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Abstract. We establish a sharp modulus of continuity for those
planar quasiregular mappings defined in a domain with a cone con-
dition that admit an extension to a mapping of locally exponen-
tially integrable distortion.

1. Introduction

In this paper, we consider planar mappings f : R2 → R2 such that
f ∈ W 1,1

loc (R2; R2) with |Df(x)|2 ≤ K(x)Jf (x) a.e., where K(x) ≥
1, Jf (x) is locally integrable and exp(λK) is locally integrable for
some λ > 0. We call such an f a mapping of locally exponentially
integrable distortion. These mappings are known to be continuous and
some modulus of continuity results were established in [2], [7], [10], [5]
and [8]. Our results deal with the mappings that are additionally as-
sumed to be quasiregular in some domain Ω. Recall that a mapping
f : Ω → f(Ω) ⊂ R2 is quasiregular if f ∈ W 1,1

loc (Ω; R2), Jf(x) is locally
integrable and in the distortion inequality above the function K(x) can
be taken bounded, that is 1 ≤ K(x) ≤ K for some K, almost every-
where in Ω. If in addition we assume f to be a homeomorphism, we
say that f is K–quasiconformal. The main result of the paper can be
stated as follows (see the next section for the definitions).

Theorem 1. Let Ω be a simply connected bounded domain, satisfying

a δ–cone condition, and suppose f : R2 → R2 is a mapping of finite

distortion such that exp(λK(x)) is locally integrable for some λ > 0.
If the restriction of f to Ω is quasiregular, then there exist positive

constants Ĉ and C̃ such that

(1) |f(x) − f(y)| ≤
Ĉ

log
λπ

2(π−arcsin δ) C̃
|x−y|

,

whenever x, y ∈ Ω. On the other hand, for a given s > 0 there exists a

bounded domain Ω0, satisfying a δ0–cone condition, and a mapping f0,

quasiconformal in Ω0 and having locally exponentionally integrable dis-

tortion for all µ < λ0 = 2(π−arcsin δ0)
sπ

, such that the modulus continuity
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estimate (1) fails for f0 with the logarithm to the power 1
s

+ ε for any

given ε > 0.

For the unit disk B = B(0, 1) we have the following consequence.

Corollary 1. Suppose f : B → R2 is a quasiregular mapping of the

unit disk B. If f has has an extension to a mapping of finite locally

exponentially integrable distortion for some λ > 0, then there exist

positive constants Ĉ and C̃ such that

(2) |f(x) − f(y)| ≤
Ĉ

logλ C̃
|x−y|

,

whenever x, y ∈ B.

This result improves an estimate in [8]. It is a counterpart for the
result in [1], stating that a conformal mapping f in the unit disk with a
K–quasiconformal extension is Hölder continuous in the unit disk with
the sharp exponent 1− k, where k = (K− 1)/(K + 1), which is better
than 1/K given by a well-known result for quasiconformal mappings. In
our case, for a general mapping of exponentially integrable distortion,
the exponent of the logarithm in the estimate (2) would be λ/2 ([10]).

In the last section of this paper we make some comments on the case
when the domain Ω in question is a quasidisk.

The author wishes to express her thanks to her advisor Pekka Koskela
for suggesting this problem and for many helpful discussions.

2. Preliminaries

Let Ω ⊂ R2 be a domain, i.e. a connected and open subset of R2.
We say that a mapping f : Ω → f(Ω) ⊂ R2 has finite distortion if the
following conditions are satisfied:

1. f ∈W 1,1
loc (Ω; R2).

2. The Jacobian determinant Jf(x) of f is locally integrable.
3. |Df(x)|2 ≤ K(x)Jf(x) a.e. x ∈ Ω

for some measurable function K(x) ≥ 1 which is finite almost every-
where. The function K(x) is referred to as a distortion (function)
of f and the phrase exponentially integrable distortion means that
exp(λK(x)) ∈ L1

loc(Ω) for some λ > 0.
Above, Df(x) denotes the differential matrix of f at the point x

(which for f ∈ W 1,1
loc exists a.e.) and Jf(x) := detDf(x) is the Jaco-

bian. The norm of Df(x) is defined as

|Df(x)| := max{|Df(x)e| : e ∈ R
2, |e| = 1}.

