
MAPPINGS OF FINITE DISTORTION: FORMATION

OF CUSPS III

PEKKA KOSKELA AND JUHANI TAKKINEN

Abstract. We give sharp integrability conditions on the distor-
tion of a planar homeomorphism that maps a standard cusp onto
the unit disk.

1. Introduction

In this paper, we consider homeomorphisms f : R
2 → R

2 so that
f ∈ W 1,1

loc (R2; R2), Jf (x) ≥ 0 almost everywhere and Df(x) = 0 almost
everywhere in the zero set of the Jacobian determinant Jf of f . It then
immediately follows that

|Df(x)|2 ≤ K(x)Jf (x)

almost everywhere, where 1 ≤ K(x) < ∞. The optimal such a func-
tion Kf is given by setting Kf (x) = 1 when Jf (x) = 0 or when Df(x)
does not exist and by letting Kf (x) = |Df(x)|2/Jf (x) otherwise. We
then say that f is a homeomorphism of finite distortion and call the
above optimal function Kf the distortion function of f . Since the Ja-

cobian determinant of any homeomorphism f ∈ W 1,1
loc (R2; R2) is locally

integrable (cf. [6, 8]), we deduce that the class of homeomorphisms
of bounded distortion coincides with the class of quasiconformal map-
pings. For the basic properties of these mappings see [1, 2, 5, 6, 8]. The
purpose of this paper is to continue our efforts [7, 9] to understand the
geometry of the image of the unit disk under a homeomorphism with
a nicely integrable distortion function.

Recall that a Jordan domain Ω is a quasidisk if Ω = f(B(0, 1)) for
some quasiconformal mapping f : R

2 → R
2. Quasidisks have a geo-

metric characterization in terms of the so-called three point condition
that fails for example if the boundary of Ω contains a cusp. This is in
particular the case for our model domains

(1) Ωs = {(x1, x2) ∈ R
2 : 0 < x1 < 1, |x2| < x1+s

1 } ∪ B(xs, rs),

where s > 0, xs = (s+2, 0) and rs =
√

(s + 1)2 + 1. Based on our pre-
vious work [7, 9] we know essentially sharp (exponential integrability)
conditions on the distortion function under which Ωs can arise as the
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image of the unit disk B := B(0, 1) under a homeomorphism of finite
distortion.

Notice that the inverse of a quasiconformal mapping is also quasi-
conformal. Thus Ωs cannot be the image of B under a homeomorphism
whose inverse is quasiconformal. By a recent result from [4], the in-
verse of a homeomorphism of finite distortion is also of finite distortion.
However, even when exp(λKf ) is locally integrable, one only has that
Kcλ

f−1 is locally integrable. By requiring yet higher integrability from
Kf one could guarantee that Kf−1 be exponentially integrable and thus
apply the known results to rule out Ωs as the image under a mapping
of finite distortion under a non-trivial bound on the distortion of the
inverse mapping. Our first result gives a much better conclusion.

Theorem 1. Let f : R
2 → R

2 be a homeomorphism of finite distortion

such that Kf−1 ∈ Lp
loc(R

2) for some 1 ≤ p < ∞. If f(B) = Ωs for

some s > 0, then necessarily s ≤ 4/(p − 1). If, in addition, f is

assumed to be quasiconformal on B, then s ≤ 2/p.

Our second result shows that the second conclusion in Theorem 1 is
optimal and that also the first conclusion is rather optimal.

Theorem 2. For s > 0 given, there exists a homeomorphism of finite

distortion, f : R
2 → R

2, with f(B) = Ωs, such that Kf−1 ∈ Lp
loc(R

2)
for all p < 2/s + 1. If one only requires that Kf−1 ∈ Lp

loc(R
2) for all

p < 2/s, then f can be made quasiconformal on B.

For the proof of Theorem 1 we establish the following modulus of
continuity estimate that we expect to be of independent interest. The
optimality of the exponent p/2 below can be seen by considering the
radial mapping f(x) = x|x|−1 log−q((1 + |x|)/|x|).

