POINTWISE HARDY INEQUALITIES AND UNIFORMLY FAT SETS

JUHA LEHRBÄCK

ABSTRACT. We prove that it is equivalent for domain in \mathbb{R}^n to admit the pointwise p-Hardy inequality, have uniformly p-fat complement, or satisfy a uniform inner boundary density condition.

1. Introduction

The pointwise p-Hardy inequality in a domain $\Omega \subset \mathbb{R}^n$ reads as

(1)
$$|u(x)| \le Cd_{\Omega}(x) \left(\sup_{r \le 2d_{\Omega}(x)} \frac{1}{|B(x,r)|} \int_{B(x,r)} |\nabla u(y)|^q dy \right)^{1/q},$$

where $1 < q < p < \infty$ and $d_{\Omega}(x) = \operatorname{dist}(x, \partial \Omega)$. These inequalities were introduced by Hajłasz in [2]; Kinnunen and Martio considered similar inequalities independently in [6]. It was proved in [2] (see also [6]) that if $1 and the complement of the domain <math>\Omega \subset \mathbb{R}^n$ is sufficiently big, uniformly p-fat (see Section 2 for precise definitions), there exists 1 < q < p such that (1) holds for all $u \in C_0^{\infty}(\Omega)$ and all $x \in \Omega$ with a constant $C = C(\Omega, n, p, q) > 0$. In such a case, we say that Ω admits the pointwise p-Hardy inequality. Notice that it follows immediately from this definition that if $1 < p_0 < \infty$ and a domain Ω admits the pointwise p-Hardy inequality, then Ω admits pointwise p-Hardy inequalities for some $p < p_0$ and for all $p > p_0$.

If a function $u: \Omega \to \mathbb{R}$ is such that (1) holds for all $x \in \Omega$ with a constant $C_1 > 0$, it is easy to see, using the Hardy-Littlewood-Wiener maximal function theorem, that u satisfies the usual p-Hardy inequality

(2)
$$\int_{\Omega} |u(x)|^p d_{\Omega}(x)^{-p} dx \le C \int_{\Omega} |\nabla u(x)|^p dx$$

with a constant $C=C(C_1,n,p)>0$. This classical inequality was first considered in the one-dimensional case by Hardy (cf. [3] and references therein). Nečas [9] generalized p-Hardy inequalities to higher dimensions when he proved that, for all $1 , the inequality (2) holds in a bounded Lipschitz domain <math>\Omega \subset \mathbb{R}^n$ for all $u \in C_0^\infty(\Omega)$, with a constant $C=C(\Omega,n,p)>0$ (i.e. Ω admits the p-Hardy inequality). Later Ancona (the case p=n=2) [1], Lewis [8], and Wannebo [11] proved that a domain $\Omega \subset \mathbb{R}^n$ admits the p-Hardy inequality under the assumption that the complement of Ω is uniformly p-fat. Recall that in [2] and [6] this same assumption was shown to be sufficient for Ω to admit even the pointwise p-Hardy inequality. We also

²⁰⁰⁰ Mathematics Subject Classification. Primary 46E35, 31C15; Secondary 26D15, 42B25.

The author was supported in part by the Academy of Finland.

remark that the complement of a proper subdomain $\Omega \subsetneq \mathbb{R}^n$ is uniformly p-fat for all p > n.

However, the pointwise p-Hardy inequality is not equivalent to the usual p-Hardy inequality, since there are domains which admit the latter for some p, but where the corresponding pointwise inequality fails to hold. In particular, it is not true that the p_0 -Hardy inequality would imply p-Hardy inequalities for all $p > p_0$, as is the case with pointwise inequalities. This can be seen by considering e.g. the punctured unit ball $B(0,1) \setminus \{0\} \subset \mathbb{R}^n$, which admits the pointwise p-Hardy inequality only in the trivial case p > n, but where the usual p-Hardy inequality holds also when 1 ; yet the <math>n-Hardy inequality fails in this domain. This example also shows that the uniform p-fatness of the complement is not necessary for a domain to admit the p-Hardy inequality, as the complement of $B(0,1) \setminus \{0\} \subset \mathbb{R}^n$ is not uniformly p-fat for any $p \le n$. Nevertheless, as a part of our main theorem, we show that uniform p-fatness of Ω^c is not only sufficient, but also necessary for Ω to admit the p-Hardy inequality.

