SHARP EXPONENTIAL INTEGRABILITY FOR TRACES OF MONOTONE SOBOLEV FUNCTIONS

PEKKA PANKKA, PIETRO POGGI-CORRADINI, AND KAI RAJALA

Abstract. We answer a question posed in [12] on exponential integrability of functions of restricted n-energy. We use geometric methods to obtain a sharp exponential integrability result for boundary traces of monotone Sobolev functions defined on the unit ball.

1. Introduction

The following result answered a problem of A. Beurling, mentioned by J. Moser in a famous paper [10].

Theorem A (Chang-Marshall (1985), [1]). There is a universal constant $C < \infty$ so that if f is analytic in \mathbb{D}, $f(0) = 0$, and

$$
(1.1) \quad \int_{\mathbb{D}} |f'(z)|^2 \frac{dA(z)}{\pi} \leq 1,
$$

then

$$
\int_0^{2\pi} \exp \left(|f^*(e^{i\theta})|^2 \right) \, d\theta \leq C,
$$

where f^* is the trace of f on $\partial \mathbb{D}$, i.e., $f^*(\zeta) = \lim_{t \uparrow 1} f(t\zeta)$ for \mathcal{H}^1-a.e. $\zeta \in \partial \mathbb{D}$.

This result is moreover “sharp” in the following sense: the Beurling functions,

$$
B_a(z) := \left(\log \frac{1}{1 - az} \right) \left(\log \frac{1}{1 - a^2} \right)^{-\frac{1}{2}} \quad 0 < a < 1
$$

are analytic in \mathbb{D}, satisfy $B_a(0) = 0$ and (1.1), and have the property that for any given $\alpha > 1$, one can choose a so that the integral

$$
\int_0^{2\pi} \exp \left(\alpha |B_a(e^{i\theta})|^2 \right) \, d\theta
$$

is as large as desired.

The following is an easy corollary of the Chang-Marshall Theorem.

2000 Mathematics Subject Classification. 46E35 (31C45).

The third author was supported by the Academy of Finland. The authors thank the Department of Mathematics at the University of Michigan where part of this research was conducted.
Corollary A. There is a universal constant $C < \infty$ so that if $u : \mathbb{D} \to \mathbb{R}$ is harmonic with $u(0) = 0$ and

$$\int_{\mathbb{D}} |\nabla u(z)|^2 \frac{dA(z)}{\pi} \leq 1,$$

then

$$\int_0^{2\pi} \exp \left(u^* (e^{i\theta})^2 \right) d\theta \leq C,$$

where u^* is the trace of u on $\partial \mathbb{D}$, i.e., $u^*(\zeta) = \lim_{t \uparrow 1} u(t\zeta)$ for \mathcal{H}^1-a.e. $\zeta \in \partial \mathbb{D}$.

This can also be shown to be sharp by considering the real parts of the Beurling functions.

In [12] the last two authors generalized the Chang-Marshall theorem to quasiregular mappings in all dimensions. They also asked in [12] whether Corollary A also generalizes, perhaps substituting “harmonic” with “n-harmonic”. In this note we show that this is indeed possible.

The key concept is that of a monotone Sobolev function, whose definition we recall below, and which is quite general, and includes for instance n-harmonic functions.

2. Main results

For a continuous function $u : \Omega \to \mathbb{R}$, we define the oscillation of u on a compact set $K \subset \Omega$ by

$$\text{osc}_K u = \max_{x,y \in K} |u(x) - u(y)|.$$

We say that $u : \Omega \to \mathbb{R}$ is monotone if $\text{osc}_{\partial B} u = \text{osc}_{\bar{B}} u$ for all n-balls B compactly contained in Ω.

Given $u : B^n \to \mathbb{R}$ in the Sobolev space $W^{1,n}(B^n)$, the radial limit

$$\tilde{u}(y) = \lim_{r \to 1} u(ry)$$

exists at \mathcal{H}^{n-1}-a.e. point $y \in S^{n-1}$. We denote by \tilde{u} the almost everywhere defined trace of u. Moreover, we denote the L^p-norm of a p-integrable $g : \Omega \to \mathbb{R}^n$ by $\|g\|_p = \|g\|_{\Omega,p}$. The surface measure $\mathcal{H}^{n-1}(S^{n-1})$ of the unit sphere S^{n-1} is ω_{n-1}. The notations $B^n(r) = B^n(0,r)$, $B^n = B^n(1)$ for n-dimensional balls will be used.

