MAPPINGS OF FINITE DISTORTION: FORMATION
OF CUSPS III

PEKKA KOSKELA AND JUHANI TAKKINEN

ABSTRACT. We give sharp integrability conditions on the distor-
tion of a planar homeomorphism that maps a standard cusp onto
the unit disk.

1. INTRODUCTION

In this paper, we consider homeomorphisms f: R? — R? so that
f e WH (R R?), Jp(z) > 0 almost everywhere and D f(z) = 0 almost
everywhere in the zero set of the Jacobian determinant Jy of f. It then

immediately follows that

[Df(2)[* < K(x)Jy(x)

almost everywhere, where 1 < K(z) < oco. The optimal such a func-
tion K is given by setting K;(x) = 1 when Jy(x) = 0 or when D f(z)
does not exist and by letting K;(z) = |Df(x)|?/J;(z) otherwise. We
then say that f is a homeomorphism of finite distortion and call the
above optimal function Ky the distortion function of f. Since the Ja-
cobian determinant of any homeomorphism f € W,"! (R?; R?) is locally
integrable (cf. [6, 8]), we deduce that the class of homeomorphisms
of bounded distortion coincides with the class of quasiconformal map-
pings. For the basic properties of these mappings see [1, 2, 5, 6, 8]. The
purpose of this paper is to continue our efforts [7, 9] to understand the
geometry of the image of the unit disk under a homeomorphism with
a nicely integrable distortion function.

Recall that a Jordan domain €2 is a quasidisk if Q@ = f(B(0,1)) for
some quasiconformal mapping f: R? — R2. Quasidisks have a geo-
metric characterization in terms of the so-called three point condition
that fails for example if the boundary of ) contains a cusp. This is in
particular the case for our model domains

(1) Qo={(z1,1) ER*:0 <1 <1, |1o] < :L’1+S} U B(xs,7s),
where s > 0, z, = (s+2,0) and ry = /(s + 1)? . Based on our pre-

vious work [7, 9] we know essentlally sharp (exponentlal integrability)
conditions on the distortion function under which €2, can arise as the
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image of the unit disk B := B(0,1) under a homeomorphism of finite
distortion.

Notice that the inverse of a quasiconformal mapping is also quasi-
conformal. Thus €2, cannot be the image of B under a homeomorphism
whose inverse is quasiconformal. By a recent result from [4], the in-
verse of a homeomorphism of finite distortion is also of finite distortion.
However, even when exp(AK7) is locally integrable, one only has that
K;i’ll is locally integrable. By requiring yet higher integrability from
K one could guarantee that Ky-1 be exponentially integrable and thus
apply the known results to rule out €25 as the image under a mapping
of finite distortion under a non-trivial bound on the distortion of the
inverse mapping. Our first result gives a much better conclusion.

Theorem 1. Let f: R?> — R? be a homeomorphism of finite distortion
such that Kp-1 € LY (R?) for some 1 < p < oo. If f(B) = Q, for

some s > 0, then necessarily s < 4/(p — 1). If, in addition, f is
assumed to be quasiconformal on B, then s < 2/p.

Our second result shows that the second conclusion in Theorem 1 is
optimal and that also the first conclusion is rather optimal.

Theorem 2. For s > 0 given, there exists a homeomorphism of finite
distortion, f: R? — R?, with f(B) = s, such that K;- € LI (R?)

loc

for all p < 2/s + 1. If one only requires that K;-» € LY (R?) for all
p < 2/s, then f can be made quasiconformal on B.

For the proof of Theorem 1 we establish the following modulus of
continuity estimate that we expect to be of independent interest. The
optimality of the exponent p/2 below can be seen by considering the
radial mapping f(z) = z|z| " log™((1 + |z|)/|x]).

Theorem 3. Let f: R? — R? a homeomorphism of finite distortion.
If Kp-1 € LY (R?) for some 1 < p < oo, then for all |v —y| < 1/2

Cp, || Kyl ()
2 xr) — P )
2) 17(0) - g0y < S e

where G = f(B(z,1)).