Theorem 3. Let f : R
2 → R

2 a homeomorphism of finite distortion.

If Kf−1 ∈ Lp
loc(R

2) for some 1 ≤ p < ∞, then for all |x − y| < 1/2

(2) |f(x) − f(y)| ≤
C(p, ‖Kf−1‖Lp(G))

log
p
2 (1/|x − y|)

,

where G = f(B(x, 1)).

We give the necessary definitions in Section 2 below and prove the
above theorems in Section 3.

2. Definitions and preliminaries

We denote by B(x, r) the open disk of radius r > 0 centered at
x ∈ R

2 and write B := B(0, 1) for the unit disk. The boundary of a
set A is denoted by ∂A and the closure by A.

Let Ω ⊂ R
2 be a domain, i.e. a connected and open subset of R

2. We
say that a homeomorphism f : Ω → f(Ω) ⊂ R

2 has finite distortion if
the following conditions are satisfied:
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1. f ∈ W 1,1
loc (Ω; R2)

2. |Df(x)|2 ≤ K(x)Jf (x) a.e. x ∈ Ω

for some measurable function K(x) ≥ 1 which is finite almost every-
where. The optimal such a function Kf (x) is referred to as the distor-
tion (function) of f and the phrase exponentially integrable distortion

means that exp(λKf ) ∈ L1
loc(Ω) for some λ > 0.

Above Df(x) denotes the differential matrix of f at the point x
(which for f ∈ W 1,1

loc (Ω; R2) exists a.e.) and Jf (x) := det Df(x) is the
Jacobian. The norm of Df(x) is defined as

|Df(x)| := max{|Df(x)e| : e ∈ R
2, |e| = 1}.

Let E be a compact set in a domain G ⊂ R
2. The p-capacity of the

pair (G,E) is defined to be

capp(G,E) = inf
{

∫

G

|∇u(x)|p dx : u ∈ C(G) ∩ W 1,1
0 (G),

such that u ≥ 1 on E
}

.

For s > 0 our model cusp domains Ωs ⊂ R
2 are defined as in (1). The

parameter s determines the degree of the cusp, and omitting the origin
(tip of the cusp) the boundary of Ωs is smooth. As already noted, Ωs

is not a quasidisk, because the three point condition fails (only) at the
tip of the cusp.

Next lemma provides a capacity -type estimate which is to be used
in the proof of Theorem 3.

Lemma 1. Let G ⊂ R
2 be a bounded domain and E ⊂ G a continuum.

Suppose that u ∈ W 1,1
0 (G) is continuous and u ≥ 1 on E. Then

(3)

∫

G

|∇u|p ≥ C(p)(diam E)2−p,

for all 1 ≤ p < 2.

Proof. First we extend u as zero to R
2\G and denote also this extension

by u. Pick x0 ∈ E such that S(x0, r) ∩ E 6= ∅ for all d/2 ≤ r ≤
d := diam E. Suppose first that u(x) ≥ 1/2 on S(x0, r0) for some
d/2 ≤ r0 ≤ d and pick R ≥ r0 such that G ⊂ B(x0, R). Notice, that

ũ(x) =

{

2u(x) when |x − x0| ≥ r0

max{1, 2u(x)} when |x − x0| < r0

is a suitable test function for capp(B(x0, R), B(x0, r0)) and |∇ũ|/2 ≤
|∇u| almost everywhere. As

cap1(B(x0, R), B(x0, r0)) = 2πr0

and

capp(B(x0, R), B(x0, r0)) = C0(p)(r
p−2
p−1

0 − R
p−2
p−1 )1−p ≥ C̃0(p)r2−p

0
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for 1 < p < 2 (cf. [6]), we readily obtain the desired estimate
∫

G

|∇u|p ≥ 2−p capp(B(x0, R), B(x0, r0)) ≥ C(p)r2−p
0 ≥ C̃(p)d2−p.

