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Abstract

We establish the basic analytic and geometric properties of quasireg-
ular maps f : Ω → X, where Ω ⊂ Rn is a domain and where X is a
generalized n-manifold with a suitably controlled geometry. General-
izing the classical Väisälä and Poletsky inequalities, our main theorem
shows that the path family method applies to these maps.
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1 Introduction

According to the so-called metric definition, quasiregular maps between
Euclidean domains are branched coverings for which the distortion of in-
finitesimal balls is uniformly controlled, see Definition 4.1 below. Quasireg-
ular maps can be equally defined by using the following analytic definition.
A map f : Ω → Rn is K-quasiregular if it belongs to the Sobolev space
W 1,n

loc (Ω,Rn) and if there exists K > 1 such that |Df(x)|n 6 KJf (x) almost
everywhere. Martio, Rickman and Väisälä proved the equivalence of these
two definitions in [20]. Their proof depends on Reshetnyak’s fundamental
theorem which shows that the analytic definition implies the branched cov-
ering property, see [25, I Theorem 4.1]. The theory of quasiregular maps
is now well developed, see [16], [25]. It relies on varying methods, among
which the geometric path family method is of utmost importance.

More recently, parts of this theory have been extended to cover a subclass
of quasiregular maps, called mappings of bounded length distortion (BLD),
between non-smooth spaces, see [14], [15]. The motivation for such exten-
sions was to use BLD-maps to study problems in geometric topology. Also,
in [12] the theory of quasiconformal maps; that is, the theory of quasiregular
homeomorphisms, between general metric spaces with controlled geometry
was developed. This theory also initiated a new way of looking at weakly
differentiable maps between non-smooth spaces.

In this paper we develop a basic theory for quasiregular maps from
Euclidean domains to metric spaces X. The target space is assumed to
have locally controlled geometry (see Section 2), but, unlike in the case of
homeomorphisms, a topological assumption is also required. We assume
that X is an oriented generalized n-manifold as defined in Section 3. This
class includes oriented topological manifolds as well as some interesting non-
manifolds. The assumption guarantees the existence of a satisfactory degree
theory, see Section 3.

Next, we discuss two interesting situations where our theory applies.
First, in [29] Semmes constructed a three-dimensional space X1 ⊂ R4 that
has the properties assumed in Sections 2 and 3 below. More precisely, X1

satisfies the following properties:

1. X1 is Ahlfors 3-regular and LLC (see Section 2),

2. there exist quasiconformal homeomorphisms (and hence also non-in-
jective quasiregular maps) from R3 to X1, and

3. X1 is not locally bi-Lipschitz equivalent to R3.

The third property stipulates that smooth or Lipschitz analysis cannot be
applied to study maps with target X1; thus, genuinely non-smooth methods
are needed.
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Next, we consider X2 = {[(x, t)]} = ΣH3; that is, the suspension of
the Poincaré homology 3-sphere H3. In this case X2 can be equipped with
a (polyhedral) metric satisfying the assumptions given in Section 2. The
space X2 is a generalized 4-manifold, yet not a manifold. Also, there are
quasiregular maps from S4, and consequently from R4 to X2. Indeed, there
is a natural surjective extension f̃ : S4 → X2, f̃(x, t) = (f(x), t) of the
covering map f : S3 → H3 so that f̃ is quasiregular. Here the branch set of
Bf̃ ⊂ S4, the set of points where f̃ does not define a local homeomorphism,
has precisely two points in it. This is in sharp contrast to the classical case;
for Euclidean quasiregular maps the image of the branch set is either empty,
or has positive (n− 2)-measure, see [25, III Proposition 5.3].

The present work has three main purposes. First, we hope that our re-
sults will reveal which spaces X can receive quasiregular maps from Rn. As
a particular class of target spaces one can consider the “excellent package”
constructions of Semmes [28]. For related questions see [3] and [14]. Second,
our methods also provide a new way in studying some of the fundamental
properties of Euclidean quasiregular maps. In particular, our treatment of
the regularity properties of the mappings in question, as well as the proper-
ties of the branch set, does not use any differentiable structure on the target
space. For instance, we give a new way of showing that the branch set of
a quasiregular map has to be small. Our method also solves a problem of
Bonk and Heinonen [4, Remark 3.5] concerning the size of the branch set of
a Euclidean quasiregular map, see Theorems 9.7 and 9.8 below. Finally, the
tools developed here can be applied to build a general theory for quasiregu-
lar maps f : Ω → X. The examples above show that such development may
reveal new and interesting phenomena. In the last section we use our ba-
sic theory to give several equivalent characterizations of quasiregular maps
f : Rn → X with polynomial growth. Specifically, we show in Theorem 12.1
below that these maps behave like Euclidean maps in many ways when the
global geometry of X is controlled, compare [11].

Our main result, Theorem 11.1, generalizes the classical Väisälä and Po-
letsky inequalities to our setting. Before we are able to prove Theorem 11.1
we have to establish several analytic and geometric properties of quasireg-
ular maps that are of independent interest. While the basic philosophy
used to prove Theorem 11.1 is similar to the one in the Euclidean case, we
primarily have to find completely different methods. Here we benefit from
recent work on analysis in metric measure spaces ([1], [12], [13], [18]), par-
ticularly from the method used in [1] to study regularity properties under
mild assumptions, see Theorem 8.1.
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2 Metric measure spaces

We will consider rectifiably connected metric measure spacesX = (X, d,Hn).
Here and in what follows Hn stands for the Hausdorff n-measure. We
denote the open ball with center x and radius r by B(x, r), and write
S(x, r) = {y ∈ X : d(x, y) = r}. The closure of a set E ⊂ X is de-
noted by E. Clearly, we have B(x, r) ⊂ B(x, r) ∪ S(x, r), and the inclusion
can be strict in general. We also use the notation CB = B(x,Cr) when
B = B(x, r). We assume throughout this paper that X enjoys the following
three properties:

1. X is proper; that is, every closed ball in X is compact,

2. X is locally Ahlfors n-regular, and

3. X is locally linearly locally connected (LLC).

A space X is said to be locally Ahlfors n-regular if there exists τ > 1
such that for x ∈ X and 0 < r < 1 we have

(2.1) τ−1rn 6 Hn(B(x, r)) 6 τrn.

Moreover, X is locally LLC if there exists θ > 1 such that for x ∈ X and
0 < r < 1 we have

(i) every two points a, b ∈ B(x, r) can be joined in B(x, θr), and

(ii) every two points a, b ∈ X \B(x, r) can be joined in X \B(x, θ−1r).

Here by joining a and b in B we mean that there exists a path γ : [0, 1] → B
with γ(0) = a, γ(1) = b.

We denote the x-component of a ball B(x, r) by D(x, r). Then it follows
from the assumptions 3. and 2. that for every ball B(x, r) with r < 1,

B(x, θ−1r) ⊂ D(x, r) ⊂ B(x, r), and(2.2)
τ−1θ−nrn 6 Hn(D(x, r)) 6 τrn.(2.3)

Next we recall the definition of the modulus of a given path family. Let Γ
be a family of paths in X. We define, for 1 6 p < ∞, the p-modulus MpΓ
by

MpΓ = inf
ρ∈TΓ

∫
X
ρp dHn,

where TΓ is the set of all Borel functions ρ : X → [0,∞] such that∫
γ
ρ ds > 1 for every locally rectifiable γ ∈ Γ.
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We call such ρ a test function for Γ. Moreover, we denote Mn by M . We
will use the fact that the modulus is subadditive: if (Γi) is a sequence of
path families, then

(2.4) Mp

( ∞⋃
i=1

Γi

)
6

∞∑
i=1

MpΓi,

see [25, II Proposition 1.5].
If E and F are two disjoint sets in X, and Ω ⊂ X a domain, we denote

by ∆(E,F ; Ω) the family of all paths joining E and F in Ω. The upper
mass bound Hn(B(x, s)) 6 τsn gives the following estimate (cf. [9, Lemma
7.18]). If 0 < r < R 6 1, then

(2.5) M∆(B(x, r), X \B(x,R);B(x,R)) 6 C(τ, n)
(

log
R

r

)1−n
.

We will use the fact that balls in Rn (equipped with the standard metric
and the Lebesgue n-measure) have the so-called Loewner property (cf. [9,
Chapter 8]). Precisely, suppose that E,F ⊂ B ⊂ Rn are disjoint, compact
and connected sets in a ball B. Denote

ψ(E,F ) = min{diamE,diamF}.

Then

(2.6) M∆(E,F ;B) > C(n) log
(dist (E,F ) + ψ(E,F )

dist (E,F )

)
,

where C(n) > 0 only depends on n.
Finally, we define Newtonian spaces which generalize Sobolev spaces to

maps defined in metric measure spaces. For simplicity, we assume that X is
as above, although the definition is useful also in more general settings (cf.
[13]).

Suppose that Ω ⊂ X, and that u : Ω → R is a measurable function. We
call a Borel function ρ : Ω → [0,∞] an upper gradient of u if

(2.7)
∫

γx,y

ρ ds > |u(x)− u(y)|

for every x, y ∈ Ω and every locally rectifiable path γx,y joining x and y in
Ω. Moreover, ρ is a p-weak upper gradient of u if (2.7) holds except for a
path family Γ (not depending on x, y) of zero p-modulus.

We say that u : Ω → R belongs to the Newtonian space N1,p(Ω) for
some 1 6 p < ∞ if u ∈ Lp(Ω) and if there exists a p-weak, p-integrable
upper gradient ρ of u. Moreover, u ∈ N1,p

loc (Ω) if u ∈ N1,p(B) for every ball
B ⊂⊂ Ω. The notation B ⊂⊂ Ω means that B ⊂ Ω.
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Now suppose f : Ω → Y , where Ω ⊂ X and Y = (Y, d′) is a metric space.
We say that f belongs to the Newtonian space N1,p(Ω, Y ) if

fy0 = d′(f(·), y0) ∈ Lp(Ω) for every y0 ∈ Y,

and if there exists a Borel function ρ : Ω → [0,∞] in Lp(Ω) so that ρ is a
p-weak upper gradient of fy0 for every y0 ∈ Y . Local Newtonian spaces are
then defined the same way as above.

3 Discrete and open maps to generalized mani-
folds

We assume that X satisfies the assumptions 1.-3. given in Section 2. In
order to be able to define quasiregular maps from Euclidean domains to X
and develop their properties, we need to have degree calculus available. Such
a calculus exists if we assume that X is an oriented topological manifold. In
this paper we will use a weaker topological assumption, given below, which
is satisfied by some interesting non-manifolds which fit into our framework.
We follow [14, I.1- I.3] and [25, I.4 and II.3].

We denote by H∗
c (X) the Alexander-Spanier cohomology groups of X

with compact supports and coefficients in Z. We then call X an oriented
generalized n-manifold if it satisfies the following:

(a) the local cohomology groups of X are equivalent to Z in degree n and
zero in degree n− 1, and

(b) X is oriented, i.e. Hn
c (X) ' Z and an orientation is chosen.

It is worth recalling that our definition of a generalized manifold is not
standard, see [14] for further comments. Now we assume that X is an
oriented generalized n-manifold, and f : Ω → X is a continuous map from
a domain Ω ⊂ Rn. Then we can define the local degree µ(y, f, U) for any
domain U ⊂⊂ Ω and y ∈ X \ f(∂U). In our notation U ⊂⊂ Ω means that
the closure U of U is compact and satisfies U ⊂ Ω. Moreover, the degree
satisfies the usual basic properties, see [14, I.2]. We call f sense-preserving
if µ(y, f, U) > 0 whenever U ⊂⊂ Ω and y ∈ f(U) \ f(∂U). Furthermore,
f is discrete if f−1(y) is a discrete set in Ω for every y ∈ X, and open if
f(U) ⊂ X is open whenever U ⊂ Ω is open.

For the rest of this section we suppose that f : Ω → X is a continuous,
sense-preserving, discrete and open map. If B(y, s) ⊂ X is a ball and
f(x) = y for some x ∈ Ω, then we denote the x-component of f−1(D(y, s))
by

U(x, s) = U(x, f, s).

