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Abstract

Given an injective map τ : D → D between the dyadic inter-
vals of the unit interval [0, 1), we study extrapolation properties of
the induced rearrangement operator of the Haar system IdX ⊗ Tp,τ :
Lp

X,0([0, 1)) → Lp
X([0, 1)), where X is a Banach space and Lp

X,0 the
subspace of mean zero random variables. If X is a UMD-space, then we
prove that the property that IdX ⊗ Tp,τ is an isomorphism for some
1 < p 6= 2 < ∞ extrapolates across the entire scale of Lq

X -spaces with
1 < q < ∞. In contrast, if only IdX ⊗ Tp,τ is bounded and not its in-
verse, then we show that there can only exist one-sided extrapolation
theorems.
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1 Introduction

In vector valued Lp-spaces we study rearrangement operators of the system

{hI/|I|1/p : I ∈ D},

where D denotes the collection of all dyadic intervals included in [0, 1) and
hI is the L∞-normalized Haar function with support I. These rearrangement
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cations of the Academy of Finland.

1



operators are defined by an injective map τ : D → D as extension of

IdX ⊗ Tp,τ :
∑
I∈D

aIhI/|I|1/p →
∑
I∈D

aIhτ(I)/|τ(I)|1/p,

where (aI)I∈D ⊆ X is finitely supported and X is a Banach space. This paper
continues [11] and is related in spirit to [8]. In particular, we are motivated
by extrapolation properties of vector valued martingale transforms, i.e. maps
of type ∑

I∈D

aIhI →
∑
I∈D

cIaIhI (1)

where (aI)I∈D ⊆ X is finitely supported and (cI)I∈D ∈ `∞(D). Extrapolation
theorems for these martingale transforms were widely studied in the literature
and go back, for example, to Maurey [9] and Burkholder-Gundy [6] (see [5]
for a general overview). In our setting these classical theorems state that if
(1) is bounded on Lp

X for some p ∈ (1,∞), then it is bounded on Lq
X for

all q ∈ (1,∞). The significance of those theorems can be already seen in
the scalar valued setting: Since a martingale transform is trivially bounded
on L2, extrapolation yields its boundedness on each of the spaces Lq with
q ∈ (1,∞). The aim of this paper is to analyze the extrapolation properties
of the family IdX ⊗ Tp,τ .

In Section 3 we start by two examples. Example 3.1 shows that the
continuity of a ’typical’ permutation IdX ⊗ Tp,τ already implies that X has
to have the UMD-property. The second example provides a permutation such
that the continuity of IdX ⊗ Tp,τ with p ∈ (1, 2] implies the type p property
of the Banach space X. As a consequence we deduce in Corollary 3.3 that
one does not have an upwards extrapolation: For X = `p and p ∈ (1, 2)
(so that X is, in particular, a UMD-space) there is a permutation τ such that
IdX ⊗ Tp,τ is continues, but IdX ⊗ Tq,τ fails to be continuous for q ∈ (p, 2].

The natural question arises whether we still have a one-sided extrap-
olation meaning that the boundedness of IdX ⊗ Tp,τ implies that one of
IdX ⊗ Tq,τ in the case 1 < q < p < 2.

In Section 4 we answer this to the positive for permutations τ satisfying
the assumption |τ(I)| = |I|. The results are formulated in Theorem 4.2 and
Corollary 4.3 and proved by transferring Maurey’s classical argument [9] to
the permutation case via Proposition 4.4. In Corollary 4.3 we extrapolate
the boundedness of IdX ⊗ Tp,τ for a UMD-space X and p ∈ (1, 2) downwards
to 1 to the boundedness of IdX ⊗ Tq,τ for q ∈ (1, p).
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In Section 5 we do not assume anymore the condition |τ(I)| = |I|. In
Corollaries 5.6 and 5.7 we obtain a one-sided extrapolation as well. By
duality Corollary 5.6 yields a two-sided extrapolation in Theorem 5.8: We
show for a UMD-space X that if IdX ⊗ Tp,τ is an isomorphism on some Lp

X,0

with 1 < p 6= 2 < ∞, then the rearrangement IdX ⊗ Tq,τ is an isomorphism
on Lq

X,0 for each q ∈ (1,∞). Thus for a UMD-space valued rearrangement the
property of being an isomorphism extrapolates across the entire scale of Lq

X,0

spaces, q ∈ (1,∞) – just as for martingale transforms or for scalar valued
rearrangements Tq,τ : Lq

0 → Lq
0, see [11].

The extrapolation properties of scalar valued rearrangement operators
are a direct consequence of Pisier’s re-norming of H1,

‖g‖1−θ
H1 ∼ sup{‖

∑
|gI |1−θ|wI |θhI‖Lp : ‖w‖L2 = 1},

where p ∈ (1, 2), 1/p = 1 − (θ/2), g =
∑

gIhI , and w =
∑

wIhI . This well
known fact is recorded for instance in [10] and was exploited further in [8].
As Pisier’s re-norming of H1 uses the lattice structure of Lp, our analysis of
the vector valued case circumvents its use and relies instead on combinatorial
and geometric properties of τ that hold when Tp,τ is an isomorphism [11].

2 Preliminaries

In the following we equip the unit interval [0, 1) with the Lebesgue measure
λ. The set of dyadic intervals of length 2−k is denoted by Dk, the set of all
dyadic intervals by D, and Fk := σ(Dk). Given I ∈ D, we use Q(I) := {K ⊆
I : K ∈ D} and hI denotes the L∞-normalized Haar function supported on
I. For a Banach space X we let Lp

X = Lp
X([0, 1)) be the space of all Radon

random variables f : [0, 1) → X such that ‖f‖p
Lp

X
:=
∫ 1

0
‖f(t)‖p

Xdt < ∞ and

Lp
X,0 be the sub-space of mean zero random variables, where Lp = Lp

K([0, 1))
and Lp

0 = Lp
K,0([0, 1)) if nothing is said to the contrary with K ∈ {R, C}. To

avoid artificial special cases we assume that the Banach spaces are at least
of dimension one.

