MODULUS OF CONTINUITY FOR QUASIREGULAR
MAPPINGS WITH FINITE DISTORTION EXTENSION

ALEKSANDRA ZAPADINSKAYA

ABSTRACT. We establish a sharp modulus of continuity for those
planar quasiregular mappings defined in a domain with a cone con-
dition that admit an extension to a mapping of locally exponen-
tially integrable distortion.

1. INTRODUCTION

In this paper, we consider planar mappings f: R? — R? such that
f € WhHR?%R?) with |Df(z)]? < K(x)Js(z) ae., where K(z) >
1, Jg(x) is locally integrable and exp(AK) is locally integrable for
some A > 0. We call such an f a mapping of locally exponentially
integrable distortion. These mappings are known to be continuous and
some modulus of continuity results were established in [2], [7], [10], [5]
and [8]. Our results deal with the mappings that are additionally as-
sumed to be quasiregular in some domain ). Recall that a mapping
f:Q — f(Q) C R? is quasiregular if f € W,2H(Q;R?), J;(z) is locally
integrable and in the distortion inequality above the function K (z) can
be taken bounded, that is 1 < K(z) < K for some K, almost every-
where in €. If in addition we assume f to be a homeomorphism, we
say that f is K—quasiconformal. The main result of the paper can be

stated as follows (see the next section for the definitions).

Theorem 1. Let 2 be a simply connected bounded domain, satisfying
a d—cone condition, and suppose f: R? — R? is a mapping of finite
distortion such that exp(AK (z)) is locally integrable for some A > 0.
If the restriction of f to Q is quasiregular, then there exist positive
constants C' and C such that

1) (@) - fy)l < ¢

— AT
log 2(m—arcsin §)

[z—y|

whenever x,y € Q. On the other hand, for a given s > 0 there exists a
bounded domain )y, satisfying a dg—cone condition, and a mapping fo,
quasiconformal in Qg and having locally exponentionally integrable dis-
tortion for all ju < Ay = 25=2n%) *gyeh that the modulus continuity
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estimate (1) fails for fy with the logarithm to the power % + ¢ for any
given € > 0.

For the unit disk B = B(0,1) we have the following consequence.

Corollary 1. Suppose f: B — R? is a quasireqular mapping of the
unit disk B. If f has has an extension to a mapping of finite locally
exponentially integrable distortion for some A > 0, then there exist
positive constants C' and C' such that

C
(2) 1f(@) = fW) < ———=—

— )\ C ?
log™ =5
whenever z,y € B.

This result improves an estimate in [8]. It is a counterpart for the
result in [1], stating that a conformal mapping f in the unit disk with a
K-—quasiconformal extension is Holder continuous in the unit disk with
the sharp exponent 1 — k, where k = (K —1)/(K + 1), which is better
than 1/K given by a well-known result for quasiconformal mappings. In
our case, for a general mapping of exponentially integrable distortion,
the exponent of the logarithm in the estimate (2) would be A/2 ([10]).

In the last section of this paper we make some comments on the case
when the domain {2 in question is a quasidisk.

The author wishes to express her thanks to her advisor Pekka Koskela
for suggesting this problem and for many helpful discussions.

2. PRELIMINARIES

Let © C R? be a domain, i.e. a connected and open subset of R2.
We say that a mapping f: Q — f(Q2) C R? has finite distortion if the
following conditions are satisfied:

1. f e WoHO;R?).

2. The Jacobian determinant J¢(x) of f is locally integrable.

3. |Df(x)]* < K(x)Js(x) ae. z €
for some measurable function K (x) > 1 which is finite almost every-
where. The function K(z) is referred to as a distortion (function)
of f and the phrase exponentially integrable distortion means that
exp(AK(z)) € L (Q) for some A > 0.

Above, Df(x) denotes the differential matrix of f at the point x

(which for f € W'! exists a.e.) and Jg(x) := det Df(x) is the Jaco-
bian. The norm of D f(z) is defined as

|Df(z)| := max{|Df(x)e| : e € R, |e| = 1}.

