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Abstract. Let m and n be integers with 0 < m < n. We consider the
question of how much the Hausdorff dimension of a measure may decrease
under typical orthogonal projections from R

n onto m-planes provided that
the dimension of the parameter space is one. We verify the best possible lower
bound for the dimension drop and illustrate the sharpness of our results by
examples. The question stems naturally from the study of measures which are
invariant under the geodesic flow.

1. Introduction

The behaviour of different dimensions under projection-type mappings has
been intensively investigated for several decades. The study was initiated by
Marstrand [Mar] in the 1950’s. He proved a well-known preservation theorem
for Hausdorff dimension, dim, according to which the Hausdorff dimension of
a planar set is preserved under typical orthogonal projections. Later this pi-
oneering result has been extended to different directions by numerous authors
(for a detailed account of a variety of related results see [Mat4]): Kaufman [K]
verified Marstrand’s theorem in terms of potential theoretical methods and Mat-
tila [Mat1] proved it in higher dimensions. For measures the following analogy
of Marstrand’s preservation principle was discovered by Kaufman [K], Mattila
[Mat2], Hu and Taylor [HT], and Falconer and Mattila [FM]: Let m and n be
integers with 0 < m < n and let µ be a Radon measure on R

n with compact
support. Denoting by µV the image of µ under the orthogonal projection onto
an m-plane V , we have for typical m-planes V

(1.1) dim µV = min{dim µ, m}.

The wide investigation of related topics culminated to the work of Peres and
Schlag [PS]. Among other things, they proved (1.1) for Sobolev dimension and
parametrized families of transversal mappings.
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2 E. JÄRVENPÄÄ, M. JÄRVENPÄÄ, F. LEDRAPPIER, AND M. LEIKAS

All the above mentioned results hold for typical projections. This means that
they do not provide information about any specified projection. Interestingly,
as discovered by Ledrappier and Lindenstrauss [LL], similar potential theoreti-
cal methods work if one considers a measure on the Riemann surface which is
invariant under the geodesic flow and one particular projection - the natural pro-
jection from the unit tangent bundle onto the Riemann surface. It turns out that
Hausdorff dimension is preserved in this case [LL]. Quite surprisingly, in higher
dimensional base manifolds the preservation principle is not necessarily valid.
Indeed, by employing the methods of [PS], it was shown in [JJL] that Hausdorff
dimension may drop in higher dimensions. This takes us to the natural question
of how much it may drop.

In preservation principles of the type (1.1) it is not necessary to consider
the whole Grassmann manifold G(n, m) consisting of all m-dimensional linear
subspaces of R

n as the parameter space. The essential assumption is that the
parameter space may be identified with an open subset of G(n, m). However, in
the case of n-dimensional Riemann manifolds the local invariance of a measure
leads to the study of a 1-dimensional parametrized family of projections from
2(n − 1)-dimensional space onto (n − 1)-dimensional space [JJL]. Hence, the
dimension of the parameter space is less than that of the Grassmann manifold
G(2(n − 1), n − 1).

In this note we address the question of how much the Hausdorff dimension of
a measure may drop for typical orthogonal projections from R

n onto m-planes
provided that the dimension k of the parameter space is less than that of the
Grassmann manifold. In our setting one may conclude the following from the
results of [PS]: Fubini’s theorem implies that the Hausdorff dimension of a given
measure is preserved for almost all projections in a typical k-dimensional family.
However, in general, it is impossible to say whether a given family is typical for
a given measure.

We restrict our consideration to the case k = 1 which is relevant for measures
which are invariant under the geodesic flow (Theorem 3.2). Clearly, one could
always parametrize exceptional projections with many parameters. To prevent
this from happening, we need to make an assumption guaranteeing that the pro-
jection is changed when the parameter is being changed (Definition 2.3). As
an auxiliary tool we need to investigate k-dimensional parametrized families of
projections from R

n onto hyperplanes (Proposition 3.1). Using similar methods,
we are able to deal with k-dimensional parametrized families of projections from
R

n onto lines (Proposition 3.3). In all these three cases we give the best possi-
ble lower bounds for Hausdorff dimensions of typical projected measures. The
optimality of the bounds is illustrated by examples. In the whole generality the
question seems to be quite difficult.

