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Abstract. Let X be a metric measure space with an s-regular measure µ.
We prove that if A ⊂ X is %-porous, then dimp(A) ≤ s − c%s where dimp is
the packing dimension and c is a positive constant which depends on s and
the structure constants of µ. This is an analogue of a well known asymp-
totically sharp result in Euclidean spaces. We illustrate by an example that
the corresponding result is not valid if µ is a doubling measure. However,
in the doubling case we find a fixed N ⊂ X with µ(N) = 0 such that
dimp(A) ≤ dimp(X) − c(log 1

%
)−1%t for all %-porous sets A ⊂ X \ N . Here

c and t are constants which depend on the structure constant of µ. Finally,
we characterize uniformly porous sets in complete s-regular metric spaces in
terms of regular sets by verifying that A is uniformly porous if and only if
there is t < s and a t-regular set F such that A ⊂ F .

1. Introduction

The purpose of this paper is twofold: we study dimensional properties of porous
sets in s-regular and doubling metric measure spaces and characterize uniformly
porous sets in terms of regularity. For definitions we refer to Sections 2 and 3.

In Euclidean spaces dimensional properties of porous sets have been studied
extensively, see for example [BS], [JJKS], [KS], [KR], [L], [MV], [M1], [N], [S],
[T] and references therein. It is well known that if A ⊂ Rn is %-porous, meaning
that A contains holes of relative size % at all small scales, then

dimp(A) ≤ n− c%n (1.1)

where dimp is the packing dimension and c is a positive constant depending on n
only (see [MV, T]). Furthermore, (1.1) is asymptotically sharp as % tends to zero
([KR], [KS, Remark 4.2]). In [DS] and [BHR] it is shown that the dimension of
a porous measure in a (globally) s-regular space is smaller than s. In this paper

Date: October 5, 2007.
2000 Mathematics Subject Classification. Primary 28A80; Secondary 51F99, 54E35.
Key words and phrases. Metric measure space, porosity, regularity, doubling property, pack-

ing dimension, Minkowski dimension.
EJ, MJ, AK, TR and SR acknowledge the support of the Academy of Finland, projects

#211229, #114821 and #212753. TR was also partially supported by the Vilho, Yrjö and
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we address the question to what extend the quantitative estimate (1.1) is valid in
metric measure spaces X. It turns out that the following analogue of (1.1) holds
provided that X is equipped with a (locally) s-regular measure µ: if A ⊂ X is
%-porous, then

dimp(A) ≤ s− c%s (1.2)

where c is a positive constant which depends on s and the structure constants aµ

and bµ of µ (see Theorem 4.8). Note that by [Cu, Theorem 3.16] dimp(X) = s
provided that X is s-regular. We also show that the dependence on aµ and bµ is
necessary, that is, unlike in Rn, it is not possible to find c which depends on s
only (see Remark 4.13.(3)).

In (1.2) it is not sufficient to assume that µ is doubling: in Example 4.9 we
construct a geodesic doubling metric space X having a subset with maximal
dimension and porosity. However, in general the failure of the dimension drop
is due to a fixed set with µ-measure zero provided that µ is doubling. More
precisely, in Theorem 4.10 we show that there exists N ⊂ X with µ(N) = 0 such
that dimp(A) ≤ dimp(X) − c(log 1

%
)−1%t for all %-porous A ⊂ X \N . Here t and

c are constants which depend on the structure constant cµ of µ.
As in Euclidean spaces, in complete s-regular metric measure space X uniform

porosity is closely related to regularity. We prove that A ⊂ X is uniformly
porous if and only if there are t < s and a t-regular set F ⊂ X such that A ⊂ F
(see Theorem 5.3). The easier if-part was proven in [BHR], but we give some
quantitative estimates on the relations between porosity, t and s.

The paper is organized as follows: In Section 2 we discuss the concept of
porosity we are using in metric measure spaces whilst Section 3 is dedicated to
measure theoretic preliminaries. Dimension estimates for porous sets are dealt
in Section 4. In last section we focus on connections between uniform porosity
and regularity.

2. Notation

Let X = (X, d) be a separable metric space and A ⊂ X. For x ∈ X and r > 0,
we set

por(A, x, r) = sup{% ≥ 0 : there is y ∈ X such that B(y, %r) ∩ A = ∅

and %r + d(x, y) ≤ r}.
(2.1)

Here B(x, r) denotes the closed ball centred at x with radius r. The porosity of
A at a point x is defined to be

por(A, x) = lim inf
r↓0

por(A, x, r) (2.2)

and the porosity of A is given by

por(A) = inf
x∈A

por(A, x). (2.3)
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We call A ⊂ X porous if por(A) > 0, and more precisely, %-porous provided that
por(A) > %. Furthermore, A ⊂ X is uniformly (%-)porous if there exist constants
% > 0 and rp > 0 such that por(A, x, r) > % for all x ∈ A and 0 < r < rp.

Remarks 2.1. (1) Even though it would be more accurate to use the term lower
porosity for por(A, x) and por(A) to distinguish them from upper porosities
defined by replacing lim inf by lim sup in (2.2), we keep the terminology shorter.
Upper porosities are irrelevant for our purposes; there is no nontrivial upper
bound for dimensions of upper porous sets. In fact, there exist sets in Rn with
maximum upper porosity and with Hausdorff dimension n, see [M2, §4.12].

(2) We follow the convention introduced in [MMPZ] to use por(A, x, r) and
por(A, x) instead of

por∗(A, x, r) = sup{% ≥ 0 : B(y, %r) ⊂ B(x, r) \ A for some y ∈ X}

and

por∗(A, x) = lim inf
r↓0

por∗(A, x, r)

to guarantee that 0 ≤ por(A, x, r) ≤ 1
2

for all A ⊂ X, x ∈ A and r > 0. From the
point of view of our results, however, there is no difference between por and por∗

since we always have por(A, x, r) ≤ por∗(A, x, r) ≤ 2 por(A, x, 2r), and therefore,
por(A, x) ≤ por∗(A, x) ≤ 2 por(A, x).

(3) To emphasize the underlying metric space, we write por∗(X,d) instead of por∗

in what follows. Observe that 0 ≤ por∗(Rn,|·|)(A) ≤ 1
2

for all A ⊂ Rn, where | · |
denotes the usual Euclidean metric. This is not necessarily true in general metric
spaces. Indeed, choosing 0 < ε < 1, we have por∗(Rn,|·|ε)(A) = por∗(Rn,|·|)(A)ε for

every A ⊂ Rn. Hence, for example, por∗(Rn,|·|ε)({x}) = (1
2
)ε for every x ∈ Rn. In

the following remark, we show that ∗-porosity may be exactly one.
(4) We work in R2 with the polar coordinates. Define

X = {(lq, 2πq) : 0 ≤ l ≤ 1 and q ∈ Q ∩ [0, 1)}

and equip X with the path metric. We claim that por∗
(
{(0, 0)}

)
= 1. Let

0 < r < 1. For each i ∈ N choose qi ∈ Q ∩ [0, r] such that sup{qi : i ∈ N} = r.
It follows immediately that for every i ∈ N and ε > 0

B
(
(qi, 2πqi), qi − ε

)
⊂ B

(
(0, 0), r

)
\ {(0, 0)},

that is, por∗
(
{(0, 0)}, (0, 0), r

)
≥ (qi − ε)/r. Hence por∗

(
{(0, 0)}, (0, 0), r

)
= 1

for every 0 < r < 1 and the claim is proved.
(5) The following simple but extremely useful fact will be frequently needed:

If por(A) > %, then A = ∪k∈NAk where

Ak = {x ∈ A : por(A, x, r) > % for all 0 < r < 1/k}.

