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Abstract

Given an injective map 7 : D — D between the dyadic inter-
vals of the unit interval [0,1), we study extrapolation properties of
the induced rearrangement operator of the Haar system Idx ® T, - :
L5 ([0,1)) — L5([0,1)), where X is a Banach space and L%, the
subspace of mean zero random variables. If X is a UMD-space, then we
prove that the property that Idx ® T}, - is an isomorphism for some
1 < p # 2 < oo extrapolates across the entire scale of Lgf—spaces with
1 < g < 00. In contrast, if only Idx ® 7T}, - is bounded and not its in-
verse, then we show that there can only exist one-sided extrapolation
theorems.
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1 Introduction
In vector valued LP-spaces we study rearrangement operators of the system
{ht/|1]'": 1 € D},

where D denotes the collection of all dyadic intervals included in [0,1) and
hr is the L, -normalized Haar function with support I. These rearrangement
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operators are defined by an injective map 7 : D — D as extension of

Iy ® Tpr Y arhe /1Y =" arho /|IT(1)V",

1eD 1eD

where (a)rep C X is finitely supported and X is a Banach space. This paper
continues [I1] and is related in spirit to [8]. In particular, we are motivated
by extrapolation properties of vector valued martingale transforms, i.e. maps

of type
Z arhy — Z crarhy <1>

1€D 1eD

where (as);ep C X is finitely supported and (¢)rep € loo(D). Extrapolation
theorems for these martingale transforms were widely studied in the literature
and go back, for example, to Maurey [9] and Burkholder-Gundy [6] (see [5]
for a general overview). In our setting these classical theorems state that if
is bounded on L% for some p € (1,00), then it is bounded on L% for
all ¢ € (1,00). The significance of those theorems can be already seen in
the scalar valued setting: Since a martingale transform is trivially bounded
on L?, extrapolation yields its boundedness on each of the spaces L with
q € (1,00). The aim of this paper is to analyze the extrapolation properties
of the family Idx ® T}, ..

In Section |3| we start by two examples. Example (3.1 shows that the
continuity of a 'typical’ permutation Idx ® 7T}, . already implies that X has
to have the UMD-property. The second example provides a permutation such
that the continuity of Idx ® T}, with p € (1,2] implies the type p property
of the Banach space X. As a consequence we deduce in Corollary that
one does not have an upwards extrapolation: For X = ¢, and p € (1,2)
(so that X is, in particular, a UMD-space) there is a permutation 7 such that
Idx ® T}, is continues, but Idx ® T, , fails to be continuous for q € (p, 2].

The natural question arises whether we still have a one-sided extrap-
olation meaning that the boundedness of Idx ® 7, , implies that one of
Idx ® T, in the case 1 < ¢ <p < 2.

In Section 4] we answer this to the positive for permutations 7 satisfying
the assumption |7(I)| = |I|. The results are formulated in Theorem 4.2/ and
Corollary and proved by transferring Maurey’s classical argument [9] to
the permutation case via Proposition [£.4] In Corollary we extrapolate
the boundedness of Idy ® T}, , for a UMD-space X and p € (1,2) downwards
to 1 to the boundedness of Idx ® T, . for ¢ € (1,p).



In Section [5| we do not assume anymore the condition |7(I)| = |I]|. In
Corollaries [5.6| and we obtain a one-sided extrapolation as well. By
duality Corollary yields a two-sided extrapolation in Theorem [5.8; We
show for a UMD-space X that if Idx ® T}, is an isomorphism on some L%
with 1 < p # 2 < oo, then the rearrangement Idy ® T} . is an isomorphism
on L%, for each g € (1,00). Thus for a UMD-space valued rearrangement the
property of being an isomorphism extrapolates across the entire scale of ng
spaces, ¢ € (1,00) — just as for martingale transforms or for scalar valued
rearrangements 7T, , : L{ — L{, see [11].

The extrapolation properties of scalar valued rearrangement operators
are a direct consequence of Pisier’s re-norming of H?,

gl ~ sup{ 11> lgrl*~wr|’hall e < w2 = 1},

where p € (1,2), 1/p =1—(6/2), g = >_ grhs, and w = > wrh;. This well
known fact is recorded for instance in [I0] and was exploited further in [g].
As Pisier’s re-norming of H' uses the lattice structure of L?, our analysis of
the vector valued case circumvents its use and relies instead on combinatorial
and geometric properties of 7 that hold when T, ; is an isomorphism [11].