The paper is organized as follows: In section 2 we introduce the notation and
verify auxiliary results whilst section 3 is dedicated to the main results. In section
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3 we also discuss the consequences of our results to measures which are invariant
under the geodesic flow.

2. Definitions and preliminary results

In this section we introduce the notation we use throughout this paper. Let
m and n be integers with 0 < m < n and let µ be a finite Radon measure on R

n

with compact support. The Hausdorff dimension, dim, of µ is defined in terms
of local dimensions as follows:

(2.1) dim µ = sup{s ≥ 0 | lim inf
r→0

log µ(B(x, r))

log r
≥ s for µ-almost all x ∈ R

n},

where B(x, r) is the closed ball with centre at x and radius r. Equivalently,

(2.2) dim µ = inf{dim A | A ⊂ R
n is a Borel set with µ(A) > 0}.

It follows easily from (2.1) that

(2.3) It(µ) < ∞ =⇒ dim µ ≥ t,

where

It(µ) =

∫∫
|x − y|−t dµ(x) dµ(y)

is the t-energy of µ.
Let k be an integer with 0 < k < m(n−m). Note that m(n−m) is the dimen-

sion of the Grassmann manifold G(n, m) of all m-dimensional linear subspaces
of R

n. Supposing that Λ ⊂ R
k, we restrict our consideration to parametrized

families {Pλ : R
n → R

m | λ ∈ Λ} of orthogonal projections. The image of a
measure µ under Pλ : R

n → R
m is denoted by µλ, that is, µλ(A) = µ(P−1

λ (A))
for all A ⊂ R

m. Obviously,

(2.4) dim µ − (n − m) ≤ dim µλ ≤ min{dim µ, m}

for all λ ∈ Λ.
The following well known lemmas play a fundamental role in our approach.

The proofs are included for the convenience of the reader. We use the notation
Lk for the Lebesgue measure on R

k.

Lemma 2.1. Let Λ ⊂ R
k be bounded. Assume that there are positive constants

s and C such that for all x 6= y ∈ R
n and for all δ > 0

Lk({λ ∈ Λ | |Pλ(x − y)| ≤ δ}) ≤ Cδs|x − y|−s.

Then for all 0 < t < s there is a constant c such that for all x 6= y ∈ R
n

∫

Λ

|Pλ(x − y)|−t dLk(λ) ≤ c|x − y|−t.



4 E. JÄRVENPÄÄ, M. JÄRVENPÄÄ, F. LEDRAPPIER, AND M. LEIKAS

Proof. Using [Mat3, Corollary 1.15], we calculate as in [Mat3, Corollary 3.12]
∫

Λ

|Pλ(x − y)|−t dLk(λ) =

∫ ∞

0

Lk({λ ∈ Λ | |Pλ(x − y)| ≤ u− 1

t }) du

≤ Lk(Λ)|x− y|−t + C|x − y|−s

∫ ∞

|x−y|−t

u− s
t du

≤ c|x − y|−t

where c depends on Lk(Λ), C, s, and t. �

Lemma 2.2. Let Λ ⊂ R
k and let µ be a finite Radon measure on R

n with compact

support and let l be a positive real number such that dim µ ≥ l. Assume that for

all 0 < t < l there is a constant c such that for all x 6= y ∈ R
n

∫

Λ

|Pλ(x − y)|−t dLk(λ) ≤ c|x − y|−t.

Then dim µλ ≥ l for Lk-almost all λ ∈ Λ.

Proof. We may assume that Λ is bounded. Let ε > 0. Consider 0 < d′ < d <

l ≤ dim µ. By (2.1) there are a Borel set Ad,ε ⊂ R
n and a positive constant Cd,ε

such that µ(Rn \ Ad,ε) < ε and

µ(B(x, r)) ≤ Cd,εr
d for all r > 0 and x ∈ Ad,ε.

Define µd,ε = µ|Ad,ε
. Clearly,

µd,ε(B(x, r)) ≤ 2dCd,εr
d for all r > 0 and x ∈ R

n,

which, in turn, implies by a straightforward calculation (see [Mat3, p. 109]) that
Id′(µd,ε) < ∞. Hence, by Fubini’s theorem

∫

Λ

Id′((µd,ε)λ) dLk(λ) =

∫∫∫

Λ

|Pλ(x − y)|−d′ dLk(λ) dµd,ε(x) dµd,ε(y)

≤ cId′(µd,ε) < ∞.

