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Abstract

We show that if φ is a quasiconformal mapping with compactly sup-

ported Beltrami coefficient in the Sobolev space W 1,2, then φ preserves

sets with vanishing analytic capacity. It then follows that a compact set E

is removable for bounded analytic functions if and only if it is removable

for bounded quasiregular mappings with compactly supported Beltrami

coefficient in W 1,2.

1 Introduction

A Beltrami coefficient is a measurable function µ such that ‖µ‖∞ < 1. Given

an open set Ω ⊂ C, we say that f : Ω → C is µ-quasiregular if it belongs to the

Sobolev space W 1,2
loc (Ω) and satisfies the Beltrami equation

∂f(z) = µ(z) ∂f(z), a.e.z ∈ Ω.

If moreover f is a homeomorphism, then we call it µ-quasiconformal. For any

K ≥ 1, we say that f is K-quasiregular (or K-quasiconformal if f is homeo-

morphism) for some Beltrami coefficient µ satisfying ‖µ‖∞ ≤ K−1
K+1 .

Several works have focussed in the question of how these mappings distort mea-

sures and capacities. For instance, Ahlfors (see [Ah1]) proved that they always

preserve sets of zero area. In a remarkable paper, Astala [As] obtained deep

estimates for the area distortion under K-quasiconformal mappings. More pre-

cisely, if φ is any (conveniently normalized) K-quasiconformal mapping, then
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one has the estimate

|φ(E)| ≤ C |E| 1
K

where the constant C depends only on K. As a consequence, the author ob-

tained also sharp results on integrability of K-quasiconformal mappings, which

in turn led to the bounds on K-quasiconformal distortion of Hausdorff dimen-

sion. Namely, for any K-quasiconformal mapping φ and any compact set E,

1
K

(
1

dim(E)
− 1

2

)
≤ 1

dim(φ(E))
− 1

2
≤ K

(
1

dim(E)
− 1

2

)
. (1)

Moreover, in [As] the author shows the sharpness of both inequalities.

It is well known that sometimes the regularity of the Beltrami coefficient µ

is inherited by the mapping itself. For instance, when µ is a compactly sup-

ported C∞ function, then every µ-quasiconformal mapping φ is also C∞. As a

consequence, φ is locally bilipschitz, and then some set functions like Hausdorff

measures, Riesz and Bessel capacities, are preserved.

Nevertheless, there are other situations which, even far from µ ∈ C∞, give

interesting improvements of equation (1). For instance, when µ belongs to the

class VMO of functions of vanishing mean oscillation, then

dim(φ(E)) = dim(E).

That is, the corresponding µ-quasiconformal mappings φ do not distort Haus-

dorff dimension (see for instance [Iw]). However, nothing is known on the ratio

between the Hausdorff measures Ht(E) and Ht(φ(E)), for any t ∈ [0, 2].

In this context, of special interest is the assumption that µ is a compactly sup-

ported function in the Sobolev class W 1,2 (notice that this implies µ ∈ VMO).

For such Beltrami coefficients, it is shown in [CFMOZ] that the corresponding

µ-quasiconformal mappings φ preserve sets with zero length, that is

H1(E) = 0 ⇐⇒ H1(φ(E)) = 0, (2)

The proof of this fact uses some BMO removability techniques, related to both

the Cauchy-Riemann (i.e. ∂) and the Beltrami (∂ − µ∂) differential operators.

The main tool is an extended version of Weyl’s lemma. Recall that classi-

cal Weyl’s Lemma asserts that distributional solutions to the Cauchy-Riemann

equation are actually analytic functions. In the more general case of the Bel-

trami equation [CFMOZ, Theorem 1], an analogous result can be given provided

that the Beltrami coefficient belongs to W 1,2.
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Theorem. Let µ be a compactly supported Beltrami coefficient in the Sobolev

space W 1,2(C). Let f ∈ Lp
loc(C) for some p > 2, and suppose that

〈∂f − µ∂f, ϕ〉 = 0

whenever ϕ ∈ C∞ is compactly supported. Then, f is µ-quasiregular.

In [CFMOZ], similar arguments to those in (2), replacing BMO by VMO,

allowed the authors to prove that if µ ∈ W 1,2 is any compactly supported

Beltrami coefficient, and φ is µ-quasiconformal, then

H1(E) is σ-finite ⇐⇒ H1(φ(E)) is σ-finite. (3)

Furthermore, these mappings φ are shown to map 1-rectifiable sets to 1-rectifiable

sets (and purely 1-unrectifiable sets to purely 1-unrectifiable sets).