We say that a domain $\Omega \subset \mathbb{R}^n$ satisfies an inner boundary density condition with exponent λ , if there exists a constant C > 0 such that

(3)
$$\mathcal{H}_{\infty}^{\lambda}(B(x, 2d_{\Omega}(x)) \cap \partial\Omega) \geq Cd_{\Omega}(x)^{\lambda}$$
 for every $x \in \Omega$.

It turns out that condition (3), for some exponent $\lambda > n - p$, is also necessary and sufficient for a domain $\Omega \subset \mathbb{R}^n$ to admit the pointwise p-Hardy inequality, and hence equivalent to the uniform p-fatness of Ω^c . Let us now formulate our main result.

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ be a domain and let 1 . Then the following conditions are equivalent:

- (a) The complement Ω^c is uniformly p-fat
- (b) Ω admits the pointwise p-Hardy inequality
- (c) There exists $n-p < \lambda \leq n$ such that Ω satisfies the inner boundary density condition (3) with the exponent λ .

Theorem 1 can be considered as an extension of the result, proved by Ancona [1] (n = 2) and Lewis [8], that a domain $\Omega \subset \mathbb{R}^n$ admits the *n*-Hardy inequality if and only if the complement of Ω is uniformly *n*-fat.

Results related to Theorem 1 were also considered in [7], where the following local dichotomy was shown: Suppose that a domain $\Omega \subset \mathbb{R}^n$ admits the p-Hardy inequality and let $w \in \partial\Omega$, r > 0. Then either the Hausdorff dimension of $B(w,r) \cap \partial\Omega$ is strictly larger that n-p, or the Minkowski dimension of $B(w,r) \cap \partial\Omega$ is strictly less than n-p. Now, if Ω admits the pointwise p-Hardy inequality, we obtain, by Theorem 1, that only the former of the two possibilities above may occur; indeed, when $w \in \partial\Omega$ and r > 0, there exists $x \in B(w,r/3) \cap \Omega$, whence $B(x,2d_{\Omega}(x)) \subset B(w,r)$, and thus

$$\dim_{\mathcal{H}} (B(w,r) \cap \partial\Omega) \ge \dim_{\mathcal{H}} (B(x,2d_{\Omega}(x)) \cap \partial\Omega) \ge \lambda > n-p.$$

2. Preliminaries

When A is a subset of the n-dimensional Euclidean space \mathbb{R}^n , ∂A denotes the boundary of A and $A^c = \mathbb{R}^n \setminus A$ is the complement of A. The characteristic function of A is χ_A , and |A| denotes the n-dimensional Lebesgue

measure of A. The Euclidean distance between two points, or a point and a set, is denoted $d(\cdot,\cdot)$. When Ω is a domain, i.e. an open and connected set, and $x \in \Omega$, we use also notation $d_{\Omega}(x) = d(x,\partial\Omega)$. An open ball with center $x \in \mathbb{R}^n$ and radius r > 0 is denoted B(x,r), and the corresponding closed ball is $\overline{B}(x,r)$. If B = B(x,r) and L > 0, we denote LB = B(x,Lr). The support of a function $u \colon \Omega \to \mathbb{R}$, $\operatorname{spt}(u)$, is the closure of the set where u is non-zero. We let C denote various positive constants, which may vary from expression to expression.

The restricted Hardy-Littlewood maximal function of $f \in L^1_{loc}(\mathbb{R}^n)$ is defined by

$$M_R f(x) = \sup_{0 < r \le R} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy.$$

The well-known maximal function theorem of Hardy, Littlewood and Wiener (see e.g. [10]) states that if $1 , we have <math>||M_R f||_p \le C(n,p)||f||_p$ for all $0 < R \le \infty$. When $1 < q < \infty$, we denote $M_{R,q} f = (M_R f^q)^{1/q}$. Using this notation, we may now write the pointwise p-Hardy inequality (1) as

$$(4) |u(x)| \le Cd_{\Omega}(x) M_{2d_{\Omega}(x),q}(|\nabla u|)(x),$$

where 1 < q < p.

