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Abstract

In this paper, we prove the Adams inequality in complete metric spaces
supporting a Poincaré inequality with a doubling measure. We also prove
the trace inequalities for the Riesz potentials.

1 Introduction

In the Euclidean spaces we have the following Adams inequality, see e.g. [Ad],
[Ma], [Tu] or [Zi]:

Theorem 1.1. Let ν be a Radon measure on Rn and let 1 ≤ p < q < ∞ with
p < n. Suppose that there is a constant M such that for all balls B(x, r) ⊂ Rn,

ν(B(x, r)) ≤ Mrα,

where α = q(n− p)/p. Then

(1)
(∫

Rn

|u|qdν

)1/q

≤ CM1/q

(∫
Rn

|∇u|pdx

)1/p

,

for all u ∈ C∞
0 (Rn), where C = C(p, q, n) > 0.

In potential theory, this type of inequalities arise from investigation of imbed-
dings G : Lp(µ) → Lq(ν), where G is a potential, [AH]. These imbeddings are
often referred to as trace inequalities. In the Euclidean setting a necessary and
sufficient condition for trace type theorems is proven, see [AH, Chapter 7.2].
The sharp result is a growth condition for the measure ν involving Riesz capac-
ity of a ball. See also [Zi, Chapter 4] for more discussions on the Adams type
inequality.

For Sobolev functions, inequality (1) is an extension of the Sobolev inequal-
ity, since if ν is n-dimensional Lebesgue measure, then q = p∗ = np/(n− p).

In this paper, we study the Adams type inequality and trace inequalities for
Riesz potential on metric measure spaces. Before we state our main results, we
discuss the standard assumptions on the spaces and the background of analysis
on metric measure spaces.
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The results in this paper are formulated for Lipschitz functions. In a metric
space (X, d), a function u : X → R is said to be Lipschitz continuous, denoted
by u ∈ Lip(X), if for some constant L > 0

|u(x)− u(y)| ≤ Ld(x, y),

for every x, y ∈ X. We also use the notation u ∈ Lip0(X) when the function u
has compact support. For a Lipschitz function u : X → R, we define

Lip u(x) := lim sup
y→x

|u(x)− u(y)|
d(x, y)

.

We require the following standard conditions on the mass and on the ge-
ometry of the metric space. First, we assume that the space is equipped with
a doubling measure. A measure µ is doubling if balls have positive and finite
measure and there exists a constant Cd ≥ 1 such that for all balls B(x, r) in X,

µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

Note that the doubling measure µ has a density lower bound [He, pp. 103-104]:
There exist constants c, s > 0 that depend only on the doubling constant of µ,
such that

(2)
µ(B(y, r))
µ(B(x,R))

≥ c
( r

R

)s

,

whenever r < R, x ∈ X and y ∈ B(x,R). Usually we consider s to be the
natural dimension of the space X, and in this paper we assume that s > 1. We
call such spaces doubling spaces, or spaces of homogeneous type.

Second, we assume that the space admits a Poincaré inequality:

Definition 1.2. A metric measure space (X, d, µ) is said to admit a weak (1, p)-
Poincaré (or weak p-Poincaré) inequality, 1 ≤ p < ∞, with constants Cp > 0
and τ ≥ 1, if

(3) −
∫

B(x,r)

|u− uB(x,r)| dµ ≤ Cpr

(
−
∫

B(x,τr)

(Lip u)p dµ

)1/p

for all balls B(x, r) ⊂ X and for every Lipschitz function u : X → R. Here
barred integrals mean integral averages and uB is the average value of u over
B.

There are also different definitions for the Poincaré inequality on a metric
measure space. However many definitions coincide when the space is complete
and supports a doubling Borel regular measure, see discussion in [KZ, Chapter
1.2] and references therein. The Poincaré inequality forces the space to be
sufficiently regular in a geometric sense.

Recently there has been progress in the theory of Sobolev spaces in general
metric measure spaces, see for instance [Ch], [HaK], [Ha], [HeK], [KKM], [KoM],
[Sh] and references therein. In [Sh], Shanmugalingam contructs a Sobolev type
space on metric spaces, which yields the same space studied by Cheeger in
[Ch]. When the metric space satisfies our general assumptions, the Sobolev
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type spaces introduced by Haj lasz [Ha] also coincide with the spaces mentioned
above.

If the metric space is equipped with a doubling measure and it supports a
Poincaré inequality, then Lipschitz functions are dense in the space of Sobolev
functions on the metric measure space, see [Sh2]. Therefore the results in this
paper can also be applied to the Sobolev functions.

When these standard assumptions on the space and on the measure hold, the
space has nice geometric properties and allows us to conduct deep analysis of
such a space, and recently such analysis was done in many areas of studies. For
instance, in [HeK], [KoM] quasiconformal mappings in metric spaces are studied.
Also some results of Euclidean potential theory can be generalized to metric
spaces, see [KM1], [KM2], [KS] and [Sh2]. Thanks to Cheeger’s definition of
partial derivatives [Ch], it is even possible to study partial differential equations
on such spaces, see [BBS] and [BMS]. In [HaK], the Sobolev inequality is shown
to be true in this setting.

The aim of this paper is to show that the Adams-type inequality also holds
on metric spaces under some general assumptions. In this paper we prove a
trace inequality for a Riesz potential (Theorem 4.1). Similar results for other
similar potentials can be found in [EKM, Theorem 6.2.1].

We could not obtain the sharp results as in [AH] for general metric measure
spaces, since our measure is not assumed to be (Ahlfors) Q-regular and hence
we do not have connection between the measure and the capacity. When the
measure µ is Q-regular, the results are achieved easily from proofs in the Eu-
clidean case, basically by replacing the Lebesgue measure with the measure µ.
In this paper the difficulty comes from the fact that only the lower bound for
the measure µ is needed, see (2), without any upper bound.

Similar problems as in this paper are studied also in [KK], with a different
approach.

The case p = 1 needs a special treatment as usual. We prove the following
global Adams inequality in the case p = 1.

Theorem 1.3. Let (X, d, µ) be a complete metric measure space such that it
admits a weak (1, 1)-Poincaré inequality and µ is a doubling Radon measure.
Let ν be a Radon measure on X. Suppose that there are M ≥ 0 and q ≥ 1, such
that for all balls B(x, r) ⊂ X of radius r < diam X, it holds

ν(B(x, r))
µ(B(x, r))q

≤ Mr−q.

Then (∫
X

|u|qdν

)1/q

≤ CM1/q

∫
X

Lip u dµ,

for all u ∈ Lip0(X), where the constant C > 0 depends only on q, s, the doubling
constant and the constants in the Poincaré inequality.