We say that a domain Ω satisfies a δ–cone condition, if there exists
such a constant b > 0 that for any x ∈ ∂Ω we can take a line segment
]x, y] ⊂ Ω of the length l([x, y]) ≥ b such that for any z ∈]x, y] we have
dist(z, ∂Ω) ≥ δl([x, z]).
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We call a curve in the extended plane a quasicircle if it is the image of
a circle under a quasiconformal mapping of the plane. If the mapping
can be taken K–quasiconformal, the curve is called a K–quasicircle. A
quasidisk is a domain, bounded by a quasicircle.

Let us define the modulus of a path family (see [11]). If Γ is a path
family in Ω, then we set

(3)

mod(Γ,Ω) = inf
{

∫

Ω

ρ2(x) dx : ρ : R
2 → [0,∞[ is a Borel function

s.t.

∫

γ

ρ ds ≥ 1 for every γ ∈ Γ
}

.

Finally, we will need the following integral-type isoperimetric in-
equality

Lemma 1. Let f : Ω → R2 be a homeomorphism of class W 1,1
loc (Ω; R2).

Then for each B(x0, R) ⊂⊂ Ω the inequality

(4) −

∫

B(x0,r)

Jf(x)dx ≤

(

−

∫

∂B(x0,r)

|Df(x)|ds

)2

holds for almost every 0 < r < R.

Proof. First, as f is homeomorphism, we have the following inequality
(see [6], Theorem 6.3.2)

(5)

∫

B(x0,r)

Jf(x)dx ≤ |f(B(x0, r))|.

Next, we use the usual isoperimetric inequality (see [3], 3.2.43 and
3.2.44) for such r that f is absolutely continuous on ∂B(x0, r) (this is
true for a. e. 0 < r < R):

(6) |f(B(x0, r))| ≤
(H1(∂fB(x0, r)))

2

4π
=

(H1(f(∂B(x0, r))))
2

4π

≤
1

4π

(

∫

∂B(x0,r)

|Df(x)|ds

)2

.

Finally, the combination of (5) and (6) gives us the required inequality.
�

3. Homeomorphic case

We first establish the first part of Theorem 1 and Corollary 1 for the
homeomorphic case. In the next section, it will be shown how to handle
the non-homeomorphic case. First, we record the following auxiliary
result (see [7], Lemma 4.2 and its proof).
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Lemma 2. Let f : G → R2, where G is some domain, be a mapping

with finite distortion whose distortion function satisfies

(7) I =

∫

G

expλK(x) dx <∞.

If B = B(x0, r2) ⊂ G, then

(8) |f(x) − f(y)|2
r2/2
∫

r1

λdt

t log(I/πt2)
≤ Cλ,I

∫

B

Jf (x)dx,

whenever x, y ∈ B(x0, r1) ⊂ B(x0, r2).

Let us take a large enough ball B = B(x0, R0), containing our fixed
domain Ω as its subset and such that dist(Ω, ∂B) ≥ R for some fixed
R. Denote

I =

∫

B

expλK(x) dx.

In order to prove the theorem for f homeomorphic it suffices to
establish the following two lemmas.

Lemma 3. Under the hypotheses of Theorem 1 we have

(9) |f(x) − f(y)| ≤
C1(I, λ, δ,K, R, f)(

∫

B
Jf(x)dx)

1/2

log
πλ

2(π−arcsin δ) C2(I,λ,δ,K,R)
|x−y|

,

for all x, y ∈ ∂Ω, provided f is a homeomorphism.

The proof of Lemma 3 actually shows that the estimate (9) holds
also when Ω is unbounded for those x, y ∈ ∂Ω ∩ B for which

min{dist(x, ∂B), dist(y, ∂B)} ≥ R.

In addition, we do not have to require the distortion function to be
locally exponentially integrable in the entire plane; it is enough to
consider only the set {x ∈ B : dist(x, ∂Ω) < R + ε} for some ε > 0.

