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Abstract

For a collection E of dyadic intervals, a Banach space X, and p ∈
(1, 2] we assume the upper `p estimates∥∥∥∥∥∑

I∈E
xIhI/|I|1/p

∥∥∥∥∥
p

Lp
X

≤ cp
∑
I∈E

‖xI‖p
X ,

where xI ∈ X and hI denotes the L∞ normalized Haar function sup-
ported on I. We determine the minimal requirement on the size of E
so that these estimates imply that X is of Haar type p. The charac-
terization is given in terms of the Carleson constant of E .
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1 Introduction

Let X be a Banach space. We fix a non-empty collection of dyadic intervals
E and assume the upper `p estimates∥∥∥∥∥∑

I∈E

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ c

(∑
I∈E

‖xI‖p
X

) 1
p

(1)

for finitely supported (XI)I∈E ⊂ X and some p ∈ (1, 2], where hI is the
L∞ normalized Haar function supported on I. The consequences for X, one
may draw from (1), depend on the size of the collection E . For instance, if
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E is a collection of pairwise disjoint dyadic intervals, then any Banach space
satisfies (1), hence it does not impose any restriction on X. On the other
hand, if E is the collection of all dyadic intervals, then the upper `p estimates
(1) simply state that X is of Haar type p, a condition which is known – due
to important work of G. Pisier [6] – to be equivalent to certain renorming
properties of the Banach space X.

In this paper we ask how massive a collection E has to be so that (1)
implies that X is of Haar type p. We answer this question in terms of the
Carleson constant [[E ]] of E defined by

[[E ]] := sup
I∈E

1

|I|
∑

J∈I∩E

|J |. (2)

The proof relies on a well-known dichotomy for E saying that one has either
some kind of disjointification or some kind of condensation of the dyadic
intervals from E .

Initially we encountered the problem treated here in connection with our
efforts to obtain a vector valued version of E. M. Semenov’s characterization
of bounded operators rearranging the Haar system. See [7] and [3].

2 Preliminaries

In the following we equip the unit interval [0, 1) with the Lebesgue measure
denoted by | · |. Let D denote the collection of dyadic intervals in [0, 1), i.e.
I ∈ D provided that there exist m ≥ 0 and 1 ≤ k ≤ 2m such that

I = [(k − 1)/2m, k/2m),

and let
Dn := {I ∈ D : |J | ≥ 2−n} where n ≥ 0.

The L∞ normalized Haar function supported on I ∈ D is denoted by hI ,
i.e. hI = −1 in the left half of I and hI = 1 on the right half of I. By Lp

X ,
p ∈ [1,∞), we denote the space of Radon random variables f : [0, 1) → X
such that

‖f‖Lp
X

=

(∫ 1

0

‖f(t)‖p
Xdt

)1/p

< ∞.
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Haar type. Given p ∈ (1, 2], a Banach space X is of Haar type p provided
that there exists a constant c > 0 such that∥∥∥∥∥∑

I∈D

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ c

(∑
I∈D

‖xI‖p
X

) 1
p

for all finitely supported families (xI)I∈D ⊂ X. We let HTp(X) be the
infimum of all possible c > 0 as above. The central result result concerning
Haar type is due to G. Pisier [6] and asserts that Haar type p is equivalent to
the fact that X can be equivalently renormed such that the new norm has a
modulus of smoothness of power type p. For additional information see [1, 5]
and the references therein.

Carleson Constants. Let E ⊆ D be a non-empty collection of dyadic in-
tervals. Recall, that the Carleson constant of E is given by equation (2). Next
we define consecutive generations of E and, using [[E ]], describe a dichotomy
for E known as the almost disjointification and condensation properties.

We define G0(E) to be the maximal dyadic intervals of E where maximal
refers to inclusion. Suppose, we have already defined G0(E),..., Gp(E), we
form

Gp+1(E) := G0(E \ {G0(E) ∪ · · · ∪Gp(E)}).
Moreover, given I ∈ D, we let

Gk(I, E) := Gk(I ∩ E) for k ≥ 1.

Assume that [[E ]] < ∞ and that M is the largest integer smaller than 4[[E ]]+1.
Then

Ei :=
∞⋃

k=0

GMk+i(E), 0 ≤ i ≤ M − 1, (3)

satisfies ∑
J∈G1(I,Ei)

|J | ≤ |I|
2

for all I ∈ Ei.

Conversely, if [[E ]] = ∞, then for all n ≥ 1 and ε ∈ (0, 1) there exists a K0 ∈ E
such that ∑

J∈Gn(K0,E)

|J | ≥ (1− ε)|K0|.

Based on this, one can remodel in distribution the Haar system by the help of
(hI)I∈E which will be used in Lemma 3.4. The proof of this basic dichotomy
and some of its applications can be found in [4, Chapter 3].
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3 Haar Type and Carleson Constants

The main results of this note are Theorems 3.1 and 3.2 below which comple-
ment each other.