2 Preliminaries

In the following we equip the unit interval [0, 1) with the Lebesgue measure
A. The set of dyadic intervals of length 27% is denoted by Dy, the set of all
dyadic intervals by D, and F,, := o(Dy). Given I € D, we use Q(I) := {K C
I: K € D} and h; denotes the L.,-normalized Haar function supported on
I. For a Banach space X we let L5 = L% ([0,1)) be the space of all Radon

random variables f : [0,1) — X such that ||f||:’£§( = fol 1 f(®)]%dt < oo and
L% o be the sub-space of mean zero random variables, where L” = Lg ([0, 1))
and Ly = L (([0,1)) if nothing is said to the contrary with K € {R,C}. To
avoid artificial special cases we assume that the Banach spaces are at least
of dimension one.

Spaces of type and cotype. Let 1 <p <2 < ¢ < oo. A Banach space
X is of type p (cotype q) provided that there is a constant ¢ > 0 such that



foralln =1,2,... and ay,as, ...,a, € X one has that

n

§ Traf

k=1

n % n % n
e (z uaknf;> (znaknz{) <olS" na
2 k=1 k=1 k=1

where 1,79, ... denote independent Bernoulli random variables. We let
Type,(X) := inf ¢ (Cotypeq(X) := inf ¢).

L

UMD-spaces. A Banach space X is called UMD-space provided that for some
p € (1,00) (equivalently, for all p € (1,00)) there is a constant ¢, > 0 such

that .
Z 0, d,, Z dy,
k=1

for all n = 1,2, ... and all martingale difference sequences (dj)7_, C L% (F,)
with respect to (F,)i_o, i.e. di is F-measurable and E(dy|F,_;) = 0 for
k =1,...,n. The infimum of all possible ¢, > 0 is denoted by UMD, (X).

Sup
0rel—1,1]

<6

P
X

L%

Using [4, page 12] it follows that UMD,(X) = inf d,, where the infimum is
taken over all d, > 0 such that

Z 9[&[h1

1€D

sup <d,

0re[—1,1]

Z a[h]

1€D

P p
X

for all finitely supported (a;);ep € X. An overview about UMD-spaces can be

found in [5].

Hardy spaces. We recall the definition of Hardy spaces we shall use.

Definition 2.1. (i) A function a € Lk ((Fy), where N > 1, is called atom
provided there exists a stopping time v : Q — {+00,0, ..., N} such that

(a) a, :=E(a|F,) =0o0on {n <v}forn=0,..,N,
(5) NlallixB(v < 50) < 1.

(ii) The space Hy™(Fy) is given by the norm

HfHH)l(’“t = Hlfz ‘,Uk’, f € L}X,O(FN)a
k=1



where the infimum is taken over all sequences (ug)72,; C [0,00) and
atoms (a*)?°, such that f =7, ura® in L (Fy).

(iii) Given p € [1,00), the space H% (Fy) is given by the norm

Il = (E_sup [BUIZII) T € ol

For an atom a we have that a = 0 on {v = oo}, supp(a) C {v < oo}, and
Ellallx < flall 5 B(v < o0) < 1
The following inequality is well-known (see [2] and [7], cf. [15]):

[fllaFy) < HfHH)l(’“t(}'N) < 8[|l ax (7, )- (2)

Rearrangement operators. Let 7:D — D be an injective map. Given
a Banach space X and p € [1,00), we define the rearrangement operator
Idx ® T, on finite linear combinations of Haar functions as

. hr 0
IdX@Tp’T‘ZaIm—l/p—)ZaIW’ GIGX,

and let

| Idx ® T}, ;|| :== sup

he iy
2

1€D

|2 e

I1eD

where the supremum is taken over all finitely supported (as);ep € X. In the
case || Idx ® T}, -|| < oo we say that Idy ® T}, is bounded because it can be
continuously extended to L’ (([0,1)) — L%([0,1)). The dependence on p of
the operator T, ; disappears when the injection 7 : D — D satisfies

Ir(Dl =[], T€D,

so that we also use T, =T}, ;.