Spaces of type and cotype. Let 1 ≤ p ≤ 2 ≤ q < ∞. A Banach space
X is of type p (cotype q) provided that there is a constant c > 0 such that
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for all n = 1, 2, ... and a1, a2, ..., an ∈ X one has that∥∥∥∥∥
n∑

k=1

rkak

∥∥∥∥∥
Lp

X

≤ c

(
n∑

k=1

‖ak‖p
X

) 1
p

( n∑
k=1

‖ak‖q
X

) 1
q

≤ c

∥∥∥∥∥
n∑

k=1

rkak

∥∥∥∥∥
Lq

X

 ,

where r1, r2, ... denote independent Bernoulli random variables. We let
Typep(X) := inf c (Cotypeq(X) := inf c).

UMD-spaces. A Banach space X is called UMD-space provided that for some
p ∈ (1,∞) (equivalently, for all p ∈ (1,∞)) there is a constant cp > 0 such
that

sup
θk∈[−1,1]

∥∥∥∥∥
n∑

k=1

θkdk

∥∥∥∥∥
Lp

X

≤ cp

∥∥∥∥∥
n∑

k=1

dk

∥∥∥∥∥
Lp

X

for all n = 1, 2, ... and all martingale difference sequences (dk)
n
k=1 ⊆ L1

X(Fn)
with respect to (Fk)

n
k=0, i.e. dk is Fk-measurable and E(dk|Fk−1) = 0 for

k = 1, ..., n. The infimum of all possible cp > 0 is denoted by UMDp(X).

Using [4, page 12] it follows that UMDp(X) = inf dp, where the infimum is
taken over all dp > 0 such that

sup
θI∈[−1,1]

∥∥∥∥∥∑
I∈D

θIaIhI

∥∥∥∥∥
Lp

X

≤ dp

∥∥∥∥∥∑
I∈D

aIhI

∥∥∥∥∥
Lp

X

for all finitely supported (aI)I∈D ⊆ X. An overview about UMD-spaces can be
found in [5].

Hardy spaces. We recall the definition of Hardy spaces we shall use.

Definition 2.1. (i) A function a ∈ L1
X,0(FN), where N ≥ 1, is called atom

provided there exists a stopping time ν : Ω → {+∞, 0, ..., N} such that

(a) an := E(a|Fn) = 0 on {n ≤ ν} for n = 0, ..., N ,

(b) ‖a‖L∞X
P(ν < ∞) ≤ 1.

(ii) The space H1,at
X (FN) is given by the norm

‖f‖H1,at
X

:= inf
∞∑

k=1

|µk|, f ∈ L1
X,0(FN),
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where the infimum is taken over all sequences (µk)
∞
k=1 ⊂ [0,∞) and

atoms (ak)∞k=1 such that f =
∑∞

k=1 µka
k in L1

X(FN).

(iii) Given p ∈ [1,∞), the space Hp
X(FN) is given by the norm

‖f‖Hp
X

:=

(
E sup

n=0,...,N
‖E(f |Fn)‖p

X

) 1
p

, f ∈ Lp
X,0(FN).

For an atom a we have that a = 0 on {ν = ∞}, supp(a) ⊆ {ν < ∞}, and

E‖a‖X ≤ ‖a‖L∞X
P(ν < ∞) ≤ 1.

The following inequality is well-known (see [2] and [7], cf. [15]):

‖f‖H1
X(FN ) ≤ ‖f‖H1,at

X (FN ) ≤ 18‖f‖H1
X(FN ). (2)

Rearrangement operators. Let τ : D → D be an injective map. Given
a Banach space X and p ∈ [1,∞), we define the rearrangement operator
IdX ⊗ Tp,τ on finite linear combinations of Haar functions as

IdX ⊗ Tp,τ :
∑

aI
hI

|I|1/p
→
∑

aI

hτ(I)

|τ(I)|1/p
, aI ∈ X,

and let

‖ IdX ⊗ Tp,τ‖ := sup


∥∥∥∥∥∑

I∈D

aI

hτ(I)

|τ(I)|1/p

∥∥∥∥∥
Lp

X

:

∥∥∥∥∥∑
I∈D

aI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ 1


where the supremum is taken over all finitely supported (aI)I∈D ⊆ X. In the
case ‖ IdX ⊗Tp,τ‖ < ∞ we say that IdX ⊗Tp,τ is bounded because it can be
continuously extended to Lp

X,0([0, 1)) → Lp
X([0, 1)). The dependence on p of

the operator Tp,τ disappears when the injection τ : D → D satisfies

|τ(I)| = |I|, I ∈ D,

so that we also use Tτ = Tp,τ .
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Semenov’s condition. For a non-empty collection C of dyadic intervals
we let C∗ :=

⋃
I∈C I. A rearrangement τ : D → D with

|τ(I)| = |I|

satisfies Semenov’s condition if there is a κ ∈ [1,∞) such that

sup
C⊆D

|τ(C)∗|
|C∗|

≤ κ < ∞. (3)

Given p ∈ (1, 2), Semenov’s theorem [13, 14] asserts that under the re-
striction |τ(I)| = |I|, condition (3) is equivalent to the boundedness of
Tτ : Lp

0([0, 1)) → Lp([0, 1)).

Carleson’s constant. For a non-empty collection E ⊆ D the Carleson
constant is given by

[[E ]] := sup
I∈E

1

|I|
∑

J⊆I, J∈E

|J |.

The Carleson constant is linked to rearrangement operators by the following
theorem [11, Theorems 2 and 3]: For a bijection τ : D → D the assertion
that for some (all) p ∈ (1,∞) with p 6= 2 one has

‖ IdK ⊗ Tp,τ : Lp
X,0 → Lp

X‖ · ‖ IdK ⊗ Tp,τ−1 : Lp
X,0 → Lp

X‖ < ∞

is equivalent to the existence of an A ≥ 1 such that

1

A
[[E ]] ≤ [[τ(E)]] ≤ A[[E ]]

for all non-empty E ⊆ D.

3 Two examples

In this section we consider bijections τ : D → D such that |τ(I)| = |I| for all
I ∈ D and provide examples which show that UMDp(X) and Typep(X) may
both be obstructions to the boundedness of

IdX ⊗ Tτ : Lp
X,0 → Lp

X .