As we shall see in this paper, all these facts have interesting consequences when

studying removability problems for bounded µ-quasiregular mappings, that is,

the µ-quasiregular counterpart for the problem of Painlevé. Recall that a com-

pact set E is said to be removable (for bounded analytic functions) if for any

open set Ω ⊃ E, every bounded function f : Ω → C, analytic on Ω \ E, admits

an analytic extension to the whole of Ω. The problem of Painlevé consists of

giving metric and geometric characterizations of these sets.

When studying removable sets, it is natural to talk about analytic capacity.

Recall that given a compact set E, the analytic capacity of E is defined as

γ(E) = sup {|f ′(∞)|; f ∈ H∞(C \ E), ‖f‖∞ ≤ 1} .

Here, by H∞(Ω) we mean the space of bounded analytic functions on the open

set Ω, and f ′(∞) = lim
z→∞

z (f(∞)− f(z)). For a set A ⊂ C which may be non

compact, one defines

γ(A) = sup
E⊂A compact

γ(E).

Ahlfors [Ah2] proved that E is removable for bounded analytic functions if and

only if γ(E) = 0. Furthermore, it is not difficult to show that γ(E) ≤ CH1(E),

while dim(E) > 1 implies γ(E) > 0. It took long time to have a precise

geometric characterization of the zero sets for γ. In [Da1], G. David proved

that if E has finite length then

γ(E) = 0 ⇐⇒ E is purely 1-unrectifiable.

Later, in [To2], X. Tolsa characterized sets with vanishing analytic capacity in

terms of Menger curvature (see Theorem 5 below for more details).
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In this paper, as well as in [CFMOZ], our main objects of study are the remov-

able singularities for bounded solutions to a fixed Beltrami equation. Namely,

we say that a compact set E is removable for bounded µ-quasiregular mappings,

or simply µ-removable, if for any open set Ω, any bounded function f : Ω → C,

µ-quasiregular on Ω \ E, admits a µ-quasiregular extension to the whole of Ω.

By means of Stoilow’s factorization Theorem, one easily shows that E is µ-

removable if and only if γ(φ(E)) = 0 for any µ-quasiconformal mapping φ. In

connection with this question, the following result is proved in [CFMOZ].

Theorem. Let µ ∈W 1,2(C) be a compactly supported Beltrami coefficient, and

let φ : C→ C be a µ-quasiconformal mapping. Then,

γ(E) = 0 ⇐⇒ γ(φ(E)) = 0 (4)

for any compact set E with σ-finite H1(E).

Pekka Koskela suggested us that the σ-finiteness assumption might be removed

in the preceding result. In this paper we do the job.

Theorem 1. Let µ ∈ W 1,2(C) be a compactly supported Beltrami coefficient,

and let φ : C→ C be a µ-quasiconformal mapping. Then,

γ(E) = 0 ⇐⇒ γ(φ(E)) = 0

for any compact set E.

It follows from Theorem 1 that if µ ∈W 1,2 is compactly supported, then being

removable and being µ-removable are equivalent notions.

Corollary 2. Let µ ∈ W 1,2 be a compactly supported Beltrami coefficient.

Then, a compact set E is removable for bounded µ-quasiregular mappings if

and only if γ(E) = 0.

Theorem 1 implies that, given a compactly supported Beltrami coefficient µ ∈
W 1,2(C), the corresponding µ-quasiconformal mappings preserve the removable

sets for bounded analytic functions. This fact is closely related to a question

of J. Verdera [Ve1] on the preservation of removable sets under some planar

homeomorphisms. More precisely, the author wondered how analytic capacity

is distorted under bilipschitz mappings. Recall that a mapping φ : C → C is

said to be L-bilipschitz if

1
L
|z − w| ≤ |φ(z)− φ(w)| ≤ L|z − w|

for any pair of points z, w ∈ C. This question was solved in [To2]:
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Theorem. Let φ : C→ C be an L-bilipschitz mapping. Then,

γ(φ(E)) ' γ(E) (5)

with constants that depend only on L.

Furthermore, it is shown in [To2] that any planar homeomorphism φ : C → C
satisfying (5) must be a bilipschitz mapping. It is well known that L-bilipschitz

mappings are µ-quasiconformal for some Beltrami coefficient µ with ‖µ‖∞ de-

pending only on L, but in general this does not imply any W 1,2 regularity for

µ. In fact, there is not a precise description of the class of compactly sup-

ported Beltrami coefficients µ that produce bilipschitz µ-quasiconformal map-

pings. It was remarked in [CFMOZ, Example 4] that there are non bilipschitz

µ-quasiconformal mappings with compactly supported µ ∈ W 1,2. At the same

time, the example µ(z) = 1
2 χD(z) gives a bilipschitz µ-quasiconformal mapping

with µ /∈W 1,2. Thus, there is no relation between bilipschitz µ-quasiconformal

mappings and Beltrami coefficients µ ∈W 1,2.