Two key elements in the proof of Theorem 1.3 are isoperimetric inequality
and co-area formula (Theorem 2.3), which are already studied by Ambrosio
[Am] and Miranda [Mi]. We follow the approach in [Zi, Lemma 4.9.1], which
can be easily generalized to our setting by using Lemma 3.1.

For the case p > 1, we have the following theorem.
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Theorem 1.4. Let (X, d, µ) be a complete metric measure space such that it
admits a weak (1, t)-Poincaré inequality for some 1 ≤ t < p, and µ is a doubling
Radon measure. Suppose that ν is a Radon measure on X, satisfying

ν(B(x, r))
µ(B(x, r))

≤ Mrα with α =
sq

p
− s− q

t
,

for all balls B(x, r) ⊂ X of radius r < diam X, where 1 < p < q < ∞, p/t < s
and M is a positive constant. Here s is from (2). If u ∈ Lip0(B0) for some ball
B0 = B(x0, r0) ⊂ X, for which r0 < diam X/10, we have(∫

B0

|u|qdν

)1/q

≤ Cµ(B0)1/q−1/p r
t−1

t + s
p−

s
q

0 M1/q

(∫
B0

(Lip u)pdµ

)1/p

,

where C = C(p, q, s, t, Cd, Cp, τ) > 0.

In a forthcoming paper the author applies the Adams inequality to study
p-harmonic functions on metric measure spaces and to characterize removable
sets for Hölder continuous Cheeger p-harmonic functions.

The proof splits into two steps. First, we prove the inequality

|u|p ≤ CI1,B((Lip u)p),

where I1,B is a generalization of the Riesz potential, see Theorem 3.2 and Re-
mark 3.3. Second part is to apply the Adams inequality for the Riesz potential,
also called as the Fractional Integration Theorem, which states that

I1,B : Lp(B,µ) −→ Lq(B, ν)

is a bounded operator, see Corollary 4.2.
In Theorem 1.4, we assume that weak (1, t)-Poincaré inequality holds for

some 1 ≤ t < p. This better Poincaré inequality follows from the weak (1, p)-
Poincaré inequality by the result in [KZ]. The case p = s is not included in the
Theorem 1.4 when the weak (1, 1)-Poincaré inequality holds. This case is more
delicate and is treated in section 6.

The case p > s is not interesting, since the claim follows from [HaK, Theorem
5.1 (3)].

This paper is organized as follows. In section 2 we give the main definitions
and some preliminary results. A few key lemmas are proven in section 3. The
Adams inequality for Riesz potential is discussed in section 4. Section 5 contains
the proofs of Theorem 1.3 and Theorem 1.4. Finally, in section 6 we prove the
Adams inequality for borderline case p = s.

2 Preliminaries

Throughout the paper we denote by C > 0 a constant, whose value may vary
between each usage, even in the same line.

The triple (X, d, µ) denotes a complete metric measure space. The equipped
measure µ is assumed to be a Radon measure, which means that the measure
is Borel regular and the measure of every compact set is finite. We also assume
that the measure of every nonempty open set is positive
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The ball with center x ∈ X and radius r > 0 is denoted by

B(x, r) = {y ∈ X : d(y, x) < r}

and we use the notation σB(x, r) = B(x, σr). We write

uA =
1

µ(A)

∫
A

u dµ = −
∫

A

u dµ,

for a measurable A ⊂ X and a measurable function u : X → [−∞,∞]. The
norm of v in Lp(X, µ) = Lp(X) is denoted by

||v||p = ||v||p,µ =
(∫

X

|v|pdµ

)1/p

.

Definition 2.1. The Riesz potential of a nonnegative, measurable function f
on a metric measure space (X, d, µ) is

I1(f)(x) =
∫

X

f(y)d(x, y)
µ(B(x, d(x, y)))

dµ(y),

We will also use the notation

I1,A(f)(x) =
∫

A

f(y)d(x, y)
µ(B(x, d(x, y)))

dµ(y),

for a measurable sets A ⊂ X.

For properties of the above natural generalization of the Riesz potential, we
refer the reader to [He]. From other sources, the reader may find other gener-
alizations of the Riesz potential to metric spaces. Relations between different
definitions depend on regularity assumptions of the measure.

Following [Am] and [Mi], we define the class of sets of finite perimeter on
metric measure spaces.

Definition 2.2. Let E ⊂ X be a Borel set and A ⊂ X an open set. The
perimeter of E in A is

P (E,A) := inf
{

lim inf
h→∞

∫
A

Lip uh dµ :

(uh) ⊂ Liploc(A), uh → χE in L1
loc(A)

}
,

where χE denotes the characteristic function of E. We say that E has finite
perimeter in X if P (E,X) < ∞.

Next we give the generalized isoperimetric inequality and co-area formula.
For proofs see [Am, Theorem 4.3] and [Mi].

Theorem 2.3. Let (X, d, µ) be a complete doubling metric measure space, and
E ⊂ X be a set of finite perimeter. Then

(i) if (X, d, µ) admits a weak (1, 1)-Poincaré inequality, the following relative
isoperimetric inequality holds for all balls B = B(x, r) ⊂ X:

min{µ(E ∩B), µ((X \ E) ∩B)} ≤ C

(
rs

µ(B)

)1/(s−1)

[P (E, τB)]
s

s−1 ,

where s > 1 is any exponent satisfying (2).
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(ii) for any nonnegative u ∈ Liploc(X) the co-area formula holds :∫ ∞

−∞
P ({u > t}, B(x, r)) dt =

∫
B(x,r)

Lip u dµ,

for every ball B(x, r) ⊂ X.

Here we state the Marcinkiewicz Interpolation Theorem without proof. For
more discussion on the theorem, see [St].

Let (p0, q0) and (p1, q1) be pairs of numbers such that 1 ≤ pi ≤ qi < ∞
for i = 0, 1, p0 < p1, and q0 6= q1, and let ν be a Radon measure on X. An
subadditive operator T is of weak-type (pi, qi) if there is a constant Ci such that
for all u ∈ Lpi(X) and α > 0,

ν({x : |(Tu)(x)| > α}) ≤ (α−1Ci||u||pi)
qi .

Theorem 2.4. (Marcinkiewicz Interpolation Theorem) Suppose an operator T
is simultaneously of weak-types (p0, q0) and (p1, q1). If for some 0 < θ < 1

1
p

=
1− θ

p0
+

θ

p1
and

1
q

=
1− θ

q0
+

θ

q1
,

then T is of strong type (p, q), i.e. for all u ∈ Lp(X)

||Tu||q,ν ≤ CC1−θ
0 Cθ

1 ||u||p,

where C = C(pi, qi, θ), i = 0, 1.