From that it becomes clear that Semenov’s boundedness criterion [13] does
not have a direct correspondence in the vector valued case.
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Example 3.1. Let τ0 : D → D be the injection that leaves invariant the
intervals of the even numbered dyadic levels. On the odd numbered dyadic
levels we define τ0 to exchange the dyadic intervals contained in [0, 1/2) with
those contained in [1/2, 1) by the shifts

τ0(I) = I +
1

2
if I ⊆ [0, 1/2) and τ0(I) = I − 1

2
if I ⊆ [1/2, 1).

Then one has the following:

(i) The rearrangement τ0 = τ−1
0 satisfies Semenov’s condition with κ = 2

so that Tτ0 is an isomorphism on Lp
0 for p ∈ (1,∞).

(ii) For p ∈ (1,∞) one has

1

3
UMDp(X) ≤ ‖ IdX ⊗ Tτ0 : Lp

X,0 → Lp
X‖ ≤ 2UMDp(X) (4)

so that the boundedness of IdX⊗Tτ0 on Lp
X,0, p ∈ (1,∞), holds precisely

when X satisfies the UMD-property.

Proof. Assertion (i) is obvious so that let us turn to (ii) and let N ≥ 2 be
even and recall that Dk is the set of dyadic intervals of length 2−k. For k ≥ 1
define

D−
k := {I ∈ Dk : I ⊆ [0, 1/2)}.

The testing functions by which we link the boundedness of IdX ⊗ Tτ0 to the
UMD-property of X are

f =
N∑

k=1

∑
I∈D−k

aIhI and g =

N/2∑
k=1

∑
I∈D−2k

aIhI ,

where aI ∈ X. Note that g is obtained from f by deleting every second dyadic
level from the Haar expansion of f starting with level 1. Consequently,∥∥∥∥∥∥

N∑
k=1

(−1)k
∑

I∈D−k

aIhI

∥∥∥∥∥∥
Lp

X

= ‖f − 2g‖Lp
X

≤ ‖f‖Lp
X

+ 2‖g‖Lp
X

≤ ‖f‖Lp
X

+ 2‖( IdX ⊗ Tτ0)f‖Lp
X
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≤
(
1 + 2‖ IdX ⊗ Tτ0 : Lp

X,0 → Lp
X‖
)
‖f‖Lp

X

≤ 3‖ IdX ⊗ Tτ0 : Lp
X,0 → Lp

X‖

∥∥∥∥∥∥
N∑

k=1

∑
I∈D−k

aIhI

∥∥∥∥∥∥
Lp

X

.

In our definition of UMDp(X) it is sufficient to consider ±1 transforms (this
is a well-known extreme point argument). Furthermore, by an appropriate
augmentation of the filtration we can even restrict ourselves to alternating
sequences of signs ±1. Hence we obtain the left hand side of (4) (in fact, we
can think to work on [0, 1/2) as probability space after re-normalization).

For the right hand side of (4) we fix some N ≥ 1 and observe
that the action of the above rearrangement is an isometry when re-
stricted to

∑
k odd,0≤k≤N

∑
k∈Dk

aIhI and an isometry when restricted to∑
k even,0≤k≤N

∑
k∈Dk

aIhI . Using the UMD-property of X, we merge this in-
formation to obtain the boundedness of the rearrangement operator on the
entire space Lp

X,0.

Example 3.2. There exists a rearrangement τ0 : D → D with |τ0(I)| = |I|
satisfying the Semenov condition (3), such that for all p ∈ (1, 2] and all
Banach spaces X one has that

Typep(X) ≤ ‖ IdX ⊗ Tτ0 : Lp
X,0 → Lp

X‖.

Proof. (a) Fix n ≥ 1 and assume disjoint dyadic intervals I0, ..., In of the
same length, one after each other starting with I0. Let

Ak :=
{
I ∈ D : I ⊆ Ik, |I| = 2−k|Ik|

}
for k = 1, ..., n. We define a permutation τn : D → D such that

(i) Ak is shifted from Ik to I0 for each k = 1, ..., n,

(ii) all subintervals of I0 of length 2−k|I0|, k = 1, ..., n, are shifted to I1,

(iii) all subintervals of I1 of length 2−k|I1|, k = 2, ..., n, are shifted to I2,
...,

(iv) all subintervals of In−1 of length 2−n|In−1| are shifted to In.
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On all other intervals τn acts as an identity. One can check that τn satisfies
Semenov’s condition with κ = 3. Moreover, for a1, ..., an ∈ X,∫ 1

0

∥∥∥∥∥
n∑

k=1

∑
I∈Ak

akhI(t)

∥∥∥∥∥
p

X

dt = |I0|
n∑

k=1

‖ak‖p
X ,

∫ 1

0

∥∥∥∥∥
n∑

k=1

∑
I∈Ak

akhτn(I)(t)

∥∥∥∥∥
p

X

dt = |I0|

∥∥∥∥∥
n∑

k=1

rkak

∥∥∥∥∥
p

Lp
X

,

so that ∥∥∥∥∥
n∑

k=1

rkak

∥∥∥∥∥
Lp

X

≤ ‖ IdX ⊗ Tτn : Lp
X,0 → Lp

X‖

(
n∑

k=1

‖ak‖p

) 1
p

where r1, ..., rn are independent Bernoulli random variables.

(b) Now we ’glue together’ the permutations τ1, τ2, ...: to this end we find
pairwise disjoint dyadic intervals I1

0 , I
1
1 ⊆ [0, 1/2), I2

0 , I
2
1 , I

2
2 ⊆ [1/2, 3/4),

I3
0 , I

3
1 , I

3
2 , I

3
3 ⊆ [3/4, 7/8),. . . , where In

0 , ..., In
n is a collection as in part (a).

Defining the permutation τ0 on In
0 , ..., In

n as in (a) for all n = 1, 2, .... and
elsewhere as identity, we arrive at our desired permutation τ0.

Corollary 3.3. For the permutation τ0 from Example 3.2, p ∈ (1, 2), and
X := `p one has ∥∥ IdX ⊗ Tτ0 : Lp

X,0 → Lp
X

∥∥ < ∞
but ∥∥ IdX ⊗ Tτ0 : Lq

X,0 → Lq
X

∥∥ = ∞ for all q ∈ (p, 2].

