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Abstract

We prove that a quasilight mapping of finite distortion with locally
n-integrable weak partials and locally integrable inner distortion is
discrete and open.
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1 Introduction

We call f : Ω → R
n, n ≥ 2, a mapping of finite distortion if f ∈ W 1,1

loc (Ω, Rn),
Jf ∈ L1

loc(Ω), and if there exists a measurable function K : Ω → [1,∞) such
that

|Df(x)|n ≤ K(x)Jf (x) a.e. x ∈ Ω.

Here |Df(x)| and Jf (x) are the operator norm and the Jacobian determinant
of Df(x), respectively. If K ∈ L∞(Ω), f is called quasiregular, or a mapping
of bounded distortion.

For a mapping of finite distortion f , the outer and inner distortion func-
tions KO and KI are defined as

KO(x) =
|Df(x)|n

Jf (x)
and KI(x) =

|D♯f(x)|n

Jf (x)n−1
,

respectively, when 0 < |Df(x)|, Jf (x) < ∞, and KO(x) = KI(x) = 1
otherwise. Here D♯f(x) is the adjoint matrix of Df(x). Then we have

K
1/(n−1)
I (x) ≤ KO(x) ≤ Kn−1

I (x) a.e. x ∈ Ω.

In the late 1960s, Reshetnyak proved that a non-constant mapping of bounded
distortion is always continuous, open and discrete. This theorem initiated
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the by now well-established theory of mappings of bounded distortion, see
[13], [14], [6].

Recently, a lot of research has been done in order to find the sharp
assumptions of Reshetnyak’s theorem in the class of mappings of finite dis-
tortion, cf. [3], [4], [5], [7], [8], [11]. In this note we continue this line of
research by giving a new partial result towards a conjecture of Iwaniec and
Šverák [7].

Theorem 1.1. Suppose that f : Ω → R
n, n ≥ 2, is a quasilight mapping

of finite distortion satisfying f ∈ W 1,n
loc (Ω, Rn) and KI ∈ L1

loc(Ω). Then f is
discrete and open.

By definition, a mapping f is called quasilight if the components of
every point-inverse f−1(y) are compact. The Iwaniec-Šverák conjecture is
Theorem 1.1 without the quasilightness assumption. In [7] the conjecture
is proved for n = 2. An example of Ball [2] shows that the integrability
assumption on KI cannot be relaxed in Theorem 1.1.

There are other partial results concerning the Iwaniec-Šverák conjecture,
see [3], [4], [5] and [11]. The novelty in Theorem 1.1 lies in the fact that it
only deals with the inner distortion; the previous results are proved under
assumptions on the outer distortion function. In particular, Hencl and Malý
[5] proved Theorem 1.1 assuming KO ∈ Ln−1

loc (Ω), and Manfredi and Villamor
[11] without the quasilightness assumption when KO ∈ Lp

loc(Ω) for some
p > n − 1. It is clear that, when working with the inner distortion, one has
to find methods different from those used in the above-mentioned works. We
prove Theorem 1.1 by using the conformal modulus of (n− 1) -dimensional
sets, the coarea formula, and elementary topological considerations. Also,
we use several results concerning the theory of mappings of finite distortion.
Another natural intermediate step towards the Iwaniec-Šverák conjecture
would be the theorem of Manfredi and Villamor under the assumption KI ∈
Lp

loc(Ω) for some p > 1 (instead of the assumption on KO), which we cannot
prove. For closely related results on the global invertibility properties of
Sobolev mappings, see [2, Theorem 2] and [15, Corollary 2].

2 Preliminaries

In this section we recall some known properties of mappings satisfying the
assumptions of Theorem 1.1. First, let f : Ω → R

n be a continuous map,
and U ⊂⊂ Ω open. Then the (local) topological degree µ(y, f, U) is well-
defined for every y ∈ R

n \ f(∂U), see [14, I.4]. We will use the following
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facts:

(2.1) µ(y, f, U) = 0 if y /∈ f(U),

(2.2) µ(y, f, U) = µ(v, f, U)

whenever y and v lie in the same component of R
n \ f(∂U), and

(2.3) µ(y, f, U) =

k
∑

i=1

µ(y, f, Ui)

if both sides are well-defined, and if U1, . . . , Uk are disjoint open sets satis-
fying

U ∩ f−1(y) ⊂
k

⋃

i=1

Ui ⊂ U.