Therefore, by (2.3) dim(µd,ε)λ ≥ d′ for Lk-almost all λ ∈ Λ. Letting ε → 0 and
d′ → l through countable sequences gives the claim since dim(µd,ε)λ → dim µλ

by (2.2). �

We equip the Grassmann manifold G(n, m) with a Riemann metric and con-
tinue by defining the type of projection families we are working with.

Definition 2.3. Let Λ ⊂ R
k be open and connected. A parametrized family

{Pλ : R
n → R

m | λ ∈ Λ} of orthogonal projections is called full if there exist
positive constants Rf , Cf , and cf with the following properties:

(1) The mapping λ 7→ Vλ restricted to B(λ0, Rf) is an embedding with uni-
formly continuous derivative for all λ0 ∈ Λ.

(2) For all λ = (λ1, . . . , λk) ∈ Λ we have |∂Vλ

∂λi
| ≤ Cf for all i = 1, . . . , k.
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(3) Moreover, vol(∂Vλ

∂λ1
, . . . , ∂Vλ

∂λk
) ≥ cf for all λ = (λ1, . . . , λk) ∈ Λ.

Here Vλ = Pλ(R
n) ∈ G(n, m) and vol(v1, . . . , vk) is the k-dimensional volume of

the parallelepiped spanned by the vectors v1, . . . , vk.

Remark 2.4. (a) The third property of Definition 2.3 implies that there is a
positive constant df such that |∂Vλ

∂λi
| ≥ df for all i = 1, . . . , k.

(b) Consider λ0 ∈ Λ and R > 0 such that V = ∪λ∈B(λ0,R)Vλ is a smooth
k-dimensional submanifold of G(n, m). Let {e1, . . . , em} and {em+1, . . . , en}
be orthonormal bases of Vλ0

∈ G(n, m) and its orthogonal complement V ⊥
λ0

∈
G(n, n − m), respectively. One may choose local coordinates on G(n, m) near
Vλ0

in terms of rotations of the basis vectors {e1, . . . , em} in the following man-
ner: For 1 ≤ i ≤ m and m + 1 ≤ j ≤ n, let −π

4
< αij < π

4
be the components

of α ∈ (−π
4
, π

4
)m(n−m). Rotating ei by the angle αij towards ej for all i and j

gives local coordinates for the m-plane spanned by the rotated vectors. We fix a
Riemann metric on G(n, m) such that { ∂

∂αij
| i = 1, . . . , m, j = m + 1, . . . , n} is

an orthonormal basis of the tangent space TVλ0
G(n, m). For simplicity, we refer

to these basis vectors by eij = ∂
∂αij

.

3. Main results

In this section we state and prove our main results. We start with the case of
k-dimensional families of projections onto hyperplanes, which is an essential tool
in the proof of Theorem 3.2.

Proposition 3.1. Let Λ ⊂ R
k be an open and connected set and let µ be a finite

Radon measure on R
n with compact support. Assume that {Pλ : R

n → R
n−1 |

λ ∈ Λ} is a full family of orthogonal projections. Then for Lk-almost all λ ∈ Λ

dim µλ ≥





dim µ, if dim µ < k

k, if k ≤ dim µ < k + 1

dim µ − 1, if dim µ ≥ k + 1.

Proof. By (2.4) it is sufficient to consider the case dim µ < k. Writing Λ as a
countable union of open balls, we may assume that Λ is an open ball. We make
this assumption to avoid some technical problems caused by the boundary of Λ
when using the inverse function theorem.

Our claim is that there is a constant C depending only on Cf and cf such that
for all x 6= y ∈ R

n and for all δ > 0

(3.1) Lk({λ | |Pλ(x − y)| ≤ δ}) ≤ Cδk|x − y|−k.

To verify (3.1) we may assume that |x − y| = 1. Furthermore, it is enough
to prove (3.1) for 0 < δ < δ0 where δ0 is a constant depending only on Cf and
cf . Note that hyperplanes can be parametrized by their orthogonal complements
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...

...