We say that a domain €2 satisfies a d—cone condition, if there exists
such a constant b > 0 that for any x € 02 we can take a line segment
|z, y] € Q of the length I([x, y]) > b such that for any z €]z, y| we have
dist(z,0Q) > 6l([x, z]).
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We call a curve in the extended plane a quasicircle if it is the image of
a circle under a quasiconformal mapping of the plane. If the mapping
can be taken K—quasiconformal, the curve is called a K—quasicircle. A
quasidisk is a domain, bounded by a quasicircle.

Let us define the modulus of a path family (see [11]). If T is a path
family in €2, then we set

(3)
mod(T", Q) = inf { / p*(z)dx : p: R* — [0, 00[ is a Borel function
Q

s.t. /pds > 1 for every v € F}.

v

Finally, we will need the following integral-type isoperimetric in-
equality

Lemma 1. Let f: Q — R? be a homeomorphism of class VVI})’CI(Q; R?).
Then for each B(zg, R) CC Q the inequality

(4) L. st < (]éB(W) \Df(arﬂds)

holds for almost every 0 < r < R.

Proof. First, as f is homeomorphism, we have the following inequality
(see [6], Theorem 6.3.2)

(5) / s < (B )

Next, we use the usual isoperimetric inequality (see [3], 3.2.43 and
3.2.44) for such r that f is absolutely continuous on 0B(z,r) (this is
true for a. e. 0 <r < R):

(H(Of Blao, 1)) _ (H'(J(0B(w0,1))))
(6) 1f(Blag, )| < 220 -

2
1
< ( / . \Df(x)\ds> .

Finally, the combination of (5) and (6) gives us the required inequality.
[

3. HOMEOMORPHIC CASE

We first establish the first part of Theorem 1 and Corollary 1 for the
homeomorphic case. In the next section, it will be shown how to handle
the non-homeomorphic case. First, we record the following auxiliary
result (see [7], Lemma 4.2 and its proof).
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Lemma 2. Let f: G — R2?, where G is some domain, be a mapping
with finite distortion whose distortion function satisfies

(7) I= / exp AK (z) dz < oo.
G
If B = B(xg,r2) C G, then
ro/2

® @ I0P [ gt <O [ S

whenever x,y € B(xg,r1) C B(xg,ra).
Let us take a large enough ball B = B(xg, Ry), containing our fixed

domain € as its subset and such that dist(€2,0B) > R for some fixed
R. Denote

I:/exp)\K(x) dzx.
B

In order to prove the theorem for f homeomorphic it suffices to
establish the following two lemmas.

Lemma 3. Under the hypotheses of Theorem 1 we have

< Ci(I, N0, K, R, f)([5 Iy (z)dz)Y/?

C2(INSK,R) ’
|z—y|

(9) £ (@) = f(y)]

TA
log X=arcsm®)
for all x,y € 02, provided f is a homeomorphism.

The proof of Lemma 3 actually shows that the estimate (9) holds
also when €2 is unbounded for those x,y € 92N B for which

min{dist(x,0B), dist(y,0B)} > R.

In addition, we do not have to require the distortion function to be
locally exponentially integrable in the entire plane; it is enough to
consider only the set {z € B: dist(z,0Q) < R+ ¢} for some € > 0.

Lemma 4. Let Q be a simply connected bounded domain and suppose
that f € C(Q) is quasiconformal in Q. If for some positive constants
C1, Cy and ~y the estimate

Cy
10 — < —FF,
(10) @)~ 1) < o

[z—y|

holds for all x,y € 02, then there exist such constants C and C that

N

(11) @) - fly) < —C
log”

¢
lz—y]

holds for all z,y € Q.
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2 s
Proof of Lemma 3. Let us take such z,y € 09 that [z—y| < £-(2)1/2 <

L(L)Y2 and apply Lemma 2 for zy = z, r = 2|z — y| and ry =

1
2(I/m)irZ. The choice of z and y guarantees that 2r; < ro < R. We
have

I Ny M

Denote B, = B(xz,r). Using Lemma 1 together with the Holder in-
equality and the distortion inequality, we obtain

(13) ][ Jp(x)de < ) K(x)ds]éB J¢(z)ds.

