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Abstract. We give a necessary and sufficient condition for a measure µ

on the real line to be an orthogonal projection of H1|A for some purely 1-
unrectifiable planar set A.

1. Introduction

Let A ⊂ R
2 be a purely 1-unrectifiable Borel set with 0 < H1(A) < ∞. The

well-known projection results of Besicovitch and Marstrand (see e.g. in [Fa]
or [Ma]) tell us that for almost all t ∈ R the orthogonal projection of H1|A
to the line ℓt = {(x, tx) : x ∈ R} is singular with respect to the Lebesgue
measure on ℓt and moreover has dimension 1. These results, however, do not tell
anything about one particular projection. In this paper we answer the following
question of D. Preiss: for which measures µ on the real line is there a purely
1-unrectifiable Borel set A ⊂ R

2 such that µ = projH1|A? Here H1|A is the
one dimensional Hausdorff measure restricted to the set A. By proj we always
mean the orthogonal projection proj : R

2 → R onto the x-axis, proj(x, y) = x
and if ν is a measure on R

2 we define the projected measure proj ν by defining
proj ν(A) = ν(proj−1(A)) for all Borel sets A ⊂ R.

Since any purely 1-unrectifiable planar set A intersects all vertical lines in a
set of zero H1 measure it follows that if µ = projH1|A then

µ{x} = 0 for all x ∈ R, (1.1)

that is, µ has no point masses. Moreover, for any A ⊂ R
2 with 0 < H1(A) < ∞

the convex density of A is one for H1-almost all x ∈ A, see [Fa, Theorem 2.3].
This implies that µ = projH1|A must satisfy

lim sup
r↓0

µ[x − r, x + r]/(2r) ≥ 1 for µ-almost all x ∈ R. (1.2)

Recall that (1.2) always holds for singular measures. So the condition (1.2)
tells that the absolutely continuous part of µ must have density at least one
almost everywhere. Our main result, Theorem 1.1 below shows that the necessary
conditions (1.1) and (1.2) for µ are also sufficient.
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Theorem 1.1. Suppose that µ is a locally finite measure on the real line satisfying

(1.1) and (1.2). Then there is a purely 1-unrectifiable Borel set A ⊂ R
2 for which

µ = projH1|A.

To prove Theorem 1.1 we divide µ into its singular and absolutely continuous
parts, and handle these separately. The singular part will be considered in §2
and the absolutely continuous case is dealt with in §3. Though we are mainly
interested in projections of H1|A for purely unrectifiable sets A, our methods
may be used to construct also other fractal-type measures ν on R

2 for which
proj ν = µ for a given measure µ defined on R, see Remark 2.4.

We end this introduction with some notation. We follow the usual convention
according to which a measure on R

n always means a non-negative Borel regular
outer measure defined on all subsets of R

n. By a singular measure we mean a
measure defined on R that is singular with respect to the Lebesgue measure L.
This is equivalent to saying that limr↓0 µ[x − r, x + r]/(2r) = ∞ for µ-almost all
x ∈ R. If ν and µ are finite measures on some R

n we denote ν ≤ µ if ν(A) ≤ µ(A)
for all sets A ⊂ R

n. In this case we may also consider the measure µ − ν given
by (µ − ν)(A) = µ(A) − ν(A) for Borel sets A ⊂ R

n.

2. The singular case

We begin with some notation needed in this section. If k ∈ N, we call the
collection of closed squares

Qk =
{

Qi,j =
[j − 1

k
,
j

k

]

×
[i − 1

k
,
i

k

]

⊂ R
2 : 1 ≤ i, j ≤ k

}

a k-grid. A collection of grid squares Q ⊂ Qk is called porous if it does not
contain two neighbouring squares, that is Q ∩ Q′ = ∅ whenever Q, Q′ ∈ Q and
Q 6= Q′.

The basis for our constructions is the following combinatorial lemma that
enables us to find relatively good approximations for the set A using k-adic
squares when k is so large that for ”most” intervals Ij = [ j−1

k
, j

k
], 1 ≤ j ≤ k, we

have 1/k ≪ µ(Ij) ≪ 1.

