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Abstract. Suppose that a domain Ω ⊂ Rn admits the (p, β0)-Hardy
inequality, i.e. that

R
Ω
|u|pdΩ

β0−p ≤ C
R
Ω
|∇u|pdΩ

β0 holds for all u ∈
C∞0 (Ω). Here dΩ(x) = dist(x, ∂Ω). We show that then there exists ε > 0
such that Ω admits (q, β)-Hardy inequalities for all p − ε < q < p + ε
and all β0 − ε < β < β0 + ε.

1. Introduction

We consider in this note the weighted Hardy inequality

(1)
∫

Ω

(
|u(x)|
dΩ(x)

)p

dΩ(x)β dx ≤ C0

∫
Ω
|∇u(x)|p dΩ(x)β dx,

where dΩ(x) = dist(x, ∂Ω). We say that a domain Ω ⊂ Rn admits the
(p, β)-Hardy inequality, if there exists a constant C0 = C0(Ω, p, β) > 0
such that (1) holds for all u ∈ C∞0 (Ω). If 1 < p < ∞ and Ω ⊂ Rn is a
Lipschitz domain, then, by the well-known result of Nečas [11], Ω admits
the (p, β)-Hardy inequality for all β < p − 1. A more general sufficient
condition for (p, β)-Hardy inequalities was given in [6]. Uniform p-fatness
of the complement of Ω implies also Hardy inequalities for Ω, see [2], [9],
and [14] for precise results and definitions; see also [3] and [4] for related
results on pointwise inequalities. Notice also that if Ω admits the (p, β)-
Hardy inequality, then, by approximation, (1) holds in fact for all Sobolev
functions u ∈ W 1,p

0 (Ω), and so in particular for all Lipschitz functions with
compact support in Ω.

The main purpose of this note is to prove the following self-improving
property of these Hardy inequalities.

Theorem 1. Let 1 < p < ∞ and β0 ∈ R, and suppose that Ω ⊂ Rn

admits the (p, β0)-Hardy inequality with a constant C0 > 0. Then there
exists ε = ε(C0, p, β0, n) > 0 such that Ω admits the (q, β)-Hardy inequality
whenever p − ε < q < p + ε and β0 − ε < β < β0 + ε. Moreover, the
constant in all these inequalities can be chosen to be C = C(C0, p, β0, n) > 0,
independent of q and β.

Theorem 1 is actually a generalization of earlier results, obtained in the
unweighted case β0 = 0. Koskela and Zhong [7] proved that the p-Hardy
inequality (i.e. (1) with β = 0) implies q-Hardy inequalities for all p − ε <
q < p + ε, with some small ε > 0. Also, Haj lasz [3] proved that the p-Hardy
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inequality implies always (p, β)-Hardy inequalities for 0 < β < ε, again for
some small positive ε.

In the case q ≥ p, considered in Section 2, we prove in fact more general
results than those of Theorem 1. In particular, we show that the (p, β0)-
Hardy inequality implies some weighted Hardy inequalities for all q ≥ p,
and moreover, in this case ε = ε(C0, p) > 0 can be chosen to be independent
of β0. The proof of this part is quite straight-forward, as we only need
to choose a suitable test-function for the (p, β0)-inequality, and the result
follows with a use of Hölder’s inequality. In Section 3 we deal with the case
p− ε < q < p, which turns out to be a bit more involved. The main idea of
the proof is to apply so called “Lipschitz truncation” technique, using the
level sets of both u/dΩ and the maximal function of |∇u|. Theorem 1 is
then proved at the end of Section 3 by combining the results of the cases
q ≥ p and p− ε < q < p.

We would like to point out that Theorem 1 is sharp, in the following qual-
itative sense: Given p ∈ (1,∞), β ∈ (p−n, p), and ε > 0 small enough, there
exists a bounded domain Ω ⊂ Rn which admits the (p, β)-Hardy inequality,
but where the (p, β ± ε)- and (p ± ε, β)-Hardy inequalities fail. The con-
struction of such domains is explained in Section 4. The above bounds for β
are natural, since each proper subdomain Ω ( Rn admits the (p, β)-Hardy
inequality whenever β < p−n (cf. [6]), and the (p, β)-Hardy inequality fails
in a bounded domain for each β ≥ p.