Lemma 4. Let Ω be a simply connected bounded domain and suppose

that f ∈ C(Ω) is quasiconformal in Ω. If for some positive constants

C1, C2 and γ the estimate

(10) |f(x) − f(y)| ≤
C1

logγ C2

|x−y|
,

holds for all x, y ∈ ∂Ω, then there exist such constants Ĉ and C̃ that

(11) |f(x) − f(y)| ≤
Ĉ

logγ C̃
|x−y|

holds for all x, y ∈ Ω.
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Proof of Lemma 3. Let us take such x, y ∈ ∂Ω that |x−y| < R2

8
(π
I
)1/2 ≤

1
16

( I
π
)1/2 and apply Lemma 2 for x0 = x, r1 = 2|x − y| and r2 =

2(I/π)
1
4 r

1
2
1 . The choice of x and y guarantees that 2r1 < r2 ≤ R. We

have

(12) |f(x) − f(y)|2 ≤ Cλ,I

∫

B(x,2
√

2( I
π

)
1
4 |x−y|

1
2 )

Jf(x)dx.

Denote Br = B(x, r). Using Lemma 1 together with the Hölder in-
equality and the distortion inequality, we obtain

(13) −

∫

Br

Jf(x)dx ≤ −

∫

∂Br

K(x)ds−

∫

∂Br

Jf (x)ds.

This yields the following differential-type inequality:

(14)
d

dr

(

log
(

∫

Br

Jf (x) dx
))

≥
2

r−
∫

∂Br
K(x)ds

.

Let us choose integers iR and ir so that logR − 1 < iR ≤ logR and
log r2 ≤ ir2 < log r2 + 1. We have

(15)

R
∫

r2

dr

r−
∫

∂Br
K(x)ds

≥

iR−1
∑

i=ir2

ei+1
∫

ei

dr

r−
∫

∂Br
K(x)ds

.

Each of the terms on the right-hand side can be estimated in the fol-
lowing way. Fix i ∈ {ir2, ir2 + 1, . . . , iR − 1}. The change of variables
r = et leads to

(16)

ei+1
∫

ei

dr

r−
∫

∂Br
K(x)ds

=

i+1
∫

i

dt

−
∫

∂Bet
K(x)ds

.

Next, the Jensen inequality yields

(17)

i+1
∫

i

dt

−
∫

∂Bet
K(x)ds

≥
[

i+1
∫

i

−

∫

∂Bet

K(x)dsdt
]−1

.
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Using the cone condition for Ω and the fact, that f is quasiconformal
in Ω, we obtain

(18)

i+1
∫

i

−

∫

∂Bet

K(x)dsdt =

i+1
∫

i

1

2πet

∫

∂Bet

K(x)dsdt

≤

i+1
∫

i

1

2πet

(

2πet−

∫

∂Bet∩Ω

K(x)ds

+ 2(π − arcsin δ)et−

∫

∂Bet∩(R2\Ω)

K(x)ds
)

dt

≤
π − arcsin δ

π

i+1
∫

i

−

∫

∂Bet∩(R2\Ω)

K(x)dsdt+ K.

As the function τ → exp λτ is convex, we may use the Jensen inequality
in order to estimate the first term. Applying it twice and making a
change of variables, we obtain

(19)

i+1
∫

i

−

∫

∂Bet∩(R2\Ω)

K(x)dsdt

≤
1

λ
log

i+1
∫

i

−

∫

∂Bet∩(R2\Ω)

expλK(x)dsdt

=
1

λ
log

ei+1
∫

ei

1

r
−

∫

∂Br∩(R2\Ω)

exp λK(x)dsdt ≤
1

λ
log

I

2πe2i
.

Finally, combining (15), (16), (17), (18) and (19), we arrive at

(20)

R
∫

r2

dr

r−
∫

∂Br
K(x)ds

≥

iR−1
∑

i=ir2

[π − arcsin δ

πλ
log

CI,λ,δ,K
e2i

]−1

≥

iR−2
∫

ir2−1

[π − arcsin δ

πλ
log

CI,λ,δ,K
e2r

]−1

dr

≥
πλ

π − arcsin δ

∫ R/e3

r2

dt

t log
CI,λ,δ,K

t2

= log

(

log
CI,λ,δ,K

r22

log
e6CI,λ,δ,K

R2

)
πλ

2(π−arcsin δ)

.
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Together with (14) this gives the estimate

(21)

∫

Br2

Jf(x)dx ≤

(

log
e6CI,λ,δ,K

R2

log
CI,λ,δ,K

r22

)
πλ

π−arcsin δ ∫

BR

Jf(x)dx.

