dynamics in the high densities are more likely controlled by inter-

actions between the sawflies and host foliage and/or pathogens (Dwyer et al., 2004).

Hence, in further studies, the Bernoulli distribution used to model the regime variable

could be replaced by a (stochastic) function including a model of, or data on, predator

dynamics, pathogen dynamics and foliage state.

Using data at various scales. The approximation made in the model consists of

replacing the sawfly abundances in subunits by their probability distribution in each

unit. Doing this yields a model which is tractable for performing statistical inference.

The assumptions related to the probability distribution of abundances were based on

qualitative ecological knowledge but to improve model construction and inference ac-

curacy, data at finer scales could be used. For instance, pest abundances measured

at the subunit resolution in some limited area (not in the whole study domain since

it is not feasible) would help to specify and estimate the probability distribution of

pest abundances in subunits. The mechanical-statistical framework that we built could

be modified to account for various types of observations (occurrence and abundance)

collected at various scales (unit and subunit). Abundance data observed in subunits

could be handled by combining a second observation process with the present one. This

possibility to use data at various scales is a significant advantage of the mechanical-

statistical approach.
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A Implementation of the MCMC algorithm

Here, we show how the MCMC algorithm was implemented for inferring the pine sawfly

dynamics. We assume that the reader is familiar with MCMC methods (Robert and

Casella, 1999). A block-acceptance strategy based on the decomposition property of

the posterior distribution was used to update the unknowns.

From the section giving the Bayesian formulation of the model, the posterior of the

hidden processes S̄ and Z̄(h) = {Hit : i = 1, . . . , I, t = 1, . . . , T} and the parameter

vector θ is proportional to

P (S̄,Z̄(h), θ | Y, Z̄(o)) ∝

P (θ)

I
∏

i=1

(

T
∏

t=1

P (Yit | S̄t−1, Z̄t, θ)P (Hit | θ)

)(

P (Si0)

T−1
∏

t=1

P (S̄it | S̄t−1, Z̄t, θ)

)

.
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The term Ec(S̄it) does not depend on sawfly densities and factors of municipalities which

are at a distance greater than δ = 20km from municipality i because the transfer weight

between two municipality i and k is assumed to be zero when the inter-municipality

distance ∆ik is greater than δ. So, the distributions of Yit and S̄it can be written as

follows:

P (Yit | S̄t−1, Z̄t, θ) =P (Yit | S̄∂i,t−1, Z̄∂i,t, θ)

P (S̄it | S̄t−1, Z̄t, θ) =P (S̄it | S̄∂i,t−1, Z̄∂i,t, θ)

where ∂i is the set of municipalities such that ∆i,k < δ (k = 1, . . . , I) and S̄∂i,t (resp.

Z̄∂i,t) is the set of sawfly densities (resp. factors) at time t for municipalities in ∂i.

Thus, when one updates S̄i,t−1 or Hit (i.e. the hidden component of Z̄i,t), only the

probabilities P (Ykt | S̄∂k ,t−1, Z̄∂k ,t, θ) and P (S̄kt | S̄∂k,t−1, Z̄∂k ,t, θ) for k in ∂i may

change and, consequently, must be computed.

Based on this remark, we performed the following updating sequence at each iter-

ation of the MCMC algorithm.

1. For each municipality i in {1, . . . , I}, update in block the sawfly densities {S̄i,t−1, t =

1, . . . , T} and the hidden factors {Hit, t = 1, . . . , T} as follows:

• Draw the candidate values S̄∗
i,t−1 and H∗

it (t = 1, . . . , T ) from the proposal
∏T

t=1 QS(· | S̄i,t−1)QH(· | Hit), where S̄i,t−1 and Hit are the current val-

ues of the sawfly density and the hidden factor, QS(· | S̄i,t−1) is a gamma

distribution with shape parameter S̄i,t−1/0.002 and scale parameter 0.002,

and QH(· | Hit) is a Bernoulli distribution with success probability 0.95 if

Hit = 1 and 0.05 if Hit = 0.

• Replace the current values by the candidate values with probability

min

{

1,
Λ∗

i P (S̄∗
i0)

ΛiP (S̄i0)

T
∏

t=1

P (H∗
it | θ)QS(S̄i,t−1 | S̄∗

i,t−1)QH(Hit | H∗
it)

P (Hit | θ)QS(S̄∗
i,t−1 | S̄i,t−1)QH(H∗

it | Hit)

}

,

where

Λi =
∏

k∈∂i

T
∏

t=1

P (Ykt | S̄∂k,t−1, Z̄∂k,t, θ)
T−1
∏

t=1

P (S̄kt | S̄∂k,t−1, Z̄∂k ,t, θ)

and Λ∗
i is equal to Λi except that S̄i,t−1 and Hit (t = 1, . . . , T ) are replaced

by S̄∗
i,t−1 and H∗

it.

2. Update in block the parameter vector θ as follows:

• Draw the candidate subvector θ∗ from the proposal Q(· | θ) where θ is

the current subvector and Q(· | θ1) is a multivariate Gaussian distribution

with mean vector θ and variance matrix the diagonal matrix whose diagonal

elements are 0.012.
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• Replace the current vector by the candidate vector with probability

min

{

1,
Φ∗Q(θ | θ∗)

ΦQ(θ∗ | θ)

}

,

where

Φ = P (θ)
I
∏

i=1

(

T
∏

t=1

P (Yit | S̄t−1, Z̄t, θ)P (Hit | θ)

)(

T−1
∏

t=1

P (S̄it | S̄t−1, Z̄t, θ)

)

and Φ∗ is equal to Φ except that θ is replaced by θ∗.

Remark: In the algorithm, the parameters were all defined such as their supports were

R. Thus θ was defined as θ = {α, β, γ, log(ω), logit(κ), log(η)}
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