For the proof of the Theorem 1, our main tool is the following improved version

of the preceding theorem on the bilipschitz invariance of analytic capacity.

Theorem 3. Given E,F ⊂ C, let φ : E → F be a bilipschitz homeomorphism.

That is, there exists L > 0 such that

1
L
|z − w| ≤ |φ(z)− φ(w)| ≤ L |z − w| (6)

whenever z, w ∈ E. Then there exists some constant C depending only on L

such that
1
C
γ(F ) ≤ γ(E) ≤ Cγ(F ).

Notice that in this result we assume the mapping φ to be bilipschitz only on E,

not in the whole complex plane. From this theorem we deduce

Corollary 4. Assume that φ : C → C is a planar homeomorphism, locally

bilipschitz in a measurable set Ω ⊂ C. That is, there are constants C > 0 and

δ > 0 such that
1
C
|z − w| ≤ |φ(z)− φ(w)| ≤ C |z − w|

whenever z, w ∈ Ω and |z − w| < δ. Then

γ(E ∩ Ω) = 0 ⇐⇒ γ(φ(E ∩ Ω)) = 0

for any compact set E ⊂ C.
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As explained above, the µ-quasiconformal mappings we deal with are not bilips-

chitz in the whole plane, in general. However, they are locally bilipschitz on the

level sets of its Jacobian determinant, modulo some small set of bad points. This

follows from the quasisymmetry and from the fact that these µ-quasiconformal

mappings belong to some second order Sobolev spaces. Moreover, it turns out

that they are strongly differentiable everywhere except on a set of Hausdorff

dimension 0.

The paper is structured as follows. In Section 2 we prove Theorem 3, and

in Section 3 its Corollary 4. In Section 4, we use this result to prove Theorem 1.

Acknowledgements. The authors are grateful to Pekka Koskela for his in-

spiring suggestion on Theorem 1.

2 Proof of Theorem 3

2.1 Analytic capacity and curvature

We need to recall the notion of curvature of a measure. Given three pairwise

different points x, y, z ∈ C, their Menger curvature is

c(x, y, z) =
1

R(x, y, z)
,

where R(x, y, z) is the radius of the circumference passing through x, y, z (with

R(x, y, z) = ∞, c(x, y, z) = 0 if x, y, z lie on the same line). If two among these

points coincide, we set c(x, y, z) = 0. For a positive finite Borel measure σ on

C, we define the curvature of σ as

c2(σ) =
∫ ∫ ∫

c(x, y, z)2 dσ(x)dσ(y)dσ(z). (7)

We recall the characterization of γ in terms of curvature from [To2]:

Theorem 5. For any compact E ⊂ C we have

γ(E) ' supσ(E),

where the supremum is taken over all Borel measures σ supported on E such

that σ(B(x, r)) ≤ r for all x ∈ E, r > 0 and c2(σ) ≤ σ(E).

We will prove the following result.

Theorem 6. Let σ be a Borel measure supported on a compact set E ⊂ C, such

that σ(B(x, r)) ≤ r for all x ∈ E, r > 0 and c2(σ) < ∞. Let φ : E → φ(E) be
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a bilipschitz mapping. There exists a positive constant C depending only on the

bilipschitz constant of φ such that

c2(φ#σ) ≤ C
(
σ(E) + c2(σ)

)
,

where φ#σ stands for the image measure of σ by φ.

It is easy straightforward check that Theorem 3 is a direct consequence of The-

orems 5 and 6. We remark that Theorem 6 was proved in [To2, Theorem 1.3]

under the stronger assumption that φ is bilipschitz on the whole complex plane.

The next Subsections 2.2, 2.3 and 2.4 deal with the proof of this result.

2.2 Additional notation and terminology

By a square we mean a square with sides parallel to the axes. Moreover, we

assume the squares to be half closed - half open. The side length of a square Q

is denoted by `(Q). Given a > 0, aQ denotes the square concentric with Q with

side length a`(Q). The average (linear) density of a Borel measure σ on Q is

θσ(Q) :=
σ(Q)
`(Q)

. (8)

We say that σ has linear growth if there exists some constant C such that

σ(B(x, r)) ≤ Cr for all x ∈ C, r > 0.

