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Abstract

We study conformal metrics on the unit ball of Euclidean space.
We prove an extension of a theorem originally due to Gerasch on the
broadly accessibility of the boundary points of a domain quasicon-
formally equivalent to a ball. We also show that our result is close
to optimal. Our abstract approach leads to new results also for the
boundary behavior of (quasi)conformal mappings.

1 Introduction

We continue the study of conformal metrics on the unit ball Bn of Euclidean
space. Thus, given a continuous density ρ : Bn → R+, we define a conformal
metric dρ by setting

lengthρ(γ) =
∫

γ
ρ(z)|dz|

for a curve γ in Bn, and

dρ(x, y) = inf
γ

lengthρ(γ) for x, y ∈ Bn,

where the infimum is taken over all curves joining x and y in Bn. We also
define a measure µρ by setting

µρ(E) =
∫

E
ρndmn for a Borel set E ⊂ Bn,

where mn denotes the n-dimensional Lebesgue measure.
Further, we assume that the density ρ satisfies a Harnack inequality, i.e.,

there exists a constant A ≥ 1 so that

1
A
≤ ρ(x)
ρ(y)

≤ A

whenever x, y ∈ B(z, 1
2(1− |z|)) for some z ∈ Bn. We also assume that the

density ρ satisfies a volume growth condition: there exists a constant B > 0
so that

µρ(Bρ(x, r)) ≤ Brn for all x ∈ Bn, r > 0.
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Here Bρ(x, r) denotes an open ball with center x and radius r in the metric
dρ. The motivation for conformal metrics arises primarily from the theory
of quasiconformal mappings. Recall that the average derivative af of a
quasiconformal mapping f is a prime example of a density satisfying the
above conditions, see [2] for more information and examples.

In this paper we study the accessibility of the boundary points ξ ∈ ∂Bn

in the dρ-metric. Recall that a boundary point y of a domain Ω ⊂ Rn is
called broadly accessible, if there is a sequence of balls in Ω, converging to y,
so that the center of each ball can be joined to y by an arc in Ω whose length
is only slightly larger than the radius of the ball. Gerasch [4] proved that for
almost every point ξ ∈ ∂B2 the radial limit f(ξ) under a conformal mapping
f : B2 → f(B2) is a broadly accessible boundary point of the domain f(B2).
Martio and Näkki [10] then established the same result for quasiconformal
mappings f : Bn → f(Bn), n ≥ 2. This result was further extended by
Koskela and Rohde [8, Theorem 4.1], who considered exceptional sets of
smaller size. The next theorem, which is a combination of Theorem 5.2
and Lemma 7.5 in [2], can be considered as a generalization of the results
mentioned above to the setting of conformal metrics.

Theorem A ([2]). Let 0 < α ≤ n − 1. Then there exists a set E ⊂ ∂Bn

with Hα(E) = 0 such that, for all ξ ∈ ∂Bn \E, there is a sequence of points
(xk) → ξ (in the euclidean sense) with

ξ ∈ Bρ(xk, λrxk
) (1.1)

for all k ∈ N. Here λ = λ(α, n) →∞ as α→ 0.

Here we write rz = ρ(z)(1− |z|); recall that this quantity is comparable
to the ρ-distance of z to the boundary, see [2, Proposition 6.2]. We shall
extend Theorem A by further reducing the size of the exceptional set E.
Note that if the exceptional set E has Hausdorff dimension 0, then the
assertion of Theorem A can fail with any constant λ as demonstrated by our
examples in Section 3. Nevertheless, we obtain the following concrete results
which contain new geometric information even on the boundary behavior of
(quasi)conformal mappings.

Theorem 1.1. Let s > 1 and let

ϕ(t) = exp
(
− (log

1
t
)1/s

)
.

Then there is a set E ⊂ ∂Bn with Hϕ(E) = 0 such that, for all ξ ∈ ∂Bn \E,
there is a sequence of points (xk) → ξ (in the euclidean sense) so that

ξ ∈ Bρ

(
xk, Crxk

(log
1
rxk

)s−1
)

(1.2)

for all k ∈ N. Here C = C(A,n, s) > 0. Moreover, the exponent s − 1 in
(1.2) is the best possible.
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As another concrete consequence of our main result below we present the
next theorem in which we consider exceptional sets of even smaller scale.