Semenov’s condition. For a non-empty collection C of dyadic intervals
we let C* := (J;co I. A rearrangement 7 : D — D with

[m(D)] = ]
satisfies Semenov’s condition if there is a k € [1,00) such that
C *

sup‘T( ) ’SI{<OO. (3)

ccp |C|
Given p € (1,2), Semenov’s theorem [13, 4] asserts that under the re-
striction |7(I)| = |I|, condition is equivalent to the boundedness of
T: : Lg([0,1)) — L([0,1)).

Carleson’s constant. For a non-empty collection & C D the Carleson

constant is given by
1
Te€ 121 jcr e

The Carleson constant is linked to rearrangement operators by the following
theorem [I1, Theorems 2 and 3]: For a bijection 7 : D — D the assertion
that for some (all) p € (1,00) with p # 2 one has

| Idg @ T, 0 Lo — L[| - || Idg @ Ty p1 2 L g — LA || < 00

is equivalent to the existence of an A > 1 such that

211 < 7€) < Afe]

for all non-empty & C D.

3 Two examples

In this section we consider bijections 7 : D — D such that |7(1)| = |I| for all
I € D and provide examples which show that UMD,(X) and Type,(X) may
both be obstructions to the boundedness of

ldy @ Ty : Ly, — LK.

From that it becomes clear that Semenov’s boundedness criterion [13] does
not have a direct correspondence in the vector valued case.
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Example 3.1. Let 79 : D — D be the injection that leaves invariant the
intervals of the even numbered dyadic levels. On the odd numbered dyadic
levels we define 7 to exchange the dyadic intervals contained in [0, 1/2) with
those contained in [1/2,1) by the shifts

(D) —I+ if 7 C[0,1/2) and 7o(I) :I—%iflg 1/2,1).

Then one has the following:

(i) The rearrangement 7o = 7, ' satisfies Semenov’s condition with x = 2
so that T, is an isomorphism on L{ for p € (1, 00).

(ii) For p € (1,00) one has
1
gUMDp(X) < | 1dx ® Ty, : L g — L | < 20MD,(X) (4)

so that the boundedness of 1dx®77, on Lgm, p € (1, 00), holds precisely
when X satisfies the UMD-property.

PROOF. Assertion (i) is obvious so that let us turn to (ii) and let N > 2 be
even and recall that Dy, is the set of dyadic intervals of length 27%. For k > 1
define

D, ={le€D,:1C[0,1/2)}.

The testing functions by which we link the boundedness of Idy ® 717, to the
UMD-property of X are

N N/2
= Z thI and g = Z Z arhr,
k=1 rep k=1 1eD;,

where a; € X. Note that g is obtained from f by deleting every second dyadic
level from the Haar expansion of f starting with level 1. Consequently,

N
DR arhy = [If =29l
k=1

IeDy 1

1fllzz, =+ 2llgllzz

<
< A llzg, + 200 Tdx © To) fll 2y,

7



< (1420 lx ® Ty : Ly — L) 1l

N
< 3| Tdx @ Ty : Ly — LX) D arhy
k=1 1eD; Lz,
In our definition of UMD,(X) it is sufficient to consider +1 transforms (this
is a well-known extreme point argument). Furthermore, by an appropriate
augmentation of the filtration we can even restrict ourselves to alternating
sequences of signs £1. Hence we obtain the left hand side of (in fact, we
can think to work on [0,1/2) as probability space after re-normalization).
For the right hand side of we fix some N > 1 and observe
that the action of the above rearrangement is an isometry when re-
stricted to 3, oqd.ock<n 2kep, @21 and an isometry when restricted to
>k eveno<k<n ke, @rhr. Using the UMD-property of X, we merge this in-
formation to obtain the boundedness of the rearrangement operator on the
entire space L .
u

Example 3.2. There exists a rearrangement 7y : D — D with |7o(1)| = |1|
satisfying the Semenov condition (3)), such that for all p € (1,2] and all
Banach spaces X one has that

Type,(X) < || ldx ® Ty, : Ly — L]

ProoF. (a) Fix n > 1 and assume disjoint dyadic intervals Iy, ..., I,, of the
same length, one after each other starting with I,. Let

A, ={1e€D:1C L, |I|=2""L]}
for k =1,...,n. We define a permutation 7,, : D — D such that
(i) Ay is shifted from I to Iy for each k =1,....n,
(ii) all subintervals of I of length 27%|Iy|, k = 1, ..., n, are shifted to Iy,

(iii) all subintervals of I; of length 27%|I|, k = 2, ..., n, are shifted to I,

ey

(iv) all subintervals of I,,_; of length 27"|I,,_;| are shifted to I,,.