We call a domain U ⊂⊂ Ω a normal domain for f if f(∂U) = ∂f(U). By
openness of f , ∂f(U) ⊂ f(∂U) always holds. Moreover, a normal domain
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U is called a normal neighborhood of x ∈ Ω if U ∩ f−1(f(x)) = {x}. If U
is a normal domain, then we define µ(f, U) = µ(y, f, U) for some y ∈ f(U).
This is well-defined because µ(y, f, U) = µ(v, f, U) whenever y, v ∈ f(U).

We next give some basic facts concerning normal domains and normal
neighborhoods. The proofs are identical to the ones given in [25, I.4 and II
Lemma 4.1].

Lemma 3.1. Suppose that V ⊂ X is a domain and U ⊂⊂ Ω a component
of f−1(V ). Then U is a normal domain and f(U) = V .

Lemma 3.2. Suppose that U is a normal domain. If E ⊂ f(U) is a compact
and connected set, then f maps every component of f−1(E) ∩ U onto E.
Moreover, if F ⊂ f(U) is compact, then f−1(F ) ∩ U is compact.

Lemma 3.3. For each x ∈ Ω there exists σx > 0 so that, for every 0 < s <
σx, the following hold:

(i) U(x, s) is a normal neighborhood of x,

(ii) diamU(x, s) → 0 as s→ 0,

(iii) U(x, s) = U(x, σx) ∩ f−1(D(f(x), s)),

(iv) ∂U(x, s) = U(x, σx) ∩ f−1(∂D(f(x), s)).

The local index i(x, f) for x ∈ Ω can be defined as follows: if U is a
normal neighborhood of x, then

(3.1) i(x, f) = µ(f, U);

i(x, f) does not depend on the normal neighborhood U . The branch set Bf

of f is the set of points x ∈ Ω for which i(x, f) > 1. Thus f defines a local
homeomorphism at every x ∈ Ω \ Bf .

One of the most important tools in the geometric theory of quasiregular
maps is Väisälä’s inequality for the conformal modulus of path families. In
order to be able to effectively use this tool one needs the path lifting property
as follows [25, II.3], [14, I.3.3]. Suppose that f : Ω → X is a continuous,
sense-preserving, discrete and open map as above, β : [a, b) → X a path,
and x ∈ f−1(β(a)). We call a path α : [a, c) → Ω, c 6 b, a maximal f -lifting
of β starting at x if α(a) = x, f ◦ α = β|[a,c), and if the following holds:
if c < c′ 6 b, then there does not exist a path α′ : [a, c′) → Ω such that
α = α′|[a,c) and f ◦ α′ = β|[a,c′).

Now let x1, . . . xk be k different points of f−1(β(a)) so that

m =
k∑

j=1

i(xj , f).
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We say that the sequence α1, . . . , αm of paths is a maximal sequence of f -
liftings of β starting at the points x1, . . . , xk if each αL is a maximal f -lifting
of β, so that

card{L : αL(a) = xj} = i(xj , f), 1 6 j 6 k, and
card{L : αL(t) = x} 6 i(x, f) for each x ∈ Ω and t.

The existence of maximal sequences of f -liftings for Euclidean maps is
proved in [25, II Theorem 3.2], and the proof generalizes to our setting.

Theorem 3.4. Let β : [a, b) → X be a path, and let x1, . . . , xk be distinct
points in f−1(β(a)). Then β has a maximal sequence of f-liftings starting
at x1, . . . , xk.

4 Quasiregular maps

In this section we give a definition of quasiregular mappings that take do-
mains in Euclidean spaces into X, where X = (X, d,Hn) is an oriented
generalized n-manifold satisfying the assumptions 1.-3. given in Section 2.
The definition below corresponds to the so-called metric definition of Eu-
clidean quasiregular mappings, see [25, II.6].

Suppose that Ω ⊂ Rn, n > 2, is a domain, and f : Ω → X a continuous
map. For x ∈ Ω, define

Hf (x) = lim sup
r→0

H(x, r) = lim sup
r→0

L(x, r)
l(x, r)

,

where
L(x, r) = max

y∈B(x,r)
d(f(y), f(x)),

and
l(x, r) = min

y∈S(x,r)
d(f(y), f(x)).

Notice that L(x, r) does not need to equal maxy∈S(x,r) d(f(y), f(x)) in gen-
eral, even for homeomorphisms. Also, if f is not one-to-one, then l(x, r)
may equal zero.

Definition 4.1. We call a continuous map f : Ω → X quasiregular if f is
constant, or

• f is sense-preserving, discrete and open,

• there exists H <∞ so that Hf (x) 6 H for almost every x ∈ Ω, and

• Hf (x) <∞ for every x ∈ Ω.
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Below by data we mean n, H, τ and θ. In the theory of Euclidean
quasiregular maps, the concept of monotonicity is often very useful. We call
a map f : Ω → X monotone if the following holds true with T = 1:

(4.1) diam f(B(x, r)) 6 T diam f(S(x, r))

for every B(x, r) ⊂⊂ Ω. If there exists 1 6 T < ∞ such that (4.1) is
satisfied, then the mapping f is said to be pseudomonotone. A continuous
and open map f into Rn is monotone: indeed, the openness of f implies
∂f(G) ⊂ f(∂G) for every G ⊂⊂ Ω. We next show that the LLC-assumption
on X implies local pseudomonotonicity for maps with values in X.

Lemma 4.2. Suppose that f : Ω → X is continuous and open. Then for
every x ∈ Ω there exists a radius R = R(x) > 0 so that f|B(x,R) is T -
pseudomonotone, where T > 1 only depends on data.

Proof. Fix x ∈ Ω. Since f is open, it is non-constant. Thus, by the con-
tinuity of f , there exist a radius 0 < R < 1 and a point p ∈ Ω so that
B(x,R) ⊂⊂ Ω, 5 diam f(B(x,R)) < 1 and

(4.2) f(p) /∈ B(f(x), 5 diam f(B(x,R))).

Now fix B = B(y, r) ⊂ B(x,R), and a point w ∈ ∂f(B). Recall that the
openness of f implies ∂f(B) ⊂ f(∂B), and thus

diam f(∂B) > diam ∂f(B) =: A.

Then,

diam f(B) = sup
u,v∈f(B)

d(u, v) 6 sup
u,v∈f(B)

(d(u,w) + d(v, w)) = 2 sup
v∈f(B)

d(v, w).

Hence the proof is complete if we can show that, given v ∈ f(B), d(v, w) 6
CA, where C > 1 does not depend on y or r.

Fix a constant 1 6 M 6 2 diam f(B)/A so that

(4.3) v /∈ B(w,MA).

Since w ∈ ∂f(B) ⊂ f(∂B), there exists a point w′ ∈ ∂B so that f(w′) = w.
Thus, by (4.2), there exists a path

γ : [0, 1] → (Ω \B) ∪ {w′}

so that γ(0) = p and γ(1) = w′. We conclude that there exists a point
u ∈ f(|γ|) so that

(4.4) u ∈ B(w, 3 diam f(B)) \ (B(w,MA) ∪ f(B)).
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By (4.3), (4.4), and the local LLC-property, there exists a path

α : [0, 1] → X \B(w, θ−1MA)

so that α(0) = v ∈ f(B) and α(1) = u /∈ f(B). But then M 6 θ, since
otherwise |α| ∩ ∂f(B) = ∅, which contradicts the connectedness of α. We
conclude that v ∈ B(w,MA) for every M > θ, i.e. d(v, w) 6 2θA. The
proof is complete.

5 Analytic properties of quasiregular maps

In this section we show that quasiregular maps f : Ω → X belong to the
Newtonian space N1,n

loc (Ω, X). It then follows from Lemma 4.2 and results in
[13] and [18] that f maps sets of zero Lebesgue measure to sets of zero Hn-
measure, i.e. that f satisfies Condition (N), and that the change of variables
formula holds for f . We define the volume derivative Jf of f by

Jf (x) = lim sup
r→0

Hn
(
f(B(x, r))

)
αnrn

,

where αn is the volume of the unit ball in Rn. Similarly, we define

Lf (x) = lim sup
r→0

L(x, r)
r

= lim sup
r→0

maxy∈B(x,r) d(f(y), f(x))

r
.

Moreover, for A ⊂ Ω, we denote

N(y, f, A) = card(f−1(y) ∩A).

Theorem 5.1. Suppose that f : Ω → X is quasiregular. Then f ∈ N1,n
loc (Ω, X).

Proof. Fix x0 ∈ X. Our mapping is continuous and thus we only have to
show that fx0 has a locally n-integrable n-weak upper gradient that does not
depend on x0. It suffices to consider fx0 in a fixed domain U ⊂⊂ Ω. We will
first show that fx0 has a p-integrable p-weak upper gradient for 1 < p < n.
For that we choose and fix 1 < p < n and a small ε > 0.

Without loss of generality, we may assume that H > 1. We denote, for
j ∈ N,

Aj = {x ∈ U : Hj < Hf (x) 6 Hj+1},

and
A0 = {x ∈ U : 1 6 Hf (x) 6 H}.

Furthermore, for each j we fix a constant εj ∈ (0, ε), to be chosen later.
Notice that, by our definition of quasiregularity, U = ∪∞j=0Aj , and |Aj | = 0
for all j ∈ N. For each j ∈ N∪{0}, we choose x ∈ Aj and a radius 0 < sx < εj
such that

H(x, sx) 6 2Hj+1.
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To simplify the notation, we write sxi = si. By the Besicovitch covering
theorem [21, Theorem 2.7], we find a countable collection

B = {B(xi, si)} = {Bi}

of balls such that 5−1Bi ∩ 5−1Bk = ∅ whenever Bi, Bk ∈ B and i 6= k, and

(5.1) 1 = χU (x) 6
∑
B∈B

χB(x) 6 C for every x ∈ U.

Denote by Bj the subcollection of the balls B(xi, si) ∈ B for which xi ∈ Aj .
We define

ρε(x) =
∑

i

L(xi, si)
si

χ2Bi(x).

Let Γε denote all rectifiable paths γ : [0, 1] → U such that diam |γ| > ε.
Towards showing that fx0 has a p-integrable p-weak upper gradient we first
prove that, for all paths γ ∈ Γε, we have

(5.2) |fx0(γ(1))− fx0(γ(0))| 6 2
∫

γ
ρε ds

with

(5.3)
∫

U

[
ρε(x)

]p
dx 6 M

where the constant M is independent of ε. For that, we fix γ ∈ Γε. By
definition,

(5.4) |fx0(γ(1))− fx0(γ(0))| = |d(f(γ(1)), x0)− d(f(γ(0)), x0)|.

Notice that if Bi ∩ |γ| 6= ∅, then H1(|γ| ∩ 2Bi) > si. Hence (5.4) is bounded
from above by

d(f(γ(1)), f(γ(0))) 6
∑

Bi∩|γ|6=∅

diam f(Bi) 6 2
∑

Bi∩|γ|6=∅

si
L(xi, si)

si

6 2
∑

Bi∩|γ|6=∅

∫
|γ|

L(xi, si)
si

χ2Bi(x) dH1(x) 6 2
∫

γ
ρε ds,

as claimed at (5.2).
On the other hand, we have∫

U

[
ρε(x)

]p
dx =

∫
U

[ ∑
Bi∈B

L(xi, si)
si

χ2Bi(x)
]p

dx

6 C

∫
U

[ ∑
Bi∈B

L(xi, si)
si

χ1/5Bi
(x)

]p

dx.(5.5)
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Here the inequality follows if one uses the Lp−L
p

p−1 duality and the bound-
edness of an appropriate restricted maximal function, see [2] (notice that if
we replace p by 1, then the inequality (5.5) is obvious). Therefore, by the
pairwise disjointness of the balls 1

5Bi, we have

∫
U

[
ρε(x)

]p
dx 6 C

∫
U

∑
Bi∈B

[
L(xi, si)

si

]p

χ1/5Bi
(x) dx

6 C
∑
Bi∈B

sn−p
i [L(xi, si)]p

= C

∞∑
j=0

∑
Bi∈Bj

[
L(xi, si)
H2j

]p

sn−p
i H2pj(5.6)

6 C

∞∑
j=0

∑
Bi∈Bj

[l(xi, si)]ps
n−p
i H2pj ,

where the last inequality follows from our choice of the sets Aj and the radii
si. By Hölder’s inequality, and Ahlfors regularity, the right hand term is
smaller than

C

∞∑
j=0

H2pj
( ∑

Bi∈Bj

l(xi, si)n
) p

n
( ∑

Bi∈Bj

sn
i

)n−p
n(5.7)

6 C

∞∑
j=0

H2pj
( ∑

Bi∈Bj

Hn(f(Bi))
) p

n
( ∑

Bi∈Bj

sn
i

)n−p
n
.