The λ -Hausdorff content of a set $A \subset \mathbb{R}^n$ is

$$\mathcal{H}_{\infty}^{\lambda}(A) = \inf \bigg\{ \sum_{i=1}^{\infty} r_i^{\lambda} : A \subset \bigcup_{i=1}^{\infty} B(z_i, r_i) \bigg\},$$

where $z_i \in A$ and $r_i > 0$. The Hausdorff dimension of $A \subset \mathbb{R}^n$ is then

$$\dim_{\mathcal{H}}(A) = \inf \left\{ \lambda > 0 : \mathcal{H}_{\infty}^{\lambda}(A) = 0 \right\}.$$

We say that the boundary of a domain $\Omega \subset \mathbb{R}^n$ is λ -thick, if there exists a constant C > 0 such that

$$\mathcal{H}_{\infty}^{\lambda}(B(w,r)\cap\partial\Omega)\geq Cr^{\lambda}$$

for all $w \in \partial \Omega$ and $0 < r < \operatorname{diam}(\Omega)$. It is clear that λ -thickness of $\partial \Omega$ implies that condition (3) holds in Ω ; the converse however is not true, see Section 4 for an example.

Let $\Omega \subset \mathbb{R}^n$ be a domain. The *p*-capacity of a compact set $E \subset \Omega$ (relative to Ω) is defined as

$$\operatorname{cap}_p(E,\Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in C_0^{\infty}(\Omega), \ u \ge 1 \text{ on } E \right\}.$$

A closed set $E \subset \mathbb{R}^n$ is said to be uniformly p-fat if there exists a constant C>0 such that

$$\operatorname{cap}_p\left(E\cap \overline{B}(x,r),B(x,2r)\right) \geq C\operatorname{cap}_p\left(\overline{B}(x,r),B(x,2r)\right)$$

for all $x \in E$ and r > 0. Note that for each ball $B(x,r) \subset \mathbb{R}^n$ we have $\operatorname{cap}_p(\overline{B}(x,r),B(x,2r)) = C(n,p)r^{n-p}$. For this and other basic properties of the *p*-capacity we refer to [4].

We record the following useful lemma between Hausdorff content and p-capacity; for a proof, see e.g. [5, Thm. 5.9].

Lemma 2. Let $E \subset B(x,r) \subset \mathbb{R}^n$ be a compact set such that

$$\mathcal{H}_{\infty}^{\lambda}(E) \geq C_1 r^{\lambda}$$

for some $\lambda > n - p$ and $C_1 > 0$. Then

$$cap_p (E \cap B(x,r), B(x,2r)) \ge C r^{n-p},$$

where $C = C(C_1, n, p) > 0$.

3. Proof of Theorem 1

The part $(a)\Longrightarrow(b)$ of Theorem 1 is contained in [2, Thm. 2]; the proof of this part relies on the self-improving property of p-fatness, due to Lewis [8, Thm. 1]. Let us now prove the implications $(b)\Longrightarrow(c)$ and $(c)\Longrightarrow(a)$ to obtain the equivalence of the conditions in the theorem.

Proof of $(b) \Longrightarrow (c)$. Let $\Omega \subset \mathbb{R}^n$ and $1 . We assume that condition (3) fails for every <math>n - p < \lambda \le n$, and show that then also the pointwise p-Hardy inequality fails in Ω . To this end, let 1 < q < p and choose $\lambda = n - q > n - p$. It is evident that (3) is equivalent to the condition that there exists some $C_1 > 0$ such that

(5)
$$\mathcal{H}_{\infty}^{\lambda}(\overline{B}(x, 3d_{\Omega}(x)) \cap \partial \Omega) \geq C_1 d_{\Omega}(x)^{\lambda} \text{ for every } x \in \Omega.$$

Since (5) now fails for the chosen λ , there exist, for each $k \in \mathbb{N}$, a point $x_k \in \Omega$ such that

$$\mathcal{H}_{\infty}^{\lambda}(E_k) < k^{-1}R_k^{\lambda},$$

where we denote $R_k = d_{\Omega}(x_k)$ and $E_k = \overline{B}(x_k, 3R_k) \cap \partial \Omega$. Using this, and the fact that E_k is compact, we find, for a fixed $k \in \mathbb{N}$, a finite covering $\{B_i\}_{i=1}^N$, $B_i = B(w_i, r_i)$ with $w_i \in \partial \Omega$ and $r_i > 0$, such that $E_k \subset \bigcup_{i=1}^N B_i$ and $\sum_{i=1}^N r_i^{\lambda} < k^{-1}R_k^{\lambda}$.