A square Q ⊂ C is called 4-dyadic if it is of the form [j2−n, (j + 4)2−n) ×
[k2−n, (k + 4)2−n), with j, k, n ∈ Z. So a 4-dyadic square with side length

4 · 2−n is made up of 16 dyadic squares with side length 2−n. Given a, b > 1,

we say that Q is (a, b)-doubling if σ(aQ) ≤ bσ(Q). If we don’t want to specify

the constant b, we say that Q is a-doubling. Given two squares Q ⊂ R, we set

δσ(Q,R) :=
∫

RQ\2Q

1
|y − xQ| dσ(y),

where xQ stands for the center of Q, and RQ is the smallest square concentric

with Q that contains R. Given a bilipschitz mapping φ : C → C and a square

Q, in [To2] one says that that φ(Q) is a φ-square, and then one defines its side

length as `(φ(Q)) := `(Q). Now we only know that φ bilipschitz from E onto

φ(E), and thus φ(Q) is not defined in general. So we have to change the notion

of φ-square. A first attempt would consist in saying that P is a φ-square if

P = φ(Q ∩ E) for some square Q. This definition has a serious drawback: we

cannot set `(P ) := `(Q) because it may happen that P = φ(Q∩E) = φ(R∩E)

for two different squares Q,R. However there is an easy solution: a φ-square
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is not a subset of C, but a pair of the form P = (Q,φ(Q ∩ E)), for some

square Q ⊂ C. We denote `(P ) := `(Q). On the other hand, abusing language

sometimes we will identify the φ-square P = (Q,φ(Q∩E)) with the set φ(Q∩E),

and so we will use notations such as diam(P ) (notice that diam(P ) . `(P )), or

φ#σ(P ). If Q0 is a dyadic (or 4-dyadic) square, we say that (Q0, φ(Q0∩E)) is a

dyadic (or 4-dyadic) φ-square. If Q = (Q0, φ(Q0 ∩E)) is a φ-square, we denote

λQ = (λQ0, φ(λQ0 ∩E)), for λ > 0. To simplify notation, we set τ := φ#σ and

F := φ(E). A φ-square Q is said to be λ-doubling if τ(λQ) ≤ Cτ(Q) for some

fixed C ≥ 1. We also set

θτ (Q) :=
τ(Q)
`(Q)

and if R is another φ-square which contains Q, we put

δτ (Q,R) :=
∫

RQ\2Q

1
|y − xQ| dτ(y),

where xQ stands for some fixed (arbitrary) point of Q and RQ is the smallest φ-

square concentric with Q that contains R. That is to say, if Q = (Q0, φ(Q0∩E)),

R = (R0, φ(R0 ∩ E)), and S is the smallest square concentric with Q0 that

contains R0, we set RQ = (S, φ(S ∩ E)). An Ahlfors regular curve is a curve Γ

such that H1(Γ∩B(x, r)) ≤ Cr for all x ∈ Γ, r > 0, and some fixed C > 0. We

say that Γ is a chord arc curve if it is a bilipschitz image of an interval in R. If

the bilipschitz constant of the map is L, we say that Γ is an L-chord arc curve.

2.3 The corona decomposition

Theorem 6 will be proved by means of a corona type decomposition for σ similar

to the one in [To2]. In Lemma 7 below, where we prove the existence of this

decomposition, we will introduce a family Top(E) of 4-dyadic squares (the top

squares) satisfying some precise properties. Given any square Q ∈ Top(E), we

denote by Stop(Q) the subfamily of the squares P ∈ Top(E) satisfying

(a) P ∩ 3Q 6= ∅,

(b) `(P ) ≤ 1
8`(Q),

(c) P is maximal, in the sense that there doesn’t exist another square P ′ ∈
Top(E) satisfying (a) and (b) which contains P .

We also denote by Z(σ) the set of points x ∈ C such that there does not exist a

sequence of (70, 5000)-doubling squares {Qn}n centered at x with `(Qn) → 0 as

n→∞, so that moreover `(Qn) = 2−kn for some kn ∈ Z. We have σ(Z(σ)) = 0
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(see [To2, Remark 2.1]). The set of good points for Q is defined as

G(Q) := 3Q ∩ supp(σ) \
[
Z(σ) ∪

⋃

P∈Stop(Q)

P
]
.

Lemma 7 (The corona decomposition). Let σ be a Borel measure supported

on E ⊂ C such that σ(B(x, r)) ≤ C0r for all x ∈ C, r > 0 and c2(σ) < ∞.

There exists a family Top(E) of 4-dyadic (16, 5000)-doubling squares (called top

squares) which satisfy the packing condition
∑

Q∈Top(E)

θσ(Q)2σ(Q) ≤ C
(
σ(E) + c2(σ)

)
, (9)

and such that for each square Q ∈ Top(E) there is a family of C1-chord arc

curves Γi
Q, i = 1, . . . , N0, such that if we set ΓQ =

⋃N0
i=1 Γi

Q, we have

(a) G(Q) ⊂ ΓQ ∩ E.

(b) For each P ∈ Stop(Q) there exists some square P̃ containing P such that

δσ(P, P̃ ) ≤ C2θσ(Q) and P̃ ∩ ΓQ ∩ E 6= ∅.