Figure 1. The case of a full k-dimensional parametrized family
of projections onto hyperplanes: the lower bound given by Propo-
sition 3.1 and the upper one given by (2.4) are illustrated by —–
and - - -, respectively.

and G(n, n− 1) may be locally identified with an open subset of the unit sphere
Sn−1. By Definition 2.3,

vol(
∂V ⊥

λ

∂λ1
, . . . ,

∂V ⊥
λ

∂λk

) ≥ cf

for all λ = (λ1, . . . , λk) ∈ Λ.
Consider λ1 ∈ Λ such that |Pλ1(x − y)| < δ0. Making δ0 sufficiently small,

a quantitative version of the inverse function theorem (see [PS, Lemma 7.6])
guarantees that there is a neighbourhood U1 of λ1 with the following properties
(for further details see [JJN, Lemma 2.2]):

(1) The set U1 contains a ball B1 the radius of which depends only on Cf

and cf .
(2) The restriction of λ 7→ Pλ(x−y) to U1 is a diffeomorphism onto its image.

(3) There are λ̂1 ∈ Λ and a constant M depending only on Cf and cf such
that

{λ ∈ U1 | Pλ(x − y) ≤ δ} ⊂ B(λ̂1, Mδ)

for all 0 < δ < δ0.
(4) For all λ ∈ ∂U1 we have |Pλ(x − y)| ≥ 4δ0, and for all λ ∈ B1 we have

|Pλ(x − y)| < 2δ0.
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Note that if λ1 is close to the boundary of Λ we may have to extend the family
outside of Λ in order to find λ̃1 and B1. This is the reason why we assume that
Λ is a ball.

Having selected open sets U1, . . . , Uk such that the above properties (1)–(4) are
valid, we proceed inductively by taking λk+1 ∈ Λ\∪k

i=1Ui with |Pλk+1(x−y)| < δ0.
Choose a neighbourhood Uk+1 of λk+1 having properties (1)–(4). Since the balls
B1, B2, . . . , Bk+1 selected in (1) are disjoint by (4), the process terminates after
a finite number of steps, say k0. Using the fact that |Pλ(x − y)| ≥ 4δ0 when
λ ∈ Λ \ ∪k0

i=1Ui, we get from (3) that for all 0 < δ < δ0

{λ ∈ Λ | Pλ(x − y) ≤ δ} ⊂

k0⋃

i=1

{λ ∈ Ui | Pλ(x − y) ≤ δ} ⊂

k0⋃

i=1

B(λ̂i, Mδ).

From this one easily deduces (3.1). Note that by (1), the constant k0 depends
only on Cf and cf

Since dim µ < k, Lemma 2.2 combined with Lemma 2.1 gives with the choice
l = dim µ that dim µλ ≥ dim µ for Lk-almost all λ ∈ Λ. �

Now we are ready to consider the case of 1-dimensional families of projections
onto m-planes. The proof is based on Proposition 3.1.

Theorem 3.2. Let Λ ⊂ R be an open interval and let µ be a finite Radon measure

on R
n with compact support. Assume that {Pλ : R

n → R
m | λ ∈ Λ} is a full

family of orthogonal projections. Then for L-almost all λ ∈ Λ

dim µλ ≥






max{0, dimµ − (n − m − 1)}, if dim µ < n − m

1, if n − m ≤ dim µ < n − m + 1

dim µ − (n − m), if dim µ ≥ n − m + 1.

nn − m

1

dim µ

dimλ

Figure 2. The case of a full 1-dimensional parametrized family
of projections onto m-planes.
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Proof. By (2.4) it is enough to consider the case dim µ < n − m. Fix λ0 ∈ Λ.
Let ∂Vλ

∂λ
|λ=λ0 =

∑
ij λijeij where λij ∈ R and {eij} is the orthonormal basis of the

tangent space TVλ0
G(n, m) given in Remark 2.4. After renaming the coordinates

we may assume that |λ1n| = maxij |λij|. By Definition 2.3, there is a constant c

depending only on cf , n, and m such that |λ1n| ≥ c.