This yields the following differential-type inequality:

(14) d%"(lOg</ Je(x )dw)) TfaB 2

T

Let us choose integers 1z and i, so that logR — 1 < ig < log R and
logre <., <logre + 1. We have

R i+1

(19) /TJCBB

’LRle

Z / TJCBB

i= ZT? et

Each of the terms on the right-hand side can be estimated in the fol-
lowing way. Fix ¢ € {i,,, 4, + 1,...,ig — 1}. The change of variables
r = e’ leads to

eitl i+1

16) / TJ%B / JfaB

Next, the Jensen inequality yields

i+1 i+1

(17) /J%Bt / aBtK( )dsdt]

-1
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Using the cone condition for €2 and the fact, that f is quasiconformal
in €2, we obtain

i+1 i+1

1
1 K(x)dsdt = — K(x)dsdt
(18) / K / st ], K
i+1

1
< / <27ret][ K(x)ds
/ 2met 0B 1N

(2

+ 2(m — arcsin 5)et][

0B :N(R2\Q)
i1

_ ind
< m/][ K(x)dsdt + K.
™ ) JOB,N(R2\Q)

As the function 7 — exp A7 is convex, we may use the Jensen inequality
in order to estimate the first term. Applying it twice and making a
change of variables, we obtain

K(a:)ds) dt

i+1

(19) / ][ K ()dsdt
| JoBn®2\Q)

i+1

/][ exp AK (x)dsdt
OB, N(R2\Q)

7,+1

1 1 1 1
=1 — AK (z)dsdt < —1 -,
)\ Og / r ]([93TO(R2\Q) eXp ('CE) ) — )\ Og 27.(.622

>/|+—‘

Finally, combining (15), (16), (17), (18) and (19), we arrive at

R .
dr Tler Caresing . Opasxd-!
wy [t o mind, G
(20) /rfaB K(z)ds — Z A 08 ea
o T i=ipy
in—2 5
_ arcsi -1
> / [7? arcsin log C’I,sz} dr
A e
iry—1

CI A 5K T
R/e dt log 2(w—arcsin §)
P — ——— =log| —+"— .
- T — arcsm§ / thg CIAEK & 10g BGCI,/\,(S,K

R2
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Together with (14) this gives the estimate

(21) /B g

log $CLix | Faresms
Ji(x)de < | ————— / Ji(x)dzx.
(o) (1g> [ @
Combining it With (12) we obtain the desired estimate for such z,y € Q
that |z — y| < ( )12 < L (£)Y2. Finally, as  is bounded and f is
continuous in Q the estimate (9) actually holds for all z,y € Q. O

T2

Proof of Lemma 4. Given a point x € €2, let us put
1
B, = B(z, 3 dist(z, 09))

and G, = 5B, N 0. From the basic modulus estimates and Lemma 2
from [4] it follows that

£(z) - f(v)] = y| \ UK
22) cuatm—m“(m) :

whenever y € B, (here K is the quasiconformality coefficient of f in
), and

(23)  diam f(B,) = dist(f(B,), 0 (©) = dist(f(B,), (09)).

Let us denote the path family connecting B, and G, in Q by I
As diam B, =< diam G,  is simply connected and 2dist(B,,G,) =
diam B,, the modulus mod(I", ) has a positive lower bound. Thus,
the modulus mod(f(I"), f(€2)) has also a positive lower bound. This
and (23) imply

(24) dist(f(B.), f(G.)) < Cdiam f(B,)
and
(25) diam f(B,) < Cdist(f(B,), f(G,)) < Cdiam f(G,),

for some constant C' > 0; otherwise mod(f(I"), f(€2)) would be arbi-
trarily small.