Theorem 1.2. Let s > n− 1 and let

ϕ(t) =
1

(log 1
t )

s
.

Then there is a set E ⊂ ∂Bn with Hϕ(E) = 0 such that, for all ξ ∈ ∂Bn \E,
there is a sequence of points (xk) → ξ (in the euclidean sense) so that

ξ ∈ Bρ(xk, Cr
β
xk

) (1.3)

for all k ∈ N. Here C = C(A,n, s) > 0 and β ≤ s−(n−1)
s+1 .

This result is optimal at least asymptotically: if s ≤ n − 1, then the
assertion of Theorem 1.2 can fail with any positive exponent β. Moreover,
in the case n = 2 and s > 1, the assertion of Theorem 1.2 can fail if
β > (s− 1)/s. See Section 3 for a more detailed discussion on the sharpness
of theorems 1.1 and 1.2.

In this paper we use the generalized Hausdorff ϕ-measure, denoted by
Hϕ, to estimate the size of sets. Recall that this measure is defined by

Hϕ(E) = lim
r→0

(
inf

{∑
ϕ(diamBi) : E ⊂

⋃
Bi, diam(Bi) ≤ r

})
,

where the dimension gauge function ϕ is required to be continuous and
increasing with ϕ(0) = 0. In particular, if ϕ(t) = tα with some α > 0, then
Hϕ is the usual α-dimensional Hausdorff measure denoted also by Hα. See
[13] or [3] for more information on the generalized Hausdorff measure.

Throughout the paper we will assume that the gauge function ϕ is a
doubling weight function satisfying

∫

0

ϕ(t)1/(n−1)

t
dt <∞. (1.4)

This condition turns out to be the critical one for the results of this paper.
This is related to the fact that if Hϕ(E) = 0 with a dimension gauge ϕ
failing to satisfy (1.4), then E has zero conformal (n-)capacity, see [1].

The theorems 1.1 and 1.2 are consequences of our more general main
theorem formulated below (Theorem 1.4). For the proof of this theorem, we
will need the next lemma, which is perhaps of some interest on its own.

Lemma 1.3. Let ϕ be a doubling weight function satisfying (1.4) and let ψ
be a function satisfying

(∫ r

0

ϕ(s)1/(n−1)

s
ds

)n−1
n = O(ψ(r)) as r → 0. (1.5)
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Then there is a set E ⊂ ∂Bn with Hϕ(E) = 0 such that, for all ξ ∈ ∂Bn \E,
there exists a sequence (tk) → 1 so that

lengthρ([tkξ, ξ)) ≤ ψ(1− tk) (1.6)

for all k ∈ N.

In the following we shall assume in addition to (1.5) that, for all suf-
ficiently small t > 0, ψ(t) ≥ t is an increasing and differentiable weight
function so that, for u = ψ−1,

u(t)
u′(t)

is increasing (1.7)

and
log

1
u(t)

≤ c log
1

u(2t)
(1.8)

with some constant c > 0 depending only on ϕ. Note that these qualitative
assumptions are harmless in the sense that in all interesting situations we
can choose ψ so that these conditions are satisfied. See for example the
proofs of the theorems 1.1 and 1.2 below. Our main result is the following.

Theorem 1.4. Let ϕ be a doubling weight function satisfying (1.4). Let ψ
be a weight function satisfying (1.5) in addition to the technical assumptions
described above, and denote u = ψ−1. Then there is a set E ⊂ ∂Bn with
Hϕ(E) = 0 such that, for all ξ ∈ ∂Bn \ E, there exists a sequence of points
(xk) → ξ (in the euclidean sense) so that

ξ ∈ Bρ(xk, C1λ(rxk
))

for all k ∈ N. Here λ is the inverse function of C2u(t)/u′(t) and C1, C2 > 0
depend only on the given data A,n and ϕ.

Observe that Theorem 1.4 is sharp at least in the following sense: if the
dimension gauge ϕ fails to satisfy (1.4), then there may exist a set E ⊂ ∂Bn

so that Hϕ(E) > 0 and lengthρ([0, ξ)) = ∞ for all ξ ∈ E, see [6, Section 3]
for an example of such a situation in the plane. This implies by the Gehring–
Hayman theorem [2, Theorem 3.1] that the condition (1.4) is crucial for any
result of this kind to hold: if it fails, then the assertion of Theorem 1.4 can
fail with any (finite) function λ. Consequently, the condition s > n − 1 in
Theorem 1.2 is also critical in this sense.