Combining it with (12) we obtain the desired estimate for such x, y ∈ Ω

that |x − y| < R2

8
(π
I
)1/2 ≤ 1

16
( I
π
)1/2. Finally, as Ω is bounded and f is

continuous in Ω, the estimate (9) actually holds for all x, y ∈ Ω. �

Proof of Lemma 4. Given a point x ∈ Ω, let us put

Bx = B(x,
1

2
dist(x, ∂Ω))

and Gx = 5Bx ∩ ∂Ω. From the basic modulus estimates and Lemma 2
from [4] it follows that

(22)
|f(x) − f(y)|

diam f(Bx)
≤ C

( |x− y|

diamBx

)1/K

,

whenever y ∈ Bx (here K is the quasiconformality coefficient of f in
Ω), and

(23) diam f(Bx) ≍ dist(f(Bx), ∂f(Ω)) = dist(f(Bx), f(∂Ω)).

Let us denote the path family connecting Bx and Gx in Ω by Γ.
As diamBx ≍ diamGx, Ω is simply connected and 2 dist(Bx, Gx) =
diamBx, the modulus mod(Γ,Ω) has a positive lower bound. Thus,
the modulus mod(f(Γ), f(Ω)) has also a positive lower bound. This
and (23) imply

(24) dist(f(Bx), f(Gx)) ≤ C diam f(Bx)

and

(25) diam f(Bx) ≤ C dist(f(Bx), f(Gx)) ≤ C diam f(Gx),

for some constant C > 0; otherwise mod(f(Γ), f(Ω)) would be arbi-
trarily small.

Let us first consider such points x, y ∈ Ω that either x ∈ By or
y ∈ Bx holds. Because of the symmetry, we may assume that y ∈ Bx.
Combining (22) and (25) and using the estimate on the boundary, we
obtain

(26) |f(x) − f(y)| ≤ Ĉ1

( |x− y|

diamBx

)1/K

diam f(Gx)

≤ Ĉ2

( |x− y|

diamBx

)1/K

logγ
C3

diamBx
≤ Ĉ2 logγ

C3

|x− y|
.

The last step follows from the fact that |x − y| ≤ diamBx < R for
some big R and the monotonicity of the function t logγK C3

t
for t < R,

provided the constant C2 in the a priori estimate (10) is big enough
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(we may always assume it to be as big as we want by changing C1 in a
suitable way).

Let us then consider such points x, y ∈ Ω, that

(27) |x− y| ≥ max
{1

2
dist(x, ∂Ω),

1

2
dist(y, ∂Ω)

}

.

Fix some points x′ ∈ Gx and y′ ∈ Gy. Notice that

(28) |x′ − y′| ≤ |x− x′| + |x− y| + |y − y′| ≤ 11|x− y|.

Next we use the estimate on the boundary for the points x′, y′ ∈ ∂Ω,
obtaining

(29) |f(x′) − f(y′)| ≤ C1 logγ
C2

|x′ − y′|
≤ C1 logγ

C3

|x− y|
,

again by assuming C2 to be sufficiently large. Next, using (24) and
(25), we obtain

(30) |f(x) − f(x′)| ≤ dist(f(x), f(Gx)) + diam f(Gx)

≤ dist(f(Bx), f(Gx)) + diam f(Bx) + diam f(Gx) ≤ C diam f(Gx),

for some constant C > 0. Thus, using the estimate on the boundary
and the fact, that diamGx ≤ 5 diamBx ≤ 10|x− y|, we conclude that

(31) |f(x) − f(x′)| ≤ Ĉ2 logγ
C̃3

|x− y|
.

Finally, this together with the same kind of estimate for |f(y)− f(y′)|
and (29) gives us the desired estimate for |f(x) − f(y)| with the help
of triangle inequality. The statement of the lemma for the remaining
cases, for example when x ∈ ∂Ω and y ∈ Ω, can be obtained in the
same way. �

Finally, let us show that Corollary 1 holds for homeomorphic f .
Given the unit disk B = B(0, 1), let us map it conformally onto the
upper half-plane H with the help of a Möbius transformation ψ having
the point (0, 1) as its pole. The mapping f ◦ψ−1 is quasiconformal in H
and its distortion is locally exponentially integrable in some half-plane
P = {(x1, x2) ∈ R2 : x2 > −h}, where h > 0. Indeed, take h < −y2,
where (y1, y2) ∈ R2 \H is the pole of the Möbius transformation ψ−1.
For each x ∈ P we have

(32)

|D(f◦ψ−1)(x)|2 = |Df(ψ−1(x))Dψ−1(x)|2 ≤ |Df(ψ−1(x))|2|Dψ−1(x)|2

≤ K(ψ−1(x))Jf(ψ
−1(x))Jψ−1(x) = K(ψ−1)Jf◦ψ−1(x).