We call f sense-preserving if µ(y, f, U) > 0 whenever y ∈ f(U) \ f(∂U).
Notice that if f is sense-preserving, then

µ(y, f, U) ≤ µ(y, f, V )

whenever both sides are well-defined and U ⊂ V .
We say that f satisfies condition N if the n-measure |f(E)| = 0 whenever

|E| = 0. For mappings of finite distortion with locally n-integrable partials,
we have

Theorem 2.1 ([3, Theorem 1.3]). Suppose that f ∈ W 1,n
loc (Ω, Rn) is a

mapping of finite distortion. Then

1. f has a continuous representative,

2. f is sense-preserving,

3. f satisfies condition N ,

4. f is differentiable almost everywhere in Ω.

Part 3. implies that the change of variables formula holds for f . In fact,
if U ⊂⊂ Ω is open, we have

(2.4) N(y, f, U) = µ(y, f, U)

for almost every y ∈ R
n \ f(∂U), see [5, Proposition 2]. Here

N(y, f, U) = card{f−1(y) ∩ U}.

Since K
1/(n−1)
O ≤ KI almost everywhere, [9, Theorem 1.2] implies
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Theorem 2.2. Suppose that f is as in Theorem 1.1. Then Jf (x) > 0 for
almost every x ∈ Ω. In particular, if (Ai), Ai ⊂ Ω, is a decreasing sequence
of measurable sets so that |A1| < ∞ and ∩iAi ⊂ f−1(y) for some y ∈ R

n,
then

∫

Ai

KI → 0 as i → ∞.

The following characterization of quasilightness will be useful in the se-
quel.

Theorem 2.3 ([16, Theorem 3.1]). A mapping f : Ω → R
n is quasilight

if and only if every point x ∈ Ω has a neighborhood U ⊂⊂ Ω such that
f(x) /∈ f(∂U).

We call a mapping f light if every point-inverse f−1(y) is totally discon-
nected. Hence a light mapping is quasilight in particular.

Lemma 2.4 ([14, VI Lemma 5.6]). If f : Ω → R
n is continuous, light

and sense-preserving, then f is discrete and open.

By combining Theorem 2.1 and Lemma 2.4, we see that in order to prove
Theorem 1.1 it suffices to show that f is light. We conclude this section with
a simple lemma.

Lemma 2.5. Let f be as in Theorem 1.1. Suppose that V ⊂ R
n is homeo-

morphic to B(0, 1), and that ∅ 6= U ⊂⊂ Ω is a component of f−1(V ). Then
f(∂U) = ∂V , and f(U) = V .

Proof. First, f(∂U) ⊂ ∂V by the continuity of f . Hence, for every a ∈
f(U), µ(a, f, U) is well-defined, and strictly positive by Theorem 2.1. By
(2.1), there exists b ∈ R

n such that µ(b, f, U) = 0. Hence, by (2.2), f(∂U)
separates f(U) and b, and so f(∂U) = ∂V . Also, if there exists a point
p ∈ V \f(U), then µ(p, f, U) = 0. But p and f(U) lie in the same component
of R

n \ f(∂U) = R
n \ ∂V . Hence, by (2.2), µ(p, f, U) = µ(a, f, U) > 0

whenever a ∈ f(U). We conclude that f(U) = V .

3 Preimages of radial segments

From now on we assume that f is as in Theorem 1.1. Recall from Section
2 that in order to prove Theorem 1.1 it suffices to show that f is light.
We assume, in contrary, that there exists a point a ∈ R

n such that some
component of f−1(a) has positive H1-measure. Without loss of generality,
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a = 0 ∈ f(Ω), and E is a component of f−1(0) so that H1(E) > 0. Then
Theorem 1.1 is proved if we can show that H1(E) has to be zero.

We denote the projection (x1, . . . , xn) 7→ x1 by pr. By scaling and
rotating, if necessary, we may assume that H1(pr(E)) = 1. By Theorem
2.3, there exists a domain G ⊂⊂ Ω so that E ⊂ G, and a number M > 0 so
that |f(x)| ≥ M for every x ∈ ∂G. Moreover, by Theorem 2.1, there exists
m ∈ N so that

(3.1) µ(y, f,G) = m for every y ∈ B(0,M).