On all other intervals 7,, acts as an identity. One can check that 7, satisfies
Semenov’s condition with x = 3. Moreover, for ay,...,a, € X,
P

1| "
/ SN )| dt o= (L] llaxl.
0 |l k=1 1€ A, X k=1
1| n P n P
[IE s o] @ = mlSnal
0 ||k=1 IecA4, X k=1 L%

so that

n

E TkQ

k=1

< dx @ Tz, = Uy g — Dl (Z ||ak||p>
k=1

L
where rq, ...,7, are independent Bernoulli random variables.

(b) Now we ’glue together’ the permutations 7, 7o, ...: to this end we find
pairwise disjoint dyadic intervals I3, I} C [0,1/2), I3, 13,13 C [1/2,3/4),
BB I3 I3 C[3/4,7/8),..., where I7,...,I" is a collection as in part (a).
Defining the permutation 75 on I, ..., I as in (a) for all n = 1,2,.... and

elsewhere as identity, we arrive at our desired permutation 7.
]

Corollary 3.3. For the permutation 1y from Ezample p € (1,2), and
X :=1{, one has
| ldx ® Ty, : Ly g — L || < o0

but
| 1dx ® T, : L%y — LY|| =00 forall qe€(p,2].

PROOF. The first relation follows from Fubini’s theorem and the Semenov
condition. On the other side, X = ¢, is not of type ¢ as long as ¢ € (p, 2] so
that 7%, fails to be bounded in L% .

4 Maurey’s extrapolation method and the
Semenov condition

By Corollary we have seen that an extrapolation from p to ¢ fails in
general if ¢ € (p, 2]. Here one should note that the boundedness of Idx®7T; :

9



L%, — L% implies the boundedness of T, : L — LP, hence the Semenov
condition. The aim of this section is to show that, by Maurey’s extrapolation
method [9], one has an extrapolation from p to ¢ in the case that ¢ € (1, p).

Definition 4.1. Let 7 : D — D be a permutation with |7(I)| = |I|. An

operator A which maps f € L}go(]’—n) into a non-negative random variable

A(f) : [0,1) — [0, 00) and which is homogeneous (i.e. A(uf) = |u|A(f), A
a.s., for all 4 € K), where n > 1, is 7-monotone with constant ¢ > 0 provided
that one has, A-a.s., that

A (Z 'kak> < Ckzsllpn | Pec1 (k) |A (Z dk) (5)

k=1 /T k=1

for all

and non-decreasing (x)p_; with

wt)= > wDIt), wl) =0,

1€Dy_4
where Py_1 () := Z[epk71 WD) L1 (1)

Note that Py ,(y) is correctly defined for all v : [0,1) — R that are
constant on the dyadic intervals of length 27%.

Theorem 4.2. For a permutation T : D — D with |7(I)| = |I| the following
assertions are equivalent:

(i) The permutation T satisfies the Semenov condition (3).

(ii) Foralll < q < p < 00, Banach spaces X, n = 1,2, ...., and T-monotone
operators A, defined on L}(,ou:n); with constant ¢ > 0 one has that

[A: L o(F,) — LU[0, )| < df|A = L o(F,) — LP([0, 1)]]

where d = d(p,q,c) > 0 and

Al = 14 Do) = 2700, D) = sup { JAD e : 1l <1}

10



Before we give the proof of Theorem we apply it to our original ex-
trapolation problem.

Corollary 4.3. Let X be a UMD-space and let 7 : D — D be a permutation
such that
[T(D] = 1]

If, for some p € (1,2), one has that
Iy @ T, : Ly — L%

18 bounded, then
Idx ® T : L.%CO — L%

is bounded for all ¢ € (1,p).

PROOF. Because our assumption implies that Idg ® T, : L — LP is
bounded it has to satisfy the Semenov condition. We fix n > 1 and apply
the previous theorem to the operator A defined, for dj, = rep,._, arhr with
ar € X, as

where 71, ..., 1, are independent Bernoulli random variables. It is easy to see
that A satisfies with ¢ = 1. Moreover by the UMD-property we have

A (i: dk) (Idx ® T7) (i: dk:)

where the multiplicative constants do not depend on n. Hence Theorem
yields the assertion.

dP(w)

~

Ly L%

The maximal inequality of the following Proposition provides the
link between rearrangements satisfying Semenov’s condition and Maurey’s
extrapolation technique in [9].