So, the composition f ◦ ψ−1 has the finite distortion function

Kf◦ψ−1(x) ≤ K(ψ−1(x))
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for x ∈ P . Let us show that it is locally exponentially integrable with
the same λ. Choose a compact set E ⊂ P . Using a change of variables,
we obtain

(33)

∫

E

exp λK(ψ−1(x)) dx =

∫

E

exp λK(ψ−1(x))Jψ−1(x)J−1
ψ−1(x) dx

=

∫

ψ−1(E)

exp λK(y)J−1
ψ−1(ψ(y)) dy =

∫

ψ−1(E)

expλK(y)Jψ(y) dy

≤ sup
ψ−1(E)

Jψ

∫

ψ−1(E)

expλK(y) dy <∞.

As H satisfies the cone condition for δ = 1, we may apply the local
version of the Lemma 3 for the mapping f ◦ ψ−1. In order to do it, we
take a ball B0 = (x0, R0) ⊂ R2 so big that for all x ∈ ∂B ∩ {(x1, x2) ∈
R2 : y < 2/3} we had ψ(x) ∈ B0 and dist(x, ∂B0) > R for a fixed
R < h. So, for x, y ∈ ∂B ∩ {(x1, x2) ∈ R2 : y < 2/3} we obtain

(34) |f(x) − f(y)| = |(f ◦ ψ−1)(ψ(x)) − (f ◦ ψ−1)(ψ(y))|

≤
Ĉ

logλ C̃
|ψ(x)−ψ(y)|

≤
Ĉ

logλ C′

|x−y|
.

Here we used the fact, that |ψ(x)−ψ(y)| ≤ M |x−y| for some constant
M > 0, whenever x, y ∈ R2 \B((0, 1), 1

3
).

Repeating the reasoning for the upper part of the ball B (and taking
the point (0,−1) as a pole), we obtain an estimate of the same kind
for x, y ∈ ∂B ∩ {(x1, x2) ∈ R2 : y > −2/3} and thus for all x and y on
the boundary ∂B. Finally, the claim follows by invoking Lemma 4.

4. Proof of Theorem 1

We will pass from the homeomorphic case to the non-homeomorphic,
using the so-called Stoilow factorization (see, for example, [6], Chap-
ter 11). Let us first note that the given mapping f defined in the
plane and having finite locally exponentially integrable distortion be-
longs to the Orlicz-Sobolev class W 1,Q

loc (C), where Q(t) = t2

log(e+t)
(see,

for example, [6], §11.5). The mapping f satisfies almost everywhere
the equation

(35) ∂f(z) = µf(z)∂f(z),

where ∂ = 1
2
(∂x + i∂y), ∂ = 1

2
(∂x− i∂y) and |µf(z)| ≤

K(z)−1
K(z)+1

. Equation

(35) is called the Beltrami equation. Let us take a ball B, containing
the domain Ω, where the given mapping f is quasiconformal. Consider
the Beltrami equation with the Beltrami coefficient µ = µfχB. By
Theorem 11.8.3 in [6], this equation has a homeomorphic solution h in

the class z+W 1,Q
loc (C) (i.e. |hz|+ |hz−1| ∈ LQ(C)). Next, the mapping

f
∣

∣

B
is a solution of this equation in B, so by Theorem 11.5.1 in [6] it
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can be represented as f
∣

∣

B
= ϕ◦h, where ϕ : h(B) → C is holomorphic.

As a solution of the same Beltrami equation, h satisfies

|Df(z)|2 ≤ K(z)Jh(z)

almost everywhere in B. Using the fact that ϕ is Lipschitz in h(Ω) ⊂⊂
h(B) and the obtained continuity estimate for the mapping h, we easily
get the required inequality for f . The corollary is dealt in the same
way.