3 Several Lemmas

First, to prove Theorem 1.3 we need the following metric space version of boxing
inequality. It is also proven in [KKST, Theorem 3.1], but for reader’s conve-
nience we give the proof here.

Lemma 3.1. Let (X, d, µ) be a complete doubling metric measure space sup-
porting a weak (1, 1)-Poincaré inequality. Let E ⊂ X be a bounded open set
of finite perimeter. Then there exist a constant C > 0 and a sequence of balls
B(xi, ri) with xi ∈ E such that

E ⊂
∞⋃

i=1

B(xi, ri)

and
∞∑

i=1

µ(B(xi, ri))
ri

≤ CP (E,X),

where C depends only on the doubling constant and the constants in the Poincaré
inequality.

Proof. If µ(X) < ∞, let x0 ∈ E and balls B(x0, ri), where

ri =
µ(X)

P (E,X)
2i.
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Now the lemma holds with the balls B(x0, ri) and C = 1. So we may assume
µ(X) = ∞.

Now for any x ∈ E we define

f(r) =
µ(B(x, r) ∩ E)

µ(B(x, r))
.

Since E is open we can find r1 > 0 such that f(r1) = 1. By the assumption
that E is bounded, f(r) → 0 when r → ∞. Let i0 = min{i : f(2ir1) < 1/2},
and we get that f(2i0−1r1) ≥ 1/2 and f(2i0r1) < 1/2.

Now by the doubling property of µ and by the choice of i0 we obtain

1
2Cd

≤ µ(B(x, 2i0−1r1) ∩ E)
Cdµ(B(x, 2i0−1r1))

≤ µ(B(x, 2i0r1) ∩ E)
µ(B(x, 2i0r1))

<
1
2
.

Set rx = 2i0r1. Then

min {µ(B(x, rx) ∩ E), µ(B(x, rx) ∩ (X \ E))} ≥ 1
2Cd

µ(B(x, rx)).

We may assume that s > 1 is an exponent satisfying (2). By the relative
isoperimetric inequality (Theorem 2.3(i))[

1
2Cd

µ(B(x, rx))
] s−1

s

≤ C
rx

µ(B(x, rx))1/s
P (E,B(x, τrx)).

Thus

(4)
µ(B(x, rx))

rx
≤ CP (E,B(x, τrx)).

Next we choose a cover for E: Let B = B(x, τrx) be the family of all balls
such that x ∈ E and rx chosen as before. Since E is bounded, rx are uniformly
bounded w.r.t x and by the basic covering theorem ([He, Thm. 1.2]) we obtain
a sequence of disjoint balls B(xi, τrxi) ∈ B so that

∞⋃
i=1

B(xi, 5τrxi
) ⊃ E.

Let B(xi, ri) = B(xi, 5τrxi). Now by the doubling property of µ and (4)∑ µ(B(xi, ri))
ri

≤ C
∑

P (E,B(xi, τrxi
)) ≤ CP (E,X).

Second, we prove a lemma, needed in proof of Theorem 1.4. Here we need
the chain condition.

We say that X satisfies a chain condition if for every λ ≥ 1 there is a constant
M such that for each x ∈ X and all 0 < ρ < R < diam(X)/4 there is a sequence
of balls B0, B1, B2, . . . , Bk for some integer k with

1. λB0 ⊂ X \B(x,R) and λBk ⊂ B(x, ρ),
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2. M−1 diam(λBi) ≤ dist(x, λBi) ≤ M diam(λBi) for i = 0, 1, 2, . . . , k,

3. there is a ball Ri ⊂ Bi ∩ Bi+1, such that Bi ∪ Bi+1 ⊂ MRi for i =
0, 1, 2, . . . , k − 1,

4. no point of X belongs to more than M balls λBi.

The chain condition above is a bit different from the one stated in [HaK,
Ch.6]. With a minor change of the proof in [HaK, Ch.6], we can show that
each connected doubling space satisfies the chain condition above. We need to
cover each annuli with balls of radii equal to ε2jλ−1 instead of ε2j . Then the
argument in [HaK, Ch.6] shows that for a fixed σ > 0, the balls Bi can be
chosen such that λBi ⊂ B(x, (1 + σ)R) for all i.

In the next theorem and remark, we show that if the space admits a weak
Poincaré inequality, then we have the following pointwise inequality for Lipschitz
continuous functions, see also [He, Thm. 9.5].

Theorem 3.2. Assume that (X, d, µ) admits a weak (1, p)-Poincaré inequality
with a doubling Borel measure µ. Let u ∈ Lip(X) and fix a ball B(y, r) ⊂ X.
Then for each x ∈ B(y, r) there exists a ball B(zx, r/8) ⊂ B(y, 2r) such that

|u(x)− uB(zx,r/8)|p ≤ Crp−1I1,B(y,2r)((Lip u)p)(x).

Proof. Let λ = τ and R = r/8 in the chain condition. Let x ∈ B(y, r). For any
small ρ > 0, we have a chain {Bi}k

i=0, for which

|u(x)− uB0 | ≤
k−1∑
i=0

|uBi+1 − uBi
|+ |u(x)− uBk

|

≤
k−1∑
i=0

(|uBi+1 − uRi
|+ |uBi

− uRi
|) + ρ||Lip u||L∞

≤
k−1∑
i=0

(
−
∫

Ri

|u− uBi+1 |dµ + −
∫

Ri

|u− uBi |dµ

)
+ ρ||Lip u||L∞

≤ C

k∑
i=0

−
∫

Bi

|u− uBi
|dµ + ρ||Lip u||L∞

≤ C

k∑
i=0

ri

(
−
∫

τBi

(Lip u)pdµ

)1/p

+ ρ||Lip u||L∞ .

In the second step, we used the Lipschitz continuity of u. Here the number of
balls k depends on ρ. We may assume that τBi ⊂ B(y, 3

2r) for all i. Next we
choose our ball Bz := B(zx, r/8) ⊂ B(y, 2r) where zx is the center of the ball
B0. We have

|uB0 − uBz | ≤ C −
∫

Bz∪B0

|u− uBz∪B0 |dµ ≤ Cr

(
−
∫

τBz∪τB0

(Lip u)pdµ

)1/p

.
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Putting the above two estimates together gives us

|u(x)− uBz | ≤ |u(x)− uB0 |+ |uB0 − uBz |

≤ Cr(p−1)/p

(
k∑

i=0

ri −
∫

τBi

(Lip u)pdµ

)1/p

+ Cr(p−1)/p

(
r −
∫

τBz∪τB0

(Lip u)pdµ

)1/p

+ ρ||Lip u||L∞

≤ Cr(p−1)/p

(∫
B(y,2r)

(Lip u(w))pd(x,w)
µ(B(x, d(x,w)))

dµ(w)

)1/p

+ ρ||Lip u||L∞ ,

where the condition 2 of the chain and the finite overlap property of the balls
τBi are needed. The claim follows by letting ρ → 0.