Given any ε > 0, we may, using the separability, choose Akj such that Ak =
∪j∈NAkj and diam(Akj) < ε for all k and j. (Here diam is the diameter of a set.)
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3. Measure theory in metric spaces

This section contains some basic facts of measure and dimension theory in
metric spaces that will be needed later. Recall that X is a separable metric
space. By a measure we always mean a Borel regular outer measure defined on
all subsets of X, see [M2, Definition 1.1]. We say that µ is σ-finite if X = ∪k∈NAk

where µ(Ak) <∞ for each k.
The separability assumption is natural given our interest in dimension esti-

mates since the Hausdorff dimension of a non-separable metric space X is infinite
and usually one can find porous sets A ⊂ X that are non-separable. Moreover,
no σ-finite doubling measures exist in non-separable spaces.

We denote by Hs the s-dimensional Hausdorff measure defined on X. As in
[M2, §5.3], we define for a bounded set A ⊂ X, λ ≥ 0 and r > 0

Mλ(A, r) = inf{krλ : A ⊂
k⋃

i=1

B(xi, r) for some xi ∈ X, k ∈ N}

with the interpretation inf ∅ = ∞. The (upper) Minkowski dimension of a
bounded set A is

dimM(A) = inf{λ : lim sup
r↓0

Mλ(A, r) <∞}.

The packing dimension of A ⊂ X is given by

dimp(A) = inf
{
sup

i

dimM(Ai) : Ai is bounded and A ⊂
∞⋃

i=1

Ai

}
.

Alternatively, the packing dimension may be defined in terms of the (radius
based) packing measures Ps (see Cutler [Cu, §3.1] for the definition) by the
identity (here sup ∅ = 0)

dimp(A) = sup{s ≥ 0 : Ps(A) > 0},

see [Cu, Theorem 3.11]. Since Hλ(A) ≤ lim infr↓0M
λ(A, r) for all bounded sets

A ⊂ X, we immediately get dimH(A) ≤ dimp(A) ≤ dimM(A), where dimH

denotes the Hausdorff dimension. It is also easy to see that dimp(X) < ∞
whenever X carries a doubling measure, consult [Cu, Theorem 3.16].

Let s > 0. A measure µ on X is s-regular on a set A ⊂ X if there are constants
0 < aµ ≤ bµ and rµ > 0 such that

aµr
s ≤ µ

(
B(x, r)

)
≤ bµr

s (3.1)

for all x ∈ A and 0 < r < rµ. A set A ⊂ X is s-regular if there is a measure µ
which is s-regular on A and µ(X \ A) = 0. In particular, a metric space X is
s-regular if there is a measure µ which is s-regular on X.
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A measure µ on X is called doubling if there are constants cµ ≥ 1 and rµ > 0
such that

0 < µ
(
B(x, 2r)

)
≤ cµµ

(
B(x, r)

)
<∞ (3.2)

for every x ∈ X and 0 < r < rµ. When we deal with cµ we always assume that
it is the smallest constant that satisfies (3.2) with a given rµ. A metric space is
doubling if there exists a constant N ∈ N such that for each r > 0, every closed
ball with radius 2r can be covered by a family of at most N closed balls of radius
r. Notice that an s-regular measure on X is doubling, and moreover, by [LS],
every complete doubling metric space carries a doubling measure. We use the
convention that c(µ) always denotes a constant depending only on cµ (or aµ, bµ
and s) if µ is doubling (or s-regular).

Often in the literature it is assumed that (3.1) and (3.2) are valid for all
0 < r ≤ diam(X), that is, µ is globally s-regular or doubling (see for example
[BHR]). However, for our purposes this is not needed by Remark 2.1.(5). The
following example shows that it is not always possible to choose rµ = diam(X).

Example 3.1. Equip X = [0, 1] × N ⊂ R2 with the metric d defined by

d
(
(x1, y1), (x2, y2)

)
=

{
|x1 − x2|, y1 = y2,

1, y1 6= y2.

Let µ = H1 be the length measure on X. Now r ≤ µ(B(x, r)) ≤ 2r whenever
0 < r < 1, but µ(B(x, 1)) = ∞ for all x ∈ X.

It is straightforward to see that all doubling measures are σ-finite, in particular
this is true for s-regular measures.

An easy exercise leads to the following lemma:

Lemma 3.2. Suppose that µ is a doubling measure on X. For all x ∈ X,
0 < r < rµ and 0 < α < 1 we have

µ
(
B(x, αr)

)
≥ c

b log α
log 2

c
µ µ

(
B(x, r)

)
(3.3)

where bac is the greatest integer p satisfying p ≤ a. Moreover, if µ is s-regular,
then

µ
(
B(x, αr)

)
≥
aµ

bµ
αsµ

(
B(x, r)

)
(3.4)

for all x ∈ X, 0 < r < rµ and 0 < α < 1.

Let µ be an s-regular measure on X. For all λ ≥ 0 and r > 0 we define

Mλ
µ (A, r) =

µ
(
A(r)

)

rs−λ
,

where

A(r) = {x ∈ X : dist(x,A) < r}



6 JÄRVENPÄÄ, JÄRVENPÄÄ, KÄENMÄKI, RAJALA, ROGOVIN, AND SUOMALA

is the open r-neighbourhood of A and dist(x,A) = inf{d(x, a) : a ∈ A} is the
distance of x from A. The following easy lemma shows how Mλ

µ (A, r) can be
utilized to calculate dimM(A). We give a detailed proof for the convenience of
the reader.

Lemma 3.3. Suppose that µ is an s-regular measure on X. Let A ⊂ X and
λ ≥ 0. Then

2−sb−1
µ Mλ

µ (A, r) ≤Mλ(A, r) ≤ 5sa−1
µ Mλ

µ (A, r)

whenever 0 < r < rµ

2
.

Proof. Fix 0 < r < rµ and λ ≥ 0. For the right hand side inequality, we may
assume that µ

(
A(r)

)
< ∞. Attaching to each x ∈ A a ball B(x, 1

5
r), we find,

using the 5r-covering theorem, an index set I and points xi ∈ A, i ∈ I, such that

A ⊂
⋃

i∈I

B(xi, r)

and B(xi,
1
5
r) ∩B(xj,

1
5
r) = ∅ for i 6= j. Let #I be the number of elements in I.

Since

µ
(
A(r)

)
≥ µ

(⋃

i∈I

B(xi,
1
5
r)

)
=

∑

i∈I

µ
(
B(xi,

1
5
r)

)
≥ #Iaµ5−srs,

it follows that #I <∞. This in turn implies that

Mλ
µ (A, r) =

µ
(
A(r)

)

rs−λ
≥ aµ5−s#Irλ ≥ aµ5−sMλ(A, r).

For the left hand side inequality, we may assume that Mλ(A, r) < ∞. Let
ε > 0. Choose k ∈ N and x1, . . . , xk ∈ X such that

A ⊂
k⋃

i=1

B(xi, r) and Mλ(A, r) ≥ krλ − ε.