Define a function φ_k by

$$\varphi_k(x) = \min_{1 \le i \le N} \left\{ 1, \, r_i^{-1} d(x, 2B_i) \right\}$$

and let $\psi_k \in C_0^{\infty}(B(x_k, 3R_k))$ be such that $0 \le \psi_k \le 1$ and $\psi_k(x) = 1$ for all $x \in B(x_k, 2R_k)$. Then $u_k = \psi_k \varphi_k \chi_{\Omega}$ is a Lipschitz function with compact support in Ω . Since $r_i < k^{-1/\lambda} R_k$ for all $1 \le i \le N$, we have that

(6)
$$d(x_k, 3B_i) > \frac{1}{4}R_k > r_i$$

for all $1 \le i \le N$ if $k > 4^{\lambda}$, and hence $u_k(x_k) = 1$ for these k.

Next, denote $A_i = 3\overline{B}_i \setminus 2B_i$. Then $\operatorname{spt}(|\nabla u_k|) \cap B(x_k, 2R_k) \subset \bigcup_{i=1}^N A_i$ and we have in fact for a.e. $y \in B(x_k, 2R_k)$ that

(7)
$$|\nabla u_k(y)|^q \le \sum_{i=1}^N r_i^{-q} \chi_{A_i}(y).$$

Let us now estimate the right-hand side of the pointwise p-Hardy inequality (4) at x_k . Since $\operatorname{spt}(|\nabla u_k|) \cap B(x_k, 2R_k) \subset \bigcup_{i=1}^N 3\overline{B}_i$, it follows from (6) that

we must have $r > \frac{1}{4}R_k$ in order to obtain something positive when estimating the maximal function of $|\nabla u_k|$ at x_k . Hence, using (7), we calculate

$$M_{2R_k}(|\nabla u_k|^q)(x_k) \le C \sup_{\frac{1}{4}R_k \le r \le 2R_k} \left(r^{-n} \int_{B(x_k,r)} |\nabla u_k(y)|^q \, dy \right)$$

$$\le CR_k^{-n} \int_{B(x_k,2R_k)} |\nabla u_k(y)|^q \, dy \le Cd_{\Omega}(x_k)^{-n} \sum_{i=1}^N |A_i| r_i^{-q}$$

$$\le Cd_{\Omega}(x_k)^{-n} \sum_{i=1}^N r_i^{n-q}.$$

Recall that $\lambda = n - q > n - p$ and that $\sum_{i=1}^{N} r_i^{\lambda} < k^{-1} d_{\Omega}(x_k)^{\lambda}$. Thus

$$d_{\Omega}(x_k)^q M_{2R_k} (|\nabla u_k|^q)(x_k) \le C d_{\Omega}(x_k)^{q-n} \sum_{i=1}^N r_i^{n-q}$$

$$\le C d_{\Omega}(x_k)^{-\lambda} k^{-1} d_{\Omega}(x_k)^{\lambda} \le \frac{C}{k},$$

and so the right-hand side of the inequality (4) for u_k at x_k tends to zero as $k \to \infty$. However, $u_k(x_k) = 1$ for large k, so the pointwise p-Hardy inequality fails to hold with a uniform constant for all compactly supported Lipschitz functions in Ω . By a standard approximation argument it is then clear that Ω does not admit the pointwise p-Hardy inequality.