(c) If P is a square with `(P ) ≤ `(Q) such that either P ∩G(Q) 6= ∅ or there

is another square P ′ ∈ Stop(Q) such that P ∩ P ′ 6= ∅ and `(P ′) ≤ `(P ),

then σ(P ) ≤ C3 θσ(Q) `(P ).

Moreover, Top(E) contains some 4-dyadic square R0 such that E ⊂ R0. The

constants C1, C2, C3, N0 are absolute.

Notice that the chord arc constant of the curves Γi
Q in the lemma is uniformly

bounded above by C1.

Proof. The proof of this lemma is very similar to the one of Main Lemma 3.1

in [To2], and so we will only describe in detail the required modifications for

the proof. Notice that, in Lemma 7, ΓQ is made up of a finite union of chord

arc curves, while in [To2, Main Lemma 3.1] ΓQ is an Ahlfors regular curve. On

the other hand, in the statement (b) above we ask P̃ ∩ ΓQ ∩ E 6= ∅, while in

(b) of Main Lemma 3.1 in [To2] one asks only P̃ ∩ ΓQ 6= ∅. These are the only

differences between both lemmas.

First we will explain the arguments to show that ΓQ is made up of a finite

number of chord arc curves. First we need some notation. Given a set K ⊂ C
and a square Q, let VQ be an infinite strip (or line in the degenerate case) of

smallest possible width which contains K ∩3Q, and let w(VQ) denote the width

of VQ. Denote

βK(Q) =
w(VQ)
`(Q)

.
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Recall the following version of Jones’ traveling salesman theorem [Jo]:

Theorem 8 (P. Jones). A set K ⊂ C is contained in an Ahlfors regular curve

if and only if there exists some constant C4 such that for every dyadic square Q

∑

P∈D,P⊂Q

βK(P )2`(P ) ≤ C4`(Q).

The regularity constant of the curve depends on C4.

Moreover, in [Jo] the author claims that there exists some constant η > 0

small enough such that if βK(Q) ≤ η for every square Q ∈ D, then K is

contained in quasicircle. So we have

Theorem 9. There exists some absolute constant η > 0 such that if, for every

dyadic square Q, K ⊂ C satisfies

∑

P∈D,P⊂Q

βK(P )2`(P ) ≤ η`(Q),

then K is contained in a chord arc curve.

Although the preceding result is not proved in [Jo], it follows from easy modi-

fications of the author’s arguments (we suggest the reader to look also at [GM,

Chapter 10, Theorem 2.3]).

Given R ∈ Top(E), in [To2] the existence of the curve ΓR follows from an ap-

plication of Theorem 8. To this end, in [To2, Lemma 4.5] one constructs a set

K which contains G(R) and which, in a sense, approximates supp(σ) on the

squares P ∈ Stop(R). Then one proves in [To2, Subsection 4.4] that for any

square Q with `(Q) ≤ C5`(R) (where C5 < 1 is some small positive constant),

∑

P∈D,P⊂Q

βK(P )2`(P ) ≤ Cθσ(R)−3

∫∫∫

(x,y,z)∈(3Q)3∩R`

c(x, y, z)2dσ(x)dσ(y)dσ(z).

(10)

See p. 1266 of [To2] for the precise definition of R`. For the reader’s convenience,

let us say that the triple integral on the right hand side is some truncated version

of the curvature c2(σ|3Q). Moreover, from the construction of the stopping

squares, it turns out that

Cθσ(R)−3

∫∫∫

(x,y,z)∈(3Q)3∩R`

c(x, y, z)2dσ(x)dσ(y)dσ(z) ≤ C6`(Q). (11)

¿From (10), (11), and Theorem 8 one infers the existence of the regular curve

ΓQ.

However, a careful examination of the proof of Main Lemma 3.1 in [To2] shows

that the constant C6 in (11) can be taken so that C6 ≤ η (in fact, as small as
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we want). To this end, one has to take the parameter ε0 small enough in the

construction of the high curvature squares (see p. 1252 of [To2]). We leave the

details for the reader. Then Theorem 9 can be applied for the squares Q with

Q∩3R 6= ∅ such that with `(Q) ≤ C5`(R). As a consequence, one deduces that

K is contained in a finite number N0 of chord arc curves (we only have to cover

3R by a finite number of squares with side length C5`(R) and then we apply

Theorem 9).

On the other hand, it is easy to check that the curve ΓQ constructed in the

proof of Main Lemma 3.1 satisfies P̃ ∩ ΓQ ∩ E 6= ∅, as required above in (b).

Of course, the same happens with the “new” curves ΓQ described above since

the method of construction has not changed. This is due to the fact that the

set K obtained in [To2, Lemma 4.5] is contained in supp(µ). This is not stated

in [To2, Lemma 4.5], but it is easily seen.

