POINTWISE HARDY INEQUALITIES AND UNIFORMLY
FAT SETS

JUHA LEHRBACK

ABSTRACT. We prove that it is equivalent for domain in R™ to admit
the pointwise p-Hardy inequality, have uniformly p-fat complement, or
satisfy a uniform inner boundary density condition.

1. INTRODUCTION

The pointwise p-Hardy inequality in a domain 2 C R™ reads as

1/q
(1) |u<x>|scd9<x>( N |Vu<y>|Qdy> ,

r<2dq(x) ’B(l‘, T)‘ B(x,r)
where 1 < ¢ < p < 00 and dg(x) = dist(z,092). These inequalities were
introduced by Hajtasz in [2]; Kinnunen and Martio considered similar in-
equalities independently in [6]. It was proved in [2] (see also [6]) that if
1 < p < oo and the complement of the domain  C R” is sufficiently big,
uniformly p-fat (see Section 2 for precise definitions), there exists 1 < g < p
such that (1) holds for all v € C§°(2) and all z € Q with a constant
C =C(Qn,p,q) > 0. In such a case, we say that 2 admits the pointwise
p-Hardy inequality. Notice that it follows immediately from this definition
that if 1 < pg < oo and a domain {2 admits the pointwise pp-Hardy inequal-
ity, then € admits pointwise p-Hardy inequalities for some p < pg and for
all p > pg.

If a function u: © — R is such that (1) holds for all z € ) with a con-
stant C1 > 0, it is easy to see, using the Hardy-Littlewood-Wiener maximal
function theorem, that u satisfies the usual p-Hardy inequality

@) /Q ()P do(z) P dz < C /Q V()P da

with a constant C' = C(C4,n,p) > 0. This classical inequality was first con-
sidered in the one-dimensional case by Hardy (cf. [3] and references therein).
Necas [9] generalized p-Hardy inequalities to higher dimensions when he
proved that, for all 1 < p < oo, the inequality (2) holds in a bounded Lips-
chitz domain Q C R” for all u € C§°(£2), with a constant C' = C(Q,n,p) >0
(i.e.  admits the p-Hardy inequality). Later Ancona (the case p =n = 2)
[1], Lewis [8], and Wannebo [11] proved that a domain  C R™ admits the
p-Hardy inequality under the assumption that the complement of 2 is uni-
formly p-fat. Recall that in [2] and [6] this same assumption was shown to
be sufficient for 2 to admit even the pointwise p-Hardy inequality. We also
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remark that the complement of a proper subdomain  C R" is uniformly
p-fat for all p > n.

However, the pointwise p-Hardy inequality is not equivalent to the usual p-
Hardy inequality, since there are domains which admit the latter for some p,
but where the corresponding pointwise inequality fails to hold. In particular,
it is not true that the pp-Hardy inequality would imply p-Hardy inequalities
for all p > pg, as is the case with pointwise inequalities. This can be seen by
considering e.g. the punctured unit ball B(0,1) \ {0} € R", which admits
the pointwise p-Hardy inequality only in the trivial case p > n, but where
the usual p-Hardy inequality holds also when 1 < p < n; yet the n-Hardy
inequality fails in this domain. This example also shows that the uniform
p-fatness of the complement is not necessary for a domain to admit the p-
Hardy inequality, as the complement of B(0,1) \ {0} C R" is not uniformly
p-fat for any p < n. Nevertheless, as a part of our main theorem, we show
that uniform p-fatness of 2¢ is not only sufficient, but also necessary for €2
to admit the pointwise p-Hardy inequality.

We say that a domain €2 C R” satisfies an inner boundary density condi-
tion with exponent ), if there exists a constant C' > 0 such that

(3) HA (B(w,2dq(z)) N 0Q) > Cdg(z) for every z € Q.

It turns out that condition (3), for some exponent A > n — p, is also nec-
essary and sufficient for a domain 2 C R" to admit the pointwise p-Hardy
inequality, and hence equivalent to the uniform p-fatness of ¢. Let us now
formulate our main result.

Theorem 1. Let 2 C R" be a domain and let 1 < p < oco. Then the
following conditions are equivalent:

(a) The complement Q¢ is uniformly p-fat

(b) Q@ admits the pointwise p-Hardy inequality

(c) There exists n —p < A < n such that Q0 satisfies the inner boundary
density condition (3) with the exponent A.

Theorem 1 can be considered as an extension of the result, proved by
Ancona [1] (n = 2) and Lewis [8], that a domain © C R" admits the n-
Hardy inequality if and only if the complement of €2 is uniformly n-fat.