We may thus assume that, for each d/2 ≤ r ≤ d, there is y ∈ S(x0, r)
with u(y) ≤ 1/2. Then, for almost every d/2 ≤ r ≤ d

1/2 ≤

∫

S(x0,r)

|∇u| ≤ (2πr)
p−1

p

(

∫

S(x0,r)

|∇u|p
)

1
p

and so by Fubini
∫

G

|∇u|p ≥

∫ d

d/2

∫

S(x0,r)

|∇u(x)|p dω dr ≥

∫ d

d/2

dr

2p(2πr)p−1
= C(p)d2−p,

which proves the claim. �

3. Proofs of the Theorems

Proof of Theorem 1. To simplify calculations, we may assume that
f((1, 0)) = (0, 0). Let 0 < h < 1/2 and define

E ′ := {(x1, x2) ∈ ∂Ωs : h ≤ x1 ≤ 1/2, x2 > 0}

F ′ := {(x1, x2) ∈ ∂Ωs : h ≤ x1 ≤ 1/2, x2 < 0},

so that dist(E ′, F ′) = 2h1+s. Set E := f−1(E ′) and F := f−1(F ′),
which will be separate continua and subsets of ∂B because f−1 is a
homeomorphism (see Figure 1). Furthermore, as (0, 0) /∈ E ′∪F ′, it will

be that (1, 0) /∈ E ∪ F . Set h̃ := min{dist((1, 0), E), dist((1, 0), F ) and
Cf := 1

2
dist

(

f−1((1/2, 1/21+s)), f−1((1/2,−1/21+s))
)

. Now, Cf > 0
and by taking h small enough in the beginning, we may assume that
0 < h̃ < 1/2. Notice also that Cf does not depend on h or h̃.

E′

F ′

F

E

h

h̃B
2Cf Ωs

f

Figure 1. The setting in the proof of Theorem 1

Let

(4) ρ(x) =

{

1/
(

Cf |x − (1, 0)|
)

for |x − (1, 0)| > h̃

1/(Cf h̃) for |x − (1, 0)| ≤ h̃
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and define v(x) = inf
∫

γx
ρ ds, where the infimum is taken over all

rectifiable paths γx in B joining x ∈ B to E. One easily observes that
v(x) = 0 for all x ∈ E and v(x) ≥ 1 for all x ∈ F . Moreover, as ∇v = ρ
in B, we easily obtain an upper estimate for

∫

B
|∇v|2 by computing

∫

B

|∇v|2 ≤ C−2
f

(

π +

∫

B\B((1,0),h̃)

1

|x − (1, 0)|2

)

≤ C̃f log(1/h̃).(5)

Let q = 2p/(p + 1) and set u = v ◦ f−1, so that now u ∈ W 1,1(Ωs)
with u = 0 on E ′ and u ≥ 1 on F ′. Thus for almost every t ∈ [h, 1/2]
we have

(6) 1 ≤

∫ t1+s

−t1+s

|∇u(t, y)| dy ≤
(

∫ t1+s

−t1+s

|∇u(t, y)|q dy
)

1
q
(2t1+s)

q−1
q .

In the case of (s + 1)(q − 1) ≤ 1 we readily obtain s ≤ 2/(p − 1) and
are done. Thus we may assume that (s+1)(q−1) > 1. In this case (6)
implies via Fubini that

(7)

∫

Ωs

|∇u|q ≥

∫ 1

h

21−q

t(1+s)(q−1)
dt ≥

C0

h(s+1)(q−1)−1
.

On the other hand, by applying the distortion inequality and the
Hölder’s inequality, we obtain the upper estimate

∫

Ωs

|∇u|q ≤

∫

Ωs

|∇v(f−1)|q|Df−1|q(8)

≤

∫

Ωs

|∇v(f−1)|qJ
q
2

f−1K
q
2

f−1

≤
(

∫

Ωs

|∇v(f−1)|2Jf−1

)
q
2
(

∫

Ωs

[Kf−1 ]
q

2−q

)
2−q
2

≤ C(f, ||Kf−1||Lp(Ωs)) log
q
2 (1/h̃).