Remark. It is easy to check that one can always assume P̃ ⊂ 16Q in the

statement (b) of Lemma 7.

2.4 The curvature of φ#σ

In Lemma 7 we have shown how to construct a corona type decomposition for

a measure σ with linear growth and finite curvature. We will see below that

φ sends this corona type decomposition into another corona decomposition in

terms of φ-squares, and we will prove that that the existence of such a decom-

position implies that the curvature is finite. These will be the basic ingredients

for the proof of Theorem 6.

First we introduce some notation. Given a family Top(F ) of 4-dyadic φ-squares

and a fixed Q ∈ Top(F ), we denote by Stop(Q) the subfamily of φ-squares

which satisfy the properties (a), (b), (c) stated at the beginning of Subsection

2.3 (with squares replaced by φ-squares). The set G(Q) is also defined as in

Subsection 2.3, with φ-squares instead of squares.

Lemma 10. Let τ be a Borel measure supported on a compact set F ⊂ C.

Suppose that τ(B(x, r)) ≤ C0r for all x ∈ C, r > 0. Let Top(F ) be a family of

4-dyadic 16-doubling φ-squares which contains some 4-dyadic φ-square R0 such

that F = R0, and such that for each Q ∈ Top(F ) there exists a C7-AD regular

curve ΓQ satisfying:

(a) τ -almost every point in G(Q) belongs to ΓQ.
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(b) For each P ∈ Stop(Q) there exists some φ-square P̃ containing P such

that δτ (P, P̃ ) ≤ Cθτ (Q) and P̃ ∩ ΓQ 6= ∅.

(c) If P is a φ-square with `(P ) ≤ `(Q) such that either P∩G(Q) 6= ∅ or there

is another φ-square P ′ ∈ Stop(Q) such that P ∩P ′ 6= ∅ and `(P ′) ≤ `(P ),

then τ(P ) ≤ C θτ (Q) `(P ).

Then,

c2(τ) ≤ C
∑

Q∈Top(F )

θτ (Q)2τ(Q).

The proof of this lemma is almost the same as the one of [To2, Main Lemma

8.1], and so we omit the details.

In order to show that φ transforms a corona type decomposition like the one in

Lemma 7 into another like the one of the preceding lemma we need the following

result of MacManus [MM]:

Theorem 11. Any M -bilipschitz map of a subset of a line or a circle into the

plane has an extension to a C(M)-bilipschitz map from the plane onto itself.

We are ready to prove Theorem 6 now:

Proof of Theorem 6. We consider the measure σ and its corona type decom-

position given by Lemma 7. It is straightforward to check that τ := φ#σ has

linear growth. We take the family Top(F ) = φ(Top(E)), and for Q ∈ Top(F )

with Q = (Q0, φ(Q0 ∩ E)), we define Stop(Q) = φ(Stop(Q0)).

To construct a regular curve ΓQ such as the one required in Lemma 10, we con-

sider the union of chord arc curves ΓQ0 =
⋃N0

i=1 Γi
Q0

of Lemma 7. Notice that

we cannot set ΓQ = φ(ΓQ0) because φ is not defined on the whole set ΓQ0 . By

MacManus’ theorem we can solve this problem easily. For each i = 1, . . . , N0,

let ρi : R ⊃ I → Γi
Q0

be a bilipschitz parametrization of the chord arc curve

Γi
Q0

. Consider the subset Γi
Q0
∩ E and the bilipschitz map φ ◦ ρi, defined on

ρ−1
i (Γi

Q0
∩E) ⊂ R. By Theorem 11, φ◦ρi has a bilipschitz extension fi onto the

whole complex plane. We consider the chord arc curve Γi := fi(R), and we set

ΓQ :=
⋃N0

i=1 Γi (and we add a finite number of segments if necessary to ensure

that that ΓQ is a regular curve).

We have to show that the assumptions of Lemma 10 hold for the family Top(F ),

their corresponding stopping squares, and the curves ΓQ, Q ∈ Top(F ). In-

deed, (a) and (c) are the translation of the corresponding statements (a) and

(c) of Lemma 7. On the other hand, (b) is a consequence of the fact that if

12



P0 ∈ Stop(Q0) for some Q0 ∈ Top(E), and P̃0 ⊂ 16Q0 (recall Remark 2.3), and

moreover we have

δσ(P0, P̃0) ≤ C2θσ(Q0),

then P = (P0, φ(P0 ∩ E)) and P̃ = (P̃0, φ(P̃0 ∩ E)) satisfy

δτ (P, P̃ ) . θτ (Q). (12)

To prove this estimate, recall that

δτ (P, P̃ ) :=
∫
ePP \2P

1
|y − zP | dτ(y),

where zP is some fixed point of P and P̃P is the smallest φ-square concentric

with P that contains P̃ . Then, if we set zP0 = φ−1(zP ), we have

δτ (P, P̃ ) =
∫

( eP0)P0\2P0

1
|φ(y)− φ(zP0)|

dσ(y) '
∫

( eP0)P0\2P0

1
|y − zP0 |

dσ(y).