Proof. The first relation follows from Fubini’s theorem and the Semenov
condition. On the other side, X = `p is not of type q as long as q ∈ (p, 2] so
that Tτ0 fails to be bounded in Lq

X,0.

4 Maurey’s extrapolation method and the

Semenov condition

By Corollary 3.3 we have seen that an extrapolation from p to q fails in
general if q ∈ (p, 2]. Here one should note that the boundedness of IdX⊗Tτ :
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Lp
X,0 → Lp

X implies the boundedness of Tτ : Lp
0 → Lp, hence the Semenov

condition. The aim of this section is to show that, by Maurey’s extrapolation
method [9], one has an extrapolation from p to q in the case that q ∈ (1, p).

Definition 4.1. Let τ : D → D be a permutation with |τ(I)| = |I|. An
operator A which maps f ∈ L1

X,0(Fn) into a non-negative random variable
A(f) : [0, 1) → [0,∞) and which is homogeneous (i.e. A(µf) = |µ|A(f), λ-
a.s., for all µ ∈ K), where n ≥ 1, is τ -monotone with constant c > 0 provided
that one has, λ-a.s., that

A

(
n∑

k=1

γkdk

)
≤ c sup

k=1,...,n
|Pk−1,τ (γk)|A

(
n∑

k=1

dk

)
(5)

for all
dk(t) =

∑
I∈Dk−1

aIhI(t), aI ∈ X,

and non-decreasing (γk)
n
k=1 with

γk(t) =
∑

I∈Dk−1

γk(I)II(t), γk(I) ≥ 0,

where Pk−1,τ (γk) :=
∑

I∈Dk−1
γk(I)Iτ(I)(t).

Note that Pk,τ (γ) is correctly defined for all γ : [0, 1) → R that are
constant on the dyadic intervals of length 2−k.

Theorem 4.2. For a permutation τ : D → D with |τ(I)| = |I| the following
assertions are equivalent:

(i) The permutation τ satisfies the Semenov condition (3).

(ii) For all 1 < q < p < ∞, Banach spaces X, n = 1, 2, ...., and τ -monotone
operators A, defined on L1

X,0(Fn), with constant c > 0 one has that

‖A : Lq
X,0(Fn) → Lq([0, 1))‖ ≤ d‖A : Lp

X,0(Fn) → Lp([0, 1))‖

where d = d(p, q, c) > 0 and

‖A‖r = ‖A : Lr
X,0(Fn) → Lr([0, 1))‖ := sup

{
‖A(f)‖Lr : ‖f‖Lr

X,0
≤ 1
}

.
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Before we give the proof of Theorem 4.2 we apply it to our original ex-
trapolation problem.

Corollary 4.3. Let X be a UMD-space and let τ : D → D be a permutation
such that

|τ(I)| = |I|.

If, for some p ∈ (1, 2), one has that

IdX ⊗ Tτ : Lp
X,0 → Lp

X

is bounded, then
IdX ⊗ Tτ : Lq

X,0 → Lq
X

is bounded for all q ∈ (1, p).

Proof. Because our assumption implies that IdK ⊗ Tτ : Lp
0 → Lp is

bounded it has to satisfy the Semenov condition. We fix n ≥ 1 and apply
the previous theorem to the operator A defined, for dk =

∑
I∈Dk−1

aIhI with
aI ∈ X, as

A

(
n∑

k=1

dk

)
:=

∫
Ω

∥∥∥∥∥( IdX ⊗ Tτ )

(
n∑

k=1

rk(ω)dk

)∥∥∥∥∥
X

dP(ω)

where r1, ..., rn are independent Bernoulli random variables. It is easy to see
that A satisfies (5) with c = 1. Moreover by the UMD-property we have∥∥∥∥∥A

(
n∑

k=1

dk

)∥∥∥∥∥
Lp

∼

∥∥∥∥∥( IdX ⊗ Tτ )

(
n∑

k=1

dk

)∥∥∥∥∥
Lp

X

,

where the multiplicative constants do not depend on n. Hence Theorem 4.2
yields the assertion.

The maximal inequality of the following Proposition 4.4 provides the
link between rearrangements satisfying Semenov’s condition and Maurey’s
extrapolation technique in [9].
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Proposition 4.4. Assume that Semenov’s condition (3) is satisfied for a
permutation τ with |τ(I)| = |I| and that 0 ≤ Z0 ≤ Z1 ≤ · · · ≤ Zn is a
sequence of functions Zk : [0, 1) → [0,∞), where Zk is constant on all dyadic
intervals of length 1/2k. Then one has that∫ 1

0

sup
k=0,...,n

(Pk,τ (Zk))(t)dt ≤ κ

∫ 1

0

Zn(t)dt.

Proof. Let ∆0 := Z0 and ∆k := Zk−Zk−1 for k = 1, ..., n, and let us write

∆k =
∑
I∈Dk

aI1I

with aI ≥ 0. Fix k ∈ {0, ..., n} and observe that, point wise,

Pk,τ1I ≤ 1τ(Q(I))∗ with Q(I) = {K ⊆ I : K ∈ D}

for I ∈ Dk′ with k′ = 0, ..., k (note that 1I is constant on the dyadic intervals
of length 2−k so that we may apply Pk,τ ). This implies that

Pk,τ

 k∑
k′=0

∑
I∈Dk′

aI1I

 ≤
k∑

k′=0

∑
I∈Dk′

aI1τ(Q(I))∗ .

Because the expression on the right-hand side is monotone in k we conclude
that

sup
k=0,...,n

Pk,τ

 k∑
k′=0

∑
I∈Dk′

aI1I

 ≤
n∑

k′=0

∑
I∈Dk′

aI1τ(Q(I))∗ .

Integration gives

∫ 1

0

 sup
k=0,...,n

Pk,τ

 k∑
k′=0

∑
I∈Dk′

aI1I

 (t)

 dt ≤
n∑

k′=0

∑
I∈Dk′

aI |τ(Q(I))∗|.