Results related to Theorem 1 were also considered in [7], where the fol-
lowing local dichotomy was shown: Suppose that a domain 2 C R™ admits
the p-Hardy inequality and let w € 092, » > 0. Then either the Hausdorff
dimension of B(w,r) N 0N is strictly larger that n — p, or the Minkowski
dimension of B(w,r) N dS is strictly less than n — p. Now, if Q admits the
pointwise p-Hardy inequality, we obtain, by Theorem 1, that only the former
of the two possibilities above may occur; indeed, when w € 9 and r > 0,
there exists z € B(w,r/3) N Q, whence B(x,2dq(z)) C B(w, ), and thus

dimy (B(w,r) N 9Q) > dimy (B(x,2dq(z)) NOQ) > A > n —p.

2. PRELIMINARIES

When A is a subset of the n-dimensional Euclidean space R™, 0A denotes
the boundary of A and A¢ = R™\ A is the complement of A. The char-
acteristic function of A is x,, and |A| denotes the n-dimensional Lebesgue
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measure of A. The Euclidean distance between two points, or a point and
a set, is denoted d(-,-). When Q is a domain, i.e. an open and connected
set, and x € Q, we use also notation dg(z) = d(x,9). An open ball with
center x € R™ and radius r > 0 is denoted B(x,r), and the corresponding
closed ball is B(z,r). If B = B(x,r) and L > 0, we denote LB = B(xz, Lr).
The support of a function u: Q — R, spt(u), is the closure of the set where
u is non-zero. We let C' denote various positive constants, which may vary
from expression to expression.

The restricted Hardy-Littlewood maximal function of f € Ll (R") is
defined by

1
Mpf(x) = sup [ 1wy,
( 0<r<R ’B(CIZ,T’)‘ B(z,r) ’ ( ’

The well-known maximal function theorem of Hardy, Littlewood and Wiener
(see e.g. [10]) states that if 1 < p < oo, we have ||[Mgf||, < C(n,p)||fl||, for

all 0 < R < o0o. When 1 < ¢ < oo, we denote Mg ,f = (Mg f9)'/4. Using
this notation, we may now write the pointwise p-Hardy inequality (1) as

(4) |u(@)| < Cda(x)Magg (r) o (IVul) (2),

where 1 < g < p.
The A-Hausdorff content of a set A C R” is

HA(A) = inf { gr} A C G B(zi,ri)},

i=1
where z; € A and r; > 0. The Hausdorfl dimension of A C R" is then
dimy(A) = inf {\ > 0 : HL,(A) = 0}.

We say that the boundary of a domain 2 C R"™ is A-thick, if there exists a
constant C' > 0 such that

H, (B(w,r)NoQ) > cr

for all w € 02 and 0 < r < diam(f2). It is clear that A-thickness of OS2
implies that condition (3) holds in ; the converse however is not true, see
Section 4 for an example.

Let 2 C R™ be a domain. The p-capacity of a compact set £ C Q (relative
to ) is defined as

cap,(E,Q) = inf {/ |Vu|Pdx :uw e C5°(2), w>1on E} :
Q

A closed set E C R" is said to be uniformly p-fat if there exists a constant
C > 0 such that

cap, (E N B(xz,r), B(x,2r)) > Ccap, (B(z,r), B(xz,2r))
for all x € E and r > 0. Note that for each ball B(z,r) C R"™ we have

cap,(B(z,r), B(x,2r)) = C(n,p)r"P. For this and other basic properties
of the p-capacity we refer to [4].
We record the following useful lemma between Hausdorff content and

p-capacity; for a proof, see e.g. [5, Thm. 5.9].
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Lemma 2. Let E C B(z,r) C R" be a compact set such that
HA(E) > Cyr
for some A >n —p and Cy > 0. Then
cap, (E N B(x,r), B(x,2r)) > Cr"7P,
where C' = C(Cy,n,p) > 0.

3. PROOF OF THEOREM 1

The part (a)==(b) of Theorem 1 is contained in [2, Thm. 2]; the proof
of this part relies on the self-improving property of p-fatness, due to Lewis
[8, Thm. 1]. Let us now prove the implications (b)=—-(¢) and (c)=(a) to
obtain the equivalence of the conditions in the theorem.

Proof of (b)=(c). Let @ C R" and 1 < p < co. We assume that condition
(3) fails for every n —p < A < n, and show that then also the pointwise
p-Hardy inequality fails in Q. To this end, let 1 < ¢ < p and choose A =
n—q>n—p. It is evident that (3) is equivalent to the condition that there
exists some C; > 0 such that

(5) HO, (B(z,3da(x)) N0Q) > Cidg(z)* for every z € Q.