Proof of $(c) \Longrightarrow (a)$. There exists now $n - p < \lambda \le n$ so that Ω satisfies the density condition (3) with the exponent λ and with a constant $C_1 > 0$. To prove that Ω^c is uniformly p-fat, it is in fact enough to show that there exists a constant $C = C(C_1, n, \lambda) > 0$ such that

(8)
$$\mathcal{H}_{\infty}^{\lambda}(B(w,r) \cap \Omega^{c}) \ge Cr^{\lambda}$$

for all $w \in \partial \Omega$ and r > 0. Indeed, assume that (8) holds for all $w \in \partial \Omega$ and let $z \in \Omega^c$, r > 0. If $B(z, r/2) \subset \Omega^c$, then it easily follows (compare to calculations in (10) below) that (8) holds also for the ball B(z, r), with a constant depending only on n. On the other hand, if $B(z, r/2) \cap \Omega \neq \emptyset$, there is $w \in \partial \Omega$ such that $B(w, r/2) \subset B(z, r)$, and thus (8) for B(w, r/2) yields (8) for B(z, r), but now with a constant depending on C and λ . We conclude, by Lemma 2, that (8) for all $w \in \partial \Omega$ implies the uniform p-fatness of Ω^c .

Let then $w \in \partial \Omega$ and r > 0. To prove that (8) holds, first assume that

(9)
$$|B(w,r) \cap \Omega^c| \ge \frac{1}{4} |B(w,r)|.$$

Let $\{B_i\}_{i=1}^{\infty}$, $B_i = B(z_i, r_i)$ for $z_i \in \Omega^c$ and $0 < r_i \le r$, be a covering of $B(w, r) \cap \Omega^c$. Then we have that

(10)
$$\frac{1}{4} \le \sum_{i} \left(\frac{r_i}{r}\right)^n \le \sum_{i} \left(\frac{r_i}{r}\right)^{\lambda},$$

and thus, by the definition of the λ -Hausdorff content, we see that (8) holds with constant 1/4 under assumption (9).

We may hence assume that $|B(w,r) \cap \Omega| \ge \frac{3}{4} |B(w,r)|$. Let then $\{B_i\}_{i=1}^{\infty}$, $B_i = B(w_i, r_i)$ for $w_i \in \partial \Omega$ and $0 < r_i \le r$, be a covering of $B(w,r) \cap \partial \Omega$. If

(11)
$$\sum_{i} |B_{i}| \ge \frac{1}{4} 2^{-n} |B(w, r)|,$$

it follows as in (10) that $\sum_i r_i^{\lambda} \geq C(n)r^{\lambda}$. If (11) does not hold, i.e. we have that

(12)
$$\sum_{i} |B_{i}| < \frac{1}{4} 2^{-n} |B(w, r)|,$$

we proceed as follows: Let $\hat{r} = (3/4)^{1/n}r$ and denote $\alpha(n) = 1 - (3/4)^{1/n}$, so that $r - \hat{r} = \alpha(n)r$. If there exists $x \in B(w, \hat{r}) \cap \Omega$ such that $d_{\Omega}(x) \ge \frac{1}{2}\alpha(n)r$, then, by the continuity of the distance function, there exists also $x' \in B(w, \hat{r}) \cap \Omega$ such that $d_{\Omega}(x') = \frac{1}{2}\alpha(n)r$. Thus $B(x', 2d_{\Omega}(x')) \subset B(w, r)$, and we obtain, by condition (3), that

$$\mathcal{H}_{\infty}^{\lambda}\big(B(w,r)\cap\partial\Omega\big)\geq\mathcal{H}_{\infty}^{\lambda}\big(B(x',2d_{\Omega}(x'))\cap\partial\Omega\big)\geq C_{1}d_{\Omega}(x')^{\lambda}\geq Cr^{\lambda},$$

where $C = C(C_1, n, \lambda) > 0$, and so (8) holds. We may hence assume that

(13)
$$d_{\Omega}(x) < \frac{1}{2}\alpha(n)r \text{ for every } x \in B(w, \hat{r}) \cap \Omega,$$

so that in particular $B(x, 2d_{\Omega}(x)) \subset B(w, r)$ for every $x \in B(w, \hat{r}) \cap \Omega$.