Let us also point out that if ϕ(t) = tα with 0 < α ≤ n− 1, then we can
take λ to be a linear function and thus we recover Theorem A.

It remains open, if also the estimate for λ in Theorem 1.4 is sharp in all
dimensions.
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2 Proofs of the results

The results of this paper can not be obtained simply by refining the classical
proofs. Namely, by extending [2, Theorem 5.2] one can only obtain

ρ(tξ) = o
(ϕ(1− t)1/n

(1− t)

)
as t→ 1,

for Hϕ-a.e. ξ ∈ ∂Bn, which implies a considerably weaker integrability of ρ
on the radii than Lemma 1.3.

Instead, our proof of Lemma 1.3 follows the ideas of [6] and [12] with
some modifications. In the proof of Theorem 1.4 we will apply an efficient
method of counting Whitney cubes in an averaged sense. A similar technique
was used also in [11] as a tool for establishing a sharp dimension estimate
for the boundaries of generalized Hölder domains and John domains.

Proof of Lemma 1.3. Let W be a Whitney decomposition of Bn, i.e. W
is a collection of closed dyadic cubes Q ⊂ Bn with pairwise disjoint interiors
such that ⋃

Q∈W
Q = Bn

and that diam(Q) ≤ dist(Q, ∂Bn) ≤ 4 diam(Q). See [14] for the existence
of such a decomposition. Further, for a point ξ ∈ ∂Bn and a number i ∈ N
let Wi(ξ) consist of all the cubes Q ∈ W which intersect the radial segment
[(1− 2−i)ξ, ξ). Finally, denote by Wi the ith generation of Whitney cubes,
i.e. all the cubes Q ∈ W with side length 2−i.

Let us write E∞ = {ξ ∈ ∂Bn : lengthρ([0, ξ)) = ∞}. Then capn(E∞) = 0
and, moreover, Hϕ(E∞) = 0 because of the condition (1.4), see e.g. [12,
Remark 1.3].

For j, k ∈ N define Gj = {ξ ∈ ∂Bn : lengthρ([0, ξ)) ≤ j} and

F k
j =

⋃

ξ∈Gj

⋃
{Q ∈ W0(ξ) : diam(Q) ≤ 2−k}

and write Fj = F 0
j . Then Fj is open and diamρ(Fj) < ∞ by the Harnack

inequality. Thus also µρ(Fj) < ∞ by the volume growth condition and,
moreover,

µρ(F k
j ) → 0 as k →∞. (2.1)

Let E consist of all the points ξ ∈ ∂Bn for which the assertion (1.6) fails
and write Ej = E ∩Gj . Thus

Ej = {ξ ∈ Gj : lengthρ([tξ, ξ)) > ψ(1− t) for all t ≥ tξ},

where tξ < 1 depends on the point ξ. Then define for each k ∈ N a set

Ek
j = {ξ ∈ Gj : lengthρ([tξ, ξ)) > ψ(1− t) for all t ≥ 1− 2−k}.
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Observe that E1
j ⊂ E2

j ⊂ E3
j ⊂ ..., and Ej =

⋃
k E

k
j . Also note that

E = E∞ ∪
⋃

j Ej and hence, by the subadditivity of the Hausdorff measure,
it suffices to show that Hϕ(Ej) = 0 for all j ∈ N in order to prove the
theorem.

Fix j ∈ N. Let us assume towards a contradiction that Hϕ(Ej) > 0.
Then, by the subadditivity of the Hausdorff measure, Hϕ(Ek0

j ) > 0 for
some k0 ∈ N. Thus Hϕ(Ek

j ) > 0 for all k ≥ k0 since Ek0
j ⊂ Ek

j . Hence, by
Frostman’s lemma [9, Theorem 8.8], for each k ≥ k0 there exists a Radon
measure ν supported in Ek

j so that ν(B(x, r)) ≤ ϕ(r) for all x ∈ ∂Bn and
r > 0 and that

ν(Ek
j ) ≥ CHϕ

∞(Ek
j ) ≥ CHϕ

∞(Ek0
j ) > 0. (2.2)