Theorem 1. There exists a constant $C = C(n) > 0$ so that if $u \in W^{1,n}(B^n)$ is a non-constant continuous monotone function such that $u(0) = 0$, then

$$(2.2) \quad \int_{S^{n-1}} \exp \left(\alpha (|\tilde{u}(y)|/\|\nabla u\|_n)^{(n-1)/(n-1)} \right) d\mathcal{H}^{n-1}(y) \leq C,$$

where

$$(2.3) \quad \alpha = (n-1) \left(\frac{\omega_{n-1}}{2} \right)^{\frac{1}{n-1}}.$$
The continuity assumption in Theorem 1 is of technical nature. By a theorem of Manfredi [8], so-called weakly monotone functions in $W^{1,n}$ are always continuous and monotone in the above sense. In general, $W^{1,n}$-functions need not be continuous.

Theorem 1 is not true without the monotonicity assumption. Indeed, since the n-capacity of a point is zero, one can construct Sobolev functions $u_i \in W^{1,n}(B^n)$ so that $u_i(0) = 0$, $\|\nabla u_i\|_n \leq 1$, and $\bar{\partial}_i(y) \geq i$ for every $y \in S^{n-1}$.

Our method of proof for Theorem 1 has a similar geometric flavor as in [9] and in [12], and the end-game is again to appeal to Moser’s original one-dimensional proof. However, the so-called “egg-yolk” property, which was the hardest part to establish in the two papers cited above, can be quickly established in our present case. It might come as a surprise then that Theorem 1 is sharp, as we will see in Theorem 2 below, as opposed to the situation in [12].

A function $u \in W^{1,p}_{\text{loc}}(\Omega)$ is called p-harmonic, $1 < p < \infty$, if

$$
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi \, dx = 0
$$

for every C^∞-smooth test function ϕ with compact support in Ω, see [6]. Since p-harmonic functions satisfy the maximum principle ([6, 6.5]), they are, in particular, monotone.

The next result shows that the constant α in Theorem 1 is sharp.

Theorem 2. Let α be as in Theorem 1. There exists a sequence of n-harmonic functions $u_i \in W^{1,n}(B^n)$ satisfying $\|\nabla u_i\|_n \leq 1$ and $u_i(0) = 0$, so that

$$
\int_{S^{n-1}} \exp \left(\beta |\bar{\partial}_i(y)|^{n/(n-1)} \right) \, d\mathcal{H}^{n-1}(y) \to \infty \quad \text{as } i \to \infty
$$

whenever $\beta > \alpha$.

3. Proof of Theorem 1

In this section we assume that u satisfies the assumptions of Theorem 1. Moreover, by considering balls $B^n(0, 1 - 1/j)$, for j large, and using Fatou’s lemma, we may assume that the function u in Theorem 1 is defined in a neighborhood of the unit ball.

Lemma 3. There exists a constant $r_0 = r_0(n) > 0$ so that if $M_0 := \max_{B^n(r_0)} |u|$, then

$$
\int_{\{|u| \leq M_0\}} |\nabla u|^n \, dx \geq M_0^n.
$$

Proof. For $0 < r < 1$ let $m := \max_{B^n(r)} |u|$ and set $v := \min\{|u|, m\}$. By monotonicity, and since $u(0) = 0$, $\text{osc}_{S^{n-1}(t)} v = m$ for every $t \geq r$.

By the Sobolev embedding theorem on spheres, see e.g. [5, Lemma 1] or [11], there exists a constant a depending only on n such that

$$\int_{B^n \setminus B^n(r)} |\nabla v|^n \, dx = \int_r^1 \left(\int_{S^{n-1}(t)} |\nabla v|^n \, d\mathcal{H}^{n-1} \right) \, dt \geq \int_r^1 \frac{(\text{osc}_{S^{n-1}(t)} v)^n}{at} \, dt = \frac{m^n}{a} \log \frac{1}{r}.$$