Since |Aj | = 0 for all j ∈ N, we can choose the constants εj to be small
enough, so that

(5.8)
( ∑

Bi∈Bj

sn
i

)n−p
n

6 H−2pj2−j .

Also, by (5.1), and since N(y, f, U) 6 N <∞ for all y ∈ X, we have( ∑
Bi∈Bj

Hn(f(Bi))
) p

n =
( ∫

X

∑
Bi∈Bj

χf(Bi) dx
) p

n

6 (CN)
p
nHn(f(U))

p
n .(5.9)

By combining (5.5), (5.6), (5.7), (5.8) and (5.9), we conclude the auxiliary
claim (5.3). Having this, the weak compactness of Lp guarantees that there
is ρ ∈ Lp(U) and a sequence of εκ’s where κ = 1, 2, ... that decreases to zero
such that ρ is an Lp-weak limit of ρεκ . Here we needed the fact that p > 1.
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To simplify the notation, we write ρεκ = ρκ. Then (5.2) gives

(5.10) |fx0(γ(1))− fx0(γ(0))| 6 2
∫

γ
ρκ ds

for each κ > ` when γ ∈ Γε`
. By Mazur’s lemma, we find functions ρ̃κ, each a

convex combination of ρκ, ρκ+1, ... such that the sequence {ρ̃κ} converges to
ρ in Lp(U). Now (5.10) also holds with ρκ replaced with ρ̃κ for every κ > `.
By Fuglede’s lemma (see [13, Lemma 3.4]), (5.10) holds for ρ for p-almost
every γ ∈ ∪`Γε`

. Since U was an arbitrary domain compactly contained
in Ω, the above arguments give that fx0 has a locally p-integrable p-weak
upper gradient.

For the weak gradient ∇fx0 we have, by absolute continuity, quasiregu-
larity of f , and Ahlfors regularity,

|∇fx0(x)|n 6 Lf (x)n = lim sup
r→0

L(x, r)n

rn
6 Hn lim sup

r→0

l(x, r)n

rn

6 C lim sup
r→0

Hn(f(B(x, r)))
rn

= CJf (x)(5.11)

for almost every x ∈ U . Since f|U is N -to-1, the mapping E 7→ Hn(f(E))
is an N -additive set function from the Borel subsets of U to R. Hence, by
[20, Lemma 2.3],∫

U
|∇fx0(x)|n dx 6 C

∫
U
Jf (x) dx 6 CNHn(fU).

We conclude that fx0 belongs to the (classical) Sobolev space W 1,n(U), and
by Fuglede’s lemma and (5.11), Lf is an n-weak upper gradient of fx0 .
Finally, we conclude that f ∈ N1,n

loc (Ω, X).

The following theorem shows the usefulness of pseudomonotonicity. The
theorem is proved in greater generality in [13, Theorem 7.2], using the ideas
in [19].

Theorem 5.2. Suppose that f : Ω → X is a pseudomonotone map in
N1,n

loc (Ω, X). Then f satisfies Condition (N).

Notice that Condition (N) is a local property. Hence, combining Theo-
rem 5.1, Theorem 5.2 and Lemma 4.2 yields

Corollary 5.3. Suppose that f : Ω → X is quasiregular. Then f satisfies
Condition (N).

Now we consider the change of variables formula. For Lipschitz maps
the formula follows from a theorem of Kirchheim [18, Corollary 8].
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Theorem 5.4. Suppose that A ⊂ Rn is a measurable set and f : A→ X a
Lipschitz map. Then there exists a measurable function J (·, f) : A→ [0,∞]
so that

(5.12)
∫

A
u(f(x))J (x, f) dx =

∫
X
u(y)N(y, f, A) dHn(y)

for every measurable u : X → [0,∞], whenever one of the integrals is finite.

In order to prove (5.12) for quasiregular maps, we need the following
property of maps in Newtonian spaces, cf. [13, Proposition 4.6].

Theorem 5.5. Suppose that f : Ω → X belongs to N1,p
loc (Ω, X) for some

1 6 p <∞. Then there exists a partition

Ω =
( ∞⋃

k=1

Ak

)
∪ E, E,A1, A2, . . . pairwise disjoint,

so that f|Ak
is k-Lipschitz for every k ∈ N, and |E| = 0. In particular, if f

satisfies Condition (N), then f(Ω) is countably n-rectifiable.

Corollary 5.6. Suppose that f : Ω → X is quasiregular. Then (5.12) is
valid, and f(Ω) is countably n-rectifiable.

Proof. By Theorems 5.1, 5.4 and 5.5, (5.12) holds true for the restrictions
f|Ak

given in Theorem 5.5. On the other hand, by Corollary 5.3 and Theorem
5.5, |E| = Hn(f(E)) = 0, and thus (5.12) follows by applying the formula
for each f|Ak

and summing both sides over k. The second claim follows from
Corollary 5.3 and Theorem 5.5.

Remark 5.7. By the definition of Jf and (5.12), Jf (x) 6 J (x, f) for almost
every x ∈ Ω. We will later show that f defines a local homeomorphism
at almost every x ∈ Ω, which implies that in fact Jf (x) = J (x, f) almost
everywhere.

6 The KO-inequality

Modulus inequalities for path families play a fundamental role in the the-
ory of Euclidean quasiregular maps. In this section we show the validity
of the so-called KO-inequality, which controls the modulus of a path family
by the modulus of its image under f , in our setting. The interested reader
finds more about related questions in [6]. The proof of a reverse inequal-
ity, Väisälä’s inequality, will be much more involved. In fact, one of our
main goals in this paper is to develop enough theory so that we are able to
generalize Väisälä’s inequality to our setting.

First we prove a distortion inequality which corresponds to the inequality
used to give the analytic definition of quasiregular maps ([25, I.1]).
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Lemma 6.1. Suppose that f : Ω → X is a quasiregular map. Then

Lf (x)n 6 CJf (x)

for almost every x ∈ Ω, where C > 0 only depends on data.

Proof. We have

Lf (x)n = lim sup
r→0

L(x, r)n

rn

6 lim sup
r→0

αnL(x, r)n

Hn(f(B(x, r)))
· lim sup

r→0

Hn(f(B(x, r)))
αnrn

whenever the right hand side is well-defined. Here, the last term equals
Jf (x). On the other hand,

f(B(x, r)) ⊃ D(f(x), l(x, r)),

and so
Hn(f(B(x, r))) > Hn(D(f(x), l(x, r))).

Hence,

lim sup
r→0

αnL(x, r)n

Hn(f(B(x, r)))
(6.1)

6 lim sup
r→0

L(x, r)n

l(x, r)n
· lim sup

r→0

αnl(x, r)n

Hn(D(f(x), l(x, r)))
.

By the definition of quasiregularity, the first term on the right is bounded
by Hn for almost every x ∈ Ω. Also, by (2.3), the second term is bounded
by τθn. The proof is complete.

Our next theorem generalizes the KO-inequality to the current setting.

Theorem 6.2. Suppose that f : Ω → X is a non-constant quasiregular map,
and Γ a path family in Ω. If ρ is a test function for f(Γ), then

MΓ 6 K

∫
X
N(y, f,Ω)ρ(y)n dHn(y), .

where K > 0 only depends on data. In particular, if N(y, f,Ω) 6 N < ∞
for every y ∈ X, then

MΓ 6 NKMf(Γ).

Proof. Suppose that ρ : X → [0,∞] is a test function for f(Γ). Define
ρ′ : Ω → [0,∞],

ρ′(x) = (ρ ◦ f)(x)Lf (x).
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By Theorem 5.1 and the definition of a Newtonian space, f is absolutely
continuous on every γ ∈ Γ′ = Γ \ Γ0, where MΓ0 = 0. Thus,∫

γ
ρ′ ds =

∫
γ
(ρ ◦ f)Lf ds >

∫
f◦γ

ρ ds > 1

for every γ ∈ Γ′. Since ρ′ is a Borel function, we conclude that ρ′ is a test
function for Γ.

Now, we apply the change of variables formula. By Lemma 6.1 and
Remark 5.7, Lf (x)n 6 CJ (x, f) for almost every x ∈ Ω. Thus, by Corollary
5.6 and the subadditivity property of modulus (2.4),

MΓ = MΓ′ 6
∫

Ω
ρ′(x)n dx =

∫
Ω
ρ(f(x))nLf (x)n dx

6 K

∫
Ω
ρ(f(x))nJ (x, f) dx = K

∫
X
N(y, f,Ω)ρ(y)n dHn(y).

The proof is complete.

7 Local dilatation bounds

In this section we estimate the dilatation Hf and the inverse dilatation H∗
f ,

to be defined later. First we prove that Hf is locally bounded at every
x ∈ Ω. If U ⊂⊂ Ω, we denote

N(f, U) = max
y∈X

N(y, f, U).

Theorem 7.1. Suppose that f : Ω → X is a non-constant quasiregular map.
Then

Hf (x) 6 H ′ for every x ∈ Ω ,

where H ′ only depends on data and on i(x, f).

Proof. Fix x ∈ Ω and a radius R < σx, where σx is given in Lemma 3.3,
such that

B(f(x), 10θ3R) ⊂ f(Ω).

By Lemmas 3.2 and 3.3 (i) and (iv), ∂U(x,R) is compact, and x /∈ ∂U(x,R).
Hence we may choose r > 0 to be small enough so that B(x, 2r) ⊂ U(x,R)
and B(x, 2r) ∩ ∂U(x,R) = ∅.

By the definition of l(x, r), and since U(x,R) is a normal neighborhood
of x, we can choose

(7.1) 0 < s < 2l(x, r)

so that
f(S(x, r)) ∩B(f(x), s) 6= ∅.
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By (2.2),
B(f(x), s) ⊂ D(f(x), θs),

and so

(7.2) f(S(x, r)) ∩D(f(x), θs) 6= ∅.

If necessary, we can further assume that r is so small that θs < R. By
(7.2) and Lemma 3.3 (iii), U(x, θs) intersects S(x, r). Thus the same is true
also for the x-component E of U(x, θs)∩B(x, 2r). We conclude that E is a
compact and connected set in B(x, 2r) satisfying x ∈ E and S(x, r)∩E 6= ∅.

By Lemma 4.2, there exists a constant M > 0, only depending on data,
so that the following holds: for every x ∈ Ω there exists R0 > 0 so that for
every r < R0,

(7.3) L(x, r) 6 diam f(B(x, r)) 6 M diam f(S(x, r)).

We choose r to be small enough so that (7.3) is satisfied. Then we are able
to find a radius t > 0 so that

(7.4) 2Mt > L(x, r),

and

(7.5) v ∈ f(S(x, r)) ∩ (X \B(f(x), t)) 6= ∅.

By (7.1), (7.3) and (7.4), the theorem is proved provided we show that
t 6 Cs, where C > 1 only depends on data and i(x, f). We assume that
t > 2θ2s. Also, we assume that r is small enough so that t < R.

Choose a point w ∈ ∂D(f(x), R). Then, by the LLC-condition, we can
join v and w in (v is as in (7.5))

X \B(f(x), θ−1t)

by a path γ. Choose v′ ∈ S(x, r) so that f(v′) = v, and denote by |γ′|
the v′-component of f−1(|γ|). By Lemma 3.3 (iv), |γ′| intersects ∂U(x,R).
Thus, the v′-component F of |γ′| ∩B(x, 2r) is a compact and connected set
which intersects both S(x, r) and S(x, 2r).

Now we are ready to apply Theorem 6.2. We denote

Γ = ∆(E,F ;B(x, 3r)).

Since diamE, diamF > r and both intersect S(x, r), (2.6) yields

(7.6) MΓ > C(n).