Here Hϕ∞(Ek
j ) = inf{∑i ϕ(diam(Bi)) : Ek

j ⊂
⋃

iBi} is the usual Hausdorff
ϕ-content of Ek

j and the constant C > 0 depends only on n.
Let us define uj(x) = ρ(x)n for x ∈ Fj and uj(x) = 0 elsewhere. Since

lengthρ([(1−2−k)ξ, ξ)) > ψ(2−k) for all ξ ∈ Ek
j , we deduce by the inequalities

of Harnack and Hölder that

ν(Ek
j )ψ(2−k) <

∫

∂Bn

lengthρ([(1− 2−k)x, x)) dνx

≤
∫

∂Bn

∑

Q∈Wk(x)

diamρ(Q) dνx

≤
∑

{Q∈Wi: i≥k}
ν(S(Q)) diamρ(Q)

≤ c0
∑

{Q∈Wi: i≥k}
ν(S(Q))

(∫

Q
ρndm

)1/n

≤ c0

( ∑

{Q∈Wi: i≥k}

∫

Q
ujdm

)1/n( ∑

{Q∈Wi: i≥k}
ν(S(Q))

n
n−1

)n−1
n

≤ c0µρ(F k
j )1/n

(∑

i≥k

∑

Q∈Wi

ν(S(Q))
n

n−1

)n−1
n
. (2.3)

Here and throughout the proof we denote by ci positive constants depending
at most on A,n and the doubling constant of ϕ. Also, we denote by S(Q)
the “shadow” of a cube Q ∈ W, i.e. S(Q) consists of all points ξ ∈ ∂Bn for
which the radius [0, ξ) intersects the cube Q.

On the other hand, we have that
(∑

i≥k

∑

Q∈Wi

ν(S(Q))
n

n−1

)n−1
n ≤

(∑

i≥k

max
Q∈Wi

ν(S(Q))
1

n−1

∑

Q∈Wi

ν(S(Q))
)n−1

n

≤ c1

( ∑

i≥k

max
Q∈Wi

ν(S(Q))
1

n−1 ν(Ek
j )

)n−1
n
. (2.4)
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Moreover, since ν(S(Q)) ≤ ϕ(diam(S(Q))) and diam(S(Q)) ≤ C2−i for each
Q ∈ Wi with some constant C > 0 depending only on n, it follows that

ν(S(Q)) ≤ ϕ(C2−i) ≤ c2ϕ(2−i)

for all cubes Q ∈ Wi, where the last inequality follows from the doubling
condition of ϕ. By combining this with (2.3) and (2.4) we obtain

ν(Ek
j )1/nψ(2−k) ≤ c3µρ(F k

j )1/n
(∑

i≥k

ϕ(2−i)
1

n−1

)n−1
n

≤ c4µρ(F k
j )1/n

(∫ 2−k

0

ϕ(s)
1

n−1

s
ds

)n−1
n
. (2.5)

We now conclude by the estimates (2.5), (2.1) and the assumption (1.5)
that ν(Ek

j ) tends to zero as k tends to infinity, but this is a contradiction
with (2.2). It follows that Hϕ(Ej) = 0 and thus also Hϕ(E) = 0 by the
subadditivity of the Hausdorff measure.

Proof of Theorem 1.4. Let W be a Whitney decomposition of Bn. Let
E ⊂ ∂Bn be as in Lemma 1.3 and let ξ ∈ ∂Bn \ E. For an integer i ∈ N
denote by γi(ξ) the line segment [aξ, bξ), where lengthρ([aξ, ξ)) = 2−i+1 and
lengthρ([bξ, ξ)) = 2−i. Then define χi(ξ) = 1 if there exist at most

2−iu′(2−i)
c1u(2−i)

Whitney cubes Q ∈ W intersecting the line segment γi(ξ), and χi(ξ) = 0
otherwise.

We show first that with a small enough constant c1 > 0 there is an
increasing sequence of integers (ik) →∞ such that χik(ξ) = 1 for all k ∈ N.
To that end, suppose that this assertion fails. Thus χi(ξ) = 0 for all i ≥ j0
with some integer j0.