The claim follows by choosing $r_0 := \exp(-a)$. \qed

Let Γ be a family of paths in a domain Ω. The n-modulus $M_n(\Gamma)$ of Γ is defined as follows:

$$M_n(\Gamma) = \inf_\rho \int_\Omega \rho^n \, dx,$$

where $\rho: \Omega \to [0, \infty]$ is an admissible function for Γ, i.e. a Borel function satisfying

$$(3.4) \quad \int_\gamma \rho \, ds \geq 1$$

for every locally rectifiable $\gamma \in \Gamma$. The family of all paths joining two sets $A, B \subset \bar{\Omega}$ in Ω is denoted by $\Delta(A, B; \Omega)$. We say that a given property holds for n-almost every path in a path family Γ if the property holds for all paths in $\Gamma \setminus \Gamma_0$, where Γ_0 is a subfamily of Γ having n-modulus zero.

Lemma 4. For every $r \in (0, 1)$, there exists a constant $c = c(n, r)$, so that

$$(3.5) \quad \mathcal{H}^{n-1} \left(\{ y \in S^{n-1} : |u(y)| \geq s \} \right) \leq c \exp(-\alpha I_M^*(u))$$

for $s \geq M$. Here α is as in (2.3), $M = M(r, u) = \max_{S^{n-1}(r)} |u|$, and

$$I_M^*(u) = \int_M^s \frac{dt}{\left(\int_{\{|u| = t\}} |\nabla u|^{n-1} \, d\mathcal{H}^{n-1} \right)^{1/(n-1)}}.$$

Proof. Fix $r \in (0, 1)$ and $s > M = M(r, u)$. Write

$$E = E_s := \{ y \in S^{n-1} : |u(y)| \geq s \}$$

and

$$U_M := \{ x \in B^n : |u(x)| \geq M \}.$$

Also, here and in what follows we write

$$(3.6) \quad A_t := \int_{\{|u| = t\}} |\nabla u|^{n-1} \, d\mathcal{H}^{n-1}.$$

The fact that A_t is a Borel function of t is standard, see for instance [2] p. 117.
We construct an admissible function ρ for $\Delta(\partial U_M, E; B^n)$ as follows: Let $I = I_M^s(u)$, and set
\[
\rho(x) := \frac{|\nabla u(x)|}{IA_{|u(x)|}^{1/(n-1)} x_M(x)}.
\]

Since every path in $\Delta(\partial U_M, E; B^n)$ has a subpath in $\Delta(\partial U_M, E; U_M)$, it suffices to show that ρ is admissible for n-almost every path in $\Delta(\partial U_M, E; U_M)$, i.e. that the set of paths where (3.4) fails has n-modulus zero. Recall that, by Fuglede’s theorem [3, Theorem 3], it suffices to show that ρ is an admissible function for $\Delta(\partial U_M, E; B^n)$ parameterized by arc length $\ell(\gamma)$, we have, by change of variables
\[
\int_\gamma \rho \, ds = \int_0^{\ell(\gamma)} \frac{|\nabla u(\gamma(t))|}{IA_{|u(\gamma(t))|}^{1/(n-1)}} |(u \circ \gamma)'(t)| \, dt
\geq I^{-1} \int_0^s \frac{dt}{IA_t^{1/(n-1)}} = 1.
\]

Thus ρ is an admissible function for $\Delta(\partial U_M, E; U_M)$, and so also for $\Delta(B^n(r), E; U_M)$, by the definition of n-modulus. By the coarea formula, cf. [7], we have
\[
M_n(\Delta(B^n(r), E; B^n)) \leq \int_{U_M} \rho^n \, dx = I^{-n} \int_{U_M} \frac{|\nabla u(x)|^n}{A_{|u(x)|}^{n/(n-1)}} \, dx
= I^{-n} \int_{M} \int_{\{u=t\}} \frac{|\nabla u(y)|^{n-1}}{A_t^{n/(n-1)}} \, dH^{n-1}(y) \, dt
= I^{-n} \int_{M} \frac{A_t}{A_t^{n/(n-1)}} \, dt = I^{1-n}.
\]

By the conformal invariance of n-modulus, taking inversion with respect to the unit sphere yields
\[
2M_n(\Delta(B^n(r), E; B^n)) \geq M_n(\Delta(S^{n-1}(r) \cup S^{n-1}(1/r), E; \mathbb{R}^n)).
\]

By spherical symmetrization and [4, Theorem 4],
\[
2I^{1-n} \geq M_n(\Delta(S^{n-1}(r) \cup S^{n-1}(1/r), E; \mathbb{R}^n)) \geq \omega_n^{-1} \left(\log \frac{c_2}{\mathcal{H}^{n-1}(E)^{1/(n-1)}} \right)^{1-n},
\]
where c_2 depends only on n and r. See [12] for further details. This implies (3.5).