Also, since
f(E) ⊂ B(f(x), θs)
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and
f(F ) ∩B(f(x), θ−1t) = ∅,

(7.7) Mf(Γ) 6 MΓ′,

where
Γ′ = ∆

(
B(f(x), θs), X \B(f(x), θ−1t);B(f(x), θ−1t)

)
.

By Ahlfors regularity and (2.5),

(7.8) MΓ′ 6 C
(

log
t

θ2s

)1−n
.

Combining Theorem 6.2 with (7.6), (7.7), (7.8) and (3.1) yields

C(n) 6 Ki(x, f)
(

log
t

θ2s

)1−n
;

that is,
t 6 C(n,H, τ, θ, i(x, f))s.

The proof is complete.

Next we prove a similar bound for the so-called inverse dilatation. Sup-
pose that f : Ω → X is a non-constant quasiregular map, and U(x, r) is a
normal neighborhood of a point x ∈ Ω. We define

L∗(x, r) = max
y∈U(x,r)

|y − x|,

l∗(x, r) = min
y∈X\U(x,r)

|y − x|, and

H∗
f (x) = lim sup

r→0
H∗(x, r) = lim sup

r→0

L∗(x, r)
l∗(x, r)

.

We will state and use a modulus estimate which slightly generalizes (2.6).
See [30, Theorem 10.12] for the proof.

Theorem 7.2. Suppose that 0 < r < R, and that E,F ⊂ B(x,R) ⊂ Rn are
disjoint sets such that

E ∩ S(x, s) 6= ∅, F ∩ S(x, s) 6= ∅

for every s ∈ (r,R). Then

M∆(E,F ;B(x,R)) > C(n) log
R

r
,

where C(n) > 0 only depends on n.

Now, we are ready to prove a bound for H∗
f .
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Theorem 7.3. Suppose that f : Ω → X is a non-constant quasiregular map.
Then

H∗
f (x) 6 H∗

for every x ∈ Ω, where H∗ > 1 only depends on data and on i(x, f).

Proof. Fix a radius δx > 0 such that δx < σx, where σx is given in Lemma
3.3, and such that

(7.9) H(x, s) 6 2H ′

for every s > 0 for which L(x, s) 6 δx/(10θ); this choice can be made by
Theorem 7.1. Moreover, we can choose r > 0 to be small enough such that

(7.10) 2L(x, L∗(x, r)) < δx,

and 2L∗(x, r) < R(x), where R(x) > 0 is as in Lemma 4.2. Denote L∗ =
L∗(x, r) and l∗ = l∗(x, r). By Lemma 4.2,

diam f(S(x, t)) >
diam f(B(x, t))

M
>

diam f(B(x, l∗))
M

>
l(x, l∗)
M

for every t ∈ (l∗, L∗), where M > 0 only depends on data. Thus, for each
such t we can choose points at, bt ∈ S(x, t) so that

(7.11) d(f(at), f(bt)) = diam f(S(x, t)) >
l(x, l∗)
M

.

Denote
E = {at : t ∈ (l∗, L∗)}, F = {bt : t ∈ (l∗, L∗)},

and
Γ = ∆

(
E,F ;B(x, L∗)

)
.

Then

(7.12) MΓ > C(n) log
L∗

l∗

by Theorem 7.2. Also,

f(|γ|) ⊂ B(f(x), L(x, L∗)),

and, by (7.11),

H1(f(|γ|)) >
l(x, l∗)
M

for every γ ∈ Γ. Thus ρ : X → [0,∞],

ρ(z) = χB(f(x),L(x,L∗))(z)
M

l(x, l∗)
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is a test function for f(Γ). Hence

(7.13) Mf(Γ) 6
MnHn(B(f(x), L(x, L∗)))

l(x, l∗)n
6
MnτL(x, L∗)n

l(x, l∗)n

by Ahlfors regularity. Combining (7.12), (7.13), Theorem 6.2 and (3.1)
shows that the theorem is proved if we can show that

L(x, L∗) 6 C l(x, l∗),

where C > 1 only depends on data.
By (7.9),

L(x, L∗) 6 2H ′l(x, L∗), L(x, l∗) 6 2H ′l(x, l∗),

and so it suffices to show that

(7.14) l(x, L∗) 6 L(x, l∗).

By the definition of L∗, there exists a point

v ∈ S(x, L∗) ∩ ∂U(x, r).

By Lemma 3.3 (iv), and since ∂D(f(x), r) ⊂ S(f(x), r),

f(v) ∈ ∂D(f(x), r) ⊂ S(f(x), r).

Thus l(x, L∗) 6 r. Similarly, there exists a point

w ∈ S(x, l∗) ∩ ∂U(x, r),

and so Lemma 3.3 (iv) implies

f(w) ∈ ∂D(f(x), r) ⊂ S(f(x), r).

Thus
L(x, l∗) > d(f(w), f(x)) = r.

The proof is complete.

8 Generalized local inverse map

Let f : Ω → X be a non-constant quasiregular map, and suppose that U is
a normal domain so that f(U) = V . We denote m = µ(f, U), and define an
“inverse” mapping gU : V → Rn of f by setting

(8.1) gU (y) =
1
m

∑
x∈f−1(y)∩U

i(x, f)x.
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Theorem 8.1. For f and U as above, gU ∈ N1,n(V,Rn).

The basic idea behind the proof of Theorem 8.1 is the same as in Theorem
5.1. However, the lack of the Besicovitch covering theorem on the target
space X causes some difficulties. To overcome these difficulties, we recall a
covering theorem by Balogh, Koskela and Rogovin, [1, Lemma 2.2].

Lemma 8.2. Let B be a collection of balls B(x, rx) (open or closed) with
x ∈ V in a metric space X such that

V ⊂ ∪B∈BB ⊂⊂ X.

Then there exists a finite or countable sequence Bν = B(xν , rν) ∈ B with the
following properties:

1. V ⊂ ∪νBν

2. if ν 6= κ, ν, κ ∈ N, then either

• xν ∈ X \Bκ and Bκ \Bν 6= ∅, or

• xκ ∈ X \Bν and Bν \Bκ 6= ∅

3. B(xν ,
1
3rν) ∩B(xκ,

1
3rκ) = ∅ when ν 6= κ

Proof of Theorem 8.1. First we notice that the mapping gU is continuous.
The proof of this fact is essentially the same as in the case X = Rn, and
thus is omitted here, see [25, Proof of Lemma II 5.3].

Fix ε > 0. Combining Lemma 8.2 and Theorem 7.3 with the fact that
the mapping f is discrete and open, we find a finite or countable family of
balls, denoted by B = {B(yj , rj)} = {Bj}, with the following properties:
rj < ε for every j ∈ N, V ⊂ ∪Bj , and, if we denote

{xij
j } = f−1(yj) ∩ U, ij = 1, ..., kj 6 m,

then for every j ∈ N and ij , we have

1. Bj ⊂ V ,

2. the xij
j -components U ij

j of f−1(Bj) are pairwise disjoint,

3. H∗(xij
j , s) 6 H∗ for all s 6 rj , and

4. the family B satisfies the properties 1., 2., and 3. of Lemma 8.2.

We start our proof with showing the following auxiliary estimate:

(8.2) |gU (z)− gU (yj)| 6 max
{
L∗(xij

j , rj) : 1 6 ij 6 kj

}
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for every j ∈ N and all z ∈ Bj . To this end, fix j ∈ N, let z ∈ Bj , and
denote

kj⋃
ij=1

k(z,ij)⋃
ν=1

{pij
ν } = f−1(z) ∩ U,

where
k(z, ij) = card{f−1(z) ∩ U ij

j }.

Since
k(z,ij)∑
ν=1

i(pij
ν , f) = i(xij

j , f)

for each ij = 1, ..., kj , we have

|gU (z)− gU (yj)| =
1
m

∣∣∣∣∣∣
kj∑

ij=1

k(z,ij)∑
ν=1

i(pij
ν , f) pij

ν −
kj∑

ij=1

i(xij
j , f)xij

j

∣∣∣∣∣∣
=

1
m

∣∣∣∣∣∣
kj∑

ij=1

k(z,ij)∑
ν=1

i(pij
ν , f)

[
p

ij
ν − x

ij
j

]∣∣∣∣∣∣
6

1
m

kj∑
ij=1

i(xij
j , f) max

ν,ij

∣∣∣pij
ν − x

ij
j

∣∣∣
6 max

ij
L∗(xij

j , rj),(8.3)

which implies (8.2).
We define

(8.4) ρε(y) = 2
∑

j

max
16ij6kj

L∗(xij
j , rj)
rj

χ2Bj (y).

Let Γε denote all rectifiable paths γ : [0, 1] → V with diam |γ| > ε.
Towards showing that gU has an n-integrable n-upper gradient we first prove
that, for all paths γ ∈ Γε, we have

(8.5) |gU (γ(1))− gU (γ(0))| 6
∫

γ
ρε ds

with

(8.6)
∫

V
[ρε(y)]

n dHn(y) 6 C |U |

where the constant C does not depend on ε. For proving these, we fix γ ∈ Γε.
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Notice that if |γ| ∩ Bj 6= ∅, then H1(|γ| ∩ 2Bj) > rj . Combining this
with (8.2), we have∫

γ
ρε ds > 2

∑
|γ|∩Bj 6=∅

max
16ij6kj

L∗(xij
j , rj)

> |gU (γ(1))− gU (γ(0))|(8.7)

and (8.5) follows. For showing (8.6), we first compute∫
V

[ρε(y)]
n dHn(y) = 2n

∫
V

[∑
j

max
16i6kj

L∗(xij
j , rj)
rj

χ2Bj (y)
]n

dHn(y)

6 C

∫
V

[∑
j

max
16i6kj

L∗(xij
j , rj)
rj

χ 1
3
Bj

(y)
]n

dHn(y).(8.8)

Here the last inequality follows if one uses the Ln − L
n

n−1 duality and the
boundedness of an appropriate restricted maximal function, see [2] (notice
that if we replace n by 1, then the inequality is obvious).

Now, using the fact that the balls 1
3Bj are pairwise disjoint, and Ahlfors

regularity, we have∫
V

[ρε(y)]n dHn(y) 6 C
∑

j

[
max

16ij6kj

L∗(xij
j , rj)

]n
.(8.9)

To simplify writing we denote

max
16ij6kj

L∗(xij
j , rj) = L∗(x

i◦j
j , rj) = L∗j .

In order to show that the right hand side of (8.9) converges, we will argue
the same way as in [1]. Precisely, we claim the following.

Claim ♦: Let c = 10(H∗)2. Then the balls B(x
i◦j
j , L

∗
j/c) are pairwise dis-

joint.

Proof of Claim ♦. By the symmetry of property 2. of Lemma 8.2, we
may assume that yj /∈ Bν , and that there exists z ∈ Bν \Bj . Therefore, we
have

1. x
i◦j
j /∈ U i◦ν

ν

2. There exists v ∈ U i◦ν
ν \ U

i◦j
j .

We write xj = x
i◦j
j , xν = x

i◦ν
ν , Uj = U

i◦j
j and Uν = U

i◦ν
ν . The first part implies

that

(8.10) |xj − xν | >
L∗(xν , rν)

H∗ .
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Therefore, if we suppose that

|xj − xν | >
L∗(xj , rj)

2H∗ ,

then the claim follows with c = 5H∗. Hence, we may now assume that

(8.11) |xj − xν | 6
L∗(xj , rj)

2H∗ .

The second property above implies

|v − xj | >
L∗(xj , rj)

H∗ .

Combining this with our assumption (8.11) we have

L∗(xν , rν) >
L∗(xj , rj)

2H∗ .

This together with (8.10) implies

|xj − xν | >
L∗(xj , rj)
2(H∗)2

.

Therefore, Claim ♦ follows from this and (8.10).

Finally, the second auxiliary inequality (8.6) follows. Indeed, combining
(8.9) with Claim ♦, we have

(8.12)
∫

V
[ρε(y)]

n dHn(y) 6 C
∑

j

(L∗j )
n 6 C|U |.