Recall that the quasihyperbolic distance kBn(x0, x1) between two points
x0, x1 ∈ Bn is defined by

inf
γ

∫

γ

ds

d(x, ∂Bn)
,

where the infimum is taken over all rectifiable curves joining x0 to x1 in Bn.
Notice that, for x0 = 0 and x1 = tξ sufficiently close to the boundary, the
quasihyperbolic distance kBn(0, tξ) = log 1

1−t is comparable to the number
of Whitney cubes intersecting the line segment [0, tξ]. Hence, for sufficiently
large j ∈ N and t ∈ γj(ξ) we have that

log
1

1− t
≥ C

j−1∑

i=j0

(2−iu′(2−i)
c1u(2−i)

− 1
)
. (2.6)
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On the other hand, by Lemma 1.3 we know that there is a sequence
(tk) → 1 so that

lengthρ([tkξ, ξ)) ≤ ψ(1− tk)

for all k ∈ N. This implies that

2−j ≤ ψ(1− tk)

or equivalently
u(2−j) ≤ 1− tk (2.7)

for tk ∈ γj(ξ). By combining (2.6) and (2.7) we obtain the following chain
of inequalities for an arbitrarily large integer j:

log
1

u(2−j)
≥ C

j−1∑

i=j0

(2−iu′(2−i)
c1u(2−i)

− 1
)

≥ C

c1

∫ 2−j0

2−j+1

u′(t)
u(t)

dt− j

≥ C

c1

(
log

1
u(2−j+1)

− log
1

u(2−j0)

)
− j. (2.8)

But since ϕ(t) ≥ t for small t, it follows that

j ≤ C log
1

u(2−j)

for sufficiently large j. Hence, by the assumption (1.8), the inequality (2.8)
is a contradiction when we choose j large enough and the constant c1 > 0
small enough depending on ϕ and n. Thus we conclude that there is an
increasing sequence of integers (ik) →∞ so that χik(ξ) = 1 for all k ∈ N.

Let us then consider a line segment γk with χk(ξ) = 1. We deduce that
since lengthρ(γk(ξ)) = 2−k and there are no more than 2−ku′(2−k)

c1u(2−k)
Whit-

ney cubes intersecting the segment γk(ξ), some of these cubes must have a
large ρ-diameter. More precisely, denote by Wk(ξ) all the Whitney cubes
intersecting γk(ξ) and observe that if all the cubes Q ∈ Wk(ξ) satisfy

diamρ(Q) <
c1u(2−k)
u′(2−k)

,

then

lengthρ(γk(ξ)) ≤
∑

Q∈Wk(ξ)

diamρ(Q) <
2−ku′(2−k)
c1u(2−k)

· c1u(2
−k)

u′(2−k)
= 2−k,

which is a contradiction. Therefore there is at least one cube Qk ∈ Wk(ξ)
satisfying

diamρ(Qk) ≥ c1u(2−k)
u′(2−k)

.
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By the Harnack inequality we know that diamρ(Qk) is comparable to
rxk

, where xk is the center of Qk. Thus

rxk
≥ c2u(2−k)

u′(2−k)

with c2 > 0 depending only on A,n and ϕ. Hence by choosing C2 = c2 we
obtain

λ(rxk
) ≥ 2−k,

because λ is increasing by (1.7). It follows from the Harnack inequality that

ξ ∈ Bρ(xk, C1λ(rxk
))

when C1 > 0 is chosen large enough depending only on A and n. Clearly
(xk) → ξ in the euclidean sense and thus the proof is complete.

Remark 2.1. Note that the only place in the proofs, where we used the
volume growth condition, was in the beginning of the proof of Lemma 1.3,
where we deduced that Hϕ(E∞) = 0 and µρ(Fj) < ∞. Very recently it was
shown that these are true even with a relaxed volume growth assumption
[12]. Hence, by applying the results of [12], one can show that Lemma 1.3
and Theorem 1.4 also hold with a weaker volume growth condition depending
on the dimension gauge ϕ.