Proof of Theorem 1. We will use the following result of Moser [10, Equation (6)]: If $\omega : [0, \infty) \to [0, \infty)$ is absolutely continuous and
satisfies $\omega(0) = 0$, $\omega' \geq 0$ almost everywhere, and
\[\int_0^\infty (\omega'(t))^n \, dt \leq 1, \]
then
\[(3.7) \quad \int_0^\infty \exp(\omega(t)^{n/(n-1)} - t) \, dt \leq C, \]
where $C > 0$ depends only on n. By scaling invariance of (2.2), we may assume that
\[(3.8) \quad \int_{B^n} |\nabla u|^n \, dx = 1. \]
Moreover, we fix $r = r_0$ and $M = M_0$ as in Lemma 3. Then, in particular, $M < 1$.

By the Cavalieri principle,
\[\int_{S^{n-1}} \exp \left(\alpha |u(x)|^{n/(n-1)} \right) \, dH^{n-1}(x) = \omega_{n-1} + \frac{an}{n-1} \int_0^\infty s^{1/(n-1)}H^{n-1}(E_s) \exp \left(\alpha s^{n/(n-1)} \right) \, ds, \]
where
\[E_s = \{ y \in S^{n-1} : |u(y)| \geq s \}. \]
Then, by Lemma 4, it suffices to bound
\[(3.9) \quad \int_0^{||u||_\infty} s^{1/(n-1)} \exp \left(\alpha (s^{n/(n-1)} - I_M^s(u)) \right) \, ds, \]
where $||u||_\infty = \max_{y \in S^{n-1}} |u(y)|$, and $I_M^s(u) = 0$ for $0 < s < M$. We define a function $\psi : [0, \infty) \to [0, \infty)$,
\[\psi(s) = \begin{cases} \mu s, & 0 < s < M \\ \alpha I_M^s(u) + \mu M, & M \leq s \leq ||u||_\infty \\ \alpha I_M^{||u||_\infty}(u) + \mu M, & s > ||u||_\infty \end{cases} \]
where
\[(3.10) \quad \mu = \alpha \left(\frac{M}{\int_{\{|u| \leq M\}} |\nabla u|^n \, dx} \right)^{1/(n-1)}. \]
Then, by Lemma 3, $\mu M \leq \alpha$, and thus we may consider
\[(3.11) \quad \int_0^{||u||_\infty} s^{1/(n-1)} \exp(\alpha s^{n/(n-1)} - \psi(s)) \, ds \]
instead of (3.9). We define ϕ by $\phi(y) = \psi^{-1}(y)$ for $0 < y < ||\psi||_\infty$, and $\phi(y) = ||u||_\infty$ for $y \geq ||\psi||_\infty$. Then, changing variables $y = \psi(s)$ in (3.11) yields
\[(3.12) \quad \int_0^\infty \exp(\alpha\phi(y)^{n/(n-1)} - y)\phi'(y)\phi(y)^{1/(n-1)} \, dy. \]
Integrating by parts, we then have that (3.12) equals

\[T = \int_0^\infty \exp((\alpha^{(n-1)/n} \phi(y))^{n/(n-1)} - y) \, dy. \]

Now, since \(\phi \) is absolutely continuous and increasing, and \(\phi(0) = 0 \), Theorem 1 follows from Moser’s result (3.7) if we can show that

\[\int_0^\infty (\alpha^{(n-1)/n} \phi'(y))^n \, dy \leq 1. \]

We have

\[\alpha^{(n-1)/n} \phi'(y) = \begin{cases} \alpha^{(n-1)/n} \mu^{-1}, & 0 < y < \mu M \\ \alpha^{-1/n} A^{1/(n-1)}_{\phi(y)}, & \mu M < y < \|\psi\|_\infty \\ 0, & y > \|\psi\|_\infty, \end{cases} \]

where \(A_{\phi(y)} \) as in (3.6). Hence,

\[\alpha^{-1} \int_{\|u\|_\infty}^{\infty} \phi'(y)^n \, dy = \alpha^{n-1} \mu^{1-n} M + \alpha^{-1} \int_{\mu M}^{\|\psi\|_\infty} A_{\phi(y)}^{n/(n-1)} \, dy. \]