For 0 < R < M , we denote the E-component of f−1(B(0, R)) by ER.
Then ER ⊂ G. We define radial segments

I(R,φ) = {(t, φ) : t ∈ (R/2, R)}

in polar coordinates, and denote AR = B(0, R) \ B(0, R/2), and UR =
ER ∩ f−1(AR). The first main ingredient in the proof of Theorem 1.1 is the
following.

Proposition 3.1. There exists 0 < M0 < M , so that for each R < M0

there exist φR ∈ S(0, 1) and aR ∈ R, so that if we denote

LR =
(

aR − (4m)−1, aR + (4m)−1
)

,

then
LR ⊂ pr(E) and pr−1(LR) ∩ ER ∩ f−1(I(R,φR)) = ∅.

Proof. For R < M , define

hR : UR → S(0, 1), hR(x) =
f(x)

|f(x)|
.

Then h−1
R (φ) = f−1(I(R,φ)) ∩ ER for every φ ∈ S(0, 1). Also, we have

|Jn−1hR(x)| ≤
|D♯f(x)|

|f(x)|n−1
a.e. x ∈ UR,

for the (n − 1)-dimensional Jacobian of hR. Then, the coarea formula (cf.
[10]), and Hölder’s inequality yield

∫

S(0,1)
H1(h−1

R (φ)) dHn−1(φ) =

∫

UR

|Jn−1hR| ≤

∫

UR

|D♯f |

|f |n−1

=

∫

UR

K
1/n
I J

(n−1)/n
f

|f |n−1
(3.2)

≤
(

∫

UR

KI

)1/n(

∫

UR

Jf

|f |n

)(n−1)/n
.
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Since µ(y, f,ER) ≤ m for every y ∈ B(0, R), and UR ⊂ ER, the change
of variables formula gives

(3.3)

∫

UR

Jf

|f |n
≤

∫

AR

µ(y, f,ER)

|y|n
dy ≤ mωn−1 log 2.

Moreover, by Theorem 2.2,

(3.4)

∫

UR

KI → 0 as R → 0.

Now, by combining (3.2), (3.3) and (3.4), we have: for every ǫ > 0 there
exists k < M so that

(3.5)

∫

S(0,1)
H1(ER ∩ f−1(I(R,φ))) dHn−1(φ) < ǫ

for every R ≤ k. Moreover, by slightly changing the set AR, we see that
(3.5) also holds for WR,φ = ER ∩ f−1(I(R,φ)).

Let R be as above. Next, we claim that, for each φ ∈ S(0, 1), WR,φ

consists of at most m components. Fix φ and let {Ji}, i = 1, . . . ,N be a
finite set of preimage components of I(R,φ) in ER. Denote by Iδ the closed
δ-neighborhood of I(R,φ). Then Iδ has Nδ different preimage components Ĩj

δ

containing some Ji. When δ is small enough, Ĩj
δ ⊂ G for every j = 1, . . . Nδ.

Then, by Lemma 2.5, f(Ĩj
δ ) = Iδ for δ small enough. Moreover, for δ < δ0

we have Nδ = N . Then, if y ∈ I(R,φ), Theorem 2.1 and (2.3) yield

N ≤
∑

µ(y, f, int Ĩj
δ ) ≤ µ(y, f,G) = m.

This proves the claim.
Suppose that M0 < M is small enough, so that (3.5) holds with ǫ =

ωn−1(100m)−1. Then, in particular, for every R ≤ M0 there exists φR ∈
S(0, 1) such that

H1(pr(WR,φR
)) < (100m)−1.

Moreover, we showed that WR,φR
consists of at most m components. Now

the proposition follows from our assumption H1(pr(E)) = 1.

4 Modulus estimates and the proof of Theorem

1.1

In this section we prove Theorem 1.1, except for an upper bound for the
conformal modulus of certain (n−1)-dimensional sets (Proposition 4.2). For
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a measurable function ω ∈ L1
loc(Ω), Ω ⊂ R

n, and a family Λ = {Vi : i ∈ I}
of Borel sets, set

MωΛ = inf
ρ∈X(Λ)

∫

Ω
ωρn/(n−1),

where X(Λ) is the set of all Borel functions ρ : Ω → [0,∞] satisfying
∫

Vi

ρ dHn−1 ≥ 1

for every Vi ∈ Λ with Hn−1(Vi) > 0. If ω = 1 almost everywhere in Ω, we
denote Mω by M .