Define a (n − m)-dimensional family {Ṽλ̃ | λ̃ ∈ Λ̃ ⊂ R
n−m} of hyperplanes in

the following way: By the uniform continuity of λ 7→ ∂Vλ

∂λ
we find 0 < δ < π

8
such

that

|(
∂Vλ

∂λ
|

∂

∂α1n

|Vλ
)| >

c

2
for all λ ∈ (λ0 − δ, λ0 + δ)

where ∂
∂α1n

|Vλ
∈ TVλ

G(n, m). Let Λ̃ = (λ0 − δ, λ0 + δ)× (−δ, δ)n−m−1. Given λ̃ =

(λ̃1, . . . , λ̃n−m) ∈ Λ̃, let Ṽλ̃ be the (n−1)-plane spanned by Vλ̃1
and em+1 cos λ̃2 +

en sin λ̃2, . . . , en−1 cos λ̃n−m + en sin λ̃n−m. Here {e1, . . . , en} is the standard basis
of R

n used in the construction of the basis {eij}.

For λ̃0 = (λ0, 0 . . . , 0) we have

∂Ṽλ̃

∂λ̃i

|λ̃=λ̃0 = em−1+i,n for all i = 2, . . . , n − m.

Clearly, λ 7→
∂ eV

λ̃

∂λ̃i
is uniformly continuous for all i = 1, . . . , n − m. Hence, by

the choice of δ, Ṽλ̃ determines a full (n − m)-dimensional family of projections

P̃λ̃ : R
n → R

n−1 with P̃λ̃(R
n) = Ṽλ̃. Denoting by P̃λ̃µ the image of µ under P̃λ̃

and applying Proposition 3.1 gives

(3.2) dim P̃λ̃µ = dim µ for Ln−m-almost all λ̃ ∈ Λ̃.

By Fubini’s theorem, for L-almost all λ̃1 ∈ (λ0−δ, λ0+δ) there is (λ̃2, . . . , λ̃n−m) ∈

(−δ, δ)n−m−1 such that (3.2) holds for λ̃ = (λ̃1, . . . , λ̃n−m). Combining (2.4) with

the fact that Vλ̃1
⊂ Ṽλ̃ implies the claim since

dim µλ̃1
= dim Pλ̃1

µ = dim(Pλ̃1
P̃λ̃)µ

≥ dim P̃λ̃µ − (n − m − 1) = dim µ − (n − m − 1)

for L-almost all λ̃1 ∈ (λ0 − δ, λ0 + δ). �

Finally, we consider k-dimensional families of projections onto lines.

Proposition 3.3. Let Λ ⊂ R
k be an open and connected set and let µ be a finite

Radon measure on R
n with compact support. Assume that {Pλ : R

n → R | λ ∈ Λ}
is a full family of orthogonal projections. Then for Lk-almost all λ ∈ Λ

dim µλ ≥

{
max{0, dimµ − (n − k − 1)}, if dim µ < n − k

1, if dim µ ≥ n − k.
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nn − k

1

dim µ

dimλ

Figure 3. The case of a full k-dimensional parametrized family
of projections onto lines.

Proof. Clearly it is enough to consider the case n − k − 1 < dim µ < n − k.
Since G(n, 1) may be locally identified with Sn−1 the tangent space TVλ

G(n, 1)
may be embedded naturally in R

n. Fix λ0 ∈ Λ. The assumption that the family
{Pλ : R

n → R | λ ∈ Λ} is full implies that the vectors ∂Vλ

∂λ1
|λ=λ0, . . . , ∂Vλ

∂λk
|λ=λ0

span a k-dimensional plane K. Choose an orthonormal basis (e1, . . . , en) of R
n

such that e1 spans Vλ0 and the vectors en−k+1, . . . , en span K. Fix 0 < δ < π
8

such that the mapping λ 7→ Vλ restricted to B(λ0, δ) is a diffeomorphism onto
its image and the angle between ∂Vλ

∂λi
and K is less than π

8
for all i = 1, . . . , k and

λ ∈ B(λ0, δ).

We define a k(n − k)-dimensional family {Ṽλ̃ | λ̃ ∈ Λ̃ ⊂ R
k(n−k)} of (n − k)-

planes as follows: Let Λ̃ = B(λ0, δ) × (−δ, δ)k(n−k−1). Given λ̃ ∈ Λ̃, denote the

first k components of λ̃ by λ and the remaining k(n − k − 1) components by λ̃ij

for i = 2, . . . , n − k and j = n − k + 1, . . . , n, and define Ṽλ̃ to be the (n − k)-

plane spanned by Vλ and e2 cos λ̃2,n−k+1+en−k+1 sin λ̃2,n−k+1, . . . , en−k cos λ̃n−k,n+

en sin λ̃n−k,n.