Since (5) now fails for the chosen )\, there exist, for each k£ € N, a point
xy, € € such that

HA(E) < k7R,

where we denote Ry = dg(xy) and Ey = B(xy, 3R;,) N 0. Using this, and
the fact that Ej is compact, we find, for a fixed k¥ € N, a finite covering
{Bi}fil, B; = B(wj,r;) with w; € 9Q and r; > 0, such that Ej, C Ufil B;
and N ) < EIR).

Define a function ¢y by
vr(x) = min {1, ri_ld(x,2Bi)}

1<i<N

and let ¢y, € C3°(B(zk, 3Ry)) be such that 0 < ¢, <1 and ¢y (x) = 1 for all
x € B(xg,2Ry). Then up = vy prX,, is a Lipschitz function with compact
support in . Since r; < k~YARy, for all 1 < i < N, we have that

(6) d(zy,3B;) > TRy, >

for all 1 <4 < N if k > 4%, and hence uy(z;) = 1 for these k.
Next, denote A; = 3B, \ 2B;. Then spt(|Vug|) N B(zy, 2Ry) € UY, A;
and we have in fact for a.e. y € B(xy, 2Ry,) that

N
(7) Vur()|? <> r %, ()
=1

Let us now estimate the right-hand side of the pointwise p-Hardy inequality
(4) at . Since spt(|Vug|) N B(zk, 2Ry,) € UY, 3B;, it follows from (6) that



POINTWISE HARDY INEQUALITIES AND UNIFORMLY FAT SETS 5

we must have r > %Rk in order to obtain something positive when estimating
the maximal function of |Vuyg| at x. Hence, using (7), we calculate

Mg, (IVug|?) (zx) <C  sup (7"_” /B( )|Vuk(y)|qdy>
Tk,

1R<r<2R;

< CR: / Vur()|Tdy < Cdo ()" Z]A]r_q
B(zk,2Ry,)

< Cdg(xg)” ZT” 1,
Recall that A =n — ¢ > n — p and that Zl (7 < k7o (zr). Thus

do ()" Mar, (|Vug|?) (zk) < Cda(2k)? ”Zr 4
=1

< Cdg(xp) ke Yo (zp) < =

= Q

and so the right-hand side of the inequality (4) for uj at xj tends to zero
as k — oo. However, ug(zy) = 1 for large k, so the pointwise p-Hardy
inequality fails to hold with a uniform constant for all compactly supported
Lipschitz functions in §2. By a standard approximation argument it is then
clear that Q does not admit the pointwise p-Hardy inequality. (]

Proof of (c)=(a). There exists now n —p < A < n so that § satisfies the
density condition (3) with the exponent A\ and with a constant C; > 0. To
prove that Q¢ is uniformly p-fat, it is in fact enough to show that there exists
a constant C' = C(C1,n, A) > 0 such that

(8) HA (B(w, ) N Q°) > Cr

for all w € 99 and r > 0. Indeed, assume that (8) holds for all w € 02
and let z € Q° r > 0. If B(z,r/2) C QF, then it easily follows (compare
to calculations in (10) below) that (8) holds also for the ball B(z,r), with
a constant depending only on n. On the other hand, if B(z,7/2) N Q # 0,
there is w € 99 such that B(w,r/2) C B(z,r), and thus (8) for B(w,r/2)
yields (8) for B(z,r), but now with a constant depending on C' and X\. We
conclude, by Lemma 2, that (8) for all w € 9€ implies the uniform p-fatness
of Q°.
Let then w € 992 and r > 0. To prove that (8) holds, first assume that

(9) |B(w,r) N Q) > 1 |Bw,7)|.

Let {B;}°,, Bi = B(z,r;) for z; € Q¢ and 0 < r; < r, be a covering of
B(w,r) N Q¢ Then we have that

(1) =) =2 ()

and thus, by the definition of the A-Hausdorff content, we see that (8) holds
with constant 1/4 under assumption (9).
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We may hence assume that [B(w,r)NQ| > 2 |B(w,r)|. Let then {B;}3°,
B; = B(wj,r;) for w; € 9Q and 0 < r; < r, be a covering of B(w,r)NIN. If

(11) YoilBil = 127" B(w, )],

it follows as in (10) that Y, 73 > C(n)r.
If (11) does not hold, i.e. we have that