Theorem 3.1. Let p ∈ (1, 2] and E ⊆ D be a non-empty collection of dyadic
intervals. Then the following statements are equivalent:

(1) For any Banach space X the existence of a constant c > 0 such that for
all finitely supported families (xI)I∈D ⊂ X one has∥∥∥∥∥∑

I∈E

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ c

(∑
I∈E

‖xI‖p
X

) 1
p

implies that X is of Haar type p.

(2) [[E ]] = ∞.

Theorem 3.2. Let p ∈ (1, 2], E ⊆ D be a non-empty collection of dyadic
intervals, and X be a Banach space which is not of Haar type p. Then the
following statements are equivalent:

(1) There exists a constant c > 0 such that for all finitely supported families
(xI)I∈D ⊂ X one has∥∥∥∥∥∑

I∈E

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ c

(∑
I∈E

‖xI‖p
X

) 1
p

.

(2) [[E ]] < ∞.

Theorem 3.1 and Theorem 3.2 follow immediately from the following two
lemmas (and the obvious fact that there are Banach without Haar type p if
p ∈ (1, 2]).

Lemma 3.3. Let p ∈ (1,∞), [[E ]] < ∞, and X be a Banach space. Then
there is a constant cp > 0, depending at most on p, such that one has∥∥∥∥∥∑

I∈E

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ cp[[E ]]1−
1
p

(∑
I∈E

||xI ||pX

) 1
p

for all finitely supported (xI)I∈E ⊂ X.
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Proof. Using (3), we write E = E0 ∪ · · · ∪ EM−1 with M < 4[[E ]] + 1 such that
the collections {AI : I ∈ Ei} of pairwise disjoint and measurable sets defined
by

AI := I \
⋃

J∈G1(I,Ei)

J, I ∈ Ei,

satisfy
1

2
|I| ≤ |AI | ≤ |I|.

Because ∥∥∥∥∥∑
I∈E

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤
M−1∑
i=0

∥∥∥∥∥∑
I∈Ei

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ M1− 1
p

M−1∑
i=0

∥∥∥∥∥∑
I∈Ei

xI
hI

|I|1/p

∥∥∥∥∥
p

Lp
X

1/p

it is sufficient to prove∥∥∥∥∥∑
I∈Ei

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ cp

(∑
I∈Ei

‖xI‖p
X

) 1
p

for fixed i. But here we get that∥∥∥∥∥∑
I∈Ei

xI
hI

|I|
1
p

∥∥∥∥∥
Lp

X

=

∑
K∈Ei

∫
AK

∥∥∥∥∥∑
I∈Ei

xI
hI(t)

|I|
1
p

∥∥∥∥∥
p

X

dt

 1
p

=

∑
K∈Ei

|AK |
|K|

∫
AK

∥∥∥∥∥∑
I∈Ei

xI

(
|K|
|I|

) 1
p

hI(t)

∥∥∥∥∥
p

X

dt

|AK |

 1
p

≤

∑
K∈Ei

∫
AK

∥∥∥∥∥∑
I∈Ei

xI

(
|K|
|I|

) 1
p

hI(t)

∥∥∥∥∥
p

X

dt

|AK |

 1
p

=

∑
K∈Ei

∫
AK

∥∥∥∥∥ ∑
K⊆I∈Ei

xI

(
|K|
|I|

) 1
p

hI(t)

∥∥∥∥∥
p

X

dt

|AK |

 1
p
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=

∑
K∈Ei

∫
AK

∥∥∥∥∥∥
n(K)∑
l=0

xG−l(K,Ei)

(
|K|

|G−l(K, Ei)|

) 1
p

hG−l(K,Ei)(t)

∥∥∥∥∥∥
p

X

dt

|AK |


1
p

=

(∑
K∈Ei

∫
AK

∥∥∥∥∥
∞∑
l=0

xG−l(K,Ei)χ{l≤n(K)}

(
|K|

|G−l(K, Ei)|

) 1
p

hG−l(K,Ei)(t)

∥∥∥∥∥
p

X

dt

|AK |

) 1
p

where G−l(K, Ei) form the maximal sequence of dyadic intervals from Ei such
that

K = G0(K, Ei) ⊂ G−1(K, Ei) · · · ⊂ G−n(K)(K, Ei)

and G−n(K)(K, Ei) is the unique maximal interval in Ei containing K. Now
we can upper bound the last expression by

∞∑
l=0

(∑
K∈Ei

∫
AK

∥∥∥∥∥xG−l(K,Ei)χ{l≤n(K)}

(
|K|

|G−l(K, Ei)|

) 1
p

hG−l(K,Ei)(t)

∥∥∥∥∥
p

X

dt

|AK |

) 1
p

=
∞∑
l=0

(∑
K∈Ei

∥∥xG−l(K,Ei)χ{l≤n(K)}
∥∥p

X

|K|
|G−l(K, Ei)|

) 1
p

=
∞∑
l=0

 ∑
I,K∈Ei

G−l(K,Ei)=I

‖xI‖p
X

|K|
|I|


1
p

=
∞∑
l=0

∑
I∈Ei

‖xI‖p
X

∑
K∈Ei

G−l(K,Ei)=I
|K|

|I|

 1
p

≤
∞∑
l=0

(∑
I∈Ei

‖xI‖p
X 2−l

) 1
p

=

(
∞∑
l=0

2−
l
p

)(∑
I∈Ei

‖xI‖p
X

) 1
p

.