Note that in Theorem 3.2, it is possible to replace B(y, 2r) by B(y, (1 + ε)r)
and B(zx, r/8) by B(zx, εr/8), where ε > 0 is any small fixed number. Notice
also that, in this case the constant depends on ε.

Remark 3.3. If r < diam X/10 and u = 0 in X \B(y, r) in Theorem 3.2, we can
prove that

|u(x)|p ≤ Crp−1I1,B(y,r)((Lip u)p)(x),

for all x ∈ B(y, r). The proof is similar to that of Theorem 3.2. The only
change is that by choosing R = 5

2r, we find a ball B(zx, r) ⊂ B(y, 5r) such that
B(zx, r) ∩B(y, r) = ∅. In this case, we may assume that τBi ⊂ B(y, 4r) for all
balls Bi in the chain.

The next lemma is due to Muckenhoupt and Wheeden in the setting of
Euclidean spaces, see [MW] and [AH, Theorem 3.6.1]. We generalize it to the
setting of metric measure spaces.

Lemma 3.4. Assume that (X, d, µ) is complete and µ is doubling. Let 1 < p <
∞ and fix a ball B0 = B(x0, r0) ⊂ X and let ν be any positive Radon measure
on B0. Then(∫

4B0

Î3r0(ν)pdµ

)1/p

≤ C
r0

µ(B0)1/s

(∫
4B0

M1(ν)pdµ

)1/p

,

where C = C(s, p, Cd) > 0 is a constant, M1 is the fractional maximal operator

M1(ν)(x) = sup
r>0

(
ν(B(x, r))

µ(B(x, r))1−1/s

)
and Î3r0 is a local Riesz potential

Î3r0(ν)(x) =
∫

B(x,3r0)

d(x, y)
µ(B(x, d(x, y)))

dν(y).

Proof. Let B0 = B(x0, r0) ⊂ X be a ball. By (2) and by the doubling property
of µ there exists C > 0 depending only on s and Cd such that

(5) Csr
s ≤ µ(B(x, r)), where Cs = Cµ(B0)r−s

0 ,
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for all balls B(x, r) ⊂ X with x ∈ 4B0 and r < 8r0. We use Cs in this proof to
clarify notations.

The claim is a consequence of the following inequality: There exist a > 1
and b > 1, depending only on s and the doubling constant of µ, such that for
any λ > 0 and any 0 < ε < C

1/s
s C1

−1C2

1−s
s ,

µ({Î3r0(ν) > aλ}) ≤ bC
1

1−s
s ε

s
s−1 µ({Î3r0(ν) > λ})

+ Cµ({x ∈ 4B0 : M1(ν)(x) > ελ}),
(6)

where C ≥ 1 is depending only on the doubling constant of µ, C1 = C1(Cd) ≥ 1
is from (8) and C2 = C2(Cd, s) ≥ 1 is from (10). Indeed, multiplying both sides
of (6) by λp−1 and integrating with respect to λ, we obtain for any R > 0,

∫ R

0

µ({Î3r0(ν) > aλ})λp−1 dλ

≤ bC
1

1−s
s ε

s
s−1

∫ R

0

µ({Î3r0(ν) > λ})λp−1 dλ

+ C

∫ R

0

µ({x ∈ 4B0 : M1(ν)(x) > ελ})λp−1 dλ.

Thus by changing variables, we have

a−p

∫ aR

0

µ({Î3r0(ν) > λ})λp−1 dλ

≤ bC
1

1−s
s ε

s
s−1

∫ R

0

µ({Î3r0(ν) > λ})λp−1 dλ

+ Cε−p

∫ εR

0

µ({x ∈ 4B0 : M1(ν)(x) > λ})λp−1 dλ.

All integrals above are finite, since Î3r0(ν) = 0 in X \ 4B0. Next we choose

ε = min

{
1
2
, C1

−1C2

1−s
s

(
1
2
a−pb−1C1/(s−1)

s

) s−1
s

}
,

and it follows that

a−p

∫ aR

0

µ({Î3r0(ν) > λ})λp−1 dλ

≤ Cε−p

∫ εR

0

µ({x ∈ 4B0 : M1(ν) > λ})λp−1 dλ.

Letting R →∞, we obtain

(7) a−p

∫
4B0

Î3r0(ν)pdµ ≤ Cε−p

∫
4B0

M1(ν)pdµ,

which proves the Lemma.
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It remains to prove (6). First, we notice that for any x ∈ 4B0 \ 5
4B0

Î3r0(ν)(x) ≤
∫

B(x,3r0)\B(x, 1
4 r0)

d(x, y)
µ(B(x, d(x, y)))

dν(y)

≤ ν(B0)
µ(B(x, 1

4r0))
3r0 ≤ C1C

−1/s
s

ν(B(x, 5r0))
µ(B(x, 5r0))1−1/s

≤ C1C
−1/s
s M1(ν)(x),

(8)

where in the third step we used the condition (5). The constant C1 ≥ 1 depends
only on the doubling constant of µ. So if x ∈ 4B0 \ 5

4B0 and Î3r0(ν)(x) > λ,
then M1(ν)(x) > ελ, when ε < C

1/s
s C1

−1. Thus, for any 0 < ε < C
1/s
s C1

−1

µ({x ∈ 4B0 \ 5
4B0 : Î3r0(ν)(x) > λ})

≤ µ({x ∈ 4B0 \ 5
4B0 : M1(ν)(x) > ελ}).

(9)

Second, we consider an easy case {Î3r0(ν) > λ} ⊃ B0. Then for any x ∈ 4B0,
we have by the weak-estimate of the Riesz potential, see [He, Theorem 3.22],

µ(B0) ≤ µ({Î3r0(ν) > λ}) ≤ CC
1

1−s
s

(
1
aλ

∫
B0

dν

) s
s−1

≤ C2C
1

1−s
s λ

s
1−s M1(ν)(x)

s
s−1 µ(B0),

(10)

where we also used the doubling property of µ. Hence, for all x ∈ 4B0

M1(ν)(x) ≥ C1/s
s C2

1−s
s λ,

where C2 = C2(Cd, s) > 1 is from (10). Thus (6) is true with any ε <

C
1/s
s C2

1−s
s , since {Î3r0(ν) > λ} ⊂ 4B0.