Now fix R and aR as in Proposition 3.1. Denote l = ((8m)−1, (4m)−1),

V +
t = ER ∩ pr−1({aR + t}), V −

t = ER ∩ pr−1({aR − t}),

Vt = V +
t ∪ V −

t , Q+
R = {x ∈ V +

t : t ∈ l}, Q−
R = {x ∈ V −

t : t ∈ l},

and
ΛR = {Vt : t ∈ l}.

Lemma 4.1. We have

(16m)−n/(n−1)
(

∫

ER

KI

)−1/(n−1)
≤ M

K
−1/(n−1)
I

ΛR ≤ mMf(ΛR).

Proof. Since f ∈ W 1,n(ER, Rn), the restrictions of f to the components Gj
t

of Vt belong to W 1,n(Gj
t , R

n) for almost every t ∈ l. In particular, for those
t the change of variables formula holds in Vt, see [12]. Also, Theorems 2.1
and 2.2 show that Hn−1(f(Vt)) > 0 for almost every t ∈ l.

Now fix ρ ∈ X(f(ΛR)). Then, for almost every t ∈ l, the change of
variables formula yields

(4.1)

∫

Vt

(ρ ◦ f)|D♯f | dHn−1 ≥

∫

fVt

ρ dHn−1 ≥ 1,

i.e. the function ρ′ : ER → [0,∞], defined as ρ′(x) = (ρ ◦ f)(x)|D♯f(x)| for
x ∈ Vt, t ∈ l, when (4.1) holds, ρ′(x) = ∞ when x ∈ Vt, t ∈ l, and (4.1)
does not hold, and ρ′(x) = 0 otherwise, belongs to X(ΛR). Now, by using
the change of variables formula in ER, with the fact that µ(y, f,ER) ≤ m
for every y ∈ B(0, R), we have
∫

ER

(ρ′)n/(n−1)K
−1/(n−1)
I =

∫

ER

(ρ ◦ f)n/(n−1)|D♯f |n/(n−1)K
−1/(n−1)
I

=

∫

ER

(ρ ◦ f)n/(n−1)Jf

≤

∫

Rn

ρ(y)n/(n−1)µ(y, f,ER) dy ≤ m

∫

Rn

ρn/(n−1).
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Since ρ ∈ X(f(ΛR)) is arbitrary, the second inequality in the lemma follows.
To prove the first inequality, fix g ∈ X(ΛR). Then, for every t ∈ l,

1 ≤

∫

V +
t

g dHn−1 +

∫

V −

t

g dHn−1.

By Fubini’s theorem,

(8m)−1 ≤

∫

Q+
R

g +

∫

Q−

R

g,

so that one of the integrals, say the one over Q+
R, is greater than (16m)−1.

Then, Hölder’s inequality yields
(4.2)

(16m)−1 ≤

∫

Q+
R

gK
−1/n
I K

1/n
I ≤

(

∫

Q+
R

gn/(n−1)K
−1/(n−1)
I

)(n−1)/n(

∫

Q+
R

KI

)1/n
.

Since g is arbitrary, (4.2) proves the first inequality in the lemma.

In order to complete the proof of Theorem 1.1, we need an upper bound
for Mf(ΛR).

Proposition 4.2.
Mf(ΛR) ≤ C,

where C > 0 only depends on n.

We will prove Proposition 4.2 in Section 5. Assuming the proposition,
Theorem 1.1 now follows: combining Lemma 4.1 with the proposition yields

(16m)−n/(n−1)
(

∫

ER

KI

)−1/(n−1)
≤ mC,

where C does not depend on R. Thus,

∫

ER

KI ≥ T > 0,

with T independent of R. This contradicts Theorem 2.2, since

⋂

R>0

ER = E.

We conclude that H1(E) = 0, as desired.
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5 Proof of Proposition 4.2

We assume that n ≥ 3. For n = 2 the proposition is trivial. The idea for the
proof is to show, using Proposition 3.1, that the sets f(Vt) separate I(R,φR)
and another “large” set in AR. There are some technicalities, though, that
slightly complicate matters.

Fix a point ξ ∈ pr−1(aR) ∩ E, and denote by W the ξ-component of
R

n \ (V(8m)−1 ∪ ∂ER). Notice that, by the definition of Vt,

(5.1) pr(W ) ⊂ (aR − (8m)−1, aR + (8m)−1).