Here the last inequality follows from a change of variable (cf. [6], The-
orem 6.3.2), the estimate (5) and the fact that q/(2 − q) = p.

By applying the modulus of continuity estimate (2) to (7) and com-
bining the result with (8), we obtain the estimate

C1 log
p
2
((s+1)(q−1)−1)(1/h̃) ≤ C2 log

q
2 (1/h̃).

By substituting q = 2p/(p+1), and observing that this inequality must

hold for all small h̃, we readily have

p

2

(

(s + 1)
( 2p

p + 1
− 1

)

− 1
)

≤
p

p + 1
,

which, when solving for s, implies that s ≤ 4/(p − 1).
If f is assumed to be quasiconformal on B, we can take q = 2, and

have the lower bound
∫

Ωs

|∇u|2 ≥
C0

hs
,
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and the upper bound
∫

Ωs

|∇u|2 ≤

∫

Ωs

|∇v(f−1)|2|Df−1|2 ≤

∫

Ωs

|∇v(f−1)|2Jf−1Kf−1

≤ ‖Kf−1‖L∞(Ωs)

∫

B

|∇v|2 ≤ C(f, ||Kf−1||L∞(Ωs)) log(1/h̃).

By applying the modulus of continuity to the lower bound and combin-
ing the result with the upper bound, one arrives via similar reasoning
as in the first part of the proof to the inequality s(p/2) ≤ 1, which
proves the last part of the claim. �

Proof of Theorem 2. First we consider the case when f is not required
to be quasiconformal on B. Set Q = {(x, y) ∈ R

2 : |x| ≤ 1 and |y| ≤
1}, Q+ = Q∩{(x, y) ∈ R

2 : x ≥ 0} and Q− = Q∩{(x, y) ∈ R
2 : x < 0},

and define

h(x, y) =

{

(x, yx−s) if (x, y) ∈ Q+ ∩ Ωs,

(x, y
1

1+s ) if (x, y) ∈ Q+ \ Ωs.

This gives a homeomorphic self map on Q+ such that the set {(x, y) ∈
Q+ : |y| = x1+s} = Q+ ∩ ∂Ωs maps to the set {(x, y) ∈ Q+ : |y| = x},
and the mapping is identity on ∂Q+\{(x, y) ∈ R

2 : x = 0, −1 < y < 1}.
Next we define a mapping H : R

2 → R
2 by setting

H(x, y) =











h(x, y) if (x, y) ∈ Q+

(T ◦ h ◦ T )(x, y) if (x, y) ∈ Q−

(x, y) if (x, y) ∈ R
2 \ Q,

where T : R
2 → R

2 is the reflection with respect to the y-axis, i.e.
(x, y) 7→ (−x, y). It is easily seen that H is homeomorphic and that
it “opens” the only zero angle of ∂Ωs that resides at the origin. Be-
cause H(Ωs) will clearly be a quasidisk, there exists a quasiconformal
mapping b : R

2 → R
2 with b(H(Ωs)) = B.

Next we will show that the composition b ◦ H : R
2 → R

2, that is
clearly homeomorphic, is also a mapping of finite distortion. The de-
sired mapping f will then be the inverse of b ◦ H as Theorem 3.3.
in [4] states that the inverse of a homeomorphism of finite distor-
tion is also of finite distortion. As we are interested on the local Lp-
integrability of Kb◦H , we only need to consider KH as we can take
Kb◦H(x) = Kb(H(x))KH(x), where Kb is bounded.