Proof of Theorem 1.1. For the convenience of the reader we shall write
the detailed calculations. Here we denote by ci positive constants depending
at most on A,n and s. Notice that ϕ satisfies the condition (1.4) and we
may take

ψ(t) = exp
(
− 1

2n
(log

1
t
)1/s

)

for all sufficiently small t > 0, whence ψ is increasing and differentiable for
all small t and it also satisfies the condition (1.5). Then we have that

u(t) = ψ−1(t) = exp
(
− c1(log

1
t
)s

)

and
u(t)
u′(t)

= c2
t

(log 1
t )

s−1
,

and thus the conditions (1.7) and (1.8) are also satisfied. The inverse of
C2u(t)/u′(t) at r is at most

λ(r) = c3r(log
1
r
)s−1

for all sufficiently small r > 0. The claim now follows by Theorem 1.4. The
second part of the theorem (the sharpness of the exponent s − 1) follows
from Theorem 3.1 below.
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Proof of Corollary 1.2. Notice that we may take

ψ(t) =
( ∫ t

0

ϕ(r)1/(n−1)

r
dr

)n−1
n

=
( ∫ t

0

1

r(log 1
r )

s
n−1

dr
)n−1

n

= c1(log
1
t
)−

s−(n−1)
n

for all sufficiently small t > 0, whence ψ is increasing and differentiable for
all small t and it obviously satisfies the condition (1.5). Moreover,

u(t) = ψ−1(t) = exp
(
− c2t

− n
s−(n−1)

)

and
u(t)
u′(t)

= c3t
s+1

s−(n−1) ,

and thus the conditions (1.7) and (1.8) are satisfied. Hence, by Theorem
1.4, we can take λ to be the inverse of C2u(t)/u′(t) or

λ(r) = c4r
s−(n−1)

s+1 .

3 Sharpness of the results

In this section we show the essential sharpness of the theorems 1.1 and 1.2
in the plane. Recall that if f : B2 → f(B2) = Ω ⊂ R2 is a conformal
mapping, then ρ(x) = |f ′(x)| is a continuous density satisfying the Harnack
inequality and the volume growth condition, see [2, p. 639]. In this case
dρ corresponds to the internal Euclidean metric in the image domain Ω.
Moreover, the quantity rz = ρ(z)(1 − |z|) for a point z ∈ B2 is comparable
to dist(f(z), ∂Ω) by an absolute constant. Hence it suffices for us to give an
example of a conformal mapping f , which maps a set E ⊂ ∂B2 of positive
ϕ-measure to a “sufficiently inaccessible” set on the boundary of Ω.

More precisely, we prove the following theorems.

Theorem 3.1. Let s > 1 and let

ϕ(t) = exp
(
− (log

1
t
)1/s

)
.

There exists a set E ⊂ ∂B2 and a conformal mapping f : B2 → Ω ⊂ R2 so
that Hϕ(E) > 0 and for any β < s−1 and C > 0 we have for all ξ ∈ E that

f(ξ) /∈ B
(
y, C dist(y, ∂Ω)(log

1
dist(y, ∂Ω)

)β
)

for all y ∈ Ω sufficiently close to the radial limit f(ξ) ∈ ∂Ω.
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Theorem 3.2. Let s > 1 and let

ϕ(t) =
1

(log 1
t )

s
.

There exists a set E ⊂ ∂B2 and a conformal mapping f : B2 → Ω ⊂ R2 so
that Hϕ(E) > 0 and for any β > s−1

s and C > 0 we have for all ξ ∈ E that

f(ξ) /∈ B(y, C dist(y, ∂Ω)β) (3.1)

for all y ∈ Ω sufficiently close to the radial limit f(ξ) ∈ ∂Ω.

Proof of Theorem 3.1. Let us first construct a simply connected domain
Ω ⊂ R2 in the following way. Let c < 1 and set α(0) = c

2 and

α(i) = min{cis−12−i,
c

2
}

for i ∈ N. Starting with the open unit square Ω0 = (0, 1)2, remove a closed
vertical line segment T01 of length α(0) standing at the point (2−1, 0). We
set Ω1 = Ω0 \T01. We then iterate this process: given a domain Ωi for i ∈ N,
remove 2i closed vertical line segments Tik, k = 1, ..., 2i, of length α(i) so
that Tik stands at the point (2−i−1 + (k − 1)2−i, 0). We define

Ωi+1 = Ωi \
2i⋃

k=1

Tik

and

Ω =
∞⋂

i=1

Ωi.

Then Ω is a simply connected domain and there exists a conformal mapping
f : B2 → Ω. See the picture below for an illustration of the domain Ω.