Lemma 5.1. For almost every r ∈ (R/2, R) there exist qr ∈ W and a
neighborhood Ur ⊂ W of qr so that |pr| = |f(qr)| = r and

(5.2) f−1(pr) ∩ Ur = {qr}.

Proof. First, by Proposition 3.1, there exists a segment α joining ∂ER and
ξ in W ∩ pr−1(aR). Fix a small ǫ > 0. Then, for any x ∈ Bn−1(0, ǫ), we
can choose a segment αx as follows: if α̃ is the line spanned by α, then
α̃x = α̃ + x, x ∈ Bn−1(0, ǫ) ⊂ H, where H ∋ 0 is the hyperplane orthogonal
to α̃. Moreover, αx is a segment in α̃x joining ∂ER and B(ξ, ǫ) in W . Choose
ǫ to be small enough, so that f(αx) connects S(0, R) and S(0, R/2) for every
x ∈ Bn−1(0, ǫ).

By the definition of a mapping of finite distortion, and Theorems 2.1
and 2.2, there exists x0 ∈ Bn−1(0, ǫ) so that

1. f is absolutely continuous on αx0 ,

2. f is differentiable H1-almost everywhere on αx0 ,

3. Jf > 0 H1-almost everywhere on αx0 .

If f is differentiable at z ∈ αx0, and Jf (z) > 0, then, for every ν > 0
small enough,

f(z) /∈ f(S(z, ν)).

Because this is true for almost every z ∈ αx0, the absolute continuity of f
on αx0 completes the proof.

Denote by D the exceptional set in Lemma 5.1. For a radius r ∈
(R/2, R) \ D, denote {βr} = S(0, r) ∩ I(R,φR). By (5.1), Lemma 5.1 and
(5.3) below, βr 6= pr for every r.
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Lemma 5.2. Let κ : [0, 1] → S(0, r) be a one-to-one C∞-path such that
κ(0) = pr and κ(1) = βr. Then, for every t ∈ ((8m)−1, (4m)−1),

κ((0, 1)) ∩ f(Vt) 6= ∅.

Proof. Recall that

(5.3) pr−1((aR − (4m)−1, aR + (4m)−1)) ∩ ER ∩ f−1(βr) = ∅

by Proposition 3.1. For qr and Ur as in Lemma 5.1, denote by κ̃ the qr-
component of f−1(κ([0, 1])). By using Lemma 2.5 as below, we see that κ̃ 6=
{qr}. Then, by (5.2), we find s ∈ (0, 1), and a component κ′ of f−1(κ([s, 1]))
so that κ′ ∩ Ur 6= ∅ and κ′ ⊂ κ̃.

We assume that κ′ ∩ Vt = ∅. Since f(∂ER) = S(0, R), we conclude that
κ′ is compact. On the other hand, βr = κ(1) /∈ f(κ′) by (5.3). Thus there
exists t ∈ (s, 1) so that

(5.4) t = max{τ : κ(τ) ∈ f(κ′)}.

Choose a point xt ∈ f−1(κ(t)) ∩ κ′. By our assumption on κ′, the xt-
component of f−1(κ(t)) does not intersect Vt. Then there exists a ball
B = B(κ(t), ǫ) so that the xt-component Ut of f−1(B) does not intersect Vt.
By Lemma 2.5 f(Ut) = B, and since κ is C∞, applying Lemma 2.5 to the ǫ-
neighborhoods of κ((t− δ, t+ δ)) for small enough δ, and the xt-components
of their preimages, shows that actually κ([t, t + δ)) ⊂ f(κ′), contradicting
(5.4). The proof is complete.

Lemma 5.3. For every r ∈ (R/2, R) \ D, there exists a Borel function
ρr : S(0, r) → [0,∞] so that, whenever t ∈ ((8m)−1, (4m)−1),

(5.5)

∫

S(0,r)∩f(Vt)
ρr dHn−2 ≥ C1/r,

and

(5.6)

∫

S(0,r)
ρn/(n−1)

r dHn−1 ≤ C2/r,

where the constants C1, C2 > 0 only depend on n.