11



Proposition 4.4. Assume that Semenov’s condition 1s satisfied for a
permutation T with |T(I)] = |I| and that 0 < Zy < Z; < -+ < Z, is a
sequence of functions Zy : [0,1) — [0,00), where Zy, is constant on all dyadic
intervals of length 1/2%. Then one has that

/ sup (Py(Zk))(t)dt < K/O Z,(t)dt.

PROOF. Let Ag:=Zyand Ay, := Z,— Z;,_1 for k =1, ...,n, and let us write

with a; > 0. Fix k € {0,...,n} and observe that, point wise,
Pkﬂ-l[ < 1T(Q(I))* with Q(I) = {K Cl:Ke D}

for I € Dy with k' =0, ..., k (note that 1; is constant on the dyadic intervals
of length 27" so that we may apply P ,). This implies that

k k
P D) arts ) > arliouy

k'=0 I€D;, k'=0 I€D;,

Because the expression on the right-hand side is monotone in k we conclude

that
k n
wp P [ D) arls | >0 arliquy-

S
k=0,..., k'=0IeD,, k'=01€D;

Integration gives

/0 k:S(l)lpnP’“’T SO al | ] dt<d > alr Q).

""" k'=0 €Dy, k'=0I€D,,

Our hypothesis gives |7(Q(I))*| < k|I| so that

>3 alr@ny <> Y all=x [

1 n
k'=0 I€D;, k'=0 I€Dy, 0

> A

k=0

dt

12



and we are done because

1 k 1
sup Py, arl t)| dt = sup (P..Zi)(t)dt
/0 k:Opn k, ZZ | () / _P(k, k)(1)

””” k'=0 I€D,,

/

and

1
dt = / Z,(¢)dt.
0

> Ak

]
PROOF OF Theorem (i) = (ii) We let é =14 % and
dk = Z Oé[h[ so that T-,-dk = Z Od[hT([).
I€Dy 1 1€Dy_1
Define Xo := 0, Xy :=dy +---+dp for k =1,...,n, X; :=sup_o_ || Xilx
for k=0,...,n, "Xy = X;_| +sup,_y g ||di]|x for k=1,....,n,
o= (" Xi +6)
for some o > 0,
o q
a:=1—--,
p
and
Br = Pro—1+Yk-
By definition we have that
Br Yk
From the monotonicity assumption on the operator A it follows that
Al d <cllgll A > = < ell ANl D2 =
k=1 La =1 %) k=1 'k 2

From [9, Lemma A] we know that

3o de

1 K

B =

< g (E(*X,, + 0)?)

P
LX

13



< 30 (B(X; +0)7)7 .
q
Finally, applying Proposition [4.4] we get
1 1
520 = [ s [Pesc Gt = [ sup (Posa(hul )@t
0 k= 0 k=

1 1 1
< ﬁ/ ]fyn(t)|’"dt:/-@/ X, (1) + OJordt < 3%/ X7 (t) + 0" dt.
0 0 0

Combining all estimates, we get

()

By 0 | 0 and Doob’s maximal inequality this implies

()

(il) = (i) We fix X =K, n € {1,2,...}, and a permutation 7 with |7(I)| =
1

[I]. Let A(>",_,di) :== (Oop_(T-dk)?)? which is T-monotone with constant

c = 1. Clearly, [|[Af||zz = ||f||lzz- If we have an extrapolation to some

g € (1,2), then by the square function inequality the usual permutation

operator is bounded in L? with a constant not depending on n, so that by
Semenov’s theorem [I3] condition (3 has to be satisfied.

< o||A,3%k7 (B|X: + 6]°7)" ggz (B X7 +6]9)7 .

La

3p
< cf|All,—
La

1
1m||d1+-~+dn||Lg(.

q

5 Extrapolation and the Carleson condition

In this section we consider rearrangement operators induced by bijections
7 : D — D that preserves the Carleson packing condition, that is there is an

A > 1 such that .
1E1 < [7(©)] < Ale]

for all non-empty & C D. In particular, we do not rely anymore on the a-
priori hypothesis that |7(I)| = |I|. The corresponding extrapolation results
are formulated in Corollary [5.6] Corollary 5.7, and Theorem [5.8, where we
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obtain in Corollary an alternative proof of Corollary that works with-
out X being a UMD-space. To shorten the notation we let D) := Uivzo Dy,
for N > 0. Because we use complex interpolation we shall assume that all
Banach spaces are complex.