(12) >2ilBil < 127" B(w, ),

we proceed as follows: Let # = (3/4)"/"r and denote a(n) = 1 — (3/4)Y/™,

so that r — 7 = a(n)r. If there exists x € B(w,7) N Q such that do(z) >

%a(n)r, then, by the continuity of the distance function, there exists also

2’ € B(w,#)NQ such that do(z') = Sa(n)r. Thus B(z',2dq(z')) C B(w,r),
and we obtain, by condition (3), that

Hg‘o (B(w,r) N 6Q) > ’Héo (B(x', 2do(2")) N 89) > C’ldQ(x’)/\ > Cr?,
where C' = C(C1,n,\) > 0, and so (8) holds. We may hence assume that
(13) do(z) < $a(n)r for every x € B(w,#) N LY,

so that in particular B(z,2dq(z)) C B(w,r) for every z € B(w,7) N Q.
Let us denote A = (B(w,7) N Q) \ J; 2B;. We then have, by (12) and the
choice of 7, that

[Al = [B(w, 7) N Qf = 322" | Bil
> |B(w,r) N Q| = [B(w,r) \ B(w,7)| - 2"27"|B(w,r)]
1B(w,r)| = 7 B(w,r)| = |B(w,7)| > |B(w,r)|.

v

Since A C J, 4 B(z,6dqa(x)), we obtain, by a standard covering lemma (cf.
[10]), a countable set of points zy € A such that the corresponding balls
6B, where By, = B(xy,do(zr)), are pairwise disjoint and A C |J,, 30By.
Hence

(14) HB(w,r)| < A < [30Bx| < 30™ ) | Byl.
k k

Since the radius of By, is do(x;) < r for all k, and A < n, it now follows
from (14), similarly to (10), that

(15) C(n)r* < da(zi).
k

When i € N, we let #; denote the number of the balls 2B, such that
2B;, N B; # (. But if 2B, N B; # 0, then dg(xy) > r; (since zy, ¢ 2B;),
and thus B; C 6Bk. Since the balls GBk are pairwise disjoint, it follows that
#, <1 for all i € N. Also, we have by (13) that 2B, C B(w,r), and so

(16) MY (2BrnoQ) < > )
Bmzék;é@
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for each k. Combining (15), (3), (16), and the fact that #; < 1, we finally
obtain

r <O do(zp)* < C Y HA (2B, N 09)

k k
<CY N O #irr<Cdor,

k Bi023k7£®

where C' = C(Cy,n) > 0. Hence, by taking the infimum of the sums >, 73
over all the coverings {B;}; of B(w,r) N 0f, we see that equation (8) holds
in this case as well. This also finishes the proof of Theorem 1. O

Remark. From the proof of the part (¢)==(a) of the theorem we obtain,
with some minor modifications, the following result: Assume that a domain
2 C R" satisfies the inner boundary density condition (3) with exponent A
and with a constant C; > 0, and let 0 < £ < 1. Then, for each ball B(w,r),
where w € 002 and r > 0, we have

|B(w,r) NQ°| > e|B(w,r)| or Hi(B(w,r)NoQ) > Cr?,

where C' = C(C1,n, A\, &) > 0. In particular, if there exists a constant Cy > 0
such that |B(w,r) N Q| > Ca|B(w,r)| for all w € 9 and 0 < r < diam(€2),
we conclude that 9 is A-thick, with a constant C' = C(Cy, Ca,n, ) > 0.

4. AN EXAMPLE

We give a brief example in which we show that the A-thickness of the
boundary of 2 C R”, for some A > n — p, is not necessary for € to admit
the pointwise p-Hardy inequality, or equivalently, for €2 to satisfy the inner
boundary density condition (3) with the exponent \.

Let n,k € N be suchthat n >3 and 1 <k <n—2. Let also ™ > 1. We
consider the following domain 2 C R™:

n
Q. = {(azl,...,xn) ER":0< z1,...,25 < 1, Z "k < :L“lT("_k)}
i=k+1

Let 0 < 7 < 1 and denote B, = B(0,r), Ey, = 02N B,. Then Ej, can be
covered by approximately r(1=7)* balls of radius ™. Now, if A > k, we have
that

,r,f)\ Hc))\o(Ekﬂ“) < Crf)\r(lf‘r)krw\ < CT(Tfl)()\fk) —0

asr — 0, since (7 —1)(A—k) > 0. This means that 92 is not A-thick for any
A > k. Nevertheless, it is obvious that the inner boundary density condition
(3), with A = n — 1, holds for all z € Q, and so Qj admits the pointwise
p-Hardy inequality for all p > 1, especially for p =n — k.
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