Next we turn to the case [[E ]] = ∞ for which it is known that the Gamlen-
Gaudet construction yields an approximation of the Haar system by appropri-
ate ’blocks’ of (hI)I∈E . The next lemma demonstrates that this construction
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perfectly fits with our Haar type inequalities. To avoid arguments which use
the unconditionality of the Haar system (and therefore the UMD property of
Banach spaces) we have exactly to remodel the Haar system rather to allow
that the measures of the support of a Haar function and its approximation
are related by uniformly bounded multiplicative constants.

Lemma 3.4. Let X be a Banach space, p ∈ (1, 2], and E be a collection of
dyadic intervals such that

[[E ]] = ∞.

If there is a constant c > 0 such that∥∥∥∥∥∑
I∈E

xI
hI

|I|1/p

∥∥∥∥∥
Lp

X

≤ c

(∑
I∈E

||xI ||pX

) 1
p

(4)

for all finitely supported families (xI)I∈E ⊂ X, then X is of Haar type p with
HTp(X) ≤ c.

Remark 3.5. In Lemma 3.4 the range p ∈ (2,∞) does not make sense since
already X = R does not have Rademacher type p ∈ (2,∞) and henceforth
Haar type p ∈ (2,∞). In other words, for [[E ]] = ∞ and p ∈ (2,∞) the
inequality (4) fails to be true.

Proof of Lemma 3.4. Let n ≥ 1, δ ∈ (0, 1), and ε = 2−n−1δ. Since [[E ]] = ∞
the condensation property (cf. [4, Lemma 3.1.4]) yields the existence of a
K0 ∈ E such that ∑

J∈Gn(K0,E)

|J | ≥ (1− ε)|K0|.

Examining the Gamlen-Gaudet construction [2] as (for example) presented
in [4, Proposition 3.1.6], we obtain a family (BI)I∈Dn of collections of dyadic
intervals such that

(i) BI ⊆ K0 ∩ E ,

(ii) the elements of BI are pairwise disjoint,

(iii) for BI :=
⋃

K∈BI
K one has that BI ∩ BJ = ∅ if and only if I ∩ J = ∅,

and BI ⊆ BJ if and only if I ⊆ J ,

(iv) for

kI :=
∑

K∈BI

hK
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and I, I−, I+ ∈ Dn such that I− is the left half of I and I+ the right
half of I, one has BI− ⊆ {kI = −1} and BI+ ⊆ {kI = 1},

(v) for 0 ≤ k ≤ n and |I| = 2−k one has

|K0|
2k

− 2ε|K0| ≤ |BI | ≤
|K0|
2k

.

As a consequence

1− δ

2n
|K0| ≤ |BI | ≤

|K0|
2n

for |I| = 2−n

and
(1− δ)|K0| ≤

∑
|I|=2−n

|BI | ≤ |K0|.

Choose measurable subsets AI ⊆ BI for |I| = 2−n such that

(a) |AI | = (1− δ)2−n|K0|,

(b) the kI restricted to AI are symmetric.

Let S :=
⋃
|I|=2−n AI , so that |S| = (1− δ)|K0|, and

AI := BI ∩ S for all (remaining) I ∈ Dn.

Then (kI)I∈Dn forms, in distribution, a Haar system relative to S. Hence, as
a consequence of the Gamlen-Gaudet construction, we obtain that∥∥∥∥∥∑

I∈Dn

hI

|I|1/p
xI

∥∥∥∥∥
Lp

X

=

∥∥∥∥∥∑
I∈Dn

kI

|I|1/p
xI

∥∥∥∥∥
Lp

X(S, dt
|S|)

=

(
1

|S|

) 1
p

∥∥∥∥∥∑
I∈Dn

kI

|I|1/p
xI

∥∥∥∥∥
Lp

X(S,dt)

≤
(

1

|S|

) 1
p

∥∥∥∥∥∑
I∈Dn

∑
K∈BI

hK

|K|1/p

(
|K|1/p

|I|1/p
xI

)∥∥∥∥∥
Lp

X

.

Recall that we selected the collection BI as a sub-collection of E . Using our
hypothesis concerning E and X, we can upper bound the last term by

c

(
1

|S|

) 1
p

(∑
I∈Dn

∑
K∈BI

|K|
|I|

‖xI‖p

) 1
p

= c

(∑
I∈Dn

|BI |
|I||S|

‖xI‖p

) 1
p
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= c

(∑
I∈Dn

|BI |
|I|(1− δ)|K0|

‖xI‖p

) 1
p

≤ c

(1− δ)
1
p

(∑
I∈Dn

‖xI‖p

) 1
p

.

Letting δ ↓ 0 yields our statement.
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