Let us denote $A = (B(w, \hat{r}) \cap \Omega) \setminus \bigcup_i 2B_i$. We then have, by (12) and the choice of \hat{r} , that

$$\begin{split} |A| &\geq |B(w,\hat{r}) \cap \Omega| - \sum_{i} 2^{n} |B_{i}| \\ &\geq |B(w,r) \cap \Omega| - |B(w,r) \setminus B(w,\hat{r})| - 2^{n} \frac{1}{4} 2^{-n} |B(w,r)| \\ &\geq \frac{3}{4} |B(w,r)| - \frac{1}{4} |B(w,r)| - \frac{1}{4} |B(w,r)| \geq \frac{1}{4} |B(w,r)|. \end{split}$$

Since $A \subset \bigcup_{x \in A} B(x, 6d_{\Omega}(x))$, we obtain, by a standard covering lemma (cf. [10]), a countable set of points $x_k \in A$ such that the corresponding balls $6\tilde{B}_k$, where $\tilde{B}_k = B(x_k, d_{\Omega}(x_k))$, are pairwise disjoint and $A \subset \bigcup_k 30\tilde{B}_k$. Hence

(14)
$$\frac{1}{4}|B(w,r)| \le |A| \le \sum_{k} |30\tilde{B}_{k}| \le 30^{n} \sum_{k} |\tilde{B}_{k}|.$$

Since the radius of \tilde{B}_k is $d_{\Omega}(x_k) < r$ for all k, and $\lambda \leq n$, it now follows from (14), similarly to (10), that

(15)
$$C(n) r^{\lambda} \leq \sum_{k} d_{\Omega}(x_{k})^{\lambda}.$$

When $i \in \mathbb{N}$, we let $\#_i$ denote the number of the balls $2\tilde{B}_k$ such that $2\tilde{B}_k \cap B_i \neq \emptyset$. But if $2\tilde{B}_k \cap B_i \neq \emptyset$, then $d_{\Omega}(x_k) > \frac{1}{2}r_i$ (since $x_k \notin 2B_j$), and thus $B_i \subset 6\tilde{B}_k$. Since the balls $6\tilde{B}_k$ are pairwise disjoint, it follows that $\#_i \leq 1$ for all $i \in \mathbb{N}$. Also, we have by (13) that $2\tilde{B}_k \subset B(w,r)$, and so

(16)
$$\mathcal{H}_{\infty}^{\lambda} \left(2\tilde{B}_{k} \cap \partial \Omega \right) \leq \sum_{B_{i} \cap 2\tilde{B}_{k} \neq \emptyset} r_{i}^{\lambda}$$

for each k. Combining (15), (3), (16), and the fact that $\#_i \leq 1$, we finally obtain

$$r^{\lambda} \leq C \sum_{k} d_{\Omega}(x_{k})^{\lambda} \leq C \sum_{k} \mathcal{H}_{\infty}^{\lambda} \left(2\tilde{B}_{k} \cap \partial \Omega \right)$$
$$\leq C \sum_{k} \sum_{B_{i} \cap 2\tilde{B}_{k} \neq \emptyset} r_{i}^{\lambda} \leq C \sum_{i} \#_{i} r_{i}^{\lambda} \leq C \sum_{i} r_{i}^{\lambda},$$

where $C = C(C_1, n) > 0$. Hence, by taking the infimum of the sums $\sum_i r_i^{\lambda}$ over all the coverings $\{B_i\}_i$ of $B(w, r) \cap \partial \Omega$, we see that equation (8) holds in this case as well. This also finishes the proof of Theorem 1.

Remark. From the proof of the part $(c)\Longrightarrow(a)$ of the theorem we obtain, with some minor modifications, the following result: Assume that a domain $\Omega\subset\mathbb{R}^n$ satisfies the inner boundary density condition (3) with exponent λ and with a constant $C_1>0$, and let $0<\varepsilon<1$. Then, for each ball B(w,r), where $w\in\partial\Omega$ and r>0, we have

$$|B(w,r) \cap \Omega^c| \ge \varepsilon |B(w,r)| \text{ or } \mathcal{H}_{\infty}^{\lambda} (B(w,r) \cap \partial \Omega) \ge Cr^{\lambda},$$

where $C = C(C_1, n, \lambda, \varepsilon) > 0$. In particular, if there exists a constant $C_2 > 0$ such that $|B(w, r) \cap \Omega| \ge C_2 |B(w, r)|$ for all $w \in \partial \Omega$ and $0 < r < \operatorname{diam}(\Omega)$, we conclude that $\partial \Omega$ is λ -thick, with a constant $C = C(C_1, C_2, n, \lambda) > 0$.