On the set R
2 \ Q the distortion of H is evidently bounded, and

because of the symmetry, we only need to consider the set Q+. As the
differential matrices of H in Q+ ∩ Ωs and Q+ \ Ωs are

[

1 0
−syx−s−1 x−s

]

and

[

1 0
0 1

1+s
y−s/(1+s)

]

,



MAPPINGS OF FINITE DISTORTION: CUSPS III 7

respectively, we observe that KH(x, y) ≍ 1/xs when (x, y) ∈ Q+ ∩ Ωs

and KH(x, y) ≍ 1/y−s/(1+s) when (x, y) ∈ Q+\Ωs. Next, by computing
∫

Q+∩Ωs

Kp
H ≍

∫ 1

0

∫ x1+s

−x1+s

x−ps dy dx =

∫ 1

0

2x1+s−ps dx

and
∫

Q+\Ωs

Kp
H ≍

∫ 1

0

∫ 1

x1+s

y−ps/(1+s) dy dx ≍

∫ 1

0

x1+s−ps dx,

we see that KH ∈ Lp
loc(R

2) if 1 + s − ps > −1, i.e. p < 2/s + 1.
Next we consider the situation when f is quasiconformal on B. Here

we refer to the mapping constructed in [7] in the proof of Theorem 1.
For a given s > 0, a homeomorphism f : R

2 → R
2 of finite distortion

is constructed which maps B to Ωs and is quasiconformal on B. The
point a := (−1, 0) ∈ ∂B maps to the tip of the cusp (0, 0) ∈ ∂Ωs. Also,
for some 0 < r0 < 1 the distortion is bounded outside B(a, r0) and in
B(a, r0) we have that

(9) Kf (x) ≍ log(2/|x − a|).

Moreover, this specific mapping satisfies

|f(x)| ≤ C log−1/s(2/|x − a|),

for all 0 < |x − a| < 1 so that

(10) |f−1(y) − a| ≥ 2 exp−1(C̃|y|−s),

when |y| is small.
As f is a homeomorphism, we may choose 0 < r′ < 1 such that

f−1(B(0, r′)) ⊂ B(a, r0). Now, by applying (9) and (10) and using the
fact that Kf−1(y) = Kf (f

−1(y)) (cf. [4], proof of Theorem 1.6, and [3],
Corollary 2.2) we may estimate

∫

B(0,r′)
Kp

f−1 by computing
∫

B(0,r′)

Kp
f−1(y) dy =

∫

B(0,r′)

Kp
f (f−1(y)) dy

≤ C1

∫

B(0,r′)

logp
( 2

|f−1(y) − a|

)

dy

≤ C2

∫

B(0,r′)

dy

|y|ps
.

As the last integral is finite when ps < 2, i.e. p < 2/s, the claim is
proven. �

Proof of Theorem 3. Set q := 2p/(1 + p) so that 1 ≤ q < 2. Let x,
y ∈ R

2 be such that y ∈ B(x, 1/2) and set F ⊂ B(x, 1) := B′ to be the
line segment between these points. Denote G := f(B′) and E := f(F ).
Now, Lemma 1 readily implies that

(11) capq(G,E) ≥ C(q)(diamE)2−q ≥ C(q)|f(x) − f(y)|2−q.
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Let u be a Lipschitz continuous test function for cap2(B
′, F ) and define

v = u◦f−1, which will give a test function for capq(G,E). By applying
the distortion inequality, Hölders inequality and a change of variable,
we arrive at the estimate

capq(G,E) ≤

∫

G

|∇v|q ≤

∫

G

|∇u(f−1)|q|Df−1|q

≤

∫

G

[

|∇u(f−1)|2Jf−1

]q/2
K

q/2

f−1

≤
(

∫

B′

|∇u|2
)q/2(

∫

G

K
q/(2−q)

f−1

)(2−q)/2

.

By approximating an arbitrary test function ũ for cap2(B
′, F ) by Lip-

schitz continuous test functions, we obtain

(12) capq(G,E) ≤
[

cap2(B
′, F ) · ‖Kf−1‖Lq/(2−q)(G)

]q/2
.

By combining (11) and (12), and using the standard capacity estimate
cap2(B

′, F ) ≤ 2π log−1(diam B′/ diam F ) for the pair (B′, F ), we con-
clude that

C(q)|f(x) − f(y)|2−q ≤
(

2π log−1(1/|x − y|) ‖Kf−1‖Lq/(2−q)(G)

)q/2
,

which proves (2) as p = q/(2 − q). �
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sity of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Fin-
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