Proof. We first map S(0, r) onto S(en/2, 1/2) by a map T which is a com-
position of scaling, translation and rotation, so that T (βr) = en. Then, if
ρ : S(en/2, 1/2) → [0,∞] satisfies

(5.7)

∫

(T◦f)(Vt)
ρ dHn−2 ≥ C1(n)
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for all t ∈ ((8m)−1, (4m)−1), and

(5.8)

∫

S(en/2,1/2)
ρn/(n−1) dHn−1 ≤ C2(n),

then the function ρr = r1−n(ρ ◦T ) satisfies (5.5) and (5.6). Hence it suffices
to show (5.7) and (5.8).

If we map S(en/2, 1/2) onto R
n−1

by the stereographic projection h,

h(x) = en + (x − en)/|x − en|
2,

then en = T (βr) gets mapped to ∞. We denote

a = (h ◦ T )(pr) ∈ R
n−1.

We define ρ : R
n−1 → [0,∞],

ρ(x) = |x − a|2−n(1 + |x|2)n−2,

and denote Yt = (h ◦ T ◦ f)(Vt). Then we have to show that

(5.9)

∫

Yt

ρ(x)

(1 + |x|2)n−2
dHn−2(x) =

∫

Yt

|x − a|2−n dHn−2(x) ≥ C1(n)

for all t ∈ ((8m)−1, (4m)−1), and

∫

Rn−1

ρn/(n−1)(x)

(1 + |x|2)n−1
dHn−1(x) =

∫

Rn−1

|x − a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x)

≤ C2(n).(5.10)

By Lemma 5.2, for every α ∈ Sn−2(0, 1), the half-line

Iα = {a + αt : t > 0}

intersects Yt. For i ∈ Z, denote Ai = B(a, 2i) \ B(a, 2i−1), and

Φi = {α ∈ Sn−2(0, 1) : Iα ∩ Ai ∩ Yt 6= ∅}.

Then a projection argument shows that

(5.11)

∫

Yt∩Ai

|x − a|2−n dHn−2(x) ≥ C(n)Hn−2(Φi).

Since
∑

i H
n−2(Φi) = ωn−2, (5.9) follows by summing over i.
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In order to prove (5.10), we first consider the case |a| > 1. We divide
R

n−1 to N1 = Bn−1(a, |a|/2), N2 = Bn−1(0, |a|/2) and N3 = R
n−1 \ (N1 ∪

N2). Then
∫

N1

|x − a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x) ≤ C|a|

−2
n−1

∫

N1

|x − a|1−n+1/(n−1) dHn−1(x)

≤ C|a|
−1

n−1 ,

∫

N2

|x − a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x) ≤ C|a|−2+ 1

n−1

∫ |a|/2

0

r

(1 + r2)1/(n−1)
dr

≤ C|a|
−1

n−1 ,

and, since 10|x| ≥ |x − a| for x ∈ N3,
∫

N3

|x − a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x) ≤ C

∫

N3

|x − a|1−n−1/(n−1) dHn−1(x)

≤ C|a|
−1

n−1 .

Combining the integrals proves (5.10) in the case |a| > 1. The case |a| ≤ 1
is similar, but now it suffices to consider the division Ñ1 = Bn−1(a, 3),
Ñ2 = R

n−1 \ Ñ1.

Define ρ : AR → [0,∞], ρ(x) = ρ|x|(x), where ρr is as in Lemma 5.3 for
r /∈ D, and ρr = 0 otherwise. Since the restrictions of f to the components
Gj

t of Vt belong to W 1,n(Gj
t , R

n) for almost every t, f(Vt) is countably (n−1)
-rectifiable for t ∈ ((8m)−1, (4m)−1) \ Q, where H1(Q) = 0. Then, Lemma
5.3, and the coarea formula for rectifiable sets, cf. [1, Theorem 2.93 and
Remark 2.94], yield

∫

f(Vt)
ρ dHn−1 ≥ C(n)

∫ R

R/2

∫

f(Vt)∩S(0,r)
ρ dHn−2 dr ≥ C(n)

for every t ∈ ((8m)−1, (4m)−1) \ Q. Also, by Lemma 5.3,
∫

AR

ρn/(n−1) =

∫ R

R/2

∫

S(0,r)
ρn/(n−1) dHn−1 dr ≤ C(n)

∫ R

R/2

dr

r
≤ C(n).

By Theorem 2.1, M{f(Vt) : t ∈ Q} = 0. The proof of Proposition 4.2 is
complete.
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