In order to remove the restriction diam |γ| > ε we argue as in Theorem
5.1. The weak compactness of Ln guarantees that there is ρ ∈ Ln(V ), and
a sequence of εκ’s, where κ = 1, 2, ..., that decreases to zero such that ρ is
an Ln-weak limit of ρεκ . To simplify the notation, we write ρεκ = ρκ. Then
(8.5) gives

(8.13) |gU (γ(1))− gU (γ(0))| 6
∫

γ
ρκ ds

for each κ > ` when γ ∈ Γε`
. By Mazur’s lemma, we find functions ρ̃κ, each

a convex combination of ρκ, ρκ+1, ..., such that the sequence {ρ̃κ} converges
to ρ in Ln(V ). Now (8.13) also holds with ρκ replaced with ρ̃κ for every
κ > `. By Fuglede’s lemma (see [13], Lemma 3.4), (8.13) holds for ρ for n-
almost every γ ∈ ∪`Γε`

. Thus gU has an n-integrable n-weak upper gradient
and, therefore, due to the continuity of gU this finishes the proof of Theorem
8.1.
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We have also shown the following estimate for the integral of the function
ρ.
Remark 8.3. The inverse mapping gU has an n-weak upper gradient ρ which
satisfies the following estimate

(8.14)
∫

V

[
ρ(y)

]n
dHn(y) 6 C|U | .

9 The size of f(Bf)
In this section we show that if f : Ω → X is a quasiregular map, then
Hn(f(Bf )) = 0. It is true that also |Bf | = 0 for a non-constant map, but to
prove this we need the results given in the following sections. Our method
of proof is new even in the case of Euclidean quasiregular maps. In fact, the
method gives a stronger result, and yields an answer to a problem of Bonk
and Heinonen [4, Remark 3.5] on the size of the branch set of a Euclidean
quasiregular map, see Theorem 9.8 below.

First we observe that the proof of Theorem 7.3 gives a stronger result
than stated.

Lemma 9.1. Suppose that f : Ω → X is a non-constant quasiregular map.
Then for every x ∈ Ω and η > 1 there exist a radius δx,η > 0 and a constant
κ > 0, only depending on data, i(x, f) and η, so that

L∗(x, ηr) 6 κl∗(x, r)

for every r < δx,η.

Proof. The proof goes exactly like the proof of Theorem 7.3, with the fol-
lowing exception: instead of L∗ = L∗(x, r) consider L̃∗ = L∗(x, ηr). Then,
instead of (7.14),

l(x, L̃∗) 6 ηL(x, l∗)

holds. We leave the details to the reader.

We will prove a porosity estimate for f(Bf ). This estimate will then
imply that Hn(f(Bf )) = 0. We call a set E ⊂ X λ-porous, 0 < λ < 1, if

lim inf
r→0

r−1 sup{t > 0 : there exists B(y, t) ⊂ B(x, r) \ E} > λ

for every x ∈ E. Porosities imply size estimates as follows. See [5, Lemma
3.12], or [17] for the proof.

Lemma 9.2. Suppose that X is an Ahlfors n-regular metric space, and
E ⊂ X. If E is λ-porous for some λ ∈ (0, 1), then

dimHE 6 n− ε,

where ε > 0 only depends on n, λ and the Ahlfors regularity constant of X,
quantitatively.
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In order to prove porosity estimates we use a method similar to a one
used in [24]. The following topological result turns out to be very convenient.
See [22, Theorem 2] for the proof (the statement there is a bit different, but
the proof applies).

Lemma 9.3. Suppose that f : Ω → X is a continuous, sense-preserving,
discrete and open map. Assume that x ∈ Bf , and that U(x, r) is a normal
neighborhood of x. Then there exists a point y ∈ ∂D(f(x), r) so that

diam f−1(y) > l∗(x, r).

Now we are ready to prove the main result of this section. For a given
f : Ω → X, and m > 2, we denote

Bm = {x ∈ Bf : i(x, f) = m}.

Theorem 9.4. Suppose that f : Ω → X is a quasiregular map and m > 2.
Then for every x0 ∈ Bm there exists a radius R0 > 0 such that the set

f(Bm ∩ U(x0, R0))

is λ-porous, where λ ∈ (0, 1) and only depends on data and m, quantitatively.

Proof. We choose the radius R0 > 0 to be small enough so that U(x0, R0)
is a normal neighborhood of x0. We fix x ∈ Bm ∩ U(x0, R0) and a radius
r > 0 so that 4θr < min{σx, δx,2θ}, where σx and δx,2θ are as in Lemmas
3.3 and 9.1, respectively. Moreover, we assume that

B(f(x), 4θr) ⊂ D(f(x0), R0).

Our goal is to show that there exists a constant a > 0, only depending on
data and m, so that

(9.1) B(y, ar) ⊂ B(f(x), 2θr) \ f(Bm ∩ U(x0, R0))

for some y ∈ B(f(x), 2θr).
By Lemmas 3.3 (iii) and 9.3, there exists a point y ∈ ∂D(f(x), r) so that

(9.2) diam(f−1(y) ∩ U(x, 4θr)) > l∗(x, r).

Fix s ∈ (0, r/2). We will show that if s is small enough, then

f−1(D(y, s)) ∩ U(x, 4θr)

consists of at least two different components. Suppose that there exists

z ∈ f−1(y) ∩ U(x, 4θr)
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so that
U(z, s) = f−1(D(y, s)) ∩ U(x, 4θr).

Then, by (9.2),

(9.3) diamU(z, s) > l∗(x, r).

We denote
Γ = ∆(U(z, s), ∂U(x, 2θr);U(x, 4θr)).

Then every γ ∈ f(Γ) joins D(y, s) and ∂D(f(x), 2θr) in D(f(x), 4θr). By
triangle inequality and (2.2),

B(y, r/2) ⊂ B(f(x), 2r) ⊂ D(f(x), 2θr).

Thus
Mf(Γ) 6 MΓ∗,

where
Γ∗ = ∆(B(y, s), X \B(y, r/2);D(x0, R0)).

Then (2.5) yields

(9.4) Mf(Γ) 6 C(n, τ)
(

log
r

2s

)1−n
.

On the other hand,
diam ∂U(x, 2θr) > l∗(x, r),

and
dist (∂U(x, 2θr), U(z, s)) 6 L∗(x, 2θr).

Hence, (2.6), Lemma 9.1 and (9.3) yield

(9.5) MΓ > C(n) log
L∗(x, 2θr) + l∗(x, r)

L∗(x, 2θr)
> C,

where C > 0 only depends on data and m. By (9.4), (9.5) and Theorem 6.2
we conclude that s > ar, where a > 0 only depends on data and m. We
have proved that the set

(9.6) f−1(D(y, ar)) ∩ U(x, 4θr)

consists of at least two different components.
Since U(x0, R0) is a normal neighborhood of x0, and i(x0, f) = m,

µ(w, f, U(x0, R0)) = m for every w ∈ D(f(x0), R0). Now suppose that
(9.1) does not hold when a is chosen as in (9.6). Then there exists a point
v1 ∈ U1 ∩ Bm, where U1 is a component of f−1(D(y, ar)) in U(x0, R0).
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By (9.6), there exists another component U2 of f−1(D(y, ar)) in U(x0, R0).
Moreover, by Lemma 3.1 there exists a point

v2 ∈ f−1(f(v1)) ∩ U2.

But now

m = µ(f(v1), f, U(x0, R0)) > i(v1, f) + i(v2, f) > m+ 1.

This is a contradiction. The proof is complete.

By combining Lemma 9.2 and Theorem 9.4, we have

Corollary 9.5. Suppose that f : Ω → X is a quasiregular map, and m > 2.
Then

dimH f(Bm) < n− ε,

where ε > 0 only depends on data and m, quantitatively.

Corollary 9.6. Suppose that f : Ω → X is a quasiregular map. Then
Hn(f(Bf )) = 0.

Proof. For every m > 2 we can cover Bm by countably many sets U(xm
j , R

m
j )

as in Theorem 9.4. By Corollary 9.5, Hn(f(Bm∩U(xm
j , R

m
j ))) = 0 for every

j. Thus also Hn(f(Bf )) = 0.

In [4], Bonk and Heinonen solved a long-standing open problem by prov-
ing the following theorem.

Theorem 9.7 ([4, Theorem 1.3]). Suppose that f : Ω → Rn is a non-
constant K-quasiregular map. Then

dimH Bf 6 n− ε(n,K),

where ε(n,K) > 0 only depends on n and K.

Their method was to show that there exist m > 2 and λ ∈ (0, 1), only
depending on n and K, so that the set

(9.7) Bf ∩ {x ∈ Ω : i(x, f) > m}

is λ-porous, quantitatively. On the other hand, an earlier theorem by Sarvas
[27] says that for every m > 2 there exists λm ∈ (0, 1), only depending on
n, K and m, so that the set

(9.8) Bf ∩ {x ∈ Ω : i(x, f) 6 m}

is λm-porous. Combining (9.7), (9.8) and Lemma 9.2 then yields Theorem
9.7. However, the known proofs of (9.8), and subsequently Theorem 9.7, are
purely qualitative. Hence Bonk and Heinonen asked [4, Remark 3.5] for a
direct quantitative proof. Our next theorem solves this problem.
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Theorem 9.8. Suppose that f : Ω → Rn is a non-constant quasiregular
map. Then Bm is λm-porous for every m > 2, where λm ∈ (0, 1) only
depends on n, K and m, quantitatively.

Proof. Recall that in the Euclidean n-space

(9.9) M∆(S(x, r), S(x,R);B(x,R)) = ωn−1

(
log

R

r

)1−n

whenever 0 < r < R, compare (2.5). Here ωn−1 = Hn−1(S(0, 1)). We fix
a point x ∈ Bm and a radius Rx > 0 so that Rx < σx, where σx is as in
Lemma 3.3. Moreover, we require the following:

(9.10) H∗(x, s) 6 H∗

for every s 6 Rx, where H∗ only depends on n and K, and for every s 6 Rx

there exists a point ys so that

(9.11) f(U(x,Rx) ∩ Bm) ∩B(ys, αs) = ∅ and B(ys, αs) ⊂ B(f(x), s),

where α ∈ (0, 1) only depends on n, K and m. These requirements can be
made by [25, III Lemma 4.1] and Theorem 9.4, respectively.

Now consider R < Rx. Our goal is to show that there exists a ball

(9.12) B(u, βL∗(x,R)) ⊂ B(x, L∗(x,R)) \ Bm,

where β ∈ (0, 1) only depends on n, K and m. Let δ > 0 be small enough
so that L∗(x, δR) < l∗(x,R). We denote

Γ = ∆(U(x, δR), ∂U(x,R);U(x,R)).

Then every γ ∈ f(Γ) joins S(f(x), δR) and S(f(x), R) in B(f(x), R). Thus,
by (9.9),

(9.13) Mf(Γ) = ωn−1

(
log

1
δ

)1−n
.

On the other hand,

MΓ > M∆
(
S

(
x, l∗(x, δR)

)
, S

(
x, L∗(x,R)

)
;B

(
x, L∗(x,R)

))
= ωn−1

(
log

L∗(x,R)
l∗(x, δR)

)1−n

> ωn−1

(
log

(H∗)2l∗(x,R)
L∗(x, δR)

)1−n

,(9.14)

where the last inequality follows by applying (9.10) to both L∗(x,R) and
l∗(x, δR). Combining (9.13), (9.14) and theKO-inequalityMΓ 6 KOmMfΓ
gives

L∗(x, δR) 6 (H∗)2δ(KOm)1/(n−1)
l∗(x,R).
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Hence, if we choose

δ = min
{(

2(H∗)2
)−(KOm)

−1
n−1

,
1
2

}
,

then

(9.15) L∗(x, δR) 6 l∗(x,R)/2.

By (9.11) there exists a normal domain U ⊂ U(x, δR) so that Bm∩U = ∅
and f(U) = B(yδR, αδR). We denote yδR = y. We choose a point u ∈ U
so that f(u) = y, and denote by r the largest radius so that B(u, r) ⊂ U .
Then (9.12) follows if we can show that r > βL∗(x,R), where β > 0 only
depends on n, K and m.

Now there exists a point v ∈ ∂U ∩ S(u, r), so f(v) ∈ S(y, αδR). We
denote by I the segment joining u and v. Then

diam f(I) > αδR,

which together with (2.6) implies

(9.16) MΓ1 = M∆(f(I), S(f(x), R);B(f(x), R)) > C(n,K,m).