We give the necessary definitions in Section 2 below and prove the
above theorems in Section 3.

2. DEFINITIONS AND PRELIMINARIES

We denote by B(x,r) the open disk of radius r > 0 centered at
r € R? and write B := B(0, 1) for the unit disk. The boundary of a
set A is denoted by 0A and the closure by A.

Let  C R? be a domain, i.e. a connected and open subset of R?. We
say that a homeomorphism f: Q — f(Q) C R? has finite distortion if
the following conditions are satisfied:
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1. f e Wh(R?)

2. |Df(x)]* < K(x)Js(x) ae. 2 €Q
for some measurable function K(x) > 1 which is finite almost every-
where. The optimal such a function Ky(x) is referred to as the distor-
tion (function) of f and the phrase exponentially integrable distortion
means that exp(AK;) € Li..(Q) for some A > 0.

Above Df(x) denotes the differential matrix of f at the point x

(which for f € W1 (Q; R?) exists a.e.) and J;(z) := det Df(z) is the

Jacobian. The norm of D f(x) is defined as
|Df(z)| := max{|Df(x)e| : e € R?, |e| = 1}.

Let E be a compact set in a domain G C R%. The p-capacity of the
pair (G, E) is defined to be

cap, (G, F) = inf { /G \Vu(z)]Pdz : u e C(G)NW, ' (G),

such that © > 1 on E}

For s > 0 our model cusp domains Q, C R? are defined as in (1). The
parameter s determines the degree of the cusp, and omitting the origin
(tip of the cusp) the boundary of €2, is smooth. As already noted, €2
is not a quasidisk, because the three point condition fails (only) at the
tip of the cusp.

Next lemma provides a capacity -type estimate which is to be used
in the proof of Theorem 3.

Lemma 1. Let G C R? be a bounded domain and E C G a continuum.
Suppose that u € Wy (G) is continuous and u > 1 on E. Then

3) [ 1vul? = Co)ciam By
G
forall1 <p<2.

Proof. First we extend u as zero to R?\ G and denote also this extension
by u. Pick xy € E such that S(zg,7) N E # 0 for all d/2 < r <
d := diam E. Suppose first that u(z) > 1/2 on S(zg,7) for some
d/2 <1y < d and pick R > ry such that G C B(z, R). Notice, that

. 2u(z) when |z — 2| > 79
u(r) =
max{1,2u(z)} when |z —zo| < 1o

is a suitable test function for cap,(B(zo, R), B(zo, 7)) and [Vi|/2 <
|Vu| almost everywhere. As
cap, (B(zo, R), B(xo,70)) = 2770

and

cap,(B(zo, R), B(zo,70)) = Co(p)(r§ " — Rr=1)'77 > Co(p)ry ?
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for 1 < p <2 (cf. [6]), we readily obtain the desired estimate
[ 1Vul? = 27 cap, (Blao, R). Blro. ) = Cloyi ™ = Clo).
a

We may thus assume that, for each d/2 < r < d, thereis y € S(xg,r)
with u(y) < 1/2. Then, for almost every d/2 <r <d

y2s [ wazen T ([ var)
S(zo,r) S(zo,r)
and so by Fubini

d d
dr
P> P dw dr > —  —(C(p)d*P
/G|VU| N /d/2 /S(:Jco,r) |VU(x)| = /d/2 2P(271—7=)p*1 (p) 7

which proves the claim. O

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. To simplify calculations, we may assume that
f((1,0)) = (0,0). Let 0 < h < 1/2 and define
E' = {(x1,25) € 00 : h <21 <1/2, 29 > 0}
F'i={(x1,19) € 00 : h < 1 <1/2, 29 < 0},
so that dist(E', F') = 2h'**. Set F := f~Y(E') and F := f~1(F"),
which will be separate continua and subsets of 9B because f~! is a
homeomorphism (see Figure 1). Furthermore, as (0,0) ¢ E'UF", it will
be that (1,0) ¢ E'U F. Set h := min{dist((1,0), £), dist((1,0), F') and
Cp = Sdist (F71((1/2,1/2M9)), F71((1/2,—1/2"%))). Now, C; > 0
and by taking h small enough in the beginning, we may assume that
0 < h < 1/2. Notice also that C'y does not depend on h or h.