Now {Ṽλ̃ | λ̃ ∈ Λ̃} is an open subset of G(n, n − k) and (1.1) implies that

dim P̃λ̃µ = dim µ for Lk(n−k)-almost all λ̃ ∈ Λ̃.

The claim follows by Fubini’s theorem and (2.4) as in the proof of Theorem
3.2. �

Remark 3.4. (a) It is easy to see that all the above lower bounds may be achieved.
To verify this, let {e1, . . . , en} be the standard basis of R

n.
In the case of k-dimensional families of projections onto hyperplanes, denote

by W the (k + 1)-plane spanned by e1, . . . , ek, en. Rotate the vectors e1, . . . , ek

towards en independently and consider the k-dimensional family of projections
onto hyperplanes Vλ spanned by ek+1, . . . , en−1 and rotations of e1, . . . , ek. As-
suming that µ is a measure on W , we have

dim µλ = min{dim µ, k} for Lk-almost all λ.

On the other hand, taking µ = ν1 × ν2 where ν1 is the restriction of Lk+1 to the
unit ball of W and ν2 is a measure on W⊥ with dim ν2 = t, we get

dim µλ = k + t = dim µ − 1 for Lk-almost all λ.

This gives the sharpness of Proposition 3.1.
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Next we consider the case of 1-dimensional family of projections onto m-planes
Vλ spanned by e2, . . . , em and rotations of e1 towards em+1. Denote by W1 the
2-plane spanned by e1 and em+1, and by W2 the (m + 1)-plane spanned by
e1, . . . , em+1. Let 0 < t ≤ 2. Defining µ = ν1 × ν2 where ν1 is a measure on W1

with dim ν1 = t and ν2 is the restriction of Ln−m−1 to the unit ball of W⊥
2 , we

obtain

dim µλ = dim νt = min{t, 1} for L-almost all λ.

Hence, the two first lower bounds of Theorem 3.2 may be achieved. The fact
that the remaining lower bound in Theorem 3.2 is sharp can be verified similarly.

Finally, the sharpness of Proposition 3.3 follows by considering the k-dimen-
sional family of projections onto lines spanned by rotating e1 towards e2, . . . , ek+1

and by defining the measure µ as in the case of m-planes with m replaced by k.
(b) Representing Λ as a countable union of compact sets one may replace the

uniform bounds in Definition 2.3 by local ones.
(c) As indicated in (a), the lower bounds given in Propositions 3.1, 3.2 and

3.3 are the best possible ones in the sense that for each 0 < d < n there is a
measure µ with dim µ = d and a family of projections such that the corresponding
lower bounds are achieved. However, this does not mean that for any family of
projections and for any 0 < d < n one could construct a measure achieving the
lower bounds. Indeed, let n = 4, m = 2, and let {e1, e2, e3, e4} be the standard
basis of R

4. Consider the family of 2-planes Vλ spanned by e1 cos λ+ e3 sin λ and
e2 cos λ + e4 sin λ for λ ∈ (−π

8
, π

8
). It is easy to see that

L({λ | |Pλ(z)| < δ}) ≤ δ|z|−1

for any z ∈ R
4. This implies that dim µλ = dim µ for L-almost all λ provided

that dim µ ≤ 1 whilst the lower bound given by Theorem 3.2 is zero.
(d) The study of projections of measures which are invariant under the geodesic

flow on an n-dimensional Riemann manifold leads to a study of 1-dimensional
parametrized families of mappings from a 2(n−1)-dimensional manifold onto an
(n − 1)-dimensional manifold (see [JJL]).

In the case of an n-dimensional torus T the setting is as follows: Let Π be the
natural projection from the unit tangent bundle of T onto T and let µ be an
invariant measure under the geodesic flow. Then µ is locally of the form ν × L
and the image Π∗µ of µ under Π is locally of the form νt × L, where νt is the
image of ν under a projection from R

2(n−1) onto R
n−1. According to Theorem

3.2 and [JJL, Lemma 2.2],

dim Π∗µ ≥ dim µ − (n − 2)

provided that dim ν ≤ n−1, that is, dim µ ≤ n. On the other hand, if dim ν ≥ n

then

dim Π∗µ ≥ dim µ − (n − 1).
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In fact, since the setting in this case is as in (c) we have dim Π∗µ = dim µ if
dim ν ≤ 1.
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