Our hypothesis gives |τ(Q(I))∗| ≤ κ|I| so that

n∑
k′=0

∑
I∈Dk′

aI |τ(Q(I))∗| ≤ κ
n∑

k′=0

∑
I∈Dk′

aI |I| = κ

∫ 1

0

[
n∑

k=0

∆k(t)

]
dt

12



and we are done because∫ 1

0

 sup
k=0,...,n

Pk,τ

 k∑
k′=0

∑
I∈Dk′

aI1I

 (t)

 dt =

∫ 1

0

sup
k=0,...,n

(Pk,τZk)(t)dt

and ∫ 1

0

[
n∑

k=0

∆k(t)

]
dt =

∫ 1

0

Zn(t)dt.

Proof of Theorem 4.2. (i) =⇒ (ii) We let 1
q

= 1
r

+ 1
p

and

dk :=
∑

I∈Dk−1

αIhI so that Tτdk =
∑

I∈Dk−1

αIhτ(I).

Define X0 := 0, Xk := d1 + · · · + dk for k = 1, ..., n, X∗
k := supl=0,...,k ‖Xl‖X

for k = 0, ..., n, ∗Xk := X∗
k−1 + supl=1,...,k ‖dl‖X for k = 1, ..., n,

γk := (∗Xk + δ)α

for some δ > 0,

α := 1− q

p
,

and
βk := Pk−1,τγk.

By definition we have that

Tτ (dk)

βk

= Tτ

(
dk

γk

)
.

From the monotonicity assumption on the operator A it follows that∥∥∥∥∥A
(

n∑
k=1

dk

)∥∥∥∥∥
Lq

≤ c‖β∗n‖Lr

∥∥∥∥∥A
(

n∑
k=1

dk

γk

)∥∥∥∥∥
Lp

≤ c‖A‖p‖β∗n‖Lr

∥∥∥∥∥
n∑

k=1

dk

γk

∥∥∥∥∥
Lp

X

.

From [9, Lemma A] we know that∥∥∥∥∥
n∑

k=1

dk

γk

∥∥∥∥∥
Lp

X

≤ p

q
(E(∗Xn + δ)q)

1
p

13



≤ p

q
3

q
p (E(X∗

n + δ)q)
1
p .

Finally, applying Proposition 4.4 we get

‖β∗n‖r
Lr =

∫ 1

0

sup
k=1,...,n

|(Pk−1,τ (γk))(t)|rdt =

∫ 1

0

sup
k=1,...,n

(Pk−1,τ (|γk|r))(t)dt

≤ κ

∫ 1

0

|γn(t)|rdt = κ

∫ 1

0

|∗Xn(t) + δ|αrdt ≤ 3αrκ

∫ 1

0

|X∗
n(t) + δ|αrdt.

Combining all estimates, we get∥∥∥∥∥A
(

n∑
k=1

dk

)∥∥∥∥∥
Lq

≤ c‖A‖p3
ακ

1
r (E|X∗

n + δ|αr)
1
r

p

q
3

q
p (E|X∗

n + δ|q)
1
p .

By δ ↓ 0 and Doob’s maximal inequality this implies∥∥∥∥∥A
(

n∑
k=1

dk

)∥∥∥∥∥
Lq

≤ c‖A‖p
3p

q − 1
κ

1
r ‖d1 + · · ·+ dn‖Lq

X
.

(ii) =⇒ (i) We fix X = K, n ∈ {1, 2, ...}, and a permutation τ with |τ(I)| =
|I|. Let A (

∑n
k=1 dk) := (

∑n
k=1(Tτdk)

2)
1
2 which is τ -monotone with constant

c = 1. Clearly, ‖Af‖L2 = ‖f‖L2 . If we have an extrapolation to some
q ∈ (1, 2), then by the square function inequality the usual permutation
operator is bounded in Lq with a constant not depending on n, so that by
Semenov’s theorem [13] condition (3) has to be satisfied.

5 Extrapolation and the Carleson condition

In this section we consider rearrangement operators induced by bijections
τ : D → D that preserves the Carleson packing condition, that is there is an
A ≥ 1 such that

1

A
[[E ]] ≤ [[τ(E)]] ≤ A[[E ]]

for all non-empty E ⊆ D. In particular, we do not rely anymore on the a-
priori hypothesis that |τ(I)| = |I|. The corresponding extrapolation results
are formulated in Corollary 5.6, Corollary 5.7, and Theorem 5.8, where we

14



obtain in Corollary 5.7 an alternative proof of Corollary 4.3 that works with-
out X being a UMD-space. To shorten the notation we let DN

0 :=
⋃N

k=0Dk

for N ≥ 0. Because we use complex interpolation we shall assume that all
Banach spaces are complex.

We start with a technical condition which ensures a one-sided extrapola-
tion. The condition will be justified by Examples 5.2 and 5.3 below.

Definition 5.1. Let X be a Banach space, τ : DN
0 → DL

0 be an injection,
γI > 0 for I ∈ DN

0 , p ∈ (1,∞), and κ > 0. We say that condition C(X, p, κ)
is satisfied, provided that for all J0 ∈ DN

0 there is a decomposition{
I ∈ DN

0 : I ⊆ J0

}
=
⋃
i

Ki,

Ki 6= ∅, such that the following is satisfied:

(C1)
∑

i |K∗
i | ≤ κ|J0|.

(C2) For 1 = 1
p

+ 1
q

and

βi := sup


∥∥∥∥∥∑

I∈Ki

γ
1
q

I aIhI

∥∥∥∥∥
q

Lp
X

:

∥∥∥∥∥∑
I∈Ki

aIhI

∥∥∥∥∥
Lp

X

= 1


one has that

∑
i βi|τ(Ki)

∗| ≤ κ|J0|.

(C3) There exists p∗ ∈ [p,∞) such that∑
i

∥∥∥∥∥∑
I∈Ki

aIhI

∥∥∥∥∥
p∗

Lp∗
X

 1
p∗

≤ κ

∥∥∥∥∥∥
∑

J0⊇I∈DN
0

aIhI

∥∥∥∥∥∥
Lp∗

X

.