Thus, we may assume that there exists x ∈ B0 such that Î3r0(ν)(x) ≤ λ. Let
δ > 0 be any small number. Let A ⊂ 4B0 be an open set such that {Î3r0(ν) >
λ} ⊂ A and µ(A) ≤ µ({Î3r0(ν) > λ}) + δ. The set A has a Whitney covering
with countable family of balls Ŵ = {Bi}, where the balls { 1

2B : B ∈ Ŵ} are
pairwise disjoint, see [BBS2, Chapter 3] for the Whitney coverings in metric
spaces. Now we only consider the balls which intersect the set 5

4B0 and we
denote W = {B ∈ Ŵ : B ∩ 5

4B0 6= ∅}. By the construction of the Whitney
covering, for every Bi ∈ W we have Bi ⊂ 2B0 and there exists y1 ∈ 4B0 such
that Î3r0(ν)(y1) ≤ λ and

(11) 8ri ≤ dist(y1, Bi) ≤ 16ri.

By a geometric argument, we know that: For any Bi ∈ W there exists
y0 ∈ 2B0 such that Î3r0(ν)(y0) ≤ λ and

(12) dist(y0, Bi) ≤ 54ri.

Indeed, when y1 ∈ 2B0 in (11) the claim is clear. So assume that y1 ∈ 4B0 \2B0

in (11). Since Bi∩ 5
4B0 6= ∅, we have dist(y1, Bi) + diam Bi ≥ 3

4r0. Now by (11)
we get that ri ≥ 1

24r0. In addition, we know that there exists y0 ∈ B0 such that
Î3r0(ν)(y0) ≤ λ and therefore dist(y0, Bi) ≤ 9

4r0 ≤ 54ri.
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Let B1 = B(x1, r1) ∈ W and let a > 1. Suppose B1 intersects the set
{M1(ν) ≤ ελ}. Let B2 = B(x1, 56r1) and denote ν1 = ν|B2 and ν2 = ν − ν1.
By the weak-estimate of the Riesz potential, see [He, Theorem 3.22],

µ({Î3r0(ν1) > aλ/2}) ≤ CC
1

1−s
s

(
1
aλ

∫
X

dν1

) s
s−1

.

Let x3 ∈ B1 such that M1(ν)(x3) ≤ ελ and let B3 = B(x3, 58r1) so that
B2 ⊂ B3. Then by the definition of the fractional maximal function M1,∫

X

dν1 =
∫

B2

dν ≤
∫

B3

dν ≤ M1(ν)(x3)µ(B3)
s−1

s ≤ ελµ(B3)
s−1

s .

Thus by the doubling property,(
1
aλ

∫
X

dν1

) s
s−1

≤ C
( ε

a

) s
s−1

µ( 1
2B1).

So with b = C/as/(s−1),

(13) µ({x ∈ B1 : Î3r0(ν1)(x) > aλ/2}) ≤ bC
1

1−s
s ε

s
s−1 µ( 1

2B1).

Next we estimate Î3r0(ν2) in B1. If B0 ⊂ B2, then Î3r0(ν2)(x) = 0 for
all x ∈ B1 and (14) follows. Assume that B0 \ B2 6= ∅. If x4 ∈ 2B0 is a
point with d(x4, B1) ≤ 54r1, then because of the choice of B2, for all x ∈ B1

and for all y ∈ X \ B2 we have d(x4, y) ≤ d(x4, x) + d(x, y) ≤ 3d(x, y) and
d(x, y) ≤ d(x, x4) + d(x4, y) ≤ 56r1 + d(x4, y) ≤ 57d(x4, y). Thus, if in addition
Î3r0(ν)(x4) ≤ λ, then

Î3r0(ν2)(x) =
∫

B(x,3r0)

d(x, y)
µ(B(x, d(x, y)))

dν2(y)

≤ Ĉ

∫
B0

d(x4, y)
µ(B(x, 6d(x, y)))

dν2(y)

≤ Ĉ

∫
B(x4,3r0)

d(x4, y)
µ(B(x4, d(x4, y)))

dν2(y)

= ĈÎ3r0(ν2)(x4) ≤ Ĉλ,

where we used the doubling property of µ and the facts that B(x4, d(x4, y)) ⊂
B(x, 6d(x, y)), the support of ν2 is in B0 and x ∈ 2B0. Thus, if a is chosen so
that a ≥ 2Ĉ, then Î3r0(ν2)(x) ≤ aλ/2. In other words, either

B1 ⊂ {x : M1(ν)(x) > ελ}

or

(14) {x ∈ B1 : Î3r0(ν)(x) > aλ} ⊂ {x ∈ B1 : Î3r0(ν1)(x) > aλ/2}.

In the second case, it follows from (13) that

µ({x ∈ B1 : Î3r0(ν)(x) > aλ}) ≤ bC
1

1−s
s ε

s
s−1 µ( 1

2B1).

Now adding over all B1 ∈ W and letting δ → 0, we get

µ({x ∈ 5
4B0 : Î3r0(ν) > aλ}) ≤ bC

1
1−s
s ε

s
s−1 µ({x ∈ 2B0 : Î3r0(ν) > λ})

+ Cµ({x ∈ 2B0 : M1(ν)(x) > ελ}),

where C = C(Cd) > 1. Now by this estimate and (9), we obtain (6).
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4 Adams inequality for Riesz potential

Notice that [EKM, Thm. 6.2.1] has a result similar to the following theorem, but
the potential they studied is different from ours. Still, if we make an assumption,
as in Theorem 4.1, that Csr

s ≤ µ(B(x, r)) for all balls B(x, r) ⊂ X of radius
r < diam X, and additional assumptions that 1/p−1/q−1/s ≥ 0 and µ(X) = ∞,
then Theorem 4.1 follows from [EKM, Thm. 6.2.1]. However the additional
assumptions for the exponents and for the measure of the space is not needed
in the following proof. Here the the proof is similar to that of [Zi, Thm. 4.7.2],
but we need a different approach in many estimates, since our measure is not
Ahlfors regular.

Theorem 4.1. Let (X, d, µ) be a metric measure space, where µ is a doubling
Radon measure, and 1 < p < s. Let ν be a Radon measure in X. Suppose that
there are positive constants M and Cs such that

Csr
s ≤ µ(B(x, r)) and

ν(B(x, r))
µ(B(x, r))

≤ Mrα,

for all balls B(x, r) ⊂ X of radius r < diam X, where α = sq
p − s − q and

1 < p < q < ∞. Then(∫
X

I1(|f |)qdν

)1/q

≤ CC
1
q−

1
p

s M
1
q

(∫
X

|f |pdµ

)1/p

,

for all f ∈ Lp(X, µ), where C = C(p, q, Cd, s) > 0.