Since now

µ
(
A(r)

)
≤ µ

( k⋃

i=1

B(xi, 2r)

)
≤

k∑

i=1

µ
(
B(xi, 2r)

)
≤ kbµ(2r)s,

we get

Mλ
µ (A, r) =

µ
(
A(r)

)

rs−λ
≤ 2sbµkr

λ ≤ 2sbµ
(
Mλ(A, r) + ε

)
.

The proof is finished by letting ε ↓ 0. �

The next observation shows that any porous set on a space carrying a doubling
measure must have zero measure. Note that the proposition (with its simple
proof) is easily seen to hold for upper porous sets as well.



SMALL POROSITY, DIMENSION AND REGULARITY 7

Proposition 3.4. Suppose that µ is a doubling measure on X. If A ⊂ X is
porous then µ(A) = 0.

Proof. By Remark 2.1.(5), we may assume that A is uniformly %-porous for
some % > 0. Furthermore, we may assume that A is closed since the closure
of a uniformly porous set is uniformly porous. Assume on the contrary that
µ(A) > 0. Using the density theorem [H, Theorem 1.8], choose x ∈ A for which

lim
r↓0

µ
(
A ∩ B(x, r)

)

µ
(
B(x, r)

) = 1. (3.5)

Since A is uniformly %-porous we find 0 < rp < rµ such that for all 0 < r < rp

there exists y ∈ X for which

B(y, %r) ⊂ B(x, r) \A.

Hence by Lemma 3.2, we get for any 0 < r < rp

µ
(
B(x, r) \A

)

µ
(
B(x, r)

) ≥
µ
(
B(y, %r)

)

µ
(
B(x, r)

) ≥ c
b log %

log 2
c−1

µ > 0,

contrary to (3.5). �

4. Dimension estimates for porous sets

It is well known that in Rn

dimp(A) ≤ n− c%n (4.1)

for any %-porous set A ⊂ Rn. Here c is a positive constant depending on n. In
particular, dimp(A) < n for all porous sets A ⊂ Rn. In this section we discuss
whether these estimates are valid in s-regular metric measure spaces and, more
generally, on spaces that carry a doubling measure. In [DS, Lemma 5.8] it is
stated that in the s-regular case dimp(A) ≤ s− η, where η depends on porosity
and the constants of the s-regular measure. The proof is based on dyadic cubes
whose side lengths are powers of %. Thus (as in Rn) this argument will give that
η = c(log 1

%
)−1%s. In [BHR, Lemma 3.12] a different method is used to show that

even the Assouad dimension of a porous subset of a globally s-regular space is
less than s. (Recall that the Assouad dimension is always at least the packing
dimension.) Pushing this argument further we will show that the factor (log 1

%
)−1

is not needed in the s-regular case. As a tool we need the following generalization
of (2.1)-(2.3) which is a modification of the mean ε-porosity from [KR].

Definition 4.1. Let 0 < % ≤ 1, D > 1, 0 < p ≤ 1 and n0, k0 ∈ N. For all k ∈ N

and x ∈ X, we denote by Ak(x) the annulus

Ak(x) = {y ∈ X : D−k < d(x, y) ≤ D−k+1}.
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Furthermore, for A ⊂ X define

ψk(x) =

{
1 if Ak(x) contains y with dist(y, A) > %d(y, x)

0 otherwise.

Let

Sk0,n(x) =

k0+n∑

k=k0+1

ψk(x).

The set A ⊂ X is (%,D, p, n0, k0)-mean porous if Sk0,n(x) ≥ pn for all x ∈ A and
n ≥ n0.

Lemma 4.3 generalizes the arguments of [MV, Lemma 2.8], [KR, Theorem 2.1]
and [BHR, Lemma 3.12] to our setting. For the purpose of proving it, we state
an auxiliary result that can be found from [H, Exercise 2.10]. If B = B(x, r) is
a ball in X and R > 0, we denote by RB the ball B(x,Rr). Moreover, we use
the notation χB for the characteristic function of B.

Lemma 4.2. Suppose that µ is a globally doubling measure on X, that is,
rµ = diam(X). Let B be a countable family of balls in X and let {aB}B∈B

be a collection of non-negative real numbers. Then for all R ≥ 1 and 1 ≤ q <∞

||
∑

B∈B

aBχRB ||Lq(X) ≤ C1R
tq||

∑

B∈B

aBχB||Lq(X),

where t = log cµ

log 2
and C1 depends on cµ only. Moreover, if µ is s-regular, then for

all R ≥ 1 and 1 ≤ q <∞

||
∑

B∈B

aBχRB ||Lq(X) ≤ C2R
sq||

∑

B∈B

aBχB||Lq(X)

where C2 depends on aµ, bµ and s.

Proof. A straightforward calculation gives the claim in the case q = 1 whilst the
case 1 < q < ∞ follows from the Hölder’s inequality, the duality of Lq-spaces,
the maximal function theorem [H, Theorem 2.2], [H, (2.6)] and Lemma 3.2. �

Lemma 4.3. Suppose that µ is a doubling measure on X. Let x0 ∈ X and
0 < r0 <

rµ

2
. If A ⊂ B(x0, r0) is (%,D, p, n0, k0)-mean porous, then

µ(A(r)) ≤ C(µ)Dk0δµ(A(2D−k0))rδ for all r < D−n0−k0

where δ = c(µ)(logD)t−1D−3tp%t and t = log cµ

log 2
. Moreover, if µ is s-regular then

we may choose t = s.

Proof. We assume that µ is a doubling measure on X. Modifying the proof in
an obvious way gives the claim in the case that µ is s-regular. Define

B̃ =
{
B(x, rx) : x ∈ A(D−k0) \A and rx =

logD

20D2
dist(x,A)

}
.
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By the 5r-covering theorem we find a countable pairwise disjoint subfamily B of

B̃ such that

A(D−k0) \ A ⊂
⋃

B∈B

5B (4.2)

and

B ⊂ A(2D−k0) for all B ∈ B. (4.3)

Letting j ∈ N and x ∈ A(2−j), choose x′ ∈ A such that d(x, x′) < 2−j.
Assume that there is k ≥ k0 + 1 with ψk(x

′) = 1. Take y ∈ Ak(x
′) such that

dist(y, A) > %d(y, x′). Using (4.2) we find Bk ∈ B such that y ∈ 5Bk.
We proceed by showing that

5Bk ⊂ Ak+1(x
′) ∪ Ak(x

′) ∪ Ak−1(x
′). (4.4)

To verify this, let Bk = B(z, rz). Noting that

dist(z, A) ≤ d(z, y) + dist(y, A) ≤ 5rz +D−k+1 =
logD

4D2
dist(z, A) +D−k+1,

we obtain

dist(z, A) ≤ D−k+1
(
1 −

logD

4D2

)−1
,

giving

10rz ≤
logD

2D2

(
1 −

logD

4D2

)−1
D−k+1 ≤

2

3
logDD−k−1.

Now the width of Ak−1(x
′) is D−k+1(D − 1) > 10rz and that of Ak+1(x

′) is
D−k−1(D − 1) > 10rz. Thus, (4.4) follows since B(z, 5rz) ∩ Ak(x

′) 6= ∅.
Next we conclude that

x ∈
75D3

% logD
Bk (4.5)

under the assumption that D−k ≥ 2−j. Indeed, since

dist(z, A) ≥ dist(y, A) − d(z, y) > %d(y, x′) − 5rz = %d(y, x′) −
logD

4D2
dist(z, A),

we get

dist(z, A) ≥ %d(y, x′)
(
1 +

logD

4D2

)−1
.