Example 5.2. We assume that τ : D → D with |τ(I)| = |I| satisfies the
Semenov condition (3) with constant κ ∈ [1,∞), restrict τ to τN : DN

0 → DN
0 ,

and take γI = 1 for all I ∈ DN
0 . Let X be arbitrary, p ∈ (1,∞), and J0 ∈ DN

0 .
Because of ∣∣∣∣∣∣

⋃
J0⊇I∈DN

0

τN(I)

∣∣∣∣∣∣ ≤ κ|J0|

15



we can take
K1 :=

{
I ∈ DN

0 : I ⊆ J0

}
and conditions (C1), (C2), and (C3) (for any p∗) are satisfied with constant
κ uniformly in N .

Example 5.3. Let τ : D → D be a bijection and assume that there is an
A ≥ 1 such that

1

A
[[E ]] ≤ [[τ(E)]] ≤ A[[E ]]

for all non-empty E ⊆ D. Let X be a UMD-space and γI := |I|/|τ(I)|. As
shown in [11, Theorem 1], the permutation σ = τ−1 satisfies the following
property P: There exists an M > 0 such that for all dyadic intervals J0 ∈ D
there exists a decomposition as disjoint union

{I ∈ D : I ⊆ J0} = σ(D) ∩ J0 =
⋃
i

σ(Li) ∪
⋃
i

Ei

such that

(1) [[
⋃

i Ei]] ≤ M ,

(2) supK∈Li

|σ(K)|
|K| ≤ M

|σ(Li)
∗|+|E∗i |
|L∗i |

for Li 6= ∅,

(3)
∑

i |σ(Li)
∗| ≤ M |J0|.

Now we check the counterparts of (C1), (C2), and (C3) for the ’infinite’
permutation τ .

Condition (C3): As X is a UMD-space (and therefore super-reflexive) there
is a p0 ∈ [2,∞) such that for all p∗ ∈ [p0,∞) the space X has cotype p∗.
This cotype and the UMD-property imply (C3) (the constant may depend on
p∗).

Condition (C1): We write⋃
i

Ei =
{

Ĩ1, Ĩ2, ...
}

and L̃j := {τ(Ĩj)}

so that

{I ∈ D : I ⊆ J0} =
⋃
i

σ(Li) ∪
⋃
j

σ(L̃j) =:
⋃
i

Ki ∪
⋃
j

K̃j.

16



Now∑
i

|K∗
i |+

∑
j

|K̃∗
j | =

∑
i

|σ(Li)
∗|+

∑
j

|Ĩj| ≤ M |J0|+ [[
⋃
i

Ei]]|J0| ≤ 2M |J0|.

Condition (C2): let p ∈ (1,∞) be arbitrary and recall that

βi = sup


∥∥∥∥∥∑

I∈Ki

γ
1
q

I aIhI

∥∥∥∥∥
q

LX
p

:

∥∥∥∥∥∑
I∈Ki

aIhI

∥∥∥∥∥
LX

p

= 1

 ,

where we assume that the sums over I are finitely supported, and let

β̃j := sup


∥∥∥∥∥∥
∑
I∈eKj

γ
1
q

I aIhI

∥∥∥∥∥∥
q

LX
p

:

∥∥∥∥∥∥
∑
I∈eKj

aIhI

∥∥∥∥∥∥
LX

p

= 1

 = γeIj
.

Because γI = |I|/|τ(I)|, the UMD-property of X gives

βi ≤ UMDp(X)q sup
I∈Ki

|I|
|τ(I)|

.

Since

sup
I∈Ki

|I|
|τ(I)|

≤ M
|K∗

i |+ |E∗i |
|τ(Ki)∗|

for Li 6= ∅ we get∑
i

βi|τ(Ki)
∗| ≤ UMDp(X)q

∑
i

sup
I∈Ki

|I|
|τ(I)|

|τ(Ki)
∗|

≤ UMDp(X)q
∑

i

M
|K∗

i |+ |E∗i |
|τ(Ki)∗|

|τ(Ki)
∗|

= MUMDp(X)q
∑

i

[|K∗
i |+ |E∗i |]

≤ 2M2UMDp(X)q|J0|.

In the same way, ∑
j

β̃j|τ(K̃j)
∗| =

∑
j

|Ĩj| ≤ M |J0|.

Finally, if we restrict τ to τN : DN
0 → DLN

0 with LN chosen such that
τ(DN

0 ) ⊆ DLN
0 , then (C1), (C2), and (C3) are satisfied with the same constant

uniformly in N .
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In the following we use the notation

Lr
X(DN

0 ) := Lr
X,0(FN+1), H1,at

X (DN
0 ) := H1,at

X (FN+1),

and H1
X(DN

0 ) := H1
X(FN+1) for N = 0, 1, ... to avoid a permanent shift in N

because we are working with the sets DN
0 rather than with the σ-algebras FN .

Now fix Banach spaces X and Y and a bounded linear operator S : X → Y ,
and define the family of operators Ap : Lp

X

(
DN

0

)
→ Lp

Y

(
DL

0

)
by

Ap

∑
I∈DN

0

aIhI

 :=
∑

I∈DN
0

SaIγ
1
p

I hτ(I),

where γI > 0. We aim at extrapolation theorems for this family of operators
and extrapolate - under the condition C(X, p, κ) - from Lp downwards to H1

in a first step:

Theorem 5.4. If p ∈ (1,∞) and if assumption C(X, p, κ) holds, then

‖A1 : H1
X(DN

0 ) → H1
Y (DL

0 )‖ ≤ 18p

p− 1
κ1+ 1

q∗ ‖Ap : Lp
X(DN

0 ) → Lp
Y (DL

0 )‖

where 1 = (1/p∗) + (1/q∗) and p∗ is taken from the definition of C(X, p, κ).

Proof. Let 1 = 1
p

+ 1
q

and let a ∈ H1,at
X (DN

0 ) be an atom with associated

stopping time ν (like in Definition 2.1) and assume first that {ν < ∞} =
J0 ∈ DN

0 . For J0 we choose the sets Ki like in Definition 5.1. Moreover, we
use

Dqa :=
∑

I∈DN
0

γ
1
q

I aIhI and ai :=
∑
I∈Ki

aIhI

for a =
∑

I∈DN
0

aIhI and

βi := sup


∥∥∥∥∥∑

I∈Ki

γ
1
q

I aIhI

∥∥∥∥∥
q

Lp
X

:

∥∥∥∥∥∑
I∈Ki

aIhI

∥∥∥∥∥
Lp

X

= 1

 .