By our choice of \(\mu \), the first term equals \(\int_{\{|u|\leq M\}} |\nabla u|^n \, dx \). Also, by changing variables \(\phi(y) = s \) in the right hand integral, and using the coarea formula, we have

\[\alpha^{-1} \int_{\mu M}^{\|\psi\|_\infty} A_{\phi(y)}^{n/(n-1)} \, dy = \int_{\mu M}^{\|\psi\|_\infty} A_{\phi(y)} \phi'(y) \, dy \]

\[= \int_{\mu M}^{\|\psi\|_\infty} A_s \, ds = \int_{\{|u|\geq M\}} |\nabla u|^n \, dx. \]

Combining (3.14), (3.15), (3.10) and (3.8) then yields (3.13). The proof is complete.

\[\square \]

4. Proof of Theorem 2

Fix \(\beta > \alpha \). For notational convenience, we consider first functions in \(B^n(e_n, 1) \) instead of \(B^n \). Fix \(2 \leq i \in \mathbb{N} \), and denote \(\varepsilon = \varepsilon_i = i^{-1} \).

Define \(v = v_i : B^n(-\varepsilon e_n, 2 + \varepsilon) \to \mathbb{R} \),

\[v(x) = -\log |x + \varepsilon e_n|. \]

Then \(v \) is \(n \)-harmonic in \(B^n(-\varepsilon e_n, 2 + \varepsilon) \setminus \{-\varepsilon e_n\} \). We first show that

\[\int_{B^n(e_n, 1)} |\nabla v|^n \, dx \leq \frac{\omega_{n-1}}{2} \log \frac{2 + \varepsilon}{\varepsilon}. \]

Clearly,

\[\int_{B^n(e_n, 1)} |\nabla v|^n \, dx \leq \frac{1}{2} \int_A |\nabla v|^n \, dx, \]

where

\[A = B^n(-\varepsilon e_n, 2 + \varepsilon) \setminus \bar{B}^n(-\varepsilon e_n, \varepsilon). \]
Since
\[|\nabla v(x)|^n = |x + \varepsilon e_n|^{-n}, \]
we have
\[\frac{1}{2} \int_A |\nabla v|^n \, dx = \frac{1}{2} \int_{B^n(0,2+\varepsilon) \setminus B^n(0,\varepsilon)} |x|^{-n} \, dx = \frac{\omega_{n-1}}{2} \log \frac{2 + \varepsilon}{\varepsilon}. \]
Hence (4.16) holds.

To study exponential integrability of \(v \), set
\[\gamma = \beta \left(\frac{\omega_{n-1}}{2} \log \frac{2 + \varepsilon}{\varepsilon} \right)^{1/(1-n)} \]
and \(\tau = \gamma / (n - 1) \).