We start with a technical condition which ensures a one-sided extrapola-
tion. The condition will be justified by Examples [5.2] and [5.3] below.

Definition 5.1. Let X be a Banach space, 7 : DY — D} be an injection,
vr > 0for I € DY, p € (1,00), and x > 0. We say that condition C(X,p, k)
is satisfied, provided that for all Jy € DY there is a decomposition

{repy:1<h}=JK,

K; # 0, such that the following is satisfied:
(C1) 22 1K < k[ Jol.
(C2) For 1 = >+ . and

= sup Z’yl thI Za;hl =1
I€K; P I€K; P
X X
one has that Y. G;|7(KC;)*| < k| Jy].
(C3) There exists p. € [p,00) such that
1
D Px
Ssen] ) <o £ o
i IeK; Lg(* Jo QIGD(J)\’ LP*
X

Example 5.2. We assume that 7 : D — D with |7([)| = |I| satisfies the
Semenov condition (3) with constant x € [1, 00), restrict 7 to 7 : DY — DY,
and take y; = 1 for all I € DY. Let X be arbitrary, p € (1,00), and Jy € DY'.
Because of

U )| <kl

Jo2IeDYY
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we can take

/Cl::{IE'DéV:IQJo}

and conditions (C1), (C2), and (C3) (for any p*) are satisfied with constant
x uniformly in N.

Example 5.3. Let 7 : D — D be a bijection and assume that there is an

A > 1 such that |

“IE] < [7(6)] < ALe]
for all non-empty &€ C D. Let X be a UMD-space and v, := |I|/|7(])]. As
shown in [T, Theorem 1], the permutation ¢ = 77! satisfies the following
property P: There exists an M > 0 such that for all dyadic intervals J, € D

there exists a decomposition as disjoint union

{IeD:1C J}=0D)nJy=|JoL)ulJ&

)

such that

(1) [U;i&] < M,

o o(L)*|+|EF
(2) supger, | &?' < M |)z:‘|+| ofor £; 40,

(3) doila(Ly)*] < M|

Now we check the counterparts of (C1), (C2), and (C3) for the ’infinite’
permutation 7.

Condition (C3): As X is a UMD-space (and therefore super-reflexive) there
is a py € [2,00) such that for all p, € [py,0) the space X has cotype p..
This cotype and the UMD-property imply (C3) (the constant may depend on
Ps)-

Condition (C1): We write

Uei:{fl,g,...} and ;= {r(T))}

so that

7

{IeD:1C 0} =|Jo(L)ul Jo(L) = Kk uJK;.

16



Now

DK+ XIS = 3l (L)

Condition (C2): let p € (1,

= sup

IeK;

where we assume that the sums over I are finitely supported, and let

~ 1
Bj = sup Z viarhy

Z CL[hI =1 =7
IEEJ' X IE’%]' LX
Because v; = |I]/|7(I)|, the UMD-property of X gives
1|
B; < UMD, (X)? sup )
Pl rex; | (1]
Since . .
o MLy i1
rec T(D] = [T (K|
for £; # 0 we get
|7 (IC < UMD su *
> i XS i
i+ | &
< o, (00 S MGl

<

In the same way,

>_iIr(K,

Finally, if we restrict 7 to 7n

uniformly in V.

o0) be arbltrary and recall that

> @Ihl

Z a;h;

Iek;

=1,

LX
P

X
LP

J

MUMD,(X) Z[IIC;‘I + ISZ‘I]

2M*UMD,, (X)?| Jo|.

V1= 1l < MlJol.
J
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In the following we use the notation
LS{(D(J)V) = LTX,O(}-NH)) H)léat(D(J)V) = lefat(fzvﬂ)a

and Hy (DY) .= Hy(Fy,,) for N =0,1,... to avoid a permanent shift in N
because we are working with the sets D’ rather than with the o-algebras Fy.