We get that

18



‖A1a‖H1
Y

≤
∑

i

‖A1ai‖H1
Y

=
∑

i

‖ApDqai‖H1
Y

≤
∑

i

|τ(Ki)
∗|

1
q ‖ApDqai‖Hp

Y

≤ p

p− 1

∑
i

|τ(Ki)
∗|

1
q ‖ApDqai‖Lp

Y

≤ p

p− 1
‖Ap‖

∑
i

|τ(Ki)
∗|

1
q ‖Dqai‖Lp

X

≤ p

p− 1
‖Ap‖

∑
i

[|τ(Ki)
∗|βi]

1
q ‖ai‖Lp

X

≤ p

p− 1
‖Ap‖

∑
i

[|τ(Ki)
∗|βi]

1
q |K∗

i |
1
p
− 1

p∗ ‖ai‖Lp∗
X

≤ p

p− 1
‖Ap‖

(∑
i

∣∣∣[|τ(Ki)
∗|βi]

1
q |K∗

i |
1
p
− 1

p∗

∣∣∣q∗) 1
q∗

(∑
i

‖ai‖p∗
Lp∗

X

) 1
p∗

with 1 = 1
q∗

+ 1
p∗

. Letting r := q
q∗

and 1 = 1
r

+ 1
s

we obtain that

∑
i

∣∣∣[|τ(Ki)
∗|βi]

1
q |K∗

i |
1
p
− 1

p∗

∣∣∣q∗ ≤ (∑
i

[|τ(Ki)
∗|βi]

) 1
r
(∑

i

|K∗
i |

) 1
s

≤ κ|J0|

(with the obvious modification for q = q∗) and

‖A1a‖H1
Y

≤ p

p− 1
κ

1
q∗ ‖Ap‖|J0|

1
q∗

(∑
i

‖ai‖p∗
Lp∗

X

) 1
p∗

≤ p

p− 1
κ1+ 1

q∗ ‖Ap‖|J0|
1

q∗ ‖a‖Lp∗
X

≤ p

p− 1
κ1+ 1

q∗ ‖Ap‖|J0|‖a‖L∞X

≤ p

p− 1
κ1+ 1

q∗ ‖Ap‖.
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It is not difficult to check that any atom a ∈ H1,at
X (DN

0 ) can be written as
finite convex combination of atoms considered in this proof so far. Using this
and (2) we end up with

‖A1a‖H1
Y
≤ p

p− 1
κ1+ 1

q∗ ‖Ap‖‖a‖H1,at
X

≤ 18p

p− 1
κ1+ 1

q∗ ‖Ap‖‖a‖H1
X

for all a ∈ H1
X(DN

0 ).

Now we interpolate between H1 and Lp:

Lemma 5.5. Let 1 < q < p < ∞ and 1
q

= 1−θ
1

+ θ
p
. If Y is a UMD-space, then

one has

‖Aq : Lq
X(DN

0 ) → Lq
Y (DL

0 )‖
≤ c‖A1 : H1

X(DN
0 ) → H1

Y (DL
0 )‖1−θ‖Ap : Lp

X(DN
0 ) → Lp

Y (DL
0 )‖θ

where c > 0 depends at most on Y , p, and q. In the case γI ≡ 1 the UMD-
property of Y is not needed and c > 0 does not depend on Y .

Proof. Because we work with probability spaces consisting of a finite
number of atoms only, we can replace (for simplicity) X and Y by finite
dimensional subspaces E ⊆ X and F ⊆ Y such that S(E) ⊆ F , where we
will see that the constant c can be chosen uniformly for all subspaces E and
F . The family (Aq)q∈[1,p] is embedded into an analytic family of operators.
Let V denote the vertical strip V = {x + it : x ∈ (0, 1), t ∈ R} and let

Jz(a) :=
∑

I∈DN
0

SaIγ
1−z(1− 1

p
)

I hτ(I).

As 1
q

= 1−θ
1

+ θ
p

we have
Jθ = Aq.

Since

<
(

1− it

(
1− 1

p

))
= 1 and <

(
1− (1 + it)

(
1− 1

p

))
=

1

p
,

we have
‖J1+it(f)‖Lp

F (DL
0 ) ≤ 2UMDp(Y )‖Ap(f)‖Lp

F (DL
0 ) (6)
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and
‖Jit(f)‖H1

F (DL
0 ) ≤ c‖A1(f)‖H1

F (DL
0 ) (7)

for some c > 0 depending on Y only. The latter estimate (Y is a UMD-space)
is folklore and can be derived in various ways. For example, one can follow
[9, Remarque 2]. Following the proof that the complex interpolation method
with parameter θ yields an exact interpolation functor of exponent θ, for
example presented in [1, Theorem 4.1.2], we get that

‖Jθ(f)‖(H1
F (DL

0 ),Lp
F (DL

0 ))θ

≤ sup
t∈R

‖Jit : H1
E(DN

0 ) → H1
F (DL

0 )‖1−θ sup
t∈R

‖J1+it : Lp
E(DN

0 ) → Lp
F (DL

0 )‖θ

‖f‖(H1
E(DN

0 ),Lp
E(DN

0 ))θ

≤ c1−θ(2UMDp(Y ))θ‖A1 : H1
E(DN

0 ) → H1
F (DL

0 )‖1−θ

‖Ap : Lp
E(DN

0 ) → Lp
F (DL

0 )‖θ‖f‖(H1
E(DN

0 ),Lp
E(DN

0 ))θ

where (Z0, Z1)θ denotes the interpolation space obtained by the complex
method as in [1, p. 88]. Using

(H1
E(DN

0 ), Lp
E(DN

0 )θ = Lq
E(DN

0 ) and (H1
F (DL

0 ), Lp
F (DL

0 )θ = Lq
F (DL

0 ) (8)

with multiplicative constants not depending on (N, L, X, Y ) we arrive at our
assertion. In the case γI = 1 we have Jit = A1 and J1+it = Ap so that the UMD-
property in (6) and (7) is not needed. The equivalences (8) are folklore, see [3,
p. 334]. One can deduce them via the real interpolation method by exploiting
(H1