By the choice of \(\gamma \), (4.16), and the Cavalieri principle,
\[\int_{S^{n-1}(e_n, 1)} \exp(\beta (|v|/\|\nabla v\|_n)^{n/(n-1)}) \, d\mathcal{H}^{n-1} \]
\[\geq \omega_{n-1} + \frac{n \gamma}{n - 1} \int_0^\infty \mathcal{H}^{n-1}(E_s) s^{1/(n-1)} \exp(\gamma s^{n/(n-1)}) \, ds, \]
where
\[E_s = \{ x \in S^{n-1}(e_n, 1): |v(x)| \geq s \}. \]
Since
\[E_s = S^{n-1}(e_n, 1) \cap B^n(-\varepsilon e_n, \exp(-s)) \]
\[\cup S^{n-1}(e_n, 1) \setminus B^n(-\varepsilon e_n, \exp(s)), \]
we have
\[\mathcal{H}^{n-1}(E_s) \geq C(n)(\exp(-s))^{n-1} = C(n) \exp((1 - n)s) \]
for \(0 \leq s \leq \log \left(\frac{1}{2\varepsilon} \right) \).
Combining (4.18) and (4.19) yields
\[\frac{1}{C(n)} \int_{S^{n-1}(e_n, 1)} \exp(\gamma |v|^{n/(n-1)}) \, d\mathcal{H}^{n-1} \]
\[\geq \frac{n \gamma}{n - 1} \int_0^{\log\left(\frac{1}{2\varepsilon} \right)} s^{1/(n-1)} \exp \left(\gamma s^{n/(n-1)} + (1 - n)s \right) \, ds \]
\[= n \tau \int_0^{\log\left(\frac{1}{2\varepsilon} \right)} s^{1/(n-1)} \exp \left((n - 1)(\tau s^{n/(n-1)} - s) \right) \, ds \]
\[= \int_0^{\log\left(\frac{1}{2\varepsilon} \right)} (n \tau s^{1/(n-1)} - (n - 1)) \exp \left((n - 1)(\tau s^{n/(n-1)} - s) \right) \, ds \]
\[+ (n - 1) \int_0^{\log\left(\frac{1}{2\varepsilon} \right)} \exp \left((n - 1)(\tau s^{n/(n-1)} - s) \right) \, ds \]
\[\geq \exp \left((n - 1) \left(\tau \left(\log \frac{1}{2\varepsilon} \right)^{n/(n-1)} - \log \frac{1}{2\varepsilon} \right) \right) - 1. \]
Since
\[
\left(\log \frac{2 + \varepsilon}{\varepsilon} \right)^{1/(1-n)} \left(\log \frac{1}{2\varepsilon} \right)^{1/(n-1)} \geq 1 - \delta(\varepsilon),
\]
where \(\delta(\varepsilon) \to 0 \) as \(\varepsilon \to 0 \), we have
\[
\int_{S^{n-1}(e_n,1)} \exp(\gamma |v|^{n/(n-1)}) \, d\mathcal{H}^{n-1} \geq C(n) \varepsilon^{-T} - C(n),
\]
where
\[
T = (\beta - \alpha)(2/\omega_{n-1})^{1/(n-1)} - \delta'(\varepsilon),
\]
and \(\delta'(\varepsilon) \to 0 \) when \(\varepsilon \to 0 \).

To prove Theorem 2, we consider the sequence \(u_i : \bar{B}^n \to \mathbb{R} \),
\[
u_i(x) = v_i(x + e_n) - v_i(e_n),
\]
where \(v_i(e_n) = -\log(1 - \varepsilon_i) \leq \log 2 \) for all \(i \). We fix \(M \) such that \(M - \log 2 \omega_{n-1} > \alpha \).

Set also \(E_i = \{ y \in S^{n-1}(e_n,1) : |v_i(y)| \geq M \} \). Then \(\beta |v_i(y) - v_i(e_n)|^{n/(n-1)} \geq \beta' |v_i(y)|^{n/(n-1)} \) on \(E_i \) for every \(i \). Thus
\[
\int_{S^{n-1}} \exp(\beta(\|u_i\|/\|\nabla v_i\|)^{n/(n-1)}) \, d\mathcal{H}^{n-1}
\]
\[
= \int_{S^{n-1}(e_n,1)} \exp(\beta(|v_i(y) - v_i(e_n)|/\|\nabla v_i\|)^{n/(n-1)}) \, d\mathcal{H}^{n-1}(y)
\]
\[
\geq \int_{E_i} \exp(\beta'(|v_i(y)|/\|\nabla v_i\|)^{n/(n-1)}) \, d\mathcal{H}^{n-1}(y)
\]
\[
\geq \int_{S^{n-1}(e_n,1)} \exp(\beta'(|v_i(y)|/\|\nabla v_i\|)^{n/(n-1)}) \, d\mathcal{H}^{n-1}(y)
\]
\[
- \omega_{n-1} \exp(\beta'(M/\|\nabla v_i\|)^{n/(n-1)}).
\]

Since \(\beta' > \alpha \) and \(\varepsilon_i = i^{-1} \) in (4.20), the claim now follows from (4.20).

\textbf{References}

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48104, USA
E-mail address: pankka@umich.edu

DEPARTMENT OF MATHEMATICS, CARDWELL HALL, KANSAS STATE UNIVERSITY, MANHATTAN, KS 66506, USA
E-mail address: pietro@math.ksu.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, P. O. BOX 35 (MAK), FI-40014 UNIV. OF JYVÄSKYLÄ, FINLAND.
E-mail address: kirajala@maths.jyu.fi