This in turn implies that

rz ≥
logD

20D2
%d(y, x′)

(
1 +

logD

4D2

)−1
≥
% logD

25
D−k−2.

Hence

D−k ≤
25D2

% logD
rz,
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and therefore,

d(x, z) ≤ d(x, x′) + d(x′, y) + d(y, z) ≤ 2−j +D−k+1 + 5rz

≤ D−k +D−k+1 + 5rz ≤
25D2

% logD
rz +

25D3

% logD
rz +

25D3

% logD
rz ≤

75D3

% logD
rz.

This gives (4.5).
Clearly, D−k ≥ 2−j provided that k ≤ log 2

log D
j. Thus if ψk(x

′) = 1 for k0 + 1 ≤

k ≤ log 2
log D

j we find, by (4.5), a ball Bk ∈ B such that x ∈ 75D3

% log D
Bk. The fact that

A is (%,D, p, n0, k0)-mean porous gives

Sk0,n(x′) =
k0+n∑

k=k0+1

ψk(x
′) ≥ pn whenever n ≥ n0.

Letting j0 >
log D

log 2
(n0 + k0), we have for all j ≥ j0

#{k : k0 + 1 ≤ k ≤
log 2

logD
j and ψk(x

′) = 1} ≥
p

2

( log 2

logD
j − k0

)
.

Combining this with (4.4) implies that for all j ≥ j0 and x ∈ A(2−j)

∑

B∈B

χ 75D3

% log D
B
(x) ≥

p

6

( log 2

logD
j − k0

)
. (4.6)

Indeed, for at least p

2
( log 2

log D
j − k0) different k′s we find a ball Bk ∈ B such that

x ∈ 75D3

% log D
Bk. However, because of (4.4) each Bk can be taken into account at

most three times.
We finish the proof by verifying that for all j ≥ j0

µ(A(2−j)) ≤ 11Dk0δµ(A(2D−k0))2−jδ (4.7)

where

δ =
log 2

18C175t
(logD)t−1D−3tp%t and t =

log cµ
log 2

.

Our claim easily follows from this. For (4.7) it suffices to show that for all j ≥ j0
∫

A(2−j)

2
γ(% log D)t( p

6
k0+

∑
B∈B

χ
75D3

% log D
B

(x))

dµ(x) ≤ 11Dk0δµ(A(2D−k0)) (4.8)

with γ = (3C1(75D3)t)−1. This is so because from (4.6) we obtain for all x ∈
A(2−j) that

2
γ(% log D)t

∑
B∈B

χ
75D3

% log D
B

(x)

≥ 2γ(% log D)t p
6
( log 2

log D
j−k0).



SMALL POROSITY, DIMENSION AND REGULARITY 11

Moreover, combining this with (4.8) gives

µ(A(2−j)) = µ(A(2−j))2−jγ(% log D)t p
6

log 2

log D 2jγ(% log D)t p
6

log 2

log D

= 2−jγ(% log D)t p
6

log 2

log D

∫

A(2−j)

2γ(% log D)t p
6

log 2

log D
j dµ

≤ 11Dk0δµ(A(2D−k0))2−jγ(% log D)t p
6

log 2

log D ,

and therefore (4.7) is valid.
To prove (4.8), write

u(x) = γ(% logD)t
∑

B∈B

χ 75D3

% log D
B
(x).

Next we want to apply Lemma 4.2. Since A ⊂ B(x0, r0) and r0 <
rµ

2
, we may

assume that µ is globally doubling. (In fact it is enough to assume that the
radius of RB is less than rµ.) Now we obtain from Lemma 4.2 and (4.3) that

∫

A(2−j)

2u(x) dµ(x) ≤

∫

A(D−k0)

exp(u(x)) dµ(x)

=

∞∑

k=0

∫

A(D−k0 )

u(x)k

k!
dµ(x)

≤ µ(A(D−k0)) +

∞∑

k=1

∫

A(D−k0 )

u(x)k

k!
dµ(x)

≤ µ(A(D−k0)) +

∞∑

k=1

(γ(% logD)t)k

k!

∫

X

(
∑

B∈B

χ 75D3

% log D
B
(x))k dµ(x)

≤ µ(A(D−k0)) +
∞∑

k=1

(γ(% logD)tC1(75D3)tk)k

k!(% logD)tk

∫

X

(
∑

B∈B

χB(x))k dµ(x)

≤ µ(A(2D−k0))
(
1 +

∞∑

k=1

(γC1(75D3)tk)k

k!

)

= µ(A(2D−k0))
(
1 +

∞∑

k=1

1

k!

(k
3

)k)

≤ 11µ(A(2D−k0)),

where the last inequality follows since

1
(k+1)!

(k+1
3

)k+1

1
k!

(k
3
)k

=
1

3

(
1 +

1

k

)k
↑
e

3
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as k → ∞. Finally,
∫

A(2−j )

2
γ(% log D)t( p

6
k0+

∑
B∈B

χ
75D3

% log D
B

(x))

dµ(x)

= 2γ(% log D)t p
6
k0

∫

A(2−j)

2u(x) dµ(x)

≤ 11 · 2γ(% log D)t p
6
k0µ(A(2D−k0))

= 11Dk0δµ(A(2D−k0))

finishing the proof. �

Remark 4.4. (1) Assume that por(A, x, r) > % for all x ∈ A and 0 < r < rp. Let
D > 1. Choose k0 ∈ N such that D−k0 < rp. Then there is y ∈ X such that
B(y, %D−k0) ⊂ B(x,D−k0) \ A which in turn implies that y ∈ Ak(x) for some
k0 + 1 ≤ k ≤ k0 − b log %

log D
c. Hence, A is (%,D,− 1

2
b log %

log D
c−1,−b log %

log D
c, k0)-mean

porous. Note that it is not possible to obtain mean porosity with p = 1 or p
close to 1 unless one takes D = 1

%
. The reason for this is that in general metric

spaces the annuli Ak(x) may be empty for many k’s.
(2) Assume that µ is an s-regular measure on X and por(A, x, r) > % for all

x ∈ A and 0 < r < rp. Let l = 1
2
(aµ

bµ
)

1
s and D = 2(1 − l)−1l−2. Choose k0 ∈ N

such thatD−k0 < min{rp, rµ}. We verify that A is ( 1
3
l2%,D, 1, 1, k0)-mean porous.

Consider 0 < r ≤ D−k0. Since µ is s-regular there exists y ∈ B(x, lr) \B(x, l2r).
Assuming that there is z ∈ B(y, 1

2
l2r) ∩A, we find, using uniform porosity of A,

w ∈ X such that B(w, 1
2
%l3r) ∩ A = ∅ and 1

2
%l3r + d(w, z) ≤ 1

2
l3r. This gives

d(w, x) ≥ d(x, y) − d(y, z) − d(z, w) ≥
1

2
l2(1 − l)r =

r

D

and

d(w, x) ≤ d(x, y) + d(y, z) + d(z, w) <
3

2
lr < r.