Proof. In this proof, we assume diam X = ∞. When the diameter of X is finite,
a few minor technical changes are needed in the following proof. Indeed, we only
need to integrate over [0, diam X] instead of [0,∞[ in (16).

For t > 0, let At = {x : I1(|f |)(x) > t} and νt = ν|At . We may assume that
ν(At) > 0. First, we have by Fubini’s theorem and the doubling property of µ
that

tν(At) ≤
∫

At

I1(|f |)dν =
∫

X

I1(|f |)dνt

≤ Cd

∫
X

∫
X

|f(x)|d(x, y)
µ(B(y, 2d(x, y)))

dµ(x)dνt(y)

≤ Cd

∫
X

∫
X

|f(x)|d(x, y)
µ(B(x, d(x, y)))

dνt(y)dµ(x)

= Cd

∫
X

I1(νt)(x)|f(x)| dµ(x).

(15)
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Next we estimate I1(νt) in the following way. We set rj = 2j .

I1(νt)(x) =
∫

X

d(x, y)
µ(B(x, d(x, y)))

dνt(y)

=
+∞∑

j=−∞

∫
{rj<d(x,y)≤rj+1}

d(x, y)
µ(B(x, d(x, y)))

dνt(y)

≤
+∞∑

j=−∞

rj+1

µ(B(x, rj))
νt(B(x, rj+1))

≤ Cd

+∞∑
j=−∞

νt(B(x, rj+1))
µ(B(x, rj+1))

rj+1 ≤ C2
d

∫ ∞

0

νt(B(x, r))
µ(B(x, r))

dr,

where in the last two steps we used the doubling property of µ. Now for some
R > 0, to be fixed later, we have

tν(At) ≤ C

∫ R

0

∫
X

|f(x)|νt(B(x, r))
µ(B(x, r))

dµ(x)dr

+ C

∫ ∞

R

∫
X

|f(x)|νt(B(x, r))
µ(B(x, r))

dµ(x)dr = J1 + J2.

(16)

We will estimate J1 and J2 in the following way. First, to estimate J1, we
have by the growth condition for the measures that, with 1/p + 1/p′ = 1,

νt(B(x, r))
µ(B(x, r))

=
[
νt(B(x, r))
µ(B(x, r))

]1/p [
νt(B(x, r))
µ(B(x, r))

]1/p′

≤ (Mrα)1/p

[
νt(B(x, r))
µ(B(x, r))

]1/p′

.

By the Hölder inequality and the above estimate,

J1 ≤ C

∫ R

0

||f ||p

(∫
X

[
νt(B(x, r))
µ(B(x, r))

]p′

dµ(x)

)1/p′

dr

≤ C||f ||pM1/p

∫ R

0

(∫
X

[
νt(B(x, r))
µ(B(x, r))

]
dµ(x)

)1/p′

rα/pdr.

(17)

For r > 0, we define the set

Er = (X ×X) ∩ {(x, y) : d(x, y) < r}

and by Fubini’s theorem, we obtain∫
X

νt(B(x, r))
µ(B(x, r))

dµ(x) =
∫

X

1
µ(B(x, r))

∫
B(x,r)

dνt(y)dµ(x)

=
∫

X

∫
X

χEr (x, y)
µ(B(x, r))

dµ(x)dνt(y) ≤ Cdν(At),
(18)

where the last step follows from

(19)
∫

X

χEr (x, y)
µ(B(x, r))

dµ(x) ≤ Cd

14



for all y ∈ X, which in turn follows from the doubling property of µ. Indeed,∫
X

χEr (x, y)
µ(B(x, r))

dµ(x) =
∫

B(y,r)

1
µ(B(x, r))

dµ(x)

≤ Cd

∫
B(y,r)

1
µ(B(x, 2r))

dµ(x)

≤ Cd

∫
B(y,r)

1
µ(B(y, r))

dµ(x) = Cd,

since B(y, r) ⊂ B(x, 2r). Combining (17) and (18), we arrive at

J1 ≤ C||f ||pM1/pν(At)1/p′
∫ R

0

rα/pdr = C||f ||pM1/pν(At)1/p′Rα/p+1,

since 1 + α
p = 1

p ( s
p − 1)(q − p) > 0.

Next, we estimate J2. By the assumption on the measure µ,

νt(B(x, r))
µ(B(x, r))

=
[
νt(B(x, r))
µ(B(x, r))

]1/p [
νt(B(x, r))
µ(B(x, r))

]1/p′

≤ C−1/p
s r−s/pν(At)1/p

[
νt(B(x, r))
µ(B(x, r))

]1/p′

,

which gives us

J2 ≤ C

∫ ∞

R

||f ||p

(∫
X

[
νt(B(x, r))
µ(B(x, r))

]p′

dµ(x)

)1/p′

dr

≤ CC−1/p
s ||f ||p ν(At)1/p

∫ ∞

R

(∫
X

νt(B(x, r))
µ(B(x, r))

dµ(x)
)1/p′

r−s/pdr.

By (18),

J2 ≤ CC−1/p
s ||f ||pν(At)

∫ ∞

R

r−s/pdr ≤ CC−1/p
s ||f ||pν(At)R1−s/p,

since 1− s/p < 0.
Now we have

J1 + J2 ≤ C||f ||p
(
M1/pν(At)1/p′Rα/p+1 + C−1/p

s ν(At)R1−s/p
)

.

By choosing

R =
(

ν(At)
MCs

) 1
α+s

,

we arrive at
J1 + J2 ≤ CC1/q−1/p

s ||f ||pM1/qν(At)1−1/q.

Now from (16) and the previous inequality, it follows

tν(At)1/q ≤ CC1/q−1/p
s M1/q||f ||p.

Thus the Riesz potential operator I1(·) is of weak type (p, q), whenever

1 < p < q < ∞, p < s,

and the claim follows from the Marcinkiewicz Interpolation, Theorem 2.4.

15



When µ is a doubling measure on X and B0 = B(x0, r0) ⊂ X, then

C̃sr
s ≤ µ(B(x, r)), where C̃s =

cµ(B0)
2srs

0

,

for all balls B(x, r) ⊂ X with x ∈ B0 and r < 2r0. Here c is from (2).
Now we have the following local version of Adams inequality for Riesz po-

tentials.

Corollary 4.2. Let (X, d, µ) be a metric measure space, where µ is a doubling
Radon measure, and 1 < p < s. Assume that ν is a Radon measure such that

ν(B(x, r))
µ(B(x, r))

≤ Mr
sq
p −s−q

for all balls B(x, r) ⊂ X of radius r < diam X, where M is a positive constant
and 1 < p < q < ∞. If f ∈ Lp(B0, µ) for some ball B0 = B(x0, r0) ⊂ X, we
have(∫

B0

I1,B0(|f |)qdν

)1/q

≤ Cµ(B0)1/q−1/p r
s
p−

s
q

0 M1/q

(∫
B0

|f |pdµ

)1/p

,

where C = C(p, q, Cd, s) > 0 is a constant.