Lemma 2.1. Let Q ⊂ Qk be an arbitrary collection of grid squares containing

at most one square from each row 1 ≤ i ≤ k. Denote by lj the number of squares

that Q contains from the jth column. If lj < k/18 for all 1 ≤ j ≤ k, then there

is a porous collection Q′ ⊂ Qk of grid squares that contains at most one square

from each row and exactly lj squares from column j for all 1 ≤ j ≤ k.

Proof. If Q ∈ Qk, we denote by N(Q) the union of Q and its neighbouring
squares. Assume that Qi0,j0 ∈ Q has a neighbouring square in the collection Q.
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We define three index sets

I = {1 ≤ i ≤ k : Q ⊂ N(Qi,j0) for some Q ∈ Q},
J = {1 ≤ j ≤ k : Q ⊂ N(Qi0,j) for some Q ∈ Q},
I ′ = {1 ≤ i ≤ k : Qi,j ∈ Q for some j ∈ J}.

Then #I ≤ 3(lj0−1 + lj0 + lj0+1) < k/2 and also #J ≤ 9 since Q contains at most
one square from each row i0 − 1, i0 and i0 + 1. Moreover #I ′ < k

18
#J ≤ k/2.

Qi1,j1Qi1,j0

Qi0,j1Qi0,j0

Figure 1. Constructing Q′ from Q. The neighbours of Qi1,j0 and
Qi0,j1 are not contained in the original collection Q.

We now choose an index i1 ∈ {1, . . . , k} \ (I ∪ I ′) and replace the square Qi0,j0

in Q by Qi1,j0. If Qi1,j1 ∈ Q for some j1 we also replace the square Qi1,j1 in Q by
Qi0,j1, see Figure 1. These replacements do not affect the good properties of Q,
it still contains at most one square from each row and exactly lj squares from the
jth column. But if the original collection had m squares with some neighbours
in Q, the modified collection has at most m − 1 squares with neighbours in Q.

It is clear that by repeating the above process enough many times, we are
finally led to some porous collection Q′ with the desired properties. �

The following lemma is merely a restatement of the singularity of µ. We give
the details for convenience.

Lemma 2.2. Suppose that µ is a singular measure on [0, 1] with no point masses.

For k ∈ N and 1 ≤ j ≤ k, we denote mj = µ[ j−1
k

, j
k
] and let lj be the greatest

integer for which lj ≤ kmj. Then limk→∞
∑k

j=1 lj/k = µ[0, 1].

Proof. Let ε > 0 and M = 5µ[0, 1]/ε. Since µ is singular, we have limr↓0 µ[x −
r, x + r]/(2r) = ∞ for µ-almost all x ∈ [0, 1] and choosing k0 ∈ N large enough,
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we have µ(Ak) < ε for all k ≥ k0 where

Ak =
{

x ∈ [0, 1] : µ [x − 1/k, x + 1/k] < M2/k
}

.

We now fix k ≥ k0 and choose a collection Ji = (xi − 1/k, xi + 1/k), i = 1, . . . N ,
of non-overlapping intervals such that xi ∈ [0, 1] \ Ak for all i and [0, 1] \ Ak ⊂
⋃N

i=1 2Ji =
⋃N

i=1(xi − 2/k, xi + 2/k). Letting Ij = [ j−1
k

, j
k
] for 1 ≤ j ≤ k, we

define

Bk =
⋃

µ(Ij)<M/k

Ij .

Since any of the intervals 2Ji can intersect at most 5 of the intervals Ij we have
µ(Bk ∩ 2Ji) ≤ 5M/k ≤ 5µ(Ji)/M for all i and consequently

µ(Bk) = µ(Ak) + µ(Bk \ Ak) ≤ ε +
∑

i

µ(Bk ∩ 2Ji)

≤ ε + 5
M

∑

i

µ(Ji) ≤ ε + 5µ[0, 1]/M = 2ε.