Since zP0 ∈ P0, from the property (c) of Lemma 7, it follows easily that
∫

( eP0)P0\2P0

1
|y − zP0 |

dσ(y) ≤
∫

( eP0)P0\2P0

1
|y − xP0 |

dσ(y) + Cθσ(Q0)

= δ(P0, P̃0) + Cθσ(Q0) ≤ Cθσ(Q0) ' θτ (Q).

(recall that xP0 is the center of P0, which may not coincide with zP0), and so

(12) holds.

Thus from Lemmas 10 and 7 we infer that

c2(τ) . C
∑

Q∈Top(F )

θτ (Q)2τ(Q) '
∑

Q0∈Top(E)

θσ(Q0)2σ(Q0) . σ(E) + c2(σ).

3 Proof of Corollary 4

This is an immediate consequence of Theorem 3. Let F ⊂ E ∩ Ω be compact.

Obviously, γ(F ) = 0. Cover F by a finite number of closed balls Bi, 1 ≤ i ≤ N ,

of diameter δ/2. Since φ : F ∩Bi → φ(F ∩Bi) is bilipschitz, we have

γ(φ(F ∩Bi)) ' γ(F ∩Bi) = 0

for all i. This implies that γ(φ(F )) = 0 (this is a consequence of the semiaddi-

tivity of γ, but it can be proven by much simpler arguments). Since this holds

for any compact set φ(F ) ⊂ φ(E ∩ Ω), we have γ(φ(E ∩ Ω)) = 0. ¤

13



4 Proof of Theorem 1

In all this section, µ is a compactly supported Beltrami coefficient belonging

to the Sobolev space W 1,2(C), and φ : C → C is a µ-quasiconformal mapping.

There is no restriction if we normalize φ in such a way that φ(z)− z = O(1/|z|)
as |z| → ∞. We can assume also that supp(µ) ⊂ D.

We start by giving some auxiliary results. The first one gives some information

on the distortion of Riesz capacities under µ-quasiconformal mappings. Recall

that if E is any compact set on the plane, the (1, p)-Riesz capacity of E is defined

as

C1,p(E) = inf {‖Dψ‖p}
where the infimum is taken over all compactly supported ψ ∈ C∞(C) with

ψ ≥ χE . One obtains the same quantity if we simply assume ψ ∈W 1,p(C). For

more details about Riesz capacities, see [AH], for example.

Lemma 12. Let µ ∈ W 1,2 be a compactly supported Beltrami coefficient, and

let φ : C→ C be a µ-quasiconformal mapping. Then,

C1,q(φ(E))
1
q . C1,p(E)

1
p

for any compact set E ⊂ D, and any 1 < q < p < 2.

Proof. It is not hard to see that if ψ is a W 1,p function, continuous and com-

pactly supported inside of D, and ψ ≥ 1 on E, then ψ ◦ φ−1 is a continuous,

compactly supported function of class W 1,q, whenever q < p. Indeed,

(∫
|D(ψ ◦ φ−1)|q

) 1
q

≤
(∫

|Dψ|p
) 1

p

(∫

D
J(·, φ)

1− q
2

1− q
p

) 1
q− 1

p

and here we must remark that the last integral converges since q < p < 2 and

µ ∈W 1,2. Therefore,

C1,q(φ(E))
1
q ≤

(∫
|Dψ|p

) 1
p

(∫

D
J(·, φ)

1− q
2

1− q
p

) 1
q− 1

p

Thus,

C1,q(φ(E))
1
q ≤ C1,p(E)

1
p

(∫

D
J(·, φ)

1− q
2

1− q
p

) 1
q− 1

p

and the result follows.

The following result establishes that the means of the Jacobian determinant

of a quasiconformal mapping behave precisely as an incremental quotient.
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Lemma 13. Let φ : C → C be a K-quasiconformal mapping. Let z, w ∈ C be

such that z 6= w, and D = D(z, |z − w|). Then,

|φ(z)− φ(w)|
|z − w| '

(
1
|D|

∫

D

J(z, φ) dA(z)
) 1

2

with constants that depend only on K.