The constants in our results are not supposed to be optimal, in any sense.
Nevertheless, we try to express the explicit formulas of these constants, given
by our calculations, in order to emphasize their dependence of the given data.
For the notation, we mention that C0 denotes always the constant of the
fixed (p, β0)-Hardy inequality, but constants C1, C2, . . . will be used in each
proof separately.

2. The case q ≥ p

If a domain Ω ⊂ Rn admits the (p, β)-Hardy inequality for some 1 < p <
∞ and β ∈ R, then Ω admits weighted Hardy inequalities for all q ≥ p,
but we have to add also to the weight exponent β the difference q − p. In
addition, there is always a small δ0 > 0, depending on the given data, such
that the new weight exponent may actually vary between β + q− p− δ0 and
β + q − p + δ0. The next lemma gives a more precise formulation of these
facts.

Lemma 2. Let 1 < p < ∞, β ∈ R, and suppose that Ω ⊂ Rn admits
the (p, β)-Hardy inequality with a constant C0 > 0. Then Ω admits the
(p + s, β + s + δ)-Hardy inequality for all s ≥ 0 and all |δ| < p

2 C
−1/p
0 , with

the constant

(2) C(C0, p, s, δ) =
(

C1(1 + s/p)p

1− C1(|δ|/p)p

)1+s/p

,

where C1 = 2pC0.

The proof of Lemma 2 generalizes the ideas used in the proof of Theorem
2.3 in [7] and in a part of the proof of Theorem 1 in [3]; see also the proof
of the main theorem in [14].
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Proof. Let u ∈ C∞0 (Ω) and let s ≥ 0 and δ ∈ R, with |δ| small. Define

v(x) = |u(x)|1+s/pdΩ(x)δ/p.

Then it is easy to see that v is a Lipschitz function with compact support
in Ω, and moreover

(3) |∇v(x)| ≤
(
1 + s

p

)
|u(x)|

s
p |∇u(x)|dΩ(x)

δ
p + |δ|

p |u(x)|1+
s
p dΩ(x)

δ
p
−1

for almost every x ∈ Ω, since |∇dΩ| ≤ 1. If we use this estimate in the
(p, β)-Hardy inequality for v, and denote a = 1 + s/p, C1 = 2pC0, we obtain∫

|u(x)|p+sdΩ(x)δ+β−p dx ≤ C1a
p

∫
|u(x)|s|∇u|pdΩ(x)δ+β dx

+ C1

(
|δ|
p

)p
∫
|u(x)|p+sdΩ(x)δ−p+β dx.

(4)

Now, if C1(|δ|/p)p < 1 (i.e. |δ| < p
2C

−1/p
0 ), we can move the last term in (4)

to the left-hand side and then use Hölder’s inequality on the right-hand side
as follows:(

1− C1
|δ|p

pp

)∫ (
|u(x)|
dΩ(x)

)p+s

dΩ(x)β+s+δ dx

≤ C1a
p

∫ (
|∇u|pdΩ(x)

1
a
(β+s+δ)

)(
|u(x)|sdΩ(x)

a−1
a

(β+δ)− 1
a
s
)

dx

≤ C1a
p

(∫
|∇u|apdΩ(x)β+s+δ dx

)1/a

·
(∫

|u(x)|
sa

a−1 dΩ(x)β+δ− s
a−1 dx

)a−1
a

≤ C1a
p

(∫
|∇u|p+sdΩ(x)β+s+δ dx

)1/a

·

(∫ (
|u(x)|
dΩ(x)

)p+s

dΩ(x)β+s+δ dx

)1− 1
a

;

(5)

notice that ap = p + s = sa/(a− 1) and s/(a− 1) = p. From (5) we obtain
that ∫ (

|u(x)|
dΩ(x)

)p+s

dΩ(x)β+s+δ dx

≤
(

C1a
p

1− C1(|δ|/p)p

)a ∫
|∇u|p+sdΩ(x)β+s+δ dx,

and this proves the lemma. �

The following theorem records two important consequences of Lemma 2.

Theorem 3. Let 1 < p < ∞ and β0 ∈ R. Suppose that Ω ⊂ Rn admits the
(p, β0)-Hardy inequality with a constant C0 > 0. Then

(i) there exists δ = δ(C0, p) > 0 such that, for each q ≥ p, Ω admits
the (q, β)-Hardy inequality whenever β1 − δ < β < β1 + δ, where
β1 = β0 + (q − p);
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(ii) there exists ε = ε(C0, p) > 0 such that Ω admits (q, β)-Hardy in-
equalities for all p ≤ q < p + ε and β0 − ε < β < β0 + ε.