If mj = µ(Ij) ≥ M/k we have lj/k ≥ (1 − 1/M)µ(Ij). Thus

k
∑

j=1

lj/k ≥
∑

µ(Ij)≥M/k

lj/k ≥
∑

µ(Ij)≥M/k

(1 − 1/M)µ(Ij) = (1 − 1/M)µ([0, 1] \ Bk)

≥ (1 − 1/M)µ[0, 1] − µ(Bk) ≥ µ[0, 1] − 3ε

for all k ≥ k0. Letting ε ↓ 0 we have the claim. �

Our next step towards proving Theorem 1.1 is the following lemma.

Lemma 2.3. Let µ be a finite and singular measure on [0, 1] with no point masses

and let δ > 0. Then there is a purely 1-unrectifiable Borel set A ⊂ [0, 1] × [0, δ]
such that H1(A) > µ[0, 1]/2 and projH1|A ≤

√
2µ.

Proof. We first note that we may assume without loss of generality that µ[0, 1] ≤
δ = 1. Indeed, in the general case, we may first choose k ∈ N so large that k > 1/δ
and mj = µ[ j−1

k
, j

k
] < δ/2 for all 1 ≤ j ≤ k and denote by lj the greatest integer

for which lj ≤ mjk. Then we can write µ|[ j−1

k
, j

k ]
=
∑lj+1

i=1 µi,j so that µi,j[
j−1
k

, j
k
] ≤

1/k for each i, j, and, using a rescaled version of the statement, we can find purely
unrectifiable sets Ai,j ⊂ [ j−1

k
, j

k
] × [ i−1

k
, i

k
] so that H1(Ai,j) ≥ µi,j[

j−1
k

, j
k
]/2 and

projH1|Ai,j
≤

√
2µi,j. Since the squares [ j−1

k
, j

k
] × [ i−1

k
, i

k
] are non-overlapping

and they are inside [0, 1] × [0,
lj+1

k
] where

lj+1

k
≤ max(1, 2lj)/k < δ, we can take

A =
⋃

i,j Ai,j ⊂ [0, 1] × [0, δ].

Let µ[0, 1] ≤ δ = 1. We construct a set A ⊂ [0, 1] × [0, 1] by iterative use of
Lemma 2.1. First choose numbers εs > 0 for s ∈ N such that

∑∞
s=1 εs ≤ µ[0, 1]/2.
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Step 1: Define mj = mj,k = µ[ j−1
k

, j
k
] for all j, k ∈ N, j ≤ k and let lj = lj,k be

the greatest integer satisfying lj ≤ mjk. By Lemma 2.2 we may choose k = k1

large enough so that

k
∑

j=1

lj/k > µ[0, 1] − ε1. (2.1)

Increasing k if necessary, we may assume that lj < k/18 for all 1 ≤ j ≤ k since µ
contains no point masses. Using Lemma 2.1, we may choose a porous collection
of k1-grid squares R1 = {Q1

i,j} ⊂ Qk1
that contains exactly lj squares from the

jth column and at most one square from each row. Let A1 =
⋃

i,j Q1
i,j be the

union of all these squares.
Step n: Suppose that we are given a collection Rn−1 = {Qn−1

i,j } ⊂ Qk of
porous k-grid squares, k = kn−1, that contains at most one square from each
row and lj = lj,n−1 squares from the jth column such that lj/k ≤ µ[ j−1

k
, j

k
]

and
∑k

j=1 lj/k ≥ µ[0, 1] − ∑n−1
s=1 εs. We now perform the Step 1 construc-

tion inside each of the squares Qn−1
i,j replacing [0, 1] × [0, 1] by Qn−1

i,j , µ by

(kn−1µ[ j−1
kn−1

, j
kn−1

])−1µ|[ j−1

kn−1
, j

kn−1

], and ε1 by εn/kn−1. In particular, we choose

k = kn so large that (2.1) holds for each Q = Qn−1
i,j with µ[0, 1] − ε1 replaced

by 1/kn−1 − εn/kn−1. Denoting by Rn = {Qn
i,j} ⊂ Qkn

the collection of the

squares obtained inside all the squares Q ∈ Rn−1 we define An =
⋃

i,j Qn
i,j.