We denote by Γ′ the family of all lifts γ′ of γ ∈ Γ1 starting at I. Then every
γ′ ∈ Γ′ joins I and ∂U(x,R) by Lemma 3.3 (iv). Also,

I ⊂ B(u, r) ⊂ B(u, l∗(x,R)/2) ⊂ B(x, l∗(x,R)) ⊂ U(x,R),

where the third inclusion follows by (9.15). Hence

MΓ′ 6 M∆(S(u, r), S(u, l∗(x,R)/2);B(u, l∗(x,R)/2))

= ωn−1

(
log

l∗(x, r)
2r

)1−n
.(9.17)

Combining (9.16), (9.17) and Poletsky’s inequality MΓ1 6 KIMΓ′ (see [25,
II (8.2)] and Theorem 11.1 below) yields

(9.18) C(n,K,m) 6 KIωn−1

(
log

l∗(x, r)
2r

)1−n
.

Applying (9.18) and (9.10) gives (9.12).
In order to complete the proof we need to show that for every t <

L∗(x,Rx) there exists 0 < R < Rx so that L∗(x,R) = t. Suppose that this
is not the case. Then there exists R < Rx and a sequence (Ri) converging
to R so that (L∗(x,Ri)) does not converge to L∗(x,R). We may assume
that (Ri) either decreases or increases to R. In the first case we have a
contradiction because

U(x,R) =
∞⋂
i=1

U(x,Ri)
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is a compact and connected set. In the latter case we choose a point

p ∈ ∂U(x,R) ∩ S(x, L∗(x,R)),

and a radius ε < σp. Then U(p, ε) ∩ U(x,Ri) 6= ∅ for large enough i by
Lemma 3.3 (iii). Hence we have a contradiction when ε → 0. The proof is
complete.

A quantitative bound for ε(n,K) in Theorem 9.7 now immediately fol-
lows from (9.7), Theorem 9.8 and Lemma 9.2. By using the techniques in
[24] one can also give a quantitative proof for (9.8); we omit the proof since
it is more technical than the proof of Theorem 9.8.

10 Poletsky’s lemma

Theorem 5.1 tells us that a quasiregular mapping f : Ω → X lies in the
Newtonian space N1,n

loc (Ω, X) and, therefore, it is absolutely continuous out-
side a path family of zero n-modulus. In this section we prove a substitute
for this fact in the “inverse” direction, called Poletsky’s lemma. This lemma
is a consequence of Theorem 8.1. To state it we need some terminology. We
refer to [30] for the definitions concerning paths and path integrals, such as
path length and Condition (N), used below.

Let β : I0 → X be a closed rectifiable path, and let α : I → Ω be a
path such that f ◦ α ⊂ β. This means that f ◦ α is the restriction of β to
some subinterval of I0. If the length function sβ : I0 → [0, l(β)] is constant
on some interval J ⊂ I, β is also constant on J , and the discreteness of
f implies that also α is constant on J . It follows that there is a unique
mapping α∗ : sβ(I) → Ω such that α = α∗ ◦ (sβ|I). We say that α∗ is the
f -representation of α with respect to β and f is absolutely precontinuous
on α if α∗ is absolutely continuous.

Theorem 10.1. Suppose that Γ is a family of paths γ in Ω such that f ◦ γ
is locally rectifiable and there is a closed subpath α of γ on which f : Ω → X
is not absolutely precontinuous. Then Mf(Γ) = 0.

The rest of this section is almost parallel to the proof in the Euclidean
case, see [25, pages 46-48]. Before going to the proof of Theorem 10.1 we
need to introduce some notation. First, we fix a domain G ⊂⊂ Ω and set
Bk = {x ∈ G : i(x, f) = k}, k > 2. We choose pairwise disjoint open cubes
Qj , j ∈ N, such that 2Qj ⊂ G \ Bf , f

∣∣
2Qj

is one-to-one, G \ Bf ⊂
⋃∞

j=1Qj .
Then we have the homeomorphic inverse mappings hj : f(2Qj) → 2Qj . By
Theorem 8.1 we know that hj ∈ N1,n(f(2Qj),Rn). We choose an n-weak
upper gradient ρj of hj , set ρj(y) = 0 for y ∈ X \ f(2Qj), and define

ρ(y) = sup
{
ρjχf(2Qj)(y) : j ∈ N

}
.
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By Remark 8.3 the functions ρj can be chosen so that

(10.1)
∫

f(2Qj)

[
ρj(y)

]n
dHn(y) 6 C|Qj | , for all j = 1, 2, ...

Similarly, for each x ∈ Bk we choose a normal neighborhood U ⊂ G
of x. We cover Bk by such normal neighborhoods Uki, i ∈ N, and let
gki denote the “inverse” map given at (8.1). By Theorem 8.1, we have
gki ∈ N1,n(f(Uki),Rn). Finally, we fix a set F ⊂ X of zero Hn-measure
which contains all the points where at least one ρj is not finite and which
also contains the set f(Bf ) (Corollary 9.6).

Proof of Theorem 10.1. We follow the notation given above. Let Γ be a
family of closed paths γ : I → G such that f ◦γ is rectifiable for every γ ∈ Γ
and the following three properties are satisfied:

1.
∫
f◦γ χF ds = 0 for every γ ∈ Γ.

2. If α : I ′ → G is a closed subpath of some γ ∈ Γ and if |α| ⊂ 2Qj , then

|hj

(
f(α(t1))

)
− hj

(
f(α(t2))

)
| 6

∫
f◦α

ρ ds <∞

for all t1, t2 ∈ I ′.

3. There is ζki ∈ Ln(f(Uki)) such that if α : I ′ → G is a closed subpath
of some γ ∈ Γ and if |α| ⊂ Uki, then

|gki

(
f(α(t1))

)
− gki

(
f(α(t2))

)
| 6

∫
f◦α

ζki ds <∞

for all t1, t2 ∈ I ′.

Our first claim is that these choices are legitimate in terms of Theorem 10.1.
Precisely, we claim the following.
Claim 1. Let Γ◦ be a family of closed paths γ in G such that at least one
of the above conditions 1.-3. is not satisfied. Then Mf(Γ◦) = 0.

Proof of Claim 1. Let Γq, q = 1, ..., 3, be the family of paths γ ∈ Γ0 for
which the Condition q. is not valid. The first subclaim, Mf(Γ1) = 0, follows
because one can choose a test-function to be infinity in F and zero otherwise.
The Subclaims 2. and 3. are direct consequences of Theorem 8.1 and the
definition of the Newtonian space N1,n. For proving Mf(Γ2) = 0 one needs
also notice that∫

f(G)
ρ(y)n dHn(y) =

∞∑
j=1

∫
f(2Qj)

ρj(y)n dHn(y)

6 C

∞∑
j=1

|Qj | 6 C|G|.(10.2)
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Here we used (10.1). This completes the proof of Claim 1.
Claim 2. If γ : I → G is a closed path such that f ◦ γ /∈ f(Γ0), then the
f -representation γ∗ of γ satisfies Condition (N).

Proof of Claim 2. We denote I ′ = sβI. Let E ⊂ I ′ be a set with H1(E) = 0.
We cover the set I ′ \ (γ∗)−1(Bf ) by a family {Iµ ; µ = 1, 2, ...} of closed
intervals with disjoint interiors in I ′ \ (γ∗)−1(Bf ) =: AH such that γ∗Iµ is
contained in some 2Qjµ , µ = 1, 2, ... Clearly, γ∗(t) = hjµ(f ◦ γ∗)(t) for all
t ∈ Iµ. Combining this with the Condition 2., we have H1

(
γ∗(E∩AH)

)
= 0.

To complete the proof of Claim 2. next we turn our attention to the branch
set. This time γ∗(t) = gki(f ◦ γ∗)(t) for all t ∈ (γ∗)−1

(
Bk ∩Uki

)
=: Aki and

applying 3., we have H1(γ∗(E ∩Aki)) = 0. Since

(γ∗)−1Bf = ∪k>2 ∪i (γ∗)−1(Bk ∩ Uki),

we have H1(γ∗(E ∩ (γ∗)−1Bf )) = 0. Therefore,

H1(γ∗E) 6 H1(γ∗(E \ (γ∗)−1Bf )) +H1(γ∗(E ∩ (γ∗)−1Bf )) = 0.

Claim 3. The path γ∗ is differentiable a.e. in I ′ and
∫
I′ |(γ

∗)′(t)| dt <∞.

Proof of Claim 3. By 1., H1((γ∗)−1(Bf )) = 0. Therefore, it is enough to
consider γ∗ in I ′ \ (γ∗)−1(Bf ). Following the notation above, we cover this
set by a family {Iµ ; µ = 1, 2, ...} of closed intervals with disjoint interiors
in I ′ \ (γ∗)−1(Bf ) such that γ∗Iµ is contained in some 2Qjµ , µ = 1, 2, .... For
all t ∈ Iµ, we have γ∗(t) = hjµ(f ◦ γ∗)(t). Therefore, the Condition 2. gives
for t1, t2 ∈ Iµ that

(10.3) |γ∗(t1)− γ∗(t2)| 6
∫

f◦α
ρ ds <∞.

Here α = γ|[t1,t2]. Changing variables on the right hand side of (10.3), we
obtain

(10.4) |γ∗(t1)− γ∗(t2)| 6
∫ t2

t1

ρ
(
γ∗(t)

)
dt <∞.

This estimate together with the Rademacher-Stepanov theorem gives that
γ∗ is differentiable a.e in Iµ, and |(γ∗)′(t)| 6 ρ(t) for a.e. t ∈ Iµ.

Now, first by Bary’s theorem [26, p. 285] we find that γ∗ is absolutely
continuous inG. Second, exhausting the domain Ω by an increasing sequence
of domains Di which are compactly contained in Ω we see that the claim of
Theorem 10.1 holds. This completes the proof.

As in the classical case, [23], also in our setting it follows from Polet-
sky’s lemma that the branch set of a nonconstant quasiregular mapping has
measure zero.
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Corollary 10.2. If f : Ω → X is a nonconstant quasiregular mapping, then

• Jf > 0 a.e.

• |Bf | = 0.

• for any measurable set E ⊂ Rn, |E| = 0 if and only if Hn(fE) = 0.

A large part of the proof is taken with minor modifications that are
needed in our setting from [23].

Proof. First we will show that Jf > 0 almost everywhere. On the contrary
we suppose that there is a set A with positive measure, contained in a closed
cube Q ⊂ Ω, such that Jf = 0 on this set A. Write Q = I × Q◦, where
Q◦ ⊂ Rn−1 and I ⊂ R. Let Γ be the family of paths γz(t) = (t, z), z ∈ Q◦,
such that

(10.5)
∫

γz

χA ds > 0 .

Then Γ has positive n-modulus. This simply follows from the assumption
|A| > 0. In view of Theorem 6.2 we see that also the family f(Γ) has
a positive n-modulus. Combining this with Theorem 10.1 we find that
Mf(Γ′) > 0, where Γ′ is the family of paths in Γ on which f is absolutely
precontinuous. Then

(10.6) H1((γ∗)−1A) > 0

for every γ ∈ Γ′. On the other hand, Hn(f(A)) = 0, which, when combined
with (10.6), yields Mf(Γ′) = 0, a contradiction. Therefore, Jf > 0 almost
everywhere, as claimed.

In order to verify the last statement in this corollary we need only show
that |E| = 0 provided Hn(fE) = 0, see Corollary 5.3. We may assume that
N(f,E) 6 N < ∞. Then, if we denote Ei = {x ∈ E : Jf (x) > 1/i} for
i ∈ N, and E0 = {x ∈ E : Jf (x) = 0}, we have

|Ei|/i 6
∫

Ei

Jf (x) dx 6 NHn(f(Ei)) = 0

for each i ∈ N. Here we applied Corollary 5.6. Therefore, |E| 6
∑∞

i=0 |Ei| =
0, as claimed. Now especially choosing E = Bf and employing Corollary
9.6, it follows that the measure of the branch set is zero.