The constant in the (q, β)-Hardy inequalities of part (ii) depends only on C0

and p; in part (i) the constant may depend also on q.

Proof. (i) Let q ≥ p, define s = q − p ≥ 0, and take δ = (p/2)(2C0)−1/p.
Then 1 + s/p = q/p and 1− 2pC0(δ/p)p = 1/2, and thus the constant in (2)
for these q and δ is equal to C2 =

(
2p−1C0

)q/p(q/p)q. It now follows from
Lemma 2 that Ω admits the (q, β)-Hardy inequality, with this constant C2,
for all β satisfying β0 + (q − p)− δ < β < β0 + (q − p) + δ.

(ii) Take ε = min
{

1, (p/4)(2C0)−1/p
}

and let p ≤ q < p + ε. The part
(i) of the theorem (note that δ in the proof of part (i) is now greater or
equal to 2ε) yields that Ω admits the (q, β)-Hardy inequality for all β such
that β0 + (q − p) − 2ε < β < β0 + (q − p) + 2ε, and so especially for all
β0 − ε < β < β0 + ε. Since q < p + 1, the constant in these inequalities can
clearly be chosen to be independent of q. �

Remark. The proof of Theorem 3 shows that in the part (i) of the theorem
we may take δ = δ(p, C0) = (p/2)(2C0)−1/p, and the constant in these Hardy
inequalities may be taken to be C =

(
2p−1C0

)q/p(q/p)q. If p = q, then
C = 2p−1C0. These explicit formulas will be later needed in the proof of the
main theorem.

3. The case p− ε < q < p and the proof of Theorem 1

The (p, β)-Hardy inequality implies weighted Hardy inequalities also for
some q < p, but here q can not be much smaller than p. In the next
theorem we consider the case where the weight function remains unaltered;
the possible variations for the weight exponent β are then included in the
main theorem.

Theorem 4. Let 1 < p < ∞ and β ∈ R. If Ω admits the (p, β)-Hardy
inequality, then there exists ε = ε(C0, p, n) > 0 such that Ω admits (q, β)-
Hardy inequalities for all p − ε < q ≤ p, with a constant C(C0, p, β, n) > 0
independent of q.

The proof of Theorem 4 goes along the same lines as the proof of Theorem
2.2 in [7] (cf. also [1] and [10]), but some modifications are needed due to
the additional weight in the inequality. For reader’s convenience we present
here the entire proof.

In the proof we need the restricted Hardy-Littlewood maximal function,
defined as

MRf(x) = sup
0<r≤R

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy

for f ∈ L1
loc(Rn). The famous maximal function theorem of Hardy, Little-

wood and Wiener (see e.g. [13]) states that ||MRf ||p ≤ CM (n, p)||f ||p for
1 < p < ∞.

Proof of Theorem 4. Let u ∈ C∞0 (Ω). Let λ > 0 and denote

Eλ = {x ∈ Ω : |u(x)| ≤ λdΩ(x)},
Gλ = {x ∈ Ω : MdΩ(x)/2|∇u(x)| ≤ λ},
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and Fλ = Eλ ∩ Gλ. Let x, y ∈ Fλ be such that dΩ(x) ≥ dΩ(y). If dΩ(x) ≥
5|x − y|, then dΩ(y) ≥ dΩ(x) − |x − y| ≥ 4|x − y|, and we obtain, using a
well-known pointwise characterization of Sobolev functions, that

|u(x)− u(y)| ≤ C|x− y|
(
M2|x−y||∇u|(x) + M2|x−y||∇u|(y)

)
≤ C|x− y|

(
MdΩ(x)/2|∇u|(x) + MdΩ(y)/2|∇u|(y)

)
≤ 2Cλ|x− y|,

where C = C(n) > 0. On the other hand, if dΩ(x) ≤ 5|x− y|, we have

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ λ
(
dΩ(x) + dΩ(y)

)
≤ 10λ|x− y|.

Thus u|Fλ
is a C1λ-Lipschitz function, where C1 = C1(n) > 0. We may now

extend u|Fλ
to a C1λ-Lipschitz function ũ in Ω, by the classical McShane

extension

ũ(x) = inf
y∈Fλ

{
u(y) + C1λ|x− y|

}
.