It is clear that Rn has the same properties as Rn−1. Namely, it is porous,
contains at most one square from each row and lj = lj,n squares from the
jth column such that lj,n/kn ≤ µ[ j−1

kn
, j

kn
] for all 1 ≤ j ≤ kn, and moreover

∑kn

j=1 lj,n/kn ≥ µ[0, 1] −∑n
s=1 εs. We finally define A =

⋂

n An.
It remains to show that A is purely 1-unrectifiable and that it has the desired

properties H1(A) > µ[0, 1]/2 and projH1|A ≤
√

2µ. We start from the pure
unrectifiability of A. Suppose that Γ ⊂ R

2 is a C1-curve. Since the collections
Rn are porous for all n ∈ N it follows that the set Γ ∩ A has no density points,
i.e. points x ∈ Γ ∩ A for which limr↓0 H1(Γ ∩ A)/(2r) = 1. This implies that
H1(Γ ∩ A) = 0 and thus A is purely 1-unrectifiable.

Recall that Rn contains at most one square from each row, hence A contains
at most one point on each, except possibly for countably many, horizontal line.
Let proj2 denote the projection to the y-axis (x, y) → y, and let ν be the measure
defined by ν(B) = H1(proj2(A ∩ B)). Since projection cannot increase the H1

measure, it is clear that ν ≤ H1|A. It is also easy to see that ν ≥ 1√
2
H1|A:

indeed, since Rn contains at most one square from each row, hence for k = kn

and for each interval I = ( i−1
k

, i
k
) , A ∩ (proj−1

2 I) can be covered by a square

of side length 1/k, i.e. of diameter
√

2/k. Therefore it is enough to show that
ν(A) ≥ µ[0, 1]/2 and proj ν ≤ µ.
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The first inequality follows immediately from

ν(A) = H1(proj2 A) = limH1(proj2 An)

and

H1(proj2 An) =

kn
∑

j=1

lj,n/kn ≥ µ[0, 1] −
n
∑

s=1

εs ≥ µ[0, 1]/2.

The second inequality follows from the fact that for each k = kn, above each
interval J = ( j−1

k
, j

k
), the set A is covered by lj squares of Rn of side length 1/k,

hence ν(A ∩ proj−1(J)) ≤ lj/k ≤ mj = µ(J). �

To prove Theorem 1.1 for singular µ we still have to show how to find a purely
unrectifiable A ⊂ R

2 such that the measures projH1|A and µ are the same. An
immediate corollary of Lemma 2.3 is that for any singular measure µ on [0, 1] with
no point masses and for any δ > 0 there is a purely unrectifiable A ⊂ [0, 1]× [0, δ]
for which H1(A) ≥ 2−3/2µ[0, 1] and H1|A ≤ µ.

Proof of Theorem 1.1 when µ is singular. Without loss of generality we can as-
sume that µ is supported on [0, 1]. First we choose a purely unrectifiable set
A1 ⊂ [0, 1]×[0, 1/2] so that H1(A1) ≥ 2−3/2µ[0, 1] and projH1|A1

≤ µ. Then con-
sider µ2 = µ−projH1|A1

and choose a purely unrectifiable A2 ⊂ [0, 1]× [1/2, 3/4]
for which H1(A2) ≥ 2−3/2µ2[0, 1] and projH1|A2

≤ µ2. Proceeding in this man-
ner we get purely unrectifiable sets An ⊂ [0, 1] × [(1 − 2−n+1)l, (1 − 2−n)] and
corresponding measures µn so that H1(An) ≥ 2−3/2µn[0, 1], projH1|An