Let us first consider such points z,y € ) that either z € B, or
y € B, holds. Because of the symmetry, we may assume that y € B,.
Combining (22) and (25) and using the estimate on the boundary, we
obtain

26) 17(0) — £ < 1 (3 )™ diam (G2

5 (e —y| VK 3 Cs
< o )l .
diam B, o8 diam B, |z —y|

The last step follows from the fact that |z — y| < diam B, < R for
some big R and the monotonicity of the function ¢log™® % for t < R,
provided the constant C in the a priori estimate (10) is big enough

< Cylog”
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(we may always assume it to be as big as we want by changing C| in a
suitable way).
Let us then consider such points x,y € €1, that

1 1
(27) |z — y| > max {5 dist(z, 09), 5 dist(y, 0Q) }.
Fix some points 2’ € G, and 3y’ € G,,. Notice that

(28) 7' =y | <o — 2|+ e —y[+ ]y —y| < Lz —yl.
Next we use the estimate on the boundary for the points 2/,1y € 99,
obtaining

(290  |f(@) - f(5)] < Cylog” Crlog? —

/ / S
|2 — /| |z -yl
again by assuming Cy to be sufficiently large. Next, using (24) and
(25), we obtain

(30) [f(x) — f(2')] < dist(f(), f(Gz)) + diam f(G.)
< dist(f(B,), f(Gx)) + diam f(B,) + diam f(G,) < C diam f(G,),

for some constant C' > 0. Thus, using the estimate on the boundary
and the fact, that diam G, < 5diam B, < 10|z — y|, we conclude that

(31 £(&) ~ F)] < Colog? — S

|z =yl
Finally, this together with the same kind of estimate for |f(y) — f(v/)|
and (29) gives us the desired estimate for |f(x) — f(y)| with the help
of triangle inequality. The statement of the lemma for the remaining
cases, for example when x € 02 and y € (), can be obtained in the
same way. L]

Finally, let us show that Corollary 1 holds for homeomorphic f.
Given the unit disk B = B(0,1), let us map it conformally onto the
upper half-plane H with the help of a M6bius transformation 1) having
the point (0, 1) as its pole. The mapping f o ™! is quasiconformal in H
and its distortion is locally exponentially integrable in some half-plane
P = {(z1,72) € R*: z, > —h}, where h > 0. Indeed, take h < —ys,
where (y1,v2) € R?\ H is the pole of the Mobius transformation 1~
For each z € P we have

(32)
[D(foy™)(@)[* = [Df (™ (2)) Dy~ () * < [Df (™ (2)P| DY~ ()]
< KW (@) Jp (7 (@) Jy-1(2) = K (™) T joy-1 (2).
So, the composition f o ~! has the finite distortion function

Kop=1(z) < K(¥~ ()
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for x € P. Let us show that it is locally exponentially integrable with
the same A. Choose a compact set £ C P. Using a change of variables,
we obtain

(33) /Eexp MK (Y~ (z)) dor = / exp AK (¢! (z)) Sy (x)JJ,ll (x)dx

E

— [ e K@@ A= [ MKl dy
vTL(E) ¥

~H(E)

< sup Jw/ exp AK (y) dy < 0.
Y=H(E) Yo1(E)

As H satisfies the cone condition for 6 = 1, we may apply the local

version of the Lemma 3 for the mapping f o ¢!, In order to do it, we

take a ball By = (xg, Rg) C R? so big that for all z € 9B N {(x1,22) €

R?: y < 2/3} we had ¢(z) € By and dist(z,0By) > R for a fixed

R < h. So, for z,y € 0B N {(x1,72) € R*: y < 2/3} we obtain

(34) |f(x) = fW)|=1(f o™ )(W(x) = (fo ) (W(y))
C C

= 5 ST o
log” e 198 Ty
Here we used the fact, that |¢)(x) — ¢ (y)| < M|z —y| for some constant
M > 0, whenever z,y € R?\ B((0,1), 3).

Repeating the reasoning for the upper part of the ball B (and taking
the point (0,—1) as a pole), we obtain an estimate of the same kind
for z,y € 9B N {(x1,22) € R*: y > —2/3} and thus for all x and y on
the boundary 0B. Finally, the claim follows by invoking Lemma 4.