Proof. Let r = |w − z|. Then,

|φ(w)− φ(z)| ≤ max
|ζ−z|=r

|φ(ζ)− φ(z)| ≤ CK min
|ζ−z|=r

|φ(ζ)− φ(z)|

≤ CK

( |φ(D(z, r))|
π

) 1
2

= CK |z − w|
(

1
|D(z, r)|

∫

D(z,r)

J(ζ, φ) dA(ζ)

) 1
2

The converse inequality can be obtained analogously.

Proof of Theorem 1. Since µ ∈ W 1,2(C) is compactly supported, we know

(see for instance [CFMOZ, Proposition 3]) that φ ∈W 2,p
loc for every p < 2. Thus,

writing the Jacobian determinant as J(·, φ) = |∂φ|2 − |∂φ|2, we get J(·, φ) ∈
W 1,p

loc for every p < 2, and in particular J(·, φ) admits a C1,p-quasicontinuous

representative, for each p < 2. Moreover, modulo a set of small C1,p-capacity,

every point is a Lebesgue point for J(·, φ) (for more details see [AH, Chapter

6]). Then, given ε > 0 we can find an open set U ⊂ D such that:

• C1,p(U) < ε.

• J(·, φ) is continuous on D \ U .

• lim
r→0

1
|D(z, r)|

∫

D(z,r)

J(w, φ) dA(w) = J(z, φ) uniformly on z ∈ D \ U .

As a consequence of the third point, together with Lemma 13, we can find

δ = δ(ε) > 0 such that whenever z, w ∈ D \ U satisfy |z − w| < δ, we have

J(z, φ)
1
2 ' |φ(w)− φ(z)|

|w − z|
with constants that depend on K and ε. At this point, we could feel tempted to

say that φ is locally bilipschitz on D \ U , but this may fail because J(·, φ) may

vanish at some points on the boundary of D \U . To solve this, for each integer

n ∈ N we set

Fn =
{
z ∈ D \ U :

1
n
< J(z, φ) < n

}
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Denote by Z the set of points z ∈ D \ U such that either φ is not differentiable

at z, or φ−1 is not differentiable at φ(z). Then, it is straightforward to show

that

D \ U = Z ∪
∞⋃

n=1

Fn

Since J(·, φ) is continuous on D\U , Fn is open in the topology of D\U , so that

(D \ U) \ Fn is closed in the same topology. Therefore, since D \ U is closed as

a subset of C, also (D \ U) \ Fn is closed. Thus, (D \ U) \ Fn is a decreasing

sequence of compact sets and then we have

lim
n→∞

C1,p

(
(D \ U) \ Fn

)
= C1,p

( ∞⋂
n=1

(D \ U) \ Fn

)

= C1,p

(
(D \ U) \

∞⋃
n=1

Fn

)

≤ C1,p(Z)

But both φ and φ−1 are differentiable C1,p-almost everywhere, for any p < 2,

so that dim(Z) = 0 and therefore the above limit also vanishes, that is,

lim
n→∞

C1,p

(
(D \ U) \ Fn

)
= 0

Now assume that E ⊂ D is a compact set with γ(E) = 0. We can split E into

several small pieces. First of all, we consider E ∩ U . By Lemma 12, and since

1 < q < 2, one easily shows that

γ(φ(E ∩ U)) . C1,q(φ(E ∩ U))
1
q . C1,p(E ∩ U)

1
p ≤ C1,p(U)

1
p < ε

1
p

with constants that may depend on φ, but not on ε. Secondly, since φ does not

distort Hausdorff dimension,

dim(φ(E ∩ Z)) = dim(E ∩ Z) = 0

For the remaining part, it follows from Lemma 13 that φ is locally bilipschitz

on every set Fn. In fact, we can split Fn into a finite union of subsets Fn,k

with diameter small enough so that φ is bilipschitz on Fn,k for each k. Thus,

applying Corollary 4 we get

γ(φ(E ∩ Fn)) = 0

because γ(E ∩ Fn) ≤ γ(E) = 0. Summarizing, we get for any n ∈ N

γ(φ(E ∩ ((D \ U) \ Fn))) ≤ C1,q(φ(E ∩ ((D \ U) \ Fn)))
1
q

. C1,p(E ∩ ((D \ U) \ Fn))
1
p

≤ C1,p((D \ U) \ Fn)
1
p
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Therefore, by the semiadditivity of analytic capacity [To2],

γ(φ(E)) . γ(φ(E ∩ U)) + γ(φ(E ∩ (D \ U)))

. γ(φ(E ∩ U)) + γ(φ(E ∩ Z)) + γ(φ(E ∩ Fn)) + γ(φ(E ∩ ((D \ U) \ Fn)))

. ε
1
p + 0 + 0 + C1,p(E ∩ ((D \ U) \ Fn))

1
p

for each n ∈ N. In the right hand side, the last term converges to 0 as n→∞.

Thus, γ(φ(E)) can be made as small as we wish.
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