Ω
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Let β < s− 1, C > 0 and choose x0 = (1
2 ,

3
4). Observe that every point

x ∈ (0, 1)×{0} belongs to the boundary of Ω and also the internal distance
between x and x0 is finite. Moreover,

x /∈ B
(
y, C dist(y, ∂Ω)(log

1
dist(y, ∂Ω)

)β
)

for all y ∈ Ω sufficiently close to x. Thus it only remains to estimate the
size of the set E ⊂ ∂B2 of points ξ for which the radial limit f(ξ) belongs
to the segment (0, 1)× {0}.

Denote by kΩ the quasihyperbolic metric in Ω. A straightforward calcu-
lation shows that Ω satisfies the growth condition

kΩ(x, x0) ≤ C1

(
log

dist(x0, ∂Ω)
dist(x, ∂Ω)

)s
(3.2)

for all x ∈ Ω sufficiently close to the boundary, where C1 depends only
on c and s. In particular, we can make C1 arbitrarily small by choosing
c small enough in the construction of Ω. Now, by [5, Theorem 1.2], we
know that f in uniformly continuous with a modulus of continuity ψ(t) =
C2 exp(−C3(log 1

t )
1/s). Here C3 = C4C

−1/s
1 , and hence we can take C3 = 1

by choosing c small enough in the construction of Ω. Thus we have that

|f(x)− f(y)| ≤ C5 exp
(
− (log

1
|x− y|)

1/s
)

= C5ϕ(|x− y|) (3.3)

for all x, y ∈ B2 sufficiently close to each other.
Observe that since the internal diameter of Ω is finite, the radial limit

of f exists for all points ξ ∈ ∂B2. This follows from the Gehring–Hayman
theorem (cf. [2, Remark 4.5]). Let E consist of those points ξ ∈ ∂B2 for
which the radial limit f(ξ) belongs to the segment (0, 1)×{0}. Suppose that
Hϕ(E) = 0. Then for any ε > 0 there is a collection of balls Bi such that
E ⊂ ⋃

iBi and
∑

i ϕ(diam(Bi)) < ε/C5. But now the union
⋃

i f(Bi) covers
the segment (0, 1)×{0} and the diameter of f(Bi) is at most C5ϕ(diam(Bi))
by the inequality (3.3). Hence H1((0, 1) × {0}) ≤ ∑

iC5ϕ(diam(Bi)) < ε,
but this is a contradiction. It follows that Hϕ(E) > 0 and the proof is
complete.

Proof of Theorem 3.2. The proof is similar to the one of Theorem 3.1,
but the situation is more delicate and hence more sophisticated methods are
required. Namely, the modulus of continuity of f implied by [5, Theorem
1.2] is no longer good enough. Indeed, we must equip Ω with the internal
metric instead of the Euclidean metric and use [7, Theorem 1.1] in order to
obtain the asymptotically sharp estimate of Theorem 3.2.

In the construction of Ω we now choose p = s−1
s and

α(i) = min{c2−pi,
c

2
}
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for i ∈ N. Then we choose β > p. It follows that any f(ξ) on the line
segment (0, 1)× {0} satisfies (3.1) for all y ∈ Ω sufficiently close to f(ξ).

On the other hand, Ω now satisfies the growth condition

kΩ(x, x0) ≤ C1

(dist(x0, ∂Ω)
dist(x, ∂Ω)

)1−p

for all x ∈ Ω sufficiently close to the boundary with a constant C1 > 0
depending on c and s. By [7, Theorem 1.1] this implies that

δΩ(f(x), f(y)) ≤ C2

(
log

1
|x− y|

)− p
1−p = C2ϕ(|x− y|)p (3.4)

for all x, y ∈ B2 sufficiently close to each other. Here δΩ(f(x), f(y)) denotes
the internal distance of f(x) and f(y) in Ω, i.e. the infimum of the lengths
of curves in Ω joining f(x) and f(y). The assertion Hϕ(E) > 0 now follows
essentially as in the proof of Theorem 3.1 above. However, one needs to use
(3.4) to estimate the internal diameter of the sets f(Bi) in Ω. The claim
then follows by observing that the internal Hausdorff dimension (i.e. the
Hausdorff dimension with respect to the metric δΩ) of the set (0, 1)×{0} is
at least 1/p.

Acknowledgement. The author is grateful to Professor Pekka Koskela for
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