Letting k ≥ k0 + 1 and choosing r = D−(k−1) in the above inequalities gives
w ∈ Ak(x) for all k ≥ k0 + 1. This combined with the fact that

dist(w,A) ≥
1

2
%l3r >

1

3
l2%d(w, x)

gives the claim. If B(y, 1
2
l2r) ∩ A = ∅ we may take w = y.

In the following two corollaries we verify scaling properties of measures of
r-neighbourhoods of bounded uniformly porous sets for small scales r.

Corollary 4.5. Suppose that µ is a doubling measure on X. Let x0 ∈ X. There
exists 0 < D1 < 1 such that if A ⊂ B(x0, r0) is uniformly %-porous and 0 < r0 <
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D1%rp then

µ(A(r)) ≤ C(µ)c
− log %

log 2
µ µ(B(x0, r0))

( r

r0

)δ

for all 0 < r < r0,

where δ = c(µ)(log 1
%
)−1%t and t = log cµ

log 2
.

Proof. We may assume that rp < 1
3
rµ. Let D > 1 and D1 = D−2. Since

r0 < D−2%rp we may choose k0 to be the largest integer k with D
%
r0 ≤ D−k < rp.

By Remark 4.4.(1), A is (%,D, p, n0, k0)-mean porous for p = c0
log 1

%

where c0 > 0

is a constant depending on D and for n0 = −b log %

log D
c. From Lemma 4.3 we obtain

that
µ(A(r)) ≤ C(µ)Dk0δµ(A(2D−k0))rδ for all 0 < r < D−n0−k0

where δ = c(log 1
%
)−1%t for a constant c that depends on cµ and D. Note that

%D−1−k0 < D−n0−k0 by the choice of n0, and therefore, r0 < D−n0−k0 . The choice
of k0 in turn guarantees that D−k0 < D2

%
r0 giving A(2D−k0) ⊂ B(x0, 3

D2

%
r0).

The claim follows by applying the doubling condition and by noting that Dk0δ <
r−δ
0 ( %

D
)δ < r−δ

0 . �

Corollary 4.6. Suppose that µ is s-regular on X. Let x0 ∈ X. There exists
a constant 0 < D1 < 1 such that if A ⊂ B(x0, r0) is uniformly %-porous and
0 < r0 < D1rp, then

µ(A(r)) ≤ C(µ)µ(B(x0, r0))
( r

r0

)δ

for all 0 < r < r0

where δ = c(µ)%s.

Proof. The proof is similar to that of Corollary 4.5. �

Remark 4.7. Observe that in Corollary 4.5 one can choose D and thus D1 as
close to 1 as one wishes whilst in Corollary 4.6 there is a lower bound for D.
(Recall that also in this case D1 = D−2.) This is due to Remark 4.4. However,
the result of Corollary 4.6 is stronger since there is no %-dependence on r0. In
both Corollaries the constants C(µ) and c(µ) depend on D, the size of annuli
determining the mean porosity.

Next we prove the analogue of (4.1) for s-regular metric spaces. As mentioned
in the Introduction this is asymptotically sharp as % tends to zero in Rn and thus
also in metric spaces.

Theorem 4.8. Suppose µ is s-regular on X. If A ⊂ X is %-porous, then

dimp(A) ≤ s− c(µ)%s.

Moreover, if A is uniformly %-porous and diam(A) < rµ, then

dimM(A) ≤ s− c(µ)%s.
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Proof. By Remark 2.1.(5), A is a countable union of sets Aij with diam(Aij) <
1/i < rµ such that por(A, x, r) > % for all x ∈ Aij and 0 < r < 1/i. Moreover,
if A is uniformly porous with diam(A) < rµ, then it is a finite union of such
sets. Thus it is enough to show that dimM(Aij) ≤ s − δ for all i and j where
δ = c(µ)%s. Letting x ∈ Aij and using Lemma 3.3 and Corollary 4.6 we get for
large i

lim sup
r↓0

Mλ(Aij, r) ≤ 5sa−1
µ lim sup

r↓0

µ
(
Aij(r)

)

rs−λ

≤ 5sa−1
µ C lim sup

r↓0
µ
(
B(x, 1/i)

)
iδrδ+λ−s <∞

if λ > s − δ. Here C is a constant which is independent of r. This gives the
claim. �

Theorem 4.8 is not true if we only assume that µ is doubling. An easy example
is given by defining X = ({0} ∪j∈N {2−j})× [0, 1] with the metric inherited from
R2 and letting µ be any doubling measure on X. If N = {0} × [0, 1], then
dimM(N) = dimp(N) = 1 = dimp(X). However, it is easy to see that N is
uniformly 1

3
-porous. The following example shows that one can perceive similar

behaviour in geodesic metric spaces as well, even for maximally porous sets.
Recall that a metric space (X, d) is geodesic if for each pair of points x, y ∈ X
there exists a path γ : [0, 1] → X such that γ(0) = x, γ(1) = y, and the length
of γ is equal to d(x, y).

Example 4.9. We give an example of a complete geodesic doubling metric space
having a subset with maximal dimension and porosity. The construction is an
infinite tree with branches getting smaller and smaller as we go deeper into the
tree. The metric is the natural path metric induced by the branches (see Figure
1).

Letting

N0 = {∅} , Nn = {1, 2}n×]0, 2−n] for all N \ {0} and N∞ = {1, 2}N × {0},

define

N = N∞ ∪
∞⋃

n=0

Nn.

The metric is given as follows: For x ∈ N , let n(x) ∈ N ∪ {∞} so that x =
(x1, . . . , xn(x), xn(x)+1) ∈ Nn(x). We denote the distance of x from the root by

l(x) =






1 − 2−(n(x)−1) + xn(x)+1 , if 0 < n(x) <∞
1 , if n(x) = ∞
0 , if n(x) = 0.
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Figure 1: An illustration of space N .

Given n ∈ N, let

x|n =

{
(x1, x2, . . . , xn) , if n(x) ≥ n
∅ , if n(x) < n

be the restriction of x. Define the longest common route δ(x, y) of a point
x = (x1, x2, . . . ) ∈ N and y = (y1, y2, . . . ) ∈ N from the root by

δ(x, y) = sup{m : x|m = y|m 6= ∅}

and their longest common part x ∧ y ∈ Nδ(x,y) by

x∧y =






(x|δ(x,y),min{ 2−δ(x,y), n(x) − δ(x, y) + xn(x)+1, , if 0 < δ(x, y) <∞
n(y) − δ(x, y) + xn(y)+1})

∅ , if δ(x, y) = 0
x , if δ(x, y) = ∞.

With these notations we define the metric d : N ×N → [0,∞[ by

d(x, y) = |l(x) − l(x ∧ y)| + |l(y) − l(x ∧ y)|.

Figure 1 illustrates the metric space (N , d) which is obviously geodesic.
We verify that

dimM(N ) = dimH(N∞) = 1 (4.9)

and

por(N∞) =
1

2
. (4.10)

Indeed, since dist(Nn,N∞) = 2−n, the set N \ ∪n
k=1Nk can be covered by 2n

closed balls centred in Nn with radii 2−n. On the other hand, ∪n
k=1Nk can be

covered by n2n balls with radii 2−n, and therefore, N can be covered by (n+1)2n

such balls. Hence dimH(N∞) ≤ dimM(N ) ≤ 1. Clearly, dimH(N∞) = 1 which
gives (4.9). For (4.10), take any x ∈ N∞ and 0 < r < 1. Choose n ∈ N such that
2−n ≤ r < 2−n+1. Since dist((x|n, 2−n+1 − r),N∞) = r, we have for all ε > 0

B((x|n, 2
−n+1 − r), (1 − ε)r) ⊂ B(x, 2r) \ N∞.