Z(DM
0 ), Lr

Z(DM
0 ))η,s = Ls

Z(DM
0 ) for η ∈ (0, 1), r, s ∈ (1,∞) with (1/s) =

1 − η + (η/r), Z ∈ {E, F}, and M ≥ 0, where the multiplicative constants
in the norm estimates depend on (η, r, s) only (see [16] and the references
therein), and the connection between the real and complex interpolation
method presented in the second statement of [1, Theorem 4.7.2], where we
use that the proof for the first inclusion works as well with θ0 = 0, p0 = 1,
and (A)θ0,p0 replaced by A0.
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Corollary 5.6. Let τ : D → D be a bijection such that there is an A ≥ 1
with

1

A
[[E ]] ≤ [[τ(E)]] ≤ A[[E ]] (9)

for all non-empty E ⊆ D. Furthermore, let X be a UMD-space, γI := |I|/|τ(I)|,
and 1 < q < p < ∞. Then the boundedness of

IdX ⊗ Tp,τ : Lp
X,0 → Lp

X

implies the boundedness of

IdX ⊗ Tq,τ : Lq
X,0 → Lq

X .

In case of |τ(I)| = |I| the UMD-property is not needed.

Proof. (a) For all N ≥ 0 we choose LN ≥ 0 such that

τ(DN
0 ) ⊆ DLN

0 .

Then we can consider the restrictions τN : DN
0 → DLN

0 for N ≥ 0. According
to Example 5.3 the property C(X, p, κ) for some κ > 0 is satisfied uniformly
in N . Applying Lemma 5.5 and Theorem 5.4 gives that

‖Tq,τN
: Lq

X(DN
0 ) → Lq

X(DLN
0 )‖

≤ c(5.5)‖T1,τN
: H1

X(DN
0 ) → H1

X(DLN
0 )‖1−θ

‖Tp,τN
: Lp

X(DN
0 ) → Lp

X(DLN
0 )‖θ

≤ c(5.5)

(
18p

p− 1
κ1+ 1

q∗

)1−θ

‖Tp,τN
: Lp

X(DN
0 ) → Lp

X(DLN
0 )‖

=: c‖Tp,τN
: Lp

X(DN
0 ) → Lp

X(DLN
0 )‖

≤ c‖Tp,τ : Lp
X,0 → Lp

X‖.

(b) Now we consider a strictly increasing sequence of integers BN ≥ 1 such
that

τ(DBN
0 ) ⊇ DN

0 .

For a =
∑

I∈D aIhI , where (aI)I∈D ⊆ X is finitely supported, we get

‖Tq,τa‖Lq
X

= sup
N
‖E(Tq,τa|FN)‖Lq

X
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= sup
N
‖E(Tq,τBN

aBN
|FN)‖Lq

X

≤ sup
N
‖Tq,τBN

aBN
‖Lq

X

≤ sup
N
‖Tq,τBN

: Lq
X(DBN

0 ) → Lq
X(DLBN

0 )‖‖aBN
‖

Lq
X(DBN

0 )

≤ c‖Tp,τ : Lp
X,0 → Lp

X‖‖a‖Lq
X,0

where τBN
: DBN

0 → DLBN
0 is the restriction of τ considered in (a) and aBN

the restriction of a to DBN
0 .

Modifying slightly the first step in the proof of Corollary 5.6 we can
remove the assumption that X is a UMD-space in Corollary 4.3:

Corollary 5.7. Let X be a Banach space and let τ : D → D be a permutation
such that |τ(I)| = |I|. Then, for 1 < q < p < 2, the boundedness of

IdX ⊗ Tτ : Lp
X,0 → Lp

X

implies the boundedness of IdX ⊗ Tτ : Lq
X,0 → Lq

X .

Proof. Our assumption implies γI = 1 and that τ satisfies Semenov’s
condition with some κ ∈ [1,∞). By Example 5.2 the restrictions τN : DN

0 →
DN

0 satisfy condition c(X, p, κ) for all p ∈ (1,∞). Now we can follow the proof
of Corollary 5.6 with LN = BN = N and γI = 1 so that the UMD-property in
Lemma 5.5 is not needed.

We close with an extrapolation theorem for rearrangement operators that
are isomorphisms on Lp

X,0. For real valued rearrangements, i.e. when X = R,
the following theorem is well known. It can be obtained by different methods,
the most direct route [10] going via Pisier’s re-norming in Lp.

Theorem 5.8. Let τ : D → D be a bijection and γI := |I|/|τ(I)|. Assume
that X is a UMD-space. If there exists a p ∈ (1,∞) with p 6= 2 such that

‖ IdX ⊗ Tp,τ : Lp
X,0 → Lp

X‖ · ‖ IdX ⊗ Tp,τ−1 : Lp
X,0 → Lp

X‖ < ∞, (10)

then for each q ∈ (1,∞) one has that

‖ IdX ⊗ Tq,τ : Lq
X,0 → Lq

X‖ · ‖ IdX ⊗ Tq,τ−1 : Lq
X,0 → Lq

X‖ < ∞. (11)
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Proof. (a) First we observe that our assumption implies that (10) holds
for X = C and X = R. If p ∈ (2,∞), then [11, Theorems 2 and 3] imply
condition (9). In case of p ∈ (1, 2) duality implies (10) for X = R and p
replaced by the conjugate index p′ ∈ (2,∞). Hence we have (9) as well.

(b) From Corollary 5.6 and (a) we immediately get (11) for q ∈ (1, p).

(c) Let q ∈ (p,∞). It is easy to see that for a bijection σ : D → D and
r ∈ (1,∞) the boundedness of

‖ IdX ⊗ Tr,σ : Lr
X,0 → Lr

X‖ and ‖ IdX′ ⊗ Tr′,σ−1 : Lr′

X′,0 → Lr′

X′‖

are equivalent to each other where 1 = (1/r) + (1/r′) (note, that X is in
particular reflexive because of the UMD-property). Using this observation our
assumption (10) holds for p′ and X ′ and the conclusion for q′ ∈ (1, p′) and
X ′. By duality we come back to q and X.
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