11 The Poletsky and Väisälä Inequalities

In this section we establish the classical Poletsky and Väisälä inequalities
using Poletsky’s lemma, Theorem 10.1. Recall that by data we mean H, n,
θ and τ .
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Theorem 11.1. Suppose that f : Ω → X is a nonconstant quasiregular
mapping. Let Γ be a path family in Ω, Γ′ a path family in X, and m a
positive integer such that the following is true. For every path β : I → X in
Γ′ there are paths α1, ..., αm in Γ such that f ◦αj ⊂ β for all j and such that
for every x ∈ Ω and t ∈ I the equality αj(t) = x holds for at most i(x, f)
indices j. Then

(11.1) M(Γ′) 6
C

m
M(Γ),

where C only depends on data.

Before going to the proof we give two important corollaries of Theorem
11.1. The first one, the Poletsky inequality, we obtain simply taking Γ′ =
f(Γ).

Corollary 11.2. Let f : Ω → X be a nonconstant quasiregular mapping
and Γ a family of paths in Ω. Then

(11.2) Mf(Γ) 6 CM(Γ),

where C only depends on data.

The second corollary follows from Theorem 11.1 and the path lifting
result, Theorem 3.4.

Corollary 11.3. Suppose that f : Ω → X is a nonconstant quasiregular
mapping. Let D be a normal domain for f , Γ′ a family of paths in f(D)
and Γ the family of paths α in D such that f ◦ α ∈ Γ′. Then

(11.3) M(Γ′) 6
C

N(f,D)
M(Γ),

where the constant C depends on data.

Proof of Theorem 11.1. To simplify writing we denote the set f
(
Bf∪{x ∈

Ω : Jf (x) = 0}
)

by B. Corollary 9.6 tells us that the n-Hausdorff measure
of the set B is zero. Combining this with Theorem 10.1 we may assume that
for every β ∈ Γ′ we have

• β is locally rectifiable,

• if α is a path in Ω with f ◦α ⊂ β, then f is locally absolutely precon-
tinuous on α,

•
∫
β χB ds = 0.
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Suppose that ρ : Ω → [0,∞] is a test function for Γ; that is, ρ ∈ TΓ. We
define ρ′ : X → [0,∞] by

(11.4) ρ′(y) =
2
m
χ

f(Ω)
(y) sup

C(y)

∑
x∈C(y)

σ(x)

where C(y) runs over all subsets of f−1(y) such that cardC(y) 6 m and

(11.5) σ(x) =

{
ρ(x)L∗f (x) if x ∈ Ω \ f−1(B)
0 if x ∈ f−1(B) .

Here and in what follows we use the notation

(11.6) L∗f (x) = lim sup
r→0

L∗(x, r)
r

.

It follows that L∗f (x) is finite almost everywhere in the set Ω \ f−1(B).
Indeed, by using Theorem 7.1 one can show that

(11.7) L∗f (x) 6 (H ′)nτ
1

Jf (x)
a.e. in Ω \ f−1(B),

where the constant H ′ is as in Theorem 7.1. Notice that we applied Theorem
7.1 with i(x, f) = 1.

We need to show that ρ′ is a legitimate test function for Γ′; that is,
ρ′ ∈ T

Γ′ . The same arguments as in [25, p. 49] show that ρ′ is a Borel
function. Suppose that β : I◦ → X is a closed path in Γ′. There exist paths
α1, ..., αm in Γ such that f ◦ αj ⊂ β and card{j : αj(t) = x} 6 i(x, f)
for all t ∈ I◦ and x ∈ Ω. Let α∗j : Ij → Ω be the f -representation of
αj with respect to β. Thus αj(t) = α∗j ◦ sβ(t) and f ◦ α∗j ⊂ β◦, where
sβ : I◦ → [0, l(β)] is the length function and β◦ the normal representation
of β; that is, β◦ : [0, l(β)] → X and β = β◦ ◦ sβ. We have

(11.8) 1 6
1
m

m∑
j=1

∫
αj

ρ ds =
1
m

m∑
j=1

∫
Ij

ρ
(
α∗j (t)

) ∣∣(α∗j )′(t)∣∣ dt .
By the definition of L∗f it follows that

∣∣∣(α∗j )′(t)∣∣∣ 6 2L∗f
(
α∗j (t)

)
for almost

every t ∈ Ij . Combining this with (11.8) we find that

1 6
2
m

m∑
j=1

∫
Ij

ρ
(
α∗j (t)

)
L∗f

(
α∗j (t)

)
dt =

2
m

m∑
j=1

∫
Ij

σ
(
α∗j (t)

)
dt .

Since Ij ⊂ [0, l(β)], we have

(11.9) 1 6
2
m

m∑
j=1

∫ l(β)

0
σ
(
α∗j (t)

)
χIj

(t) dt .
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The condition
∫
β χf(Bf )

ds = 0 gives that for almost every t ∈ [0, l(β)] the

points α∗j (t), j ∈ {i : t ∈ Ii}, are distinct points in f−1
(
β◦(t)

)
. Therefore

ρ′
(
β◦(t)

)
>

2
m

m∑
j=1

σ
(
α∗j (t)

)
χIj

(t),

and so

1 6
∫ l(β)

0
ρ′

(
β◦(t)

)
dt =

∫
β
ρ′ ds .

We have proved that ρ′ is a legitimate test function for Γ′.
Let (Ωi) be an exhaustion of Ω, and set ρi = ρχΩi

, σi = σχΩi
, and ρ′i =

ρ′χf(Ωi)
. Suppose y0 ∈ f(Ωi) \ B. Then there is a connected neighborhood

V of y0 and k inverse mappings gµ : V → Dµ with

Ωi ∩ f−1(V ) =
⋃
{Ωi ∩Dµ : 1 ≤ µ ≤ k}.

For each y ∈ V, we define a set Ly ⊂ J := {1, . . . , k} as follows. If k ≤ m,
then Ly = J. If k > m, then cardLy = m, and for each µ ∈ Ly, ν ∈ J \ Ly,
either σi(gµ(y)) > σi(gν(y)) or σi(gµ(y)) = σi(gν(y)) and µ > ν. Then

ρ′i(y) =
2
m

∑
µ∈Ly

σi(gµ(y))

for y ∈ V. Furthermore, for L ⊂ J, the sets VL = {y ∈ V : Ly = L} are
pairwise disjoint Borel sets. By Hölder’s inequality for series,

[ρ′i(y)]
n ≤ 2n

m

∑
µ∈Ly

σi(gµ(y))n .

Now ∫
VL

[ρ′i(y)]
n dHn(y) 6

2n

m

∑
µ∈L

∫
VL

(σi ◦ gµ)n(y) dHn(y) .

The change of variables formula gives

(11.10)
∫

VL

[ρ′i(y)]
n dHn(y) 6

2n

m

∑
µ∈L

∫
gµ(VL)

σn
i (x)Jf (x) dx.

Here we applied Corollary 5.6 together with Remark 5.7. The inequality
(11.7) gives

(11.11)
∫

VL

[ρ′i(y)]
n dHn(y) 6

C

m

∑
µ∈L

∫
gµ(VL)

ρn(x) dx.

where the constant C depends as claimed in Theorem 11.1. As in [25, pp.
51-52 ] we conclude that

(11.12)
∫

X
[ρ′i(y)]

n dHn(y) 6
C

m

∫
Rn

ρn
i (x) dx.

Letting i→∞, we obtain Theorem 11.1.
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12 Applications

In this section we characterize quasiregular maps f : Rn → X with poly-
nomial growth, assuming that the geometry of X is suitably controlled.
Namely, we show in Theorem 12.1 below that the characterization given in
[11] in the Euclidean case can be generalized to our setting. This is done
by using the theory established in the previous sections, which allows us to
apply suitable techniques from the Euclidean theory.

We now recall some terminology needed in this section. We assume
that X is as in the previous sections. First, following [12], we define the
n-Loewner property of X, which was already mentioned before (2.6). For
disjoint, compact and connected sets E, F ⊂ X, denote

ζ(E,F ) =
dist (E,F )

min{diamE,diamF}
.

Then X is called an n-Loewner space if there exists a decreasing homeomor-
phism φ : (0,∞) → (0,∞) so that

M∆(E,F ;X) > φ(ζ(E,F ))

for every non-degenerate E,F ⊂ X. IfX is (globally) Ahlfors n-regular; that
is, if (2.1) holds for every ball B(x, r) ⊂ X with constants only depending
on X, and n-Loewner, then

(12.1) M∆(E,F ;X) > C
(
log ζ(E,F )

)1−n

when ζ(E,F ) is large enough, where C > 0 only depends on data. Also, X
is then (globally) LLC. For the proofs of these facts, see [12].

Now consider a locally integrable function (weight) ω : Rn → [0,∞]. We
say that ω is doubling if there exists a constant C > 0 so that∫

B(a,2r)
ω(x) dx 6 C

∫
B(a,r)

ω(x) dx

for every a ∈ Rn and r > 0. If ω is doubling, then there exist C, L > 0 so
that ∫

B(0,R)
ω(x) dx 6 CRL

when R is large enough. Moreover, ω is an A∞-weight if there exist C > 0
and ε > 0 so that( 1

|B(a, r)|

∫
B(a,r)

ω(x)1+ε dx
)1/(1+ε)

6
C

|B(a, r)|

∫
B(a,r)

ω(x) dx

for every a ∈ Rn and r > 0. Every A∞-weight is doubling, cf. [10, Chapter
15] and the references therein. Finally, an A∞-weight ω is called a strong
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A∞-weight if the following holds: if we define δω : Rn × Rn → [0,∞],

δω(x, y) =
( ∫

B(x,y)
ω(z) dz

)1/n
,

where B(x, y) is the smallest closed ball containing x and y, then there exists
a metric dω on Rn, and a constant C > 0, so that

C−1δω(x, y) 6 dω(x, y) 6 Cδω(x, y)

for every x, y ∈ Rn.

Theorem 12.1. Suppose that f : Rn → X is a non-constant quasiregu-
lar map, where X is Ahlfors n-regular and n-Loewner. Then the following
conditions are equivalent:

(a) Jf is doubling,

(b) N(y, f,Rn) 6 N <∞ for every y ∈ X,

(c) Jf is an A∞-weight,

(d) Jf is a strong A∞-weight,

(e) for any a ∈ X, d(f(x), a) →∞ as |x| → ∞.

We divide the proof of Theorem 12.1 into four propositions stated below.
These propositions, combined with the fact that A∞-weights are doubling,
prove Theorem 12.1. We need the following auxiliary results. We assume
that X satisfies the assumptions in Theorem 12.1. Notice in particular that
X is assumed to be globally Ahlfors n-regular, hence unbounded.

Lemma 12.2. Suppose that f : Rn → X is a non-constant quasiregular
map. Then f(Rn) is unbounded. Moreover, there exists a constant θ > 1 so
that for every y ∈ X \ {f(0)} there exists a path

γ : [0,∞) → X \B(f(0), θ−1d(f(0), y)),

starting at y, so that |γ| is unbounded.

Proof. Fix y ∈ X as in the second claim, and a sequence (pi) of points in
X, so that

d(f(0), y) 6 d(f(0), p1)

and so that d(f(0), pi) increases to infinity. If we denote p0 = y, then,
for each i ∈ N, pi−1 and pi can be joined by a path γi : [0, 1] → X \
B(f(0), θ−1d(f(0), y)) by the LLC-property of X. The second claim follows.

Now suppose that f(Rn) ⊂ B(a,R) for some a ∈ X and R > 0. Denote
by Γ the family of all paths joining f(B(0, 1)) and X \ B(a, 2R) in X, and
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by Γ′ the family of all corresponding maximal f -liftings starting at B(0, 1).
Then |γ′| is unbounded for every γ′ ∈ Γ′, and so MΓ′ = 0. On the other
hand, every f ◦ γ′ is a subpath of some γ ∈ Γ, and so

Mf(Γ′) > MΓ.

By the Loewner property of X, and the second claim, MΓ > 0, which is a
contradiction by Theorem 11.1. We conclude that f(Rn) is unbounded.

Lemma 12.3. Suppose that f : Rn → X is a quasiregular map satisfying
(a). Then there exist C, k > 0 so that

L(0, R) 6 CRk

for every R > 0.

Proof. Fix a large number R > 0, and a point a ∈ B(0, R) so that

d(f(a), f(0)) = L(0, R).