Notice that also ũ has a compact support in Ω. Indeed, if δ = d(spt(u), ∂Ω) >
0 and x ∈ Ω is such that dΩ(x) < δ/2, it follows that x ∈ Fλ and u(x) = 0.
Above spt(u) denotes the closure of the set {x ∈ Ω : u > 0}.

Now |∇ũ| ≤ |∇u|χ
Fλ

+ C1λχ
Ω\Fλ

, and since the (p, β)-Hardy inequality
holds for ũ, we obtain∫

Fλ

|ũ(x)|p dΩ(x)β−p dx

≤ C0

∫
Fλ

|∇u(x)|p dΩ(x)β dx + C0C
p
1

∫
Ω\Fλ

λp dΩ(x)β dx.

Moreover,∫
Eλ

|u(x)|p dΩ(x)β−p dx ≤ C0

∫
Fλ

|∇u(x)|p dΩ(x)β dx

+ C0C
p
1

∫
Ω\Fλ

λp dΩ(x)β dx +
∫

Eλ\Fλ

|u(x)|p dΩ(x)β−p dx

≤C0

∫
Gλ

|∇u(x)|p dΩ(x)β dx

+ C0C
p
1

∫
Ω\Eλ

λp dΩ(x)β dx + 2C0C
p
1

∫
Ω\Gλ

λp dΩ(x)β dx,

(6)

where we have used the definition of Eλ and the fact that Ω \Fλ = Ω \Eλ ∪
Eλ \ Gλ. The next step is to multiply (6) by λ−ε−1, where 0 < ε < p − 1,
and then integrate with respect to λ over (0,∞). With the change of the



6 JUHA LEHRBÄCK

order of the integration on the left-hand side, this leads us to

1
ε

∫
Ω

(
|u(x)|
dΩ(x)

)p−ε

dΩ(x)β dx

≤ C0

∫ ∞

0
λ−ε−1

∫
Gλ

|∇u(x)|p dΩ(x)β dx dλ

+ C0C
p
1

∫ ∞

0
λp−ε−1

∫
Ω\Eλ

dΩ(x)β dx dλ

+ 2C0C
p
1

∫ ∞

0
λp−ε−1

∫
Ω\Gλ

dΩ(x)β dx dλ.

(7)

The first term on the right-hand side of (7) can be estimated, by the defini-
tion of Gλ and the trivial inequality |∇u| ≤ MR|∇u|, to be less than

C0

ε

∫
Ω
|∇u(x)|p−ε dΩ(x)β dx,

and the middle integral, by the definition of Eλ, is less than

1
p− ε

∫
Ω

(
|u(x)|
dΩ(x)

)p−ε

dΩ(x)β dx.

Now, if 0 < r ≤ dΩ(x)/2 and y ∈ B(x, r), we have that dΩ(x)/2 ≤ dΩ(y) ≤
2dΩ(x), and thus dΩ(x)β ≤ 2|β|dΩ(y)β for all such y, and all β ∈ R. Using
this fact, the definition of Gλ, and the maximal function theorem (recall
that p− ε > 1), we can estimate the last integral in (7) as follows:∫ ∞

0
λp−ε−1

∫
Ω\Gλ

dΩ(x)β dx dλ =
∫

Ω
dΩ(x)β

∫ MdΩ(x)/2|∇u|(x)

0
λp−ε−1 dλ dx

≤ 1
p− ε

∫
Ω

dΩ(x)β
(
MdΩ(x)/2|∇u|(x)

)p−ε
dx

≤ 2|β|

p− ε

∫
Ω

(
MdΩ(x)/2

(
|∇u|dΩ

β/(p−ε)
)
(x)
)p−ε

dx

≤ CM
2|β|

p− ε

∫
Ω
|∇u(x)|p−ε dΩ(x)β dx,

where CM = CM (p − ε, n). If we now assume that ε is so small that
C0C

p
1

ε
p−ε ≤ 1/2, it follows from (7) and the previous estimates that∫

Ω

(
|u(x)|
dΩ(x)

)p−ε

dΩ(x)β dx

≤2
(

C0 + 2C0C
p
1CM

ε 2|β|

p− ε

)∫
Ω
|∇u(x)|p−ε dΩ(x)β dx

≤
(
2C0 + CM2|β|

) ∫
Ω
|∇u(x)|p−ε dΩ(x)β dx.