5 Proofs of Theorem 1.3 and Theorem 1.4

First we prove the Adams type inequality in a case p = 1.

Proof of Theorem 1.3. Let u ∈ Lip0(X). First, we consider the case q = 1. We
may assume that u ≥ 0. For t > 0, define Et = {x : u(x) > t}. The set Et is
open and bounded, since u is continuous and has compact support. In addition,
the set Et is of finite perimeter for a.e. t ∈ [0,∞[. Lemma 3.1 imply that for all
such t there exists a covering of Et by a sequence of balls Bi := B(xi, ri) such
that

∞∑
i=1

µ(Bi)
ri

≤ CP (Et, X).

Hence by the assumption on the measure ν in the theorem, we have

ν(Et) ≤
∑

i

ν(Bi) ≤ M
∑

i

µ(Bi)
ri

≤ CMP (Et, X).

Now applying the co-area formula (Theorem 2.3), we get∫
X

u dν =
∫ ∞

0

ν(Et)dt ≤ CM

∫ ∞

0

P (Et, X)dt ≤ CM

∫
X

Lip u dµ.

Next, we prove the case q > 1. Let f ∈ Lq′(X, ν), f ≥ 0 and B(x, r) ⊂ X.
By Hölder inequality we get∫

B(x,r)

f dν ≤

(∫
B(x,r)

fq′ dν

)1/q′

ν(B(x, r))1/q

≤ M1/q||f ||q′;ν
µ(B(x, r))

r
.
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So the measure fdν satisfies the assumptions of Theorem 1.3 with q = 1, which
was proved above. Hence if u ∈ Lip0(X),∫

X

ufdν ≤ CM1/q||f ||q′;ν
∫

X

Lip u dµ,

for all f ∈ Lq′(X, ν), f ≥ 0. Because u ≥ 0 and hence

||u||q;ν = sup
{∫

X

ufdν : ||f ||q′;ν ≤ 1, f ≥ 0
}

,

we have (∫
X

|u|qdν

)1/q

≤ CM1/q

∫
X

Lip u dµ.

Next we prove a version of Theorem 1.4 for all Lipschitz functions, not
necessarily with compact support. From now on, we assume that p > 1.

Theorem 5.1. Suppose that the assumptions in Theorem 1.4 hold for the space
X and for measures µ and ν. Let u ∈ Lip(X). For all balls B = B(x, r) ⊂ X(∫

B

|u− uB |qdν

)1/q

≤ Cµ(B)1/q−1/p r
t−1

t + s
p−

s
q M1/q

(∫
2τB

(Lip u)pdµ

)1/p

,

where C = C(p, q, s, t, Cd, Cp, τ) > 0 is a constant.

Proof. Fix a ball B = B(x, r) ⊂ X. By Theorem 3.2, we have for each y ∈ B

(20) |u(y)− uB(zy,r/8)|t ≤ Crt−1I1,B(x,2r)((Lip u)t)(y),

for some ball B(zy, r/8) ⊂ B(x, 2r).
By the Minkowski inequality,(∫

B

|u(y)− uB |qdν(y)
)1/q

≤
(∫

B

|u(y)− uB(zy,r/8)|qdν(y)
)1/q

+
(∫

B

|uB(zy,r/8) − uB |qdν(y)
)1/q

.

(21)

To estimate last two terms in (21), we observe that

|uB(zy,r/8) − uB | ≤ |uB(zy,r/8) − u2B |+ |uB − u2B |

≤ −
∫

B(zy,r/8)

|u− u2B | dµ + −
∫

B

|u− u2B | dµ

≤ C −
∫

2B

|u− u2B | dµ,

where in the last step, we used the doubling property of µ. Thus by the Poincaré
inequality,(∫

B

|uB(zy,r/8) − uB |qdν(y)
)1/q

≤ Cν(B)1/q −
∫

2B

|u− u2B |dµ

≤ Cν(B)1/qr

(
−
∫

2τB

(Lip u)pdµ

)1/p

≤ CM1/qr
s
p−

s
q−

1
t µ(B)

1
q−

1
p r

(∫
2τB

(Lip u)pdµ

)1/p

.

17



To estimate other term in (21) we apply the pointwise estimate (20) and
Corollary 4.2, where in this case q̃ = q/t and p̃ = p/t(∫

B

|u(y)− uB(zy,r/8)|qdν(y)
)1/q

=
(∫

B

(|u(y)− uB(zy,r/8)|t)q/tdν(y)
)1/q

≤ Cr
t−1

t

(∫
2B

(I1,2B((Lip u)t))q/tdν

)1/q

≤ Cµ(B)
1
q−

1
p r

t−1
t + s

p−
s
q M1/q

(∫
2B

((Lip u)t)p/tdµ

)1/p

.

The claim follows from (21) and the two estimates above.

Proof of Theorem 1.4. From Remark 3.3: For each y ∈ B0,

|u(y)|t ≤ Crt−1
0 I1,B0((Lip u)t)(y).

By this estimate and by Corollary 4.2,(∫
B0

|u(y)|qdν(y)
)1/q

≤ Cr
t−1

t
0

(∫
B0

(I1,B0((Lip u)t))q/tdν

)1/q

≤ Cµ(B0)
1
q−

1
p r

t−1
t + s

p−
s
q

0 M1/q

(∫
B0

((Lip u)t)p/tdµ

)1/p

.

6 Borderline cases

Here we prove some results in the borderline case p = s. First, a version
of Adams type inequality for Riesz potential is considered. Here we are only
able to prove a weak-type local inequality for the Riesz potential; it would be
interesting to know if a strong-type inequality can be achieved.

Theorem 6.1. Let (X, d, µ) be a metric measure space, where µ is a doubling
Radon measure. Let B0 = B(x0, r0) ⊂ X and suppose that ν is a Radon measure
in B0 with

(22) ν(B(x, r)) ≤ M
(

log
r0

r

) 1−s
s q

,

for all balls B(x, r) ⊂ X such that x ∈ 2B0 and r < r0/2. Here 1 < s < q < ∞
and M is a positive constant. Then

tν({x ∈ B0 : I1,B0(|f |)(x) > t})1/q ≤ Cr0µ(B0)−1/sM
1
q

(∫
B0

|f |sdµ

)1/s

,

for all t > 0 and all f ∈ Ls(B0, µ), where C = C(s, q, Cd) is a positive constant.