≤ µn

and µn+1 = µn − projH1|An
. Then clearly µn+1[0, 1] ≤ (1 − 2−3/2)µn[0, 1] for

each n, in particular, µn[0, 1] → 0. Since µ =
∑n

i=1 projH1|Ai
+ µn+1, this

shows µ =
∑∞

i=1 projH1|Ai
. Since the sets Ai are purely unrectifiable and

they are contained in pairwise non-overlapping rectangles, for A =
⋃∞

i=1 Ai,
µ =

∑∞
i=1 projH1|Ai

= projH1|A. �

Remark 2.4. The method presented above may be used to construct also other
fractal-type measures ν on R

2 such that proj ν = µ for a given locally finite Borel
regular measure µ. At least the following statements may be obtained:

(1) If 0 < s < 1 and limr↓0 µ[x − r, x + r]/(2r)s = ∞ for µ almost all x ∈ R,
then there is a Borel set A ⊂ R

2 such that µ = projHs|A.
(2) If s > 1 and lim supr↓0 µ[x− r, x+ r]/(2r)s−1 < ∞ for µ almost all x ∈ R,

then there is a Borel set A ⊂ R
2 such that µ = projHs|A.

To prove (1) one uses the following simple observation in place of Lemma 2.3
(the notation is as in Lemma 2.3): If Q is a collection of k-grid squares such

that
∑k

j=1 lj ≤ ks, then there is a collection Q′ containing exactly lj squares

from the jth column such that #{Q ∈ Q′ : B ∩ Q 6= ∅} ≤ Cks diam(B)s for
all balls B ⊂ R

2 such that 1
k
≤ diam(B) ≤ 1. To prove (2) we observe that

a similar statement holds true if s > 1 and
∑j1

j=j0
lj ≤ Ck(j1 − j0)

s−1 for all
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1 ≤ j0 ≤ j1 ≤ k. This is seen just by distributing the lj squares in the jth
column evenly along the rows 1 ≤ i ≤ k.

3. The absolutely continuous case

In this section we prove Theorem 1.1 for absolutely continuous µ. Let us
begin with some preparations. For λ > 0 we define similitudes fλ

i : R
2 → R

2 for
i = 1, 2, 3 by the formulae fλ

1 (x, y) = 1
3
(x, y)+ (0, 0), fλ

2 (x, y) = 1
3
(x, y)+ (1

3
, λ2

3
),

and fλ
3 (x, y) = 1

3
(x, y) + (2

3
, λ1

3
). Let Cλ ⊂ [0, 1] × [0, λ] be the self similar set

induced by the similitudes fλ
i , see Figure 2.

(0, 0)

(1, λ)

Figure 2. The set Cλ.

Define h(λ) = H1(Cλ). Since the projection of Cλ to the y-axis has length
λ we have h(λ) ≥ λ, in particular limλ→∞ h(λ) = ∞. It is also easy to see
that limλ↓0 h(λ) = 1. For all 0 < λ0, λ1 < ∞ the set Cλ1

is obtained from Cλ0

by the vertical stretching/flattening (x, y) 7→ (x, λ1

λ0

y) and we observe that h is
continuous and non-decreasing. It is also useful to note that if ν is the natural
probability measure on Cλ, then proj ν = L|[0,1] and since H1|Cλ

= h(λ)ν we see
that projH1|Cλ

= h(λ)L.
For any 0 < λ < ∞ we define an operation Oλ on all rectangles R = (x, y) +

[0, lx] × [0, ly] ⊂ R
2 for which ly ≥ λlx by the formula

Oλ(R) = (x, y) + lx

(

3
⋃

i=1

fλ
i ([0, 1] × [0, λ])

)

.

Recall that then Oλ(R) ⊂ R. We now define the increasing function g : (1,∞) →
(0,∞) by g(t) = maxh−1({t}) for all t > 1 (If h is one to one we can simply take
g = h−1 and then g is continuous but we do not know if this is the case).

Proof of Theorem 1.1 when µ is absolutely continuous. We assume that spt µ ⊂
[0, 1] and identify µ with its density µ : [0, 1] → [0,∞) when convenient. For
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simplicity, we assume that µ is continuous and that µ−1{t} has measure zero for
all t ≥ 1. The general case reduces to this as discussed at the end of the proof.