(8)

If we in addition require that ε ≤ (p− 1)/2, we may in fact assume that the
constant CM in (8) depends only on p and n. Thus Ω admits the (p− ε, β)-
Hardy inequality for all 0 < ε ≤ ε0, where ε0 = ε0(C0, p, n) > 0, with the
constant C(C0, p, β, n) = 2C0 + CM2|β| > 0. This proves the theorem. �

Using Theorems 3 and 4, we are now able to prove our main theorem.
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Proof of Theorem 1. Since Ω admits the (p, β0)-Hardy inequality with the
constant C0 > 0, we obtain from the part (ii) of Theorem 3 a small constant
ε1 = ε1(C0, p) such that Ω admits (q, β)-Hardy inequalities whenever p ≤
q < p + ε1 and β0 − ε1 < β < β0 + ε1. Moreover, the constant in all these
inequalities can be taken to be C1 = C1(C0, p) > 0.

From Theorem 4 we obtain, on the other hand, a small ε2 = ε2(C0, p, n)
such that Ω admits the (q, β0)-Hardy inequality with a constant C2 =
C2(C0, p, β0, n) whenever p − ε2 ≤ q < p. If we now take δ(q) = δ(q, C2) =
(q/2)(2C2)−1/q for each p − ε2 ≤ q < p, we conclude, by Theorem 3(i) (cf.
also the remark after Theorem 3), that Ω admits the (q, β)-Hardy inequality
for all β0−δ(q) < β < β0+δ(q), with the constant C3(q) = 2q−1C2 ≤ 2p−1C2.
But since δ(q) is now an increasing function of q, we obtain, e.g. by choosing
ε3 = min {ε2, δ(p− ε2)}, that the (q, β0)-Hardy inequality holds with the
constant 2p−1C2 whenever p − ε3 < q < p and β0 − ε3 < β < β0 + ε3;
notice that in particular ε3 = ε3(C0, p, β0, n). We finish the proof by taking
ε = min{ε1, ε3} and C = max{C1, 2p−1C2}. �

4. Qualitative sharpness of Theorem 1

In this section we construct examples which show that, given 1 < p < ∞,
p−n < β < p, and any sufficiently small ε > 0, there exists a domain Ω ⊂ Rn

which admits the (p, β)-Hardy inequality, but fails to admit the (p, β ± ε)-
and (p ± ε, β)-Hardy inequalities. For simplicity, we give the construction
only for n = 2, but the essential ideas for higher dimensional examples are
exactly the same as in the planar case. We would like to mention that a
more general (and more detailed) treatment of domains having properties
similar to those in the following construction is given in [8].

Let 1 < p < ∞ and p− n < β < p, and let

0 < ε < min{p− 1, p− β, 2− p + β},

so that 1 < p − ε and p − 2 < β ± ε < p. Let us first consider the case
p − 1 < β + ε < p. Denote µ = β + ε − p + 2 and λ = µ − 2ε (i.e. λ =
β−ε−p+2). Let Kµ be the usual µ-dimensional von Koch -snowflake curve
with diam(Kµ) = 1 (see e.g. the construction in [5, Section 2]). Replace the
long (short) edges of the square (0, 5) × (−2, 2) by 5 (4) copies of Kµ, and
furthermore, remove the set Kλ + (2, 0), where Kλ is the λ-dimensional
snowflake curve if λ > 1, and the standard λ-dimensional Cantor set (on the
interval [0,1] of the real line, but embedded in R2) if 0 < λ ≤ 1. Let Ω denote
this new domain; also, denote Ωλ = Ω ∩ [1, 4]× [−1, 1] and Ωµ = Ω \ Ωλ.

Let then u ∈ C∞0 (Ω). Since β < p − 2 + µ, the results of [6] imply that
there exist C > 0 and 1 < q < p, independent of u, such that the pointwise
(p, β)-Hardy inequality

|u(x)| ≤ CdΩ(x)1−
β
p M2dΩ(x),q

(
|∇u|dΩ

β/p
)
(x)

holds for all x ∈ Ωµ. Hence, by the maximal function theorem, it is easy to
see that

(9)
∫

Ωµ

(
|u(x)|
dΩ(x)

)p

dΩ(x)β dx ≤ C

∫
Ω
|∇u(x)|p dΩ(x)β dx.
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Let us then consider the part Ωλ. Let W be a Whitney decomposition of
Ω (cf. [13]), and denote