This implies (4.10).
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Note that the space (N , d) is doubling with a doubling constant 3, that is,
every closed ball with radius 2r can be covered with 3 closed balls with radius r.
In particular, it carries a doubling measure by [LS]. Moreover, while ∪n

k=0Nk is
1-regular for all n and N∞ is also 1-regular, the set N \N∞ is not.

By taking a closer look at the above examples one recognizes that the chosen
porous sets, denoted here by N , are exceptional in the sense that µ(N) = 0 and
dimp(A) < dimp(X) for all porous sets A ⊂ X \N . This is not a coincidence as
indicated by the following result.

Theorem 4.10. Suppose that µ is a doubling measure on X. Then there is
N ⊂ X such that µ(N) = 0 and

dimp(A) ≤ dimp(X) − c(µ)(log 1
%
)−1%t

for all %-porous sets A ⊂ X \N where t = log cµ

log 2
.

We prove Theorem 4.10 using Corollary 4.5 and the following two lemmas.

Lemma 4.11. Suppose that µ is a doubling measure on X. Then there is N ⊂ X
with µ(N) = 0 such that for all s > dimp(X) we have

lim
r↓0

µ(B(x, r))

rs
= ∞

for every x ∈ X \N .

Proof. Choose a decreasing sequence (sk) such that sk ↓ dimp(X) as k → ∞.
We claim that for all k ∈ N there is Nk ⊂ X with µ(Nk) = 0 such that

lim
r↓0

µ(B(x, r))

rsk
= ∞ (4.11)

for all x ∈ X \Nk. Fix k ∈ N and suppose to the contrary that there are 0 < D <
∞ and a Borel set A ⊂ X such that µ(A) > 0 and lim infr↓0 µ(B(x, r))/rsk < D
for all x ∈ A. By [Cu, Theorem 3.16] we get Psk(A) ≥ 1

C(µ)D
µ(A) > 0 which

is impossible since dimp(A) ≤ dimp(X) < sk. Thus (4.11) is proved. Defining
N = ∪∞

k=0Nk, verifies the claim. �

The following lemma is a substitute for Lemma 3.3 in metric spaces that carry
a doubling measure.

Lemma 4.12. Suppose that µ is a doubling measure on X. Let 0 < λ < dimp(X)
and let N ⊂ X be as in Lemma 4.11. If A ⊂ X \N has the property that

lim sup
r↓0

µ(A(r))

rλ
<∞,

then dimp(A) ≤ dimp(X) − λ.
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Proof. Fix x0 ∈ X. Let s > dimp(X) and define

Aki = {x ∈ A ∩ B(x0, i) : µ(B(x, r)) > rs for all 0 < r < 1/k}

for all k, i ∈ N. Since A ⊂ X \N we see from Lemma 4.11 that A = ∪k,iAki. It
suffices to show that

dimM(Aki) ≤ s− λ for all k, i ∈ N. (4.12)

Let k, i ∈ N. Choose r0 > 0 and M <∞ such that µ(Aki(r)) ≤ µ(A(r)) ≤Mrλ

when 0 < r < r0. If 0 < r < min{1
2
r0, 1/k} we apply the 5r-covering theorem

to the collection {B(x, r) : x ∈ Aki} to find a pairwise disjoint subcollection
{B(xl, r) : l ∈ I} such that

Aki ⊂
⋃

l∈I

B(xl, 5r). (4.13)

Now
M2λrλ ≥ µ(Aki(2r)) ≥

∑

l∈I

µ(B(xl, r)) ≥ #Irs.

This implies that #I ≤ M2λrλ−s <∞ which combined with (4.13) gives

M s−λ(Aki, 5r) ≤M2λ5s−λrλ−srs−λ ≤M2λ5s−λ.

Now (4.12) follows as r ↓ 0. �

Proof of Theorem 4.10. Let N be as in Lemma 4.11 and let A ⊂ X \ N . By
Remark 2.1.(5), A is a countable union of sets of the form

E = {x ∈ A ∩B(x0, r0) : por(A, x, r) > % for all 0 < r < r0}

where x0 ∈ X and r0 > 0. Thus it suffices to show that dimp(E) ≤ dimp(X)− δ
where δ is as in Corollary 4.5. But this follows from Lemma 4.12 since E ⊂ X \N
and lim supr↓0 µ(E(r))/rδ <∞ by Corollary 4.5. �

Remark 4.13. (1) We do not know if dimH(A) ≤ dimH(X) − δ in Theorem 4.10.
Of course, this question is relevant only when dimH(X) < dimp(X).

(2) The essential qualitative difference between Theorems 4.8 and 4.10 is that
in the doubling case we have an extra factor (log 1

%
)−1 in δ. This extra factor

appears also in Rn if one makes a simple estimate for the Minkowski dimension
using mesh cubes whose side lengths are powers of %. To obtain the optimal
upper bound one has to utilize the porosity also at the intermediate scales, that
is, for all j’s with %k+1 ≤ 2−j < %k. As pointed out in Remark 4.4.(1), these
intermediate scales do not necessarily exist in general metric spaces. So we do not
know whether the factor (log 1

%
)−1 is necessary or not in Theorem 4.10 although in

Remark 4.4.(1) it is which can be seen by considering a disjoint union of Cantor
sets C%i

where %i tends to zero.
(3) In Theorem 4.8 the constant c(µ) depends on aµ, bµ and s. One may ask

whether it is possible that c(µ) depends on s only. However, this is not the case.
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If in Example 4.9 one chooses Nn = {1, 2}×]0, λn] for λ < 1
2
, then the resulting

space N is 1-regular, por(N∞) = 1
2

and dimp(N∞) → 1 as λ → 1
2
. Note that in

this case bµ

aµ
→ ∞ and thus c(µ) → 0 as λ→ 1

2
.

5. Uniform porosity and regular sets

In this section we prove that if X is s-regular and complete, then the difference
between uniformly porous and regular subsets of X is negligible in the following
sense: A ⊂ X is uniformly porous if and only if there is 0 < t < s and a t-
regular set F ⊂ X such that A ⊂ F . In Rn this is well known, see for example
[S], [L, Theorem 5.2], [Ca, Proposition 4.3], [KS, (proof of) Theorem 4.1], and
[KV, Example 6.8]. We begin by showing that for each 0 < t < s there exists a
t-regular set F ⊂ X. This is a consequence of the following lemma which was
proven in Rn in an unpublished Licentiate thesis of Pirjo Saaranen. The proof
for complete s-regular spaces is almost the same but it is included here for the
sake of completeness. We denote by spt(µ) the support of µ, that is, spt(µ) is
the smallest closed set F with µ(X \ F ) = 0.

Lemma 5.1. Assume that X is complete, µ is s-regular on X and 0 < t < s.
Let z ∈ X and 0 < R < rµ. Then there is a measure ν with spt(ν) ⊂ B(z, 2R)
such that ν(B(z, 2R)) = Rt and

aνr
t ≤ ν(B(x, r)) ≤ bνr

t

for all x ∈ spt(ν) and 0 < r < R. Here the constants aν = aν(s, t, aµ, bµ) and
bν = bν(s, t, aµ, bµ) are independent of z and R.