We will base the construction of our example, showing the sharpness
of the obtained result, on a mapping constructed in [8] (f2 from the
proof of Theorem 1). Based on what is done in [8], we can state the
following lemma.

Lemma 5. For a given s > 0 there exists a homeomorphic mapping

f of finite distortion which is quasiconformal in the right half-plane

H = {(x1, x2) ∈ R2 : x1 > 0} such that its distortion function K in the

left half-plane satisfies

(36) K(x) ≤ 2s log(2/|x|) + C,

where C > 0 is some constant, for all x ∈ B(0, r) ∩ (R2 \H) for some

r > 0 and is bounded in R2 \B(0, r), and for all positive C1, C2 and ε
there exists such x0 ∈ ∂H that

(37) |f(x) − f(0)| = |f(x)| > C1 log− 1
s
−ε C2

|x|

holds for all x ∈ ∂H, such that |x| < |x0|.

As we can notice

(38) exp(λK(x)) ≤
C

|x|2sλ
,

that is, the distortion of f is locally exponentially integrable for all
λ < 1/s.

Let us then consider the domain Ω = {(R cos θ, R sin θ) ∈ R2 : R ∈
R, −α < θ < 0}, where 0 < α < π is some fixed angle. It satisfies the
cone condition for δ = sin α

2
. This domain can always be cut in such a

way that the remaining domain Ω0 ⊂ Ω is bounded, satisfies the cone
condition for the same δ and its boundary near the origin coincides
with the boundary of the domain Ω. For example, if 0 < α < π

2
, then

Ω0 can be taken in the form Ω0 = Ω ∩B(0, R0) for some R0 > 0.
Denote β = π

2π−α and take the mapping g : R2 \ Ω → R2 defined

by g(R cos θ, R sin θ) = (Rβ sin βθ,−Rβ cos βθ). This mapping maps
the set R2 \ Ω = {(R cos θ, R sin θ) ∈ R2 : R ∈ R, 0 < θ < 2π − α}
conformally onto the right half-plane H = {(x1, x2) ∈ R2 : x1 > 0} and
is extendable to a quasiconformal mapping of the whole plane.

Next, consider the superposition f ◦ g, where f is the mapping from
Lemma 5. It is quasiconformal in Ω and, hence, in Ω0; indeed, in the
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same way as before for x ∈ Ω we calculate

(39) |D(f ◦ g)(x)|2 = |Df(g(x))Dg(x)|2 ≤ KfKgJf◦g(x),

where Kf and Kg denote the quasiconformality coefficients of f and g
respectively. Similarly, we can estimate the distortion outside Ω:

(40) |D(f ◦ g)(x)|2 ≤ K(g(x))Jf◦g(x).

Thus, for the distortion function of f ◦g, denoted by Kf◦g, we have the
estimate

(41) Kf◦g(x) ≤ K(g(x)) ≤ 2s log
2

|g(x)|
+ C = 2s log

2

|x|β
+ C

and

(42) exp(µKf◦g(x)) ≤
C

|x|2sµβ
,

for x ∈ R2 \ Ω0 close to the origin, so it is exponentially integrable

for all µ < 1/sβ = 2(π−arcsin δ)
sπ

= 2π−α
sπ

. Thus, Lemma 3 gives us the
estimate (10) for the boundary points with γ = 1/s − ε for any given
positive ε.

Finally, using Lemma 5, we calculate

(43) |(f ◦ g)(x) − (f ◦ g)(0)| = |f(g(x))| > C1 log− 1
s
−ε C2

|g(x)|

= C1β
− 1

s
−ε log− 1

s
−ε C

1
β

2

|x|

for x, close enough to the origin. This completes the proof of the
theorem.

5. result for quasidisks

Recall that each quasidisk can be mapped onto the exterior of the
unit disk under a conformal mapping, which is extendable to a quasi-
conformal mapping of the entire plane (see, for example, [9], Chapter I,
§6). Thus, let us state the following theorem.