Now fix Banach spaces X and Y and a bounded linear operator S : X — Y,
and define the family of operators A, : L% (DY) — LY (D§) by

Ap Z arhy | = Z SaI'Y[%hT(I)a

IeD} IeDy

where v; > 0. We aim at extrapolation theorems for this family of operators
and extrapolate - under the condition C(X, p, k) - from L? downwards to H*
in a first step:

Theorem 5.4. If p € (1,00) and if assumption C(X,p, k) holds, then

18p 1
|A1 : Hy (D) — Hy (Dy)| S KA, IR (Dy) — L3(Dg)|

where 1 = (1/p.) + (1/q.) and p. is taken from the definition of C(X,p, k).

PROOF. Let 1= % + % and let a € Hy" (DY) be an atom with associated

stopping time v (like in Definition [2.1)) and assume first that {v < oo} =
Jo € DY. For Jy we choose the sets K; like in Definition [5.1, Moreover, we

use )
= Z viarhy and a; := Z arhy

IeDY IeK;

for a = arhr and
ZIeDgV I

=1

L

= sup

Z Cl[h[

IEK;

Z V1 alhl

1ek;

We get that
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qi* and 1 = % + % we obtain that

g(Z[IT \@) (ZIK*>S<R\J01

(with the obvious modification for ¢ = ¢.) and
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1
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It is not difficult to check that any atom a € H ;gat(DéV ) can be written as
finite convex combination of atoms considered in this proof so far. Using this
and we end up with

18
Ap“ ||a||H;(,at S _])]_K/l-i-q%

[ Ap[[flall £y

p 1+
|Arall g < ’ L
for all a € H(DY).

Now we interpolate between H' and L?:

Lemma 5.5. Let 1 < ¢ < p < o0 and % = %—1— g. IfY is a UMD-space, then
one has

14 : L% (DY) — LY(Dg)
< || Ay Hy (DY) — Hy (Dg)II'™|4, « L& (DY) — LY(Dg) I’

where ¢ > 0 depends at most on Y, p, and q. In the case vy = 1 the UMD-
property of Y is not needed and ¢ > 0 does not depend on Y .

PrROOF.  Because we work with probability spaces consisting of a finite
number of atoms only, we can replace (for simplicity) X and Y by finite
dimensional subspaces F C X and F' C Y such that S(E) C F, where we
will see that the constant ¢ can be chosen uniformly for all subspaces E and
F. The family (Aq)gepip is embedded into an analytic family of operators.
Let V' denote the vertical strip V = {z +it : v € (0,1),t € R} and let

1—2(1-1)

J.(a) = Z Sary, "her)-

IeD}Y
As§:¥+gwehave
Jo = A

Since

1 1 1

%(1—%(1——)):1 and 3%(1—(1+it)(1——>):—,

b p b

we have
1oL oy < 2000, () Ap () L o (6)
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and
[ Jit () gpzy < cll A ()l Loz (7)

for some ¢ > 0 depending on Y only. The latter estimate (Y is a UMD-space)
is folklore and can be derived in various ways. For example, one can follow
[9, Remarque 2]. Following the proof that the complex interpolation method
with parameter 6 yields an exact interpolation functor of exponent 6, for
example presented in [I, Theorem 4.1.2], we get that

1o (A a8, D8 )6
S sup | Jie - HE(Dg') — Hp (D) Sup |11 = Lp(Dy') — Li(Dg)l°

11l ez g2, 0
< 02umMp, (V))’||Ay - Hy(Dy') — Hp (D)’
| Ap : L%(D(])V) - L%(Dg)||9||f||(H}:(D(J)V),L’,’E(Dé\’))g

where (Zy, Z1)y denotes the interpolation space obtained by the complex
method as in [T, p. 88]. Using

(H(Dg ), Lp(Dg )o = LE(Dy)  and  (Hp(Dy), Lp(Dy)e = Ly(Dy)  (8)

with multiplicative constants not depending on (N, L, X, Y") we arrive at our
assertion. In the case vy = 1 we have J;; = Ay and Jy4; = A, so that the UMD-
property in @ and is not needed. The equivalences are folklore, see [3]
p. 334]. One can deduce them via the real interpolation method by exploiting
(HL(DY), L,(DY),.s = Ly(DR) for 5 € (0,1, 7,5 € (1,00) with (1/s) —
1—n+(n/r), Z € {E,F}, and M > 0, where the multiplicative constants
in the norm estimates depend on (7, r,s) only (see [16] and the references
therein), and the connection between the real and complex interpolation
method presented in the second statement of [I, Theorem 4.7.2], where we
use that the proof for the first inclusion works as well with 6y = 0, pg = 1,

and (A)g, p, replaced by A,.
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Corollary 5.6. Let 7 : D — D be a bijection such that there is an A > 1

with
Il < o)) < Ale] ©

for all non-empty € C D. Furthermore, let X be a UMD-space, vr := |I|/|7(I)],
and 1 < g < p < oo. Then the boundedness of

ldy ® T, - : Lg{,o — L
implies the boundedness of
ldx @ T, : L()I(,O — L%.