4. PROOF OF THEOREM 1

We will pass from the homeomorphic case to the non-homeomorphic,
using the so-called Stoilow factorization (see, for example, [6], Chap-
ter 11). Let us first note that the given mapping f defined in the
plane and having finite locally exponentially integrable distortion be-
longs to the Orlicz-Sobolev class W,29(C), where Q(t) = @ (see,
for example, [6], §11.5). The mapping f satisfies almost everywhere
the equation

(35) 0f(2) = ns(2)0f(2),

where 0 = 1(9, +i0,), 0 = (8, —i0,) and |us(2)| < ggi;ﬁ Equation
(35) is called the Beltrami equation. Let us take a ball B, containing
the domain €2, where the given mapping f is quasiconformal. Consider
the Beltrami equation with the Beltrami coefficient © = psxp. By
Theorem 11.8.3 in [6], this equation has a homeomorphic solution A in
the class z + W 9(C) (i.e. |hz| +|h. — 1] € L2(C)). Next, the mapping
f ’  is a solution of this equation in B, so by Theorem 11.5.1 in [6] it
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can be represented as f‘B = poh, where ¢: h(B) — C is holomorphic.
As a solution of the same Beltrami equation, h satisfies

IDf ()" < K(2)Ju(2)

almost everywhere in B. Using the fact that ¢ is Lipschitz in h(Q2) CC
h(B) and the obtained continuity estimate for the mapping h, we easily
get the required inequality for f. The corollary is dealt in the same
way.

We will base the construction of our example, showing the sharpness
of the obtained result, on a mapping constructed in [8] (f2 from the
proof of Theorem 1). Based on what is done in [8], we can state the
following lemma.

Lemma 5. For a given s > 0 there exists a homeomorphic mapping
f of finite distortion which is quasiconformal in the right half-plane
H = {(z1,12) € R?: 1y > 0} such that its distortion function K in the
left half-plane satisfies

(36) K(z) < 2slog(2/]z]) + C,

where C' > 0 is some constant, for all x € B(0,r) N (R*\ H) for some
r > 0 and is bounded in R?\ B(0,r), and for all positive Cy, Cy and ¢
there exists such xq € OH that

(37) (@) = £(0)] = | £(2)| > Cylog ™= %

holds for all x € OH, such that |z| < |xo|.

As we can notice

C

(38) exp(AK (1)) < T2

that is, the distortion of f is locally exponentially integrable for all
A< 1/s.

Let us then consider the domain Q = {(Rcosf, Rsinf) € R?: R €
R, —a <6 < 0}, where 0 < a < 7 is some fixed angle. It satisfies the
cone condition for 6 = sin §. This domain can always be cut in such a
way that the remaining domain €2y C €2 is bounded, satisfies the cone
condition for the same ¢ and its boundary near the origin coincides
with the boundary of the domain €. For example, if 0 < a < 7, then
g can be taken in the form Qy = QN B(0, Ry) for some Ry > 0.

Denote § = 5"— and take the mapping g: R* \ Q@ — R? defined
by g(Rcosf, Rsinf) = (RPsin 360, — R’ cos 30). This mapping maps
the set R?\ Q = {(Rcosf#,Rsinf) e R Re R, 0 < 0 < 21 — a}
conformally onto the right half-plane H = {(x1,22) € R?: z; > 0} and
is extendable to a quasiconformal mapping of the whole plane.

Next, consider the superposition f o g, where f is the mapping from
Lemma 5. It is quasiconformal in €2 and, hence, in 2y; indeed, in the
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same way as before for z € () we calculate

(39)  ID(fog)(@)* =[Df(g(x))Dg(x)|* < KKy Jpoq (),

where Ky and K, denote the quasiconformality coefficients of f and g
respectively. Similarly, we can estimate the distortion outside 2:

(40) ID(f 0 g)(2)|* < K(g(2))J fog ().
Thus, for the distortion function of fo g, denoted by K4, we have the
estimate

2 2
(41) Kpog(x) < K(g(z ))<2310g‘g( )‘+C—2310g| B +C
and
C
(42) eXp(lquOg(x>) S |ZE‘2S”'6’

for x € R?\ Q close to the origin, so it is exponentially integrable
for all p < 1/s3 = 2= arcsmé) = 22 Thus, Lemma 3 gives us the
estimate (10) for the boundary points with v = 1/s — ¢ for any given
positive €.