Theorem 2. Let Ω be a bounded quasidisk such that some conformal

mapping ϕ : R2 \ Ω → R2, mapping the exterior of Ω onto the exterior

of the closed unit disk B, has the property Jϕ ∈ Lp(B̂ \ Ω), where B̂
is some ball, containing Ω. Let f : R2 → R2 be a mapping of finite

distortion such that exp(λK(x)) is locally integrable for some λ > 0. If

the restriction of f to the quasidisk Ω is quasiregular, then there exist

positive constants C1 and C2 such that

(44) |f(x) − f(y)| ≤
C1

log
p−1

p
λ C2

|x−y|

,

whenever x, y ∈ Ω.
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Proof. As it was shown before, it is enough to consider the homeomor-
phic case. Denote by ϕ̃ a quasiconformal extension of ϕ to the entire
plane. Let us first note that the superposition f ◦ ϕ̃−1 satisfies the
conditions of the Corollary 1. Indeed, for x ∈ B we have

(45) |D(f ◦ ϕ̃−1)(x)|2 = |Df(ϕ̃−1(x))Dϕ̃−1(x)|2 ≤ KfKϕ̃−1Jf◦ϕ̃−1(x),

that is, the mapping f◦ϕ̃−1 is quasiconformal in B. Let us now consider
the exterior of B. For x ∈ R2 \B we have that

(46) |D(f ◦ ϕ̃−1)(x)|2 ≤ K(ϕ−1(x))Jf◦ϕ−1(x).

So, the composition f ◦ ϕ̃−1 has the finite distortion function

Kf◦ϕ̃−1(x) ≤ K(ϕ−1(x))

for x ∈ R2 \ B. Let us show that it is exponentially integrable in

ϕ(B̂) with some λ1. Indeed, using a change of variables and the Hölder
inequality, we obtain

(47)

∫

ϕ(B̂)

exp λ1Kf◦ϕ̃−1(x) dx ≤

∫

B

expλ1KfKϕ̃−1dx

+

∫

ϕ(B̂)\B
exp λ1K(ϕ−1(x)) dx =

∫

B̂\Ω
exp λ1K(y)Jϕ(y) dy + C

≤
(

∫

B̂\Ω
exp λ1

p

p− 1
K(y) dy

)(p−1)/p(
∫

B̂\Ω
Jpϕ(y) dy

)1/p

+ C <∞,

when λ1 = p−1
p
λ. After applying Corollary 1 we arrive at

(48) |f(x) − f(y)| = |(f ◦ ϕ̃−1)(ϕ̃(x)) − (f ◦ ϕ̃−1)(ϕ̃(y))|

≤
Ĉ

log
p−1

p
λ C̃

|ϕ̃(x)−ϕ̃(y)|

≤
C1

log
p−1

p
λ C2

|x−y|

,

whenever x, y ∈ Ω (here we used the local Hölder continuity of the
quasiconformal mapping ϕ̃ and the boundedness of Ω). �

Let us return to the domain Ω from Section 4. This domain is a
quasidisk. Let us map it conformally onto the upper half-plane by
means of the mapping h2 having the form h2(z) = zβ in terms of
the complex plane. Let us now map the upper half-plane onto the
exterior of the unit disk using the Möbius transformation h1(z) = z+i

z−i
in terms of the complex plane. The pole of this map is the point
a = (0, 1). Its preimage in Ω is b = h−1

2 (a) = (cos(π − α
2
), sin(π −

α
2
)) = (cos π

2β
, sin π

2β
). Let us take the Möbius transformation h3 of the

complex plane, mapping infinity to this point, for example, h3(z) =
(cos π

2β
+i sin π

2β
)z

z+1
. The superposition h = h1 ◦ h2 ◦ h3 has the form h(z) =

zβ+(1+z)β

zβ−(1+z)β . This mapping preserves infinity and maps conformally the

exterior of the bounded domain h−1
3 (Ω) onto the the exterior of the
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unit disk B. The Jacobian determinant of g is p–integrable when p <
2π−α
π−α . Thus, Theorem 2 gives for the mapping f ◦ g near the origin
the continuity estimate (10) with the exponent 1/s − ε for any given
positive ε, which is sharp by Theorem 1.

Remark. The conclusion of Theorem 2 is interesting only when p−1
p
> 1

2
,

i.e., when p > 2. It appears to be unknown if this is always the case;
by Brennan’s conjecture any p < 2 would do even when Ω is not a
quasidisk. One could also modify the proof of Theorem 1 to cover the
case of a ”twisted” cone condition, satisfied by quasidisks. This would
give an exponent strictly better than λ

2
but the dependence from K

would be complicated.
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