4. An example

We give a brief example in which we show that the λ -thickness of the boundary of $\Omega \subset \mathbb{R}^n$, for some $\lambda > n - p$, is not necessary for Ω to admit the pointwise p-Hardy inequality, or equivalently, for Ω to satisfy the inner boundary density condition (3) with the exponent λ .

Let $n, k \in \mathbb{N}$ be such that $n \geq 3$ and $1 \leq k \leq n-2$. Let also $\tau > 1$. We consider the following domain $\Omega_k \subset \mathbb{R}^n$:

$$\Omega_k = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : 0 < x_1, \dots, x_k < 1, \sum_{i=k+1}^n x_i^{n-k} < x_1^{\tau(n-k)} \right\}$$

Let 0 < r < 1 and denote $B_r = B(0,r)$, $E_{k,r} = \partial \Omega \cap B_r$. Then $E_{k,r}$ can be covered by approximately $r^{(1-\tau)k}$ balls of radius r^{τ} . Now, if $\lambda > k$, we have that

$$r^{-\lambda} \mathcal{H}_{\infty}^{\lambda}(E_{k,r}) \leq C r^{-\lambda} r^{(1-\tau)k} r^{\tau\lambda} \leq C r^{(\tau-1)(\lambda-k)} \longrightarrow 0$$

as $r \to 0$, since $(\tau - 1)(\lambda - k) > 0$. This means that $\partial \Omega$ is not λ -thick for any $\lambda > k$. Nevertheless, it is obvious that the inner boundary density condition (3), with $\lambda = n - 1$, holds for all $x \in \Omega_k$, and so Ω_k admits the pointwise p-Hardy inequality for all p > 1, especially for p = n - k.

Acknowledgements. The author wishes to express his gratitude to Professor Pekka Koskela for helpful discussions and valuable suggestions concerning the contents of this paper, and for reading the manuscript.

References

- [1] A. Ancona, 'On strong barriers and an inequality of Hardy for domains in \mathbb{R}^n ', J. London Math. Soc. (2) 34 (1986), no. 2, 274–290.
- [2] P. Hajlasz, 'Pointwise Hardy inequalities', Proc. Amer. Math. Soc. 127 (1999), no. 2, 417–423.
- [3] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, 'Inequalities', (Second edition), Cambridge, at the University Press, 1952.
- [4] J. HEINONEN, T. KILPELÄINEN AND O. MARTIO, 'Nonlinear potential theory of degenerate elliptic equations', Oxford University Press, 1993.
- [5] J. Heinonen and P. Koskela, 'Quasiconformal maps in metric spaces with controlled geometry', *Acta Math.* 181 (1998), no. 1, 1–61.
- [6] J. KINNUNEN AND O. MARTIO, 'Hardy's inequalities for Sobolev functions', Math. Res. Lett. 4 (1997), no. 4, 489–500.
- [7] P. KOSKELA AND X. ZHONG, 'Hardy's inequality and the boundary size', Proc. Amer. Math. Soc. 131 (2003), no. 4, 1151–1158.
- [8] J. L. LEWIS, 'Uniformly fat sets', Trans. Amer. Math. Soc. 308 (1988), no. 1, 177– 196.
- [9] J. Nečas, 'Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle', Ann. Scuola Norm. Sup. Pisa (3) 16 (1962) 305–326.
- [10] E. M. STEIN, 'Singular integrals and differentiability properties of functions', Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970.
- [11] A. WANNEBO, 'Hardy inequalities', Proc. Amer. Math. Soc. 109 (1990), 85–95.

DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. BOX 35 (MAD), FIN-40014 UNIVERSITY OF JYVÄSKYLÄ, FINLAND

E-mail address: juhaleh@maths.jyu.fi