The purely unrectifiable set A is now constructed in the following manner. Let

tmax = maxx∈[0,1] µ(x) and A0 = [0, 1] × [0, g(tmax)]. Suppose that Ak =
⋃3k

j=1 Rk
j

has been defined where Rk
j = [(j − 1)3−k, j3−k] × Jk

j for all 1 ≤ j ≤ 3k and

3kℓ(Jk
j ) ≥ g(tj) where tj = maxx∈[(j−1)3−k,j3−k] µ(x). We then define

Ak+1 =

3k
⋃

j=1

Og(tj )(R
k
j )

and finally A =
⋂

k Ak. Then A is purely 1-unrectifiable which can be seen
by looking at the set At = A ∩ proj−1(µ−1(t,∞)) for a fixed t > 1: The set
µ−1(t,∞) ⊂ [0, 1] is an open set and if I ⊂ µ−1(t,∞) is a triadic interval of
length 3−j, the set A ∩ proj−1(I) consists of three distinct parts so that the

distance between any two of them is at least min{1
9
, g(t)

3
}3−j. It follows as in

the proof of Lemma 2.3 that no C1-curve Γ can intersect At in a set of positive
measure. Since At ⊂ A for all t > 1 and H1(At) → H1(A1) as t → 1 it follows
that A is purely 1-unrectifiable. Recall that we assumed that the level sets of µ,
in particular µ−1{1}, have measure zero.

To complete the proof we have to show that projH1|A = µ. This will be done
using the following lemma.

Lemma 3.1. Let 1 < t < ∞, ε > 0, and Bt,ε = µ−1(t, t + ε). Then 1
c
µ|Bt,ε

≤
(projH1|A)|Bt,ε

≤ cµ|Bt,ε
where

c = 1 + 54 (g(t + ε) − g(t)) / min{1, 3g(t)}. (3.1)

Proof. We begin with a technical remark. Let E ⊂ [0, 1] denote the countable set
consisting of the endpoints of all triadic intervals I ⊂ [0, 1]. Since A is purely 1-
unrectifiable, the measure H1(A) does not change if we remove the vertical lines
proj−1{x} from the set A for all x ∈ E. This makes the mapping x 7→ proj x,
A → [0, 1] \E one to one. For a given λ > 0 we do the same for the set Cλ, that
is, remove the vertical lines proj−1{x} from Cλ for all x ∈ E. After this we can
define a natural bijection between A and Cλ by demanding that x 7→ x′ if and
only if proj(x′) = proj(x).

Since Bt,ε is an open set it is enough to show that 1
c
µ(I) ≤ (projH1|A)(I) ≤

cµ(I) for any triadic interval I ⊂ Bt,ε and by scaling this reduces to showing that
1
c
µ[0, 1] ≤ H1(A) ≤ cµ[0, 1] assuming Bt,ε = [0, 1].
Let x, y ∈ A, x 6= y and xj , yj ∈ {0, 1, 2} be such that projx =

∑∞
j=1 xj3

−j

and proj y =
∑∞

j=1 yj3
−j. We define λj

x = g(maxx∈Ij
x
µ(x)) where Ij

x is the unique

triadic interval of size 3−j containing x. The numbers λj
y are defined in a similar

manner. Now proj2 x =
∑∞

j=1 λj−1
x x′

j3
−j where the mapping xj 7→ x′

j is defined
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by the rules 0 7→ 0, 1 7→ 2, 2 7→ 1. Similarly proj2 y =
∑∞

j=1 λj−1
y y′

j3
−j. Recall

that proj2 denotes the orthogonal projection onto the vertical coordinate axis.
Let j0 be the smallest integer for which Ij0

x 6= Ij0
y and let x′, y′ ∈ Cg(t) so that

proj x = projx′ and proj y = proj y′. Then

|x′ − y′| ≥ min{1
9
, g(t)

3
}3−j0 (3.2)

since dist(f
g(t)
i (Cg(t)), f

g(t)
j (Cg(t))) ≥ min{1

9
, g(t)