F =
{
Q ∈ W : Q ∩ Ωλ 6= ∅ 6= Q ∩ Ωµ

}
;

notice in this definition that the cubes Q ∈ W are all closed. Also denote
Wλ = {Q ∈ W : Q ⊂ Ωλ}. Then, for every cube Q ∈ Wλ, there exists a
chain of cubes Q̃ ∈ Wλ, denoted P (Q), joining Q to some Q0 ∈ F (depending
on Q), with the following properties: (i) The shadows S(Q̃1) and S(Q̃2)
(here S(Q̃) = {Q ∈ Wλ : Q̃ ∈ P (Q)}) of cubes Q̃1, Q̃2 ∈ Wλ ∪ F are either
disjoint, or we have that S(Q̃1) ⊂ S(Q̃2) or S(Q̃2) ⊂ S(Q̃1); (ii) For each
Q̃ ∈ Wλ ∪ F

(10) #{Q ∈ S(Q̃) : diam(Q) ≈ 2−j} ≤ C2λj diam(Q̃)λ.

Using (10) and the fact that β − p + 2− λ > 0, we obtain

(11)
∑

Q∈S( eQ)

diam(Q)β−p+2 ≤ C diam(Q̃)β−p+2

for all Q̃ ∈ Wλ ∪ F .
If we now denote v = |u|p, an application of a standard chaining argument

(cf. [12, Lemma 8]) gives the estimate

(12) |vQ − vQ0 | ≤ C
∑

eQ∈P (Q)

diam(Q̃)
∫

eQ|∇v|

for Q ∈ S(Q0), where Q0 ∈ F . Since |v(x)| ≤ |v(x)−vQ|+ |vQ−vQ0 |+ |vQ0 |
for x ∈ Q ∈ S(Q0), we obtain, using Poncaré’s inequality, estimate (12),
inequality (11), and finally, the pointwise (p, β)-Hardy inequality for the
cubes Q0 ∈ F , that∫

Ωλ

(
|u(x)|
dΩ(x)

)p

dΩ(x)β dx

≤C

[∫
Ωλ

|u(x)|p−1|∇u|dΩ(x)β−p+1 dx +
∫

Ω
|∇u(x)|p dΩ(x)β dx

]
.

(13)

The (p, β)-Hardy inequality for u then follows from (9) and (13) with a
simple use of Hölder’s inequality and an elementary observation. See [8] for
more details concerning these calculations.

In order to see that (p̃, β̃)-Hardy inequalities fail in Ω when p̃− β̃ = 2−λ,
it suffices to consider functions uj ∈ C∞0 (Ωλ) such that uj(x) = 1 for x ∈(
[1.5, 3.5]× [−0.5, 0.5]

)
\N2−j (Kλ), |∇uj | . 2j in N2−j (Kλ), and |∇uj | ≤ C

elsewhere in spt(|∇uj |). Here Nδ(A) = {x ∈ R2 : dist(x,A) < δ}. Then it
is easy to show that ∫

Ω
|uj |p̃dΩ

β̃−p̃ j→∞−−−→∞,

but ∫
Ω
|∇uj |p̃dΩ

β̃ ≤ C

for all j ∈ N. Similarly, when p̃ − β̃ = 2 − µ, (p̃, β̃)-Hardy inequalities
fail for functions vj ∈ C∞0 (Ω) with the properties that vj(x) = 1 for x ∈
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Ω \ N2−j (∂Ω), and |∇vj | . 2j in N2−j (∂Ω). We conclude in particular that
Ω fails to admit the (p, β ± ε)- and (p± ε, β)-Hardy inequalities.

Finally, let us briefly consider the case p − 1 ≥ β + ε. Denote again
µ = β + ε−p+ 2 and λ = µ− 2ε, and let Cµ and Cλ be the standard µ- and
λ-dimensional Cantor sets on [0, 1], embedded to R2. Then e.g. the domain

Ω =
(
(0, 5)× (−2, 2)

)
\
(
(Cµ + (1, 0)) ∪ (Cλ + (3, 0))

)
admits the (p, β)-Hardy inequality (even the pointwise inequality holds for
x not too close to the λ-dimensional Cantor set), but the (p, β ± ε)- and
(p± ε, β)-Hardy inequalities fail to hold in Ω; the calculations are similar to
those in the previous case.
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