Proof. Let 0 < r ≤ 1
10

2−
1
tR. Using the 5r-covering theorem, we choose from

the collection {B(x, 2 · 2
1
t r) : x ∈ B(z, R)} disjoint balls B(xi, 2 · 2

1
t r) so that

the balls B(xi, 10 · 2
1
t r) cover the set B(z, R). We may take x1 = z. Next we

estimate the number, say m(r), of balls in this collection. Since by Lemma 3.2

m(r)bµ(2 · 2
1
t r)s ≥

m(r)∑

i=1

µ(B(xi, 2 · 2
1
t r)) ≥

m(r)∑

i=1

aµ

5sbµ
µ(B(xi, 10 · 2

1
t r))

≥
aµ

5sbµ
µ(B(z, R)) ≥

a2
µ

5sbµ
Rs,

we obtain

c1

(R
r

)s

≤ m(r) for all 0 < r ≤ 1
10

2−
1
tR, (5.1)

where

c1 =
a2

µ

10s2
s
t b2µ

.
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Choose d > 0 so small that

d < 1
10

2−
1
t , ds−t ≤

c1
2

and dt ≤
1

5
. (5.2)

Taking r = dR in the above process gives disjoint balls B(xi, 2 · 2
1
t dR) with

xi ∈ B(z, R). Moreover, by (5.1) we get the following estimate for the number
m of such balls

c1
ds

≤ m. (5.3)

Let M ∈ N be such that

d−t −
1

2
≤M < d−t +

1

2
. (5.4)

Because

d−t +
1

2
≤

1

2
c1d

−s +
1

2
< m

by (5.2) and (5.3), we may take M balls from the collection of disjoint balls

{B(xi, 2 · 2
1
t dR) : i = 1, . . . , m}. Having roughly advanced towards our t-regular

measure on this scale by taking suitable balls, we proceed by adjusting the radii
of the balls to get exactly the regularity we want.

Fix d1 < 1 so that dt
1 = M−1. Inequalities (5.4) and (5.2) combine to give

dt
1 ≤

2dt

2 − dt
≤

10

9
dt < 2dt (5.5)

which implies that the balls Bi = B(xi, 2d1R), i = 1, . . . ,M are disjoint. Next
we repeat the process by taking B(xi, d1R) as B(z, R). In this manner we get

disjoint balls B(xij, 2 · 2
1
t dd1R), j = 1, . . . , m2i, where xij ∈ B(xi, d1R), xi1 = xi

and
c1
ds

≤ m2i.

For all i = 1, . . . ,M choose M balls from these collections and adjust the radii
to be d2

1R. Now the balls Bij = B(xij, 2d
2
1R) are disjoint and Bij ⊂ Bi for all

i, j = 1, . . . ,M , because by (5.5)

d1R + 2d2
1R < d1R + 2 · 2

1
t d1dR = d1R(1 + 2 · 2

1
t d) < 2d1R.

We continue this process. At step k we obtain for all sequences (i1, . . . , ik−1) ∈
{1, . . . ,M}k−1 disjoint balls Bi1...ik , ik = 1, . . . ,M , with centres in the ball
B(xi1...ik−1

, dk−1
1 R) and with radii 2dk

1R such that

Bi1...ik ⊂ Bi1...ik−1
.

Furthermore, xi1...ik−11 = xi1 ...ik−1
. Set

ν̃(Bi1...ik) = M−k (5.6)
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for all k ∈ N and i1, . . . , ik ∈ {1, . . . ,M}k. Since X is complete and s-regular,
all closed balls are compact and we can apply the standard mass distribution
principle to extend ν̃ to a probability measure on X satisfying (5.6) with

spt(ν̃) =
∞⋂

k=1

⋃

i1,...,ik

Bi1...ik ⊂ B(z, 2R).

Note that z ∈ spt(ν̃) 6= ∅.
Next we prove that ν̃ is t-regular. Take any x ∈ spt(ν̃) and 0 < r < (1−2d1)R.

Let l ∈ N be such that

(1 − 2d1)d
l+1
1 R ≤ r < (1 − 2d1)d

l
1R. (5.7)

By (5.5) and (5.2) we have d1 <
1
10

. Thus inequalities (5.7) guarantee that

Bi1...il+2
⊂ B(x, r) ⊂ Bi1...il

for some (i1, . . . , il+2) ∈ {1, . . . ,M}l+2. This in turn implies with (5.6) and (5.7)
that

d2t
1

(1 − 2d1)tRt
rt ≤ d

(l+2)t
1 = M−(l+2) ≤ ν̃(B(x, r)) ≤M−l = dlt

1 ≤
1

(1 − 2d1)tRtdt
1

rt.

Finally, defining ν = Rtν̃ gives the desired measure. �

As an immediate consequence we obtain:

Corollary 5.2. Assume that X is complete and µ is s-regular on X. Then for
all 0 < t < s there is F ⊂ X which is t-regular.

Now we are ready to state the main theorem of this section.

Theorem 5.3. Suppose that µ is s-regular on X. If 0 < t < s and A ⊂ X is
t-regular, then A is uniformly porous. Conversely, if X is complete and A ⊂ X
is uniformly %-porous, then for all s− c(µ)%s < t < s there exists a t-regular set
F ⊂ X so that A ⊂ F . Here c(µ) is as in Corollary 4.6.

Proof. The first part is proven in [BHR, Lemma 3.12]. We reprove it here to
obtain a quantitative estimate which in a sense is optimal (see Remark 5.4). Let
ν be a t-regular measure on A. Pick x ∈ A and 0 < r < 1

2
min{rµ, rν}, and

take k ∈ N. Attaching to each z ∈ B(x, r) a ball B(z, 1
5
2−kr), we find, using the

5r-covering theorem, a countable index set Ik and points xi ∈ B(x, r), i ∈ Ik,
such that

B(x, r) ⊂
⋃

i∈Ik

B(xi, 2
−kr)

and B(xi,
1
5
2−kr) ∩B(xj,

1
5
2−kr) = ∅ for i 6= j.

From the s-regularity of µ we get

aµr
s ≤ µ

(
B(x, r)

)
≤

∑

i∈Ik

µ
(
B(xi, 2

−kr)
)
≤ #Ikbµ2−ksrs,
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and therefore,

#Ik ≥
aµ

bµ
2ks. (5.8)

Taking any set Jk ⊂ Ik for which B(xj,
1
10

2−kr) ∩ A 6= ∅ as j ∈ Jk and using the
fact that ν is t-regular on A, we have

bν2
trt ≥ ν

(
B(x, 2r)

)
≥

∑

j∈Jk

ν
(
B(xj,

1
5
2−kr)

)

≥
∑

j∈Jk

ν
(
B(zj,

1
10

2−kr)
)
≥ #Jkaν(

1
10

)t2−ktrt,

where zj ∈ B(xj,
1
10

2−kr) ∩ A as j ∈ Jk. Thus

#Jk ≤
bν
aν

20t2kt.

This upper bound is strictly smaller than the lower bound in (5.8) when

k >
log

(
bµbν

aµaν
20t

)

(s− t) log 2
=: K(µ, ν).