Proof. We use the same techniques here as in the proof of Theorem 4.1, but we
need a different approach to obtain some estimates. For t > 0, let At = {x ∈
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B0 : I1,B0(|f |)(x) > t} and νt = ν|At
. We may assume that ν(At) > 0. By the

estimate (15) and by the Hölder inequality

tν(At) ≤ Cd

∫
B0

I1,B0(νt)(x)|f(x)| dµ(x)

≤ Cd||f ||s
(∫

B0

I1,B0(νt)s′dµ

)1/s′

≤ Cd||f ||s
(∫

4B0

Î3r0(νt)s′dµ

)1/s′

,

(23)

where Î3r0 is the local Riesz potential as in Lemma 3.4. We shall apply Lemma
3.4 to estimate the norm of Î3r0 . First, for each x ∈ 4B0 and 0 < r < 5r0,

νt(B(x, r))
µ(B(x, r))1−1/s

≤ C

(∫ 2r

r

[
νt(B(x, ξ))

µ(B(x, ξ))1−1/s

]s′
dξ

ξ

)1/s′

≤ C

(∫ 10r0

0

[
νt(B(x, ξ))

µ(B(x, ξ))1−1/s

]s′
dξ

ξ

)1/s′

.

Thus

M1(νt)(x) ≤ C

(∫ 10r0

0

[
νt(B(x, r))

µ(B(x, r))1−1/s

]s′
dr

r

)1/s′

,

where M1 is the fractional maximal operator as in Lemma 3.4. Now by Lemma
3.4,

(24)
∫

4B0

Î3r0(νt)s′dµ ≤ Crs′

0 µ(B0)1−s′
∫

4B0

∫ 10r0

0

νt(B(x, r))s′

µ(B(x, r))
dr

r
dµ(x).

We now divide integration with respect to r into two parts. Let R1 be any
number with 0 < R1 ≤ r0/2, to be fixed later. We estimate integrals on the
right hand side of (24) in the following way. First, to estimate the integral with
respect to r from 0 to R1, we use the growth condition of ν, Fubini’s theorem
and (18), to get∫

4B0

∫ R1

0

νt(B(x, r))s′

µ(B(x, r))
dr

r
dµ(x)

≤
∫ R1

0

Ms′−1
(

log
r0

r

)−q/s

r−1

∫
4B0

νt(B(x, r))
µ(B(x, r))

dµ(x) dr

≤ CMs′−1ν(At)
∫ R1

0

r−1
(

log
r0

r

)−q/s

dr

≤ CMs′−1ν(At)
(

log
r0

R1

)1−q/s

.

(25)

Second, we get the estimate for the remaining part of the integral in (24) by
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(18), as follows∫
4B0

∫ 10r0

R1

νt(B(x, r))s′

µ(B(x, r))
dr

r
dµ(x)

≤
∫ 10r0

R1

ν(At)s′−1r−1

∫
4B0

νt(B(x, r))
µ(B(x, r))

dµ(x) dr

≤ Cν(At)s′
∫ 10r0

R1

r−1 dr

≤ Cν(At)s′ log
r0

R1
.

(26)

Now from (24), we get by (25) and (26) that∫
4B0

Î3r0(νt)s′dµ ≤ Crs′

0 µ(B0)1−s′

[
Ms′−1ν(At)

(
log

r0

R1

)1−q/s

+ν(At)s′ log
r0

R1

]
.

Now, we choose 0 < R1 ≤ r0/2 such that

log
r0

R1
=
(

M

ν(At)

)s′/q

.

This is always possible, if M ≥ (log 2)q/s′ν(B0), which we may assume. Indeed,
(22) shows that M ≥ cν(B0) for some constant c > 0, independent of ν and B0.
Thus, multiplying M by a constant, we may assume that M ≥ (log 2)q/s′ν(B0).

Therefore we arrive at∫
4B0

Î3r0(νt)s′dµ ≤ Crs′

0 µ(B0)1−s′Ms′/qν(At)s′(1−1/q).

Now by the estimate above and (23), we obtain that

tν(At)1/q ≤ Cr0µ(B0)−1/sM1/q||f ||s.

This completes the proof of the Theorem.

Next we obtain the following Adams inequality for Lipschitz functions when
p = s.

Theorem 6.2. Let (X, d, µ) be a complete metric measure space such that it
supports weak (1, 1)-Poincaré inequality and µ is a doubling Radon measure. Let
B0 = B(x0, r0) ⊂ X such that r0 < diam X/10 and suppose that ν is a Radon
measure in B0 with

ν(B(x, r)) ≤ M
(

log
r0

r

) 1−s
s q

,

for all balls B(x, r) ⊂ X such that x ∈ 2B0 and r < r0/2. Here 1 < s < q < ∞
and M is a positive constant. Then(∫

B0

|u|qdν

)1/q

≤ Cr0µ(B0)−1/sM1/q

(∫
B0

(Lip u)sdµ

)1/s

,

for all u ∈ Lip0(B0), where C = C(q, s, Cd, Cp, τ) > 0 is a constant.
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Proof. By Remark 3.3 and Theorem 6.1

ν({x ∈ B0 :|u(x)| > t})tq

≤ Ĉqν({x ∈ B0 : I1,B0(Lip u)(x) > t/Ĉ})(t/Ĉ)q

≤ CA

(∫
B0

(Lip u)sdµ

)q/s

,

(27)

where A = rq
0µ(B0)−q/sM and Ĉ is a constant from Remark 3.3. We may

assume that u ≥ 0, since positive and negative parts of u can be estimated
separately in the following way. We use a truncation argument to prove a
strong-type inequality from the weak-type inequality above. By the truncation
property, see [HaK, Chapter 2], for every 0 < t1 < t2 < ∞ the weak Poincaré
inequality holds for the pair ut2

t1 , (Lip u)χ{t1<u≤t2}, where ut2
t1 = min{max{0, u−

t1}, t2 − t1} and χE is the characteristic function of the set E. Thus (27) also
holds for this pair. Now∫

B0

uq dν ≤
∞∑

k=−∞

2kqν({u ≥ 2k−1})

=
∞∑

k=−∞

2kqν({u2k−1

2k−2 ≥ 2k−2})

≤ CA

∞∑
k=−∞

(∫
B0

(Lip u)sχ{2k−2≤u<2k−1}dµ

)q/s

≤ CA

( ∞∑
k=−∞

∫
B0

(Lip u)sχ{2k−2≤u<2k−1}dµ

)q/s

≤ CA

(∫
B0

(Lip u)sdµ

)q/s

,

where in the second to the last step we used the inequality q/s ≥ 1.
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Box 35 (MaD), Fin-40014 University of Jyväskylä, Finland.
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