Moreover, choose γ : [0,∞) → X \B(f(0), θ−1L(0, R)), starting at f(a), as
in Lemma 12.2, and a maximal f -lifting γ′ of γ starting at a. Then |γ′| is
unbounded, and so (12.1) yields

(12.2) MΓ = M∆(B(0, 1), |γ′| ∩B(0, 2R);B(0, 2R)) > C log1−nR.

Since every path η ∈ f(Γ) intersects f(B(0, 1)) and X \B(f(0), θ−1L(0, R)),
the function ρ : X → [0,∞],

ρ(y) = 2θL(0, R)−1χf(B(0,2R))

is a test function for f(Γ) when R is large enough. Also, by (a),∫
X
N(y, f,B(0, 2R))ρn(y) dHn(y) = 2nθnL(0, R)−n

∫
B(0,2R)

Jf (x) dx

6 CL(0, R)−nRL(12.3)

for some C, L > 0. The claim follows by (12.2), (12.3) and Theorem 6.2.

Lemma 12.4. Suppose that f : Rn → X is a non-constant quasiregular
map, and assume that (b) holds. Then there exists a constant κ > 0 so that

L(a, 2r)n 6 κHn(f(B(a, r)))

for every a ∈ Rn and r > 0.
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Proof. We denote U = U(a, s), where

s = max{l > 0 : U(a, l) ⊂ B(a, r)}.

Moreover, we choose a point q ∈ B(a, 2r) so that

d(f(q), f(a)) = L(a, 2r).

Then, by Lemma 12.2 we find a path

γ : [0,∞) → X \B(f(a), θ−1L(a, 2r)),

starting at f(q), and a lift γ′ of γ, starting at q, so that |γ′| is unbounded.
Hence, by the n-Loewner property of Rn,

(12.4) MΓ = M∆(U, |γ′| ∩B(a, 4r); Rn) > C,

where C > 0 only depends on n. On the other hand, each η ∈ f(Γ) intersects
B(f(a), s) and X \ B(f(a), θ−1L(a, 2r)) (provided that s < θ−1L(a, 2r),
which we can assume), and so

(12.5) Mf(Γ) 6 C
(

log
L(a, 2r)
θs

)1−n

by (2.5), where C > 0 does not depend on a or r. Combining (12.4), (12.5),
(b) and Theorem 6.2 yields

L(a, 2r) 6 Cs,

where C > 0 does not depend on a or r. Since f(U) = D(a, s) ⊂ f(B(a, r)),

sn 6 θτHn(D(a, s)) 6 θτHn(f(B(a, r)))

by Ahlfors regularity. The proof is complete.

Lemma 12.5. Suppose that f : Rn → X is a non-constant quasiregular
map. Then there exist C > 1 and α > 0, only depending on data, so that

L(a, δr) 6 CδαL(a, r)

for every a ∈ Rn, r > 0 and δ ∈ (0, 1/2).

Proof. We choose a point y ∈ S(f(a), θL(a, r)). Then, by Lemma 12.2 we
find a path

γ : [0,∞) → X \B(f(a), L(a, r)),

starting at y, so that |γ| is unbounded. Then, by (12.1),

(12.6) MΓ = M∆(f(B(a, δr)), |γ|;X) > C0

(
log

θL(a, r)
L(a, δr)

)1−n
,
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where C0 > 0 does not depend on a or r. We denote by Γ′ the family of
all maximal f -liftings of paths in Γ, starting at B(a, δr). Then, each η ∈ Γ′

intersects Rn \B(a, r), and thus

(12.7) MΓ′ 6 ωn−1

(
log

1
δ

)1−n
.

The claim follows from (12.6), (12.7) and Theorem 11.1. The proof is com-
plete.

Proposition 12.6. Conditions (a) and (b) are equivalent.

Proof. The first part of the proof adapts a method due to Väisälä [31] to our
setting. We first assume (a), and suppose that (b) does not hold true. We
fix a large m ∈ N, to be determined later. Then we find a point y ∈ X and a
radius M > 0 so that y has m preimage points x1, . . . , xm inside B(0,M) ⊂
Rn. By Lemma 3.3 we can choose δ > 0 so that U(xi, δ) ⊂ B(0,M) is a
normal neighborhood for each i = 1, . . . ,m, and so that the sets U(xi, δ) are
pairwise disjoint.

By Lemma 12.2 we can choose a point f(q) ∈ f(Rn) so that d(y, f(q))
is as large as desired, and a path

(12.8) γ : [0,∞) → X \B(y, θ−1d(y, f(q))),

starting at f(q), so that |γ| is unbounded. Then by (12.1) and (2.2),

(12.9) MΓ = M∆(D(y, δ), |γ|;X) > C1

(
log

d(y, f(q))
δ

)1−n
,

where C > 0 does not depend on q.
By (12.8) and Lemma 12.3, there exists α > 0 so that

(12.10) d(0, f−1(|γ|)) > d(y, f(q))α

when the right hand term is large enough. For each η ∈ Γ there are (at least)
m maximal f -liftings ηi starting at the points xi ∈ B(0,M). Moreover, by
(12.10) each of them intersects Rn \B(0, d(y, f(q))α). We denote the family
of all such lifts by Γ′. Then, by Theorem 11.1 and (2.5),

(12.11) MΓ 6
C

m
MΓ′ 6

C2

m

(
log

d(y, f(q))α

M

)1−n
.

Combining (12.9) and (12.11) yields

d(y, f(q))α 6
M

δβ
d(y, f(q))β, where β =

( C2

C1m

)1/(n−1)
.

Hence, if we fix m to be large enough so that β < α, we have a contradiction
when d(y, f(q)) →∞. We conclude that (a) implies (b).

43



Now we assume (b), and fix x ∈ Rn and r > 0. By Lemma 12.4, Ahlfors
regularity and the change of variables formula,∫

B(x,2r)
Jf (y) dy 6 NHn(f(B(x, 2r))) 6 CL(x, 2r)n

6 CHn(f(B(x, r))) 6 C

∫
B(x,r)

Jf (y) dy.

Hence (a) holds true. The proof is complete.

Proposition 12.7. Conditions (a) and (b) imply Condition (c).

Proof. By Gehring’s lemma [8], it suffices to show that there exists C > 0
so that

(12.12)
1

|B(a, r)|

∫
B(a,r)

Jf (x) dx 6 C
( 1
|B(a, r)|

∫
B(a,r)

Jf (x)1/n dx
)n

for every a ∈ Rn and r > 0. We denote B = B(a, r), and

fB =
1
|B|

∫
B
fa(x) dx.

We claim that there exists µ > 0, not depending on a or r, so that

(12.13)
1
|B|

∫
B
|fa(x)− fB| dx > µL(a, r/2).

We first consider (12.13) under the assumption fB > L(a, r/2)/2. Then,
by Lemma 12.5, fa(x) 6 L(a, r/2)/4 for every x ∈ B(a, δr). Thus

1
|B|

∫
B
|fa(x)− fB| dx >

|B(a, δr)|
4|B|

L(a, r/2) > µL(a, r/2)

where µ > 0 does not depend on a and r.
Next we assume that fB < L(a, r/2)/2, and fix ε > 0, to be chosen later.

Moreover, we choose a point b ∈ B(a, r/2) so that d(f(b), f(a)) = L(a, r/2).
By Lemma 12.5,

d(f(x), f(b)) 6 εL(b, r/2)

for every x ∈ B(b, δr), where δ > 0 depends on ε. Therefore,

|fa(x)− fB| > d(f(b), f(a))− d(f(x), f(b))− fB

> L(a, r/2)/2− εL(b, r/2)(12.14)

whenever x ∈ B(b, δr). On the other hand, by Lemma 12.4 and Ahlfors
regularity,

(12.15) L(b, r/2)n 6 L(a, r)n 6 κHn(f(B(a, r/2))) 6 κL(a, r/2)n.
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Then, if we choose ε = κ−1/n/4, (12.14) and (12.15) yield

1
|B|

∫
B
|fa(x)− fB| >

|B(b, Cr)|
4|B|

L(a, r/2) > µL(a, r/2),

where µ > 0 does not depend on a or r. Hence (12.13) holds true.
In order to prove (12.12) we first use Lemma 12.4 and (b) to obtain

(12.16)
1
|B|

∫
B
Jf (x) dx 6

CL(a, r)n

|B|
6
Cκ

|B|
Hn(f(B(a, r/2))) 6

Cκ

|B|
L(a, r/2)n.

On the other hand, the Poincaré inequality and (5.11) yield( 1
|B|

∫
B
|fa(x)− fB| dx

)n
6 Crn

( 1
|B|

∫
B
|∇fa|

)n

6 Crn
( 1
|B|

∫
B
J

1/n
f

)n
.(12.17)

Combining (12.13), (12.16) and (12.17) gives (12.12). The proof is complete.

Proposition 12.8. Conditions (b) and (c) imply Condition (d).

Proof. The proof of [7, Proposition 1.8] gives the claim if we can verify the
following properties:

(i) there exists p > n so that f is absolutely continuous on p-almost every
path in Rn,

(ii) Ln
f (x) 6 CJf (x) for almost every x ∈ Rn,

(iii)
∫
f−1(B(y,r)) Jf (x) dx 6 Crn for every y ∈ X and r > 0.

The statement in [7] concerns maps with Euclidean targets, but the proof
extends to our setting. Since we assume Condition (c), Jf ∈ Lp

loc(R
n) for

some p > n. Thus, by (5.11) and Fuglede’s lemma, f ∈ N1,p
loc (Rn, X), and (i)

follows. Property (ii) is Lemma 6.1, and (iii) follows from (b), the Ahlfors
regularity of X, the change of variables formula (5.12) and Remark 5.7. The
proof is complete.

Proposition 12.9. Conditions (b) and (e) are equivalent.

Proof. We first assume (e), and fix a point y ∈ f(Rn). Since f is discrete,
there exists a ball B = B(0, r) ⊂ Rn so that

(12.18) N(y, f,Rn) = N(y, f,B) 6
∑

x∈f−1(y)

i(x, f) = M <∞.
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Now suppose that there exists a point v ∈ X with∑
x∈f−1(v)

i(x, f) > M,

and choose a compact path γ starting at v and ending at y. Then there
are at least M + 1 lifts γj of γ starting at f−1(v), and each of them either
ends at some x ∈ f−1(y), or leaves every compact subset of Rn. The latter
cannot happen for any j by (e). Also, the former can happen for at most
M γj :s by (12.18), which is a contradiction. Thus (b) follows from (e).

Now we assume (b), and suppose that (e) does not hold. Then there
exists a sequence (ai) of points in Rn, so that |ai| increases to infinity but

(12.19) lim sup
i

d(f(ai), f(0)) = R <∞.

We may assume that d(f(a1), f(0)) = R/2. Then

(12.20) diam f(B(0, |ai|)) > R/2

for every i ∈ N. Since X is globally LLC, (12.20) and the proof of Lemma
4.2 imply that

(12.21) diam f(S(0, |ai|)) > CR,

where C > 0 does not depend on i.
Next we fix δ > 0 so that U(xj , δ) is a normal neighborhood of xj for

every xj ∈ f−1(f(0)). Then

(12.22)
⋃

xj∈f−1(f(0))

U(xj , δ) ⊂ B(0, t)

for some t > 0. When |ai| > t, we denote by Γi the family of all paths
joining D(f(0), δ) and f(S(0, |ai|)) in X. Then by (12.19), (12.21), and the
n-Loewner property of X, there exists ε > 0 so that MΓi > ε for every i.
We denote by Γ′i the family of all lifts γ′ of γ ∈ Γi starting at S(0, |ai|). By
Theorem 11.1, a contradiction to (12.19) follows if MΓ′i → 0 as i→∞.

By (12.22) every γ′ ∈ Γ′i either intersects B(0, t) or leaves every compact
set in Rn. The n-modulus of the family of all paths for which the latter
happens is zero. All the other paths start at S(0, |ai|) and intersect S(0, t),
so

MΓ′i 6 C(n)
(

log
|ai|
t

)1−n
→ 0 as i→∞

by (2.4) and (2.5). We have the desired contradiction and thus (e) follows
from (b). The proof is complete.
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