Finally, using Lemma 5, we calculate

(43) |(f 2 9)a) = (f ° 9)(O)] = |F{g(x))| > C1log™+~

lg()]

1 1 G
- Olﬁ log 8 ‘x’

1
B

for x, close enough to the origin. This completes the proof of the
theorem.

5. RESULT FOR QUASIDISKS

Recall that each quasidisk can be mapped onto the exterior of the
unit disk under a conformal mapping, which is extendable to a quasi-
conformal mapping of the entire plane (see, for example, [9], Chapter I,
§6). Thus, let us state the following theorem.

Theorem 2. Let ) be a bounded quasidisk such that some conformal
mapping ©: R2\ Q — R2, mapping the exterior of Q onto the exterior
of the closed unit disk B, has the property J, € Lp(é \ Q), where B
is some ball, containing Q. Let f: R* — R? be a mapping of finite
distortion such that exp(AK (x)) is locally integrable for some X\ > 0. If
the restriction of f to the quasidisk ) is quasiregular, then there exist
positive constants Cy and Cy such that

(44) [f(@) = FW)] < ———

whenever z,y € Q.
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Proof. As it was shown before, it is enough to consider the homeomor-
phic case. Denote by ¢ a quasiconformal extension of ¢ to the entire
plane. Let us first note that the superposition f o ¢! satisfies the
conditions of the Corollary 1. Indeed, for x € B we have

(45) [D(fog )(@)* =Df(¢(2)) D¢ ()] < KKp1Jpop-1 (),

that is, the mapping fop!is quasiconformal in B. Let us now consider
the exterior of B. For z € R?\ B we have that

(46) ID(fog™)(@)]* < K¢ (2)) Jrop1 (2).

So, the composition f o »~! has the finite distortion function
Kop-1(z) < K(p™'(2))

for z € R?\ B. Let us show that it is exponentially integrable in

A

©(B) with some A;. Indeed, using a change of variables and the Holder
inequality, we obtain

B RS S
@(B) B

+/ A eprlK(gpl(x))dx:/ exp MK (y)J,(y) dy + C
©(B)\B B\Q

P (r=1)/p / 1/p
< A K(y)d JP(y)d C
< </3\56Xp o) (v) y) ( - o) y) +C < oo,

when \; = p%l/\. After applying Corollary 1 we arrive at

(48) [f(z) = f)l = I(f o @) (&(x)) = (f o &7 )(2(y))]

N

C 4

g < 1 )
T e
EGEE0]

N log%A

whenever z,y € Q (here we used the local Hélder continuity of the
quasiconformal mapping ¢ and the boundedness of ). O

Let us return to the domain € from Section 4. This domain is a
quasidisk. Let us map it conformally onto the upper half-plane by
means of the mapping h, having the form hy(z) = 2” in terms of

the complex plane. Let us now map the upper half-plane onto the

exterior of the unit disk using the M&bius transformation hy(z) = i—’_Lz

in terms of the complex plane. The pole of this map is the point

a = (0,1). Its preimage in Q is b = hy'(a) = (cos(m — £),sin(r —

3)) = (cos 35,sin 35). Let us take the Mobius transformation hs of the

complex plane, mapping infinity to this point, for example, h3(z) =
(cos %-{—i sin %)z
z+1

%. This mapping preserves infinity and maps conformally the

. The superposition h = hy o hy o h3 has the form h(z) =

exterior of the bounded domain h;'(2) onto the the exterior of the
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unit disk B. The Jacobian determinant of g is p—integrable when p <

27%5‘ Thus, Theorem 2 gives for the mapping f o g near the origin

the continuity estimate (10) with the exponent 1/s — ¢ for any given
positive e, which is sharp by Theorem 1.

Remark. The conclusion of Theorem 2 is interesting only when ’%1 > %,
i.e., when p > 2. It appears to be unknown if this is always the case;
by Brennan’s conjecture any p < 2 would do even when 2 is not a
quasidisk. One could also modify the proof of Theorem 1 to cover the

case of a "twisted” cone condition, satisfied by quasidisks. This would

give an exponent strictly better than 2 but the dependence from K

2
would be complicated.
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