3
} whenever i, j ∈ {1, 2, 3} and

i 6= j. Moreover

|(x − y) − (x′ − y′)| = | proj2(x − x′) − proj2(y − y′)|

=
∣

∣

∣

(

∞
∑

j=j0

(λj−1
x − g(t))x′

j3
−j
)

−
(

∞
∑

j=j0

(λj−1
y − g(t))y′

j3
−j
)

∣

∣

∣

≤ 4(g(t + ε) − g(t))
∑

j=j0

3−j = 6(g(t + ε) − g(t))3−j0

since λj
x, λ

j
y ∈ (g(t), g(t + ε)) for all j. Combined with (3.2) this gives |x − y| ≤

c|x′ − y′| where c is as in (3.1). Thus the natural bijection between Cg(t) and A
is c-Lipschitz and we get

H1(A) ≤ cH1(Cg(t)) = c t < c µ[0, 1]. (3.3)

By a similar reasoning we see that |x′′ − y′′| ≤ c|x − y| if x′′, y′′ ∈ Cg(t+ε) for
which proj x = proj x′′ and proj y = proj y′′. This gives cH1(A) ≥ H1(Cg(t+ε)) =
t + ε > µ[0, 1] and together with (3.3) completes the proof. �

We may now finish the proof of Theorem 1.1. Let 1 < t0 < tmax, At0 =
µ−1(t0, tmax), and δ > 0. Since g is nondecreasing we may cover all, except
possibly at most countably many, points of (t0, tmax) by pairwise disjoint in-
tervals (t, t′) such that g(t′) − g(t) < δ. Lemma 3.1 then implies that 1

c
µ|At0

≤
(projH1|A)|At0

≤ cµ|At0
where c = 1+54δ/ min{1, 3g(t0)} (recall that µ−1{t} has

measure zero for all t). Letting first δ ↓ 0 and then t0 ↓ 1 we get µ = projH1|A.
This proves the Theorem for a continuous µ whose level sets are of measure zero.

For a general µ there are at most countably many values tn for which Bn =
µ−1{tn} has positive measure and letting An = Cg(tn)∩proj−1 Bn we have µ|Bn

=
projH1|An

. (If tn = 1 we cannot use C0 = [0, 1] ⊂ R
2 since it is rectifiable, but

one easily finds a purely 1-unrectifiable set A0 ⊂ R
2 for which projH1|A0

= L.)
Let B = [0, 1] \ ⋃n Bn. We now use Lusin’s Theorem to find a compact set
F1 ⊂ B with µ(B \ F1) < 1

2
such that µ|F1

is continuous. Then we extend
µ|F1

to a continuous function ν : [0, 1] → [1,∞) whose level sets are of measure
zero. The above argument now gives us a purely 1-unrectifiable set A ⊂ R

2

with projH1|A = ν and letting A1 = A ∩ proj−1(F1) we have projH1|A1 = µ|F1
.

We continue with the same argument and find a set F2 ⊂ B \ F1 so that µ is
continuous on F2 and µ(B\(F1∪F2)) < 1

4
. Then we define a purely 1-unrectifiable
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set A2 such that projH1|A2 = µ|F2
and so on. Defining finally A as the union of

the sets An and An we have projH1|A = µ. �

Remark 3.2. The construction proving Theorem 1.1 in the absolutely continuous
case easily generalises to higher dimensions. Thus, for all absolutely continuous
measures µ on R

n with limr↓0 µ(B(x, r)/(2r)n ≥ 1 for µ-almost all x, there is
a purely n-unrectifiable Borel set A ⊂ R

n+1 such that µ = projHn|A. Here
proj(x1, . . . , xn, xn+1) = (x1, . . . , xn) and Hn is the non-normalised Hausdorff
n-measure. We do not have a characterisation for the singular case in higher
dimensions although we conjecture that a singular measure µ on R

n may be
expressed as projHn|A for some purely n-unrectifiable A ⊂ R

n+1 if and only if
µ itself is purely (n − 1)-unrectifiable in the sense that µ(B) = 0 for all (n − 1)-
rectifiable sets B ⊂ R

n.
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