F
. fadi /s
(204 B o » % Q.
‘- 2
/ :

FIGURE 1. The setting in the proof of Theorem 1

Let
@ )= {U(Of\:c ~(1,0)]) for |z - <1,o>l

IN V
o>

1/(Ch) for |z — (1,0)
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and define v(z) = inf f% pds, where the infimum is taken over all
rectifiable paths v, in B joining z € B to E. One easily observes that

v(z) =0forallz € F and v(z) > 1 for all x € F. Moreover, as Vv = p
in B, we easily obtain an upper estimate for f B |Vv|? by computing

1 - -
Vv2§0_2w+/ —— ) < Ctlog(1/h).
/Bl | J < B\B((1,0),h) |z — (170)‘2> slog(1/h)

Let ¢ = 2p/(p + 1) and set u = vo f~!, so that now u € WhH(Q,)
with u =0 on E' and w > 1 on F’. Thus for almost every t € [h,1/2]

we have
t1+s t1+s

6) 1< /_tm Vu(t,y)|dy < (/_tm |Vu(t, y)]qdy>;( $lHe)

In the case of (s +1)(¢ — 1) < 1 we readily obtain s < 2/(p — 1) and
are done. Thus we may assume that (s+1)(¢—1) > 1. In this case (6)
implies via Fubini that

21—q
(1) |Vu|q>/ 2 s

@D Y = perDe D1

On the other hand, by applying the distortion inequality and the
Holder’s inequality, we obtain the upper estimate

®) / Vult < / Fo(f LoD

< [ [Vo(FhIL

Qs

</ s ) ([ 1)
< C(f 1K 1] pe(e, )log (1/h).

Here the last inequality follows from a change of variable (cf. [6], The-
orem 6.3.2), the estimate (5) and the fact that ¢/(2 — ¢) = p.

By applying the modulus of continuity estimate (2) to (7) and com-
bining the result with (8), we obtain the estimate

Oy log3(+D@=D-1(1 /1) < Oy log? (1/).

By substituting ¢ = 2p/(p+1), and observing that this inequality must
hold for all small h, we readily have

P 2p j%
c 1(——1)—1 g —
2((SJr )p+1 )—p+1

which, when solving for s, implies that s < 4/(p — 1).
If f is assumed to be quasiconformal on B, we can take ¢ = 2, and

have the lower bound
NCE =
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and the upper bound

/ﬂ VUl < / Ve FIDS T < / V(I

< HKf—lHLooms)/BIW\Q < O(f, 1K 1 llz=(0,)) log(1/).

By applying the modulus of continuity to the lower bound and combin-
ing the result with the upper bound, one arrives via similar reasoning
as in the first part of the proof to the inequality s(p/2) < 1, which
proves the last part of the claim. O

Proof of Theorem 2. First we consider the case when f is not required
to be quasiconformal on B. Set Q = {(z,y) € R* : |z| < 1 and |y| <
1}, QT =0Qn{(z,y) eR?*: 2 >0} and Q~ = QN{(z,y) e R? : x < 0},
and define

(2, y™) if (z,9) € QT \ Q..

This gives a homeomorphic self map on Q* such that the set {(z,y) €
Q" : |yl = 21} = QT N OQ maps to the set {(z,y) € QT : |y| = =},
and the mapping is identity on 0Q™\{(z,y) e R?* : 2 =0, —1 <y < 1}.
Next we define a mapping H: R? — R? by setting

he,y) = {(x,ym if (r,y) € Q" N,

h(z,y) if (z,y) € @F
H(z,y)=q (TohoT)(z,y) if (v,y) € @~
(z,9) if (z,y) € R?\ Q,

where T: R? — R? is the reflection with respect to the y-axis, i.e.
(x,y) — (—x,y). It is easily seen that H is homeomorphic and that
it “opens” the only zero angle of 0€); that resides at the origin. Be-
cause H(Q,) will clearly be a quasidisk, there exists a quasiconformal
mapping b: R? — R? with b(H(Q,)) = B.