In case of |T(I)| = |I| the UMD-property is not needed.

PROOF. (a) For all N > 0 we choose Ly > 0 such that
(D)) € Di~.

Then we can consider the restrictions 7y : DY — D§~ for N > 0. According
to Example the property C(X, p, k) for some x > 0 is satisfied uniformly
in N. Applying Lemma [5.5] and Theorem [5.4] gives that

Ty : L% (D) — L (D5 V)|

< gl Tiny - HY (DY) — Hy(Dg™)||'™"

T 7y = i (D) — L (Dg™)||°
< 18 wa\ " yr L o) I (D
> B9 p—lK o | Tprn = L (Dy ) — L (Dy™)l
= | Ty : L5 (Dg) — L (Dg™)|
< o Tpr s Ly — Ll

(b) Now we consider a strictly increasing sequence of integers By > 1 such
that
7(Dy™) 2 Dy -

For a =), parhs, where (ar)jep € X is finitely supported, we get

IToralls = sup || E(Tyral Fv)lleg
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= Sljbp ||E(TQ7TBNGBN|fN)||L§(

IN

Sl]%]p ||T ,TBNCLBNHL?X

IN

B L
D 1Ty, 5 L (D) = LA(DG™ Ml o

)

< o|Tpr : Ly — illallog,,

B Ly . _— . .
where 75, : Dy¥ — D, " is the restriction of 7 considered in (a) and ap,
DL B
the restriction of a to Dy ™.
n

Modifying slightly the first step in the proof of Corollary we can
remove the assumption that X is a UMD-space in Corollary [4.3}

Corollary 5.7. Let X be a Banach space and let 7 : D — D be a permutation
such that |T(I)| = |I]. Then, for 1 < q < p < 2, the boundedness of

ldx @ T, : Ly — L%
implies the boundedness of 1dx @ T, : L%, — L%.

Proor.  Our assumption implies 77 = 1 and that 7 satisfies Semenov’s
condition with some « € [1,00). By Example m the restrictions 7y : DY —
DY satisfy condition ¢(X, p, &) for all p € (1,00). Now we can follow the proof
of Corollary [5.6| with Ly = By = N and 7 = 1 so that the UMD-property in
Lemma [5.5] is not needed.

u

We close with an extrapolation theorem for rearrangement operators that
are isomorphisms on Lg(,o- For real valued rearrangements, i.e. when X = R,
the following theorem is well known. It can be obtained by different methods,
the most direct route [I0] going via Pisier’s re-norming in L”.

Theorem 5.8. Let 7 : D — D be a bijection and ~; := |I|/|7(I)|. Assume
that X is a UMD-space. If there exists a p € (1,00) with p # 2 such that

| Idx ® T}, - L%O — L5 || Idx @ T o1 - Lg{,o — LA < oo, (10)
then for each q € (1,00) one has that

| Idx @ Tgr 0 Lo — L% - | Idx @ Ty 0 L g — L || < 0. (11)
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PrROOF. (a) First we observe that our assumption implies that holds
for X = C and X = R. If p € (2,00), then [11, Theorems 2 and 3| imply
condition ([9). In case of p € (1,2) duality implies for X = R and p
replaced by the conjugate index p’ € (2,00). Hence we have () as well.

(b) From Corollary and (a) we immediately get for ¢ € (1,p).

(c) Let ¢ € (p,00). It is easy to see that for a bijection ¢ : D — D and
r € (1,00) the boundedness of

| Tdx ® T : Lo — L]l and || Idy @ T p1 : L g — L/ ||

are equivalent to each other where 1 = (1/r) 4+ (1/7’) (note, that X is in
particular reflexive because of the UMD-property). Using this observation our
assumption holds for p’ and X’ and the conclusion for ¢’ € (1,p’) and
X'. By duality we come back to ¢ and X.

]
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