Choosing k > K(µ, ν), gives Ik \ Jk 6= ∅, and we find i0 ∈ Ik such that
B(xi0 ,

1
10

2−kr) ∩ A = ∅. It follows that

por∗(A, x, 2r) ≥ 1
20

2−k (5.9)

whenever x ∈ A and 0 < r < 1
2
min{rµ, rν}. The claim follows from Remark

2.1.(2).
Now we prove the opposite direction. The idea is to use Lemma 5.1 to build a

regular measure inside the voids of suitable reference balls. Let % > 0 and rp > 0
be such that

por(A, x, r) > % (5.10)

for all x ∈ A and 0 < r < rp Set γ = %

5
and fix n0 ∈ N such that γn0 <

min{D1rp, rµ} (see Corollary 4.6). From Corollary 4.6 we see that for all x ∈ X
and 0 < r0 ≤ γn0

µ((A ∩B(x, r0))(r)) ≤ C(µ)µ(B(x, r0))
( r
r0

)δ
for all 0 < r < r0 (5.11)

where δ = c(µ)%s.
Consider s− δ < t < s. For all j ∈ N, we choose by means of the 5r-covering

theorem a collection of disjoint balls {B(xji, γ
n0+j)} so that xji ∈ A for all i ∈ N

and

A ⊂
⋃

i

B(xji, 5γ
n0+j). (5.12)
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For each i ∈ N we find, using inequality (5.10), zji ∈ B(xji, γ
n0+j) so that

B(zji, %γ
n0+j) ⊂ B(xji, γ

n0+j) \ A. Define

Bji = B(zji,
%

5
γn0+j) = B(zji, γ

n0+j+1).

Then obviously 2Bji ⊂ B(zji, %γ
n0+j) ⊂ B(xji, γ

n0+j) \ A. Lemma 5.1 implies
that for all i ∈ N there is a t-regular measure νji on spt(νji) ⊂ 2Bji with
νji(2Bji) = γ(n0+j+1)t. Note that the constants aνji

and bνji
are the same for

all j and i, say aνji
= a and bνji

= b. Moreover, it is evident by the properties of
νji that we may choose rνji

= 3γn0+j by adjusting a and b. We conclude that for
all x ∈ spt(νji) and 0 < r < 3γn0+j

art ≤ νji(B(x, r)) ≤ brt. (5.13)

Setting

F =
⋃

j,i

spt(νji) ∪ A

and

ν =
∑

j,i

νji,

we clearly have A ⊂ F and ν(X \F ) = 0, and therefore, it suffices to prove that
ν is t-regular on F .

We first verify that ν is t-regular on A, that is, there are constants C1 and C2

such that for all x ∈ A and 0 < r < 1
2
γn0+1 we have

C1r
t ≤ ν(B(x, r)) ≤ C2r

t. (5.14)

For the purpose of proving (5.14), fix k ∈ N so that

γn0+k+1 ≤ r < γn0+k.

From (5.12) it follows easily that 2Bk+3,i ⊂ B(x, r) for some i giving

ν(B(x, r)) ≥ νk+3,i(2Bk+3,i) = γ(n0+k+4)t ≥ γ4trt.

Thus we may choose C1 = γ4t in (5.14).
For the remaining inequality in (5.14), denote by Nj the number of balls 2Bji

that intersect B(x, r). Assuming that j ≥ k, we obtain

⋃

2Bji∩B(x,r)6=∅

2Bji ⊂ (A ∩ B(x,
2

γ
r))(γn0+j). (5.15)

Indeed, if 2Bji ∩ B(x, r) 6= ∅, then also B(xji, γ
n0+j) ∩ B(x, r) 6= ∅ giving

d(xji, x) ≤ r + γn0+j ≤ r + 1
γ
r ≤ 2

γ
r. Hence (5.15) is valid since xji ∈ A.
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Now (5.15) implies with (5.11) that

Njaµ2sγ(n0+j+1)s ≤ µ
( ⋃

2Bji∩B(x,r)6=∅

2Bji

)
≤ µ((A ∩B(x,

2

γ
r))(γn0+j))

≤ C(µ)µ(B(x,
2

γ
r))

(γn0+j

2
γ
r

)δ
≤ C(µ)bµ

(2

γ
r
)s−δ

γ(n0+j)δ

≤ C(µ)bµ
(2

γ

)s−δ
γ(n0+k)sγ(j−k)δ,

and therefore,
Nj ≤ c3γ

(k−j)(s−δ) for all j ≥ k, (5.16)

where c3 is a constant which depends on aµ, bµ, s and %. Note that Nj = 0
provided that j ≤ k − 1. This is true because

dist(2Bji, A) ≥ 3γn0+j+1 ≥ 3γn0+k > r.

From (5.16) we obtain

ν(B(x, r)) =
∑

j,i

νji(B(x, r) ∩ 2Bji) ≤
∞∑

j=k

Njγ
(n0+j+1)t

≤ c3γ
t(n0+1)+k(s−δ)

∞∑

j=k

γj(δ+t−s)

=
c3

1 − γδ+t−s
γt(n0+k+1) ≤ C2r

t

where C2 = c3
1−γδ+t−s . This completes the verification of (5.14).

We finish the proof by showing that ν is t-regular on spt(νji) for all j and i.
Fix j and i and let y ∈ spt(νji). We first derive the lower bound in the definition
of t-regularity. If 0 < r ≤ 3γn0+j, then ν(B(y, r)) ≥ νji(B(y, r)) ≥ art by (5.13).
On the other hand, if 3γn0+j < r < γn0+1, we get B(xji,

r
2
) ⊂ B(y, r). Applying

(5.14) implies that ν(B(y, r)) ≥ ν(B(xji,
r
2
)) ≥ C12

−trt.
For the upper regularity bound we first assume that 0 < r ≤ γn0+j+1. Now

B(y, r) ∩ 2Bj′i′ = ∅ for all (j ′, i′) 6= (j, i). Indeed, if j = j ′ this follows from
B(y, r) ⊂ B(xji, γ

n0+j) and 2Bji′ ⊂ B(xji′ , γ
n0+j). In the case j ′ < j assume

that w ∈ B(y, r). Then d(w,A) ≤ d(w, xji) ≤ 2γn0+j. Further, if w ∈ 2Bj′i′,
then d(w,A) ≥ 3%

5
γn0+j′ ≥ 3γn0+j. The final case j ′ > j is similar. Thus

ν(B(y, r)) = νji(B(y, r)) ≤ brt by (5.13). Finally, supposing that γn0+j+1 < r <
%

12
γn0+1 gives B(y, r) ⊂ B(xji,

6r
%
). Hence ν(B(y, r)) ≤ ν(B(xji,

6r
%
)) ≤ C2

(
6
%

)t
rt

by (5.14). �

Remark 5.4. (1) Observe that in (5.9) the porosity % is proportional to
(

aν

bν

) 1
s−t .

The following simple construction shows that this is sharp. Let 0 < t < 1 and
choose from [0, 1] N evenly distributed intervals of length N− 1

t . Repeat this
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construction and let ν be the natural measure on the resulting Cantor set A.

Then A is t-regular, por(A) ≈ 1−N1− 1
t

N
and aν

bν
= Nt−1

(1−N1− 1
t )t

. As N tends to

infinity, por(A) ≈ 1
N

≈
(

aν

bν

) 1
1−t . We do not know what is the best asymptotic

behaviour as aν

bν
is fixed and t→ s.

(2) We do not know whether the completeness is needed in Theorem 5.3 al-
though the mass distribution principle is not valid without it.
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