Next we will show that the composition b o H: R? — R2? that is
clearly homeomorphic, is also a mapping of finite distortion. The de-
sired mapping f will then be the inverse of b o H as Theorem 3.3.
in [4] states that the inverse of a homeomorphism of finite distor-
tion is also of finite distortion. As we are interested on the local LP-
integrability of K.y, we only need to consider Ky as we can take
Kpon(x) = Ky(H(2))Kg(z), where K} is bounded.

On the set R? \ @ the distortion of H is evidently bounded, and
because of the symmetry, we only need to consider the set Q1. As the
differential matrices of H in QT N Q, and QT \ Q, are

1 0 q 1 0
_Syxfsfl T8 an 0 1_;3/—5/(14'5) )
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respectively, we observe that Ky (z,y) < 1/2% when (z,y) € QT N Q
and Kg(x,y) < 1/y~0+%) when (z,y) € Q*\ Q. Next, by computing

1 pxlts 1
/ K% = / / P dydr = / 21T 7P8 g
QTN 0 —glts 0
1 1 1
/ K% = / / y P OFS) dy dr < / TIPS
QT\Qs 0 rlts 0

we see that Ky € It (R*)if 1+s—ps>—1,1e.p<2/s+ 1.

Next we consider the situation when f is quasiconformal on B. Here
we refer to the mapping constructed in [7] in the proof of Theorem 1.
For a given s > 0, a homeomorphism f: R? — R? of finite distortion
is constructed which maps B to €2, and is quasiconformal on B. The
point a := (—1,0) € 0B maps to the tip of the cusp (0,0) € 9. Also,
for some 0 < rg < 1 the distortion is bounded outside B(a, () and in

B(a,ry) we have that
(9) Ky(x) < log(2/|z — al).
Moreover, this specific mapping satisfies

|f(z)] < Clog™"/*(2/ | — a|),
for all 0 < |z —a| < 1 so that
(10) [f7H () = al = 2exp™! (Cly[ ™),

when |y| is small.

As f is a homeomorphism, we may choose 0 < r < 1 such that
f~YB(0,7") C B(a,r0). Now, by applying (9) and (10) and using the
fact that Kp-1(y) = K (f*(y)) (cf. [4], proof of Theorem 1.6, and [3],
Corollary 2.2) we may estimate fB(07r,) K}’?_l by computing

K? [(y)dy = K2(f~Yy)) d
/B(wa) Ta(y) dy / (T (y)dy

B(0,r")
<C / log? (#> dy
= B(0,) [~ (y) — q

dy
< Cz/ .
B [Y[PS

As the last integral is finite when ps < 2, i.e. p < 2/s, the claim is
proven. U

and

Proof of Theorem 3. Set q := 2p/(1 + p) so that 1 < ¢ < 2. Let z,
y € R? be such that y € B(x,1/2) and set F' C B(x,1) := B’ to be the
line segment between these points. Denote G := f(B’) and E := f(F).
Now, Lemma 1 readily implies that

(11) cap,(G, E) > C(q)(diam E£)*~ > C(q)|f(z) — f(y)[*.
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Let u be a Lipschitz continuous test function for cap,(B’, F') and define
v =wo f~!, which will give a test function for cap,(G, E). By applying
the distortion inequality, Holders inequality and a change of variable,
we arrive at the estimate

cap, (G, E) /|Vv|q</|Vu D Dfe
< [ 1vutrpa " K

(/ wul?) " /Kq/(“ "
B/

By approximating an arbitrary test function @ for cap,(B’, F') by Lip-
schitz continuous test functions, we obtain

2
(12) cap, (G, E) < [capy(B', F) - [|K 1| porc-oge)

By combining (11) and (12), and using the standard capacity estimate
capy(B', F) < 27 log™!(diam B’/ diam F) for the pair (B, F), we con-
clude that

C@)f(@) = F)P7 < (2rlog™ (1|2 = y) 1K1 [ pare-oe) "

which proves (2) as p = ¢/(2 — q). O
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