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Abstract. For a given mapping f we define the concept of a
sectional mapping fΛ and show by examples that the dynamics of
the latter can differ considerably from the dynamics of f . This is
done both in two- and infinite dimensional settings.

1. Introduction

For any dynamical system in a linear space of dimension at least two,
one can define sectional mappings or sectional dynamical systems by
fixing some of the directions and applying the dynamics only on the re-
maining directions while keeping the boundary values intact. Then one
may ask whether the dynamics of the original mapping corresponds in
some sense with the dynamics of these sectional mappings. Of course,
in order to do that, one has to describe the dynamics in some qualitative
way. The obvious problem here is the fact that the sectional mappings
are defined in a lower dimensional space than the actual mapping, so
one cannot directly compare them. This problem is solved by studying
the type of the corresponding observable invariant measures.

The idea of sectional mappings is applicable both in finite and infinite
dimensional spaces. The results in the present paper may have rele-
vance especially in the understanding of coupled map lattices, for which
the definition of the SRB-measure (Sinai, Ruelle, Bowen) is not quite
settled yet. (See [4] or [5].) In fact, our results indicate that a proper
definition must deal with the whole infinite system, not only with fi-
nite dimensional approximations. In a finite dimensional setting, the
best alternative for SRB-measure, i.e. for the “physically relevant” in-
variant measure, seems to be the so called observable measure, defined
loosely as follows. Consider a space X and a mapping T from X to
itself. If there exists an open set U ⊂ X such that for Lebesgue-almost
every x ∈ U the weak* limit of the sum 1

n

∑n−1
k=0 T k

∗ δx converges to a
unique limit measure µ as n tends to infinity, then this µ is observable,
or SRB-measure. The exact definition will be given below. There are
also other candidates for SRB-measures, some of them coinciding in
some settings with observable measures. (See [1], [5] and [6].) One
way to evaluate the physical relevance of an invariant measure is to
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find out, whether it is stochastically stable, or robust under random
perturbations. The idea behind this is that we perturb the action of
the mapping slightly, take the invariant measure of this perturbed pro-
cess, and see what happens, when the perturbation is diminished to
zero. If the aforementioned invariant measures converge to a certain
invariant measure µ, we say that this µ is stochastically stable. (In
fact, we can construct invariant measures in this way. It could also be
a good candidate for SRB-measure in terms of physical relevance, as
mentioned in [12, Thm 1].)

However, in the infinite dimensional setting, for instance in the theory
of coupled map lattices, the situation is more complicated, as is shown
in [5]. One of the problems lies in the physical relevance. In any real
situation we cannot study but finite number of quantities. Therefore
one is tempted to define the relevant measure for the mapping as a limit
(in some sense) of the SRB-measures of the sectional finite-dimensional
functions, as the dimension increases. This method does not seem to
be satisfactory, since, as we show below, (almost) all the sections may
have SRB-measures that are qualitatively quite different from any in-
variant measure of the infinite dimensional mapping.

One way of introducing a physically reasonable invariant measure, is
by the equilibrium states. For example, in the statistical mechanics of
lattice gases we know that the set of equilibrium states of the whole
system is the closed convex hull of limits of the equilibrium states of
finite subsystems, with different boundary conditions (see for example
[11, Thm III.2.6, p. 251]). Therefore, in a sense the sectional systems
determine the behaviour of the whole system. While these equilibrium
states are not given as invariant measures of some dynamical systems,
one can nevertheless think that there is some “dynamics of nature”
behind them. One purpose of this article is to show that this dynamics
must be of a rather special kind, since no standard smoothness as-
sumptions made in the theory of dynamical systems imply this kind of
behaviour. Indeed, one can find examples of quite the contrary: We
construct respectable mappings for which the invariant measures of the
finite subsystems with fixed boundary values do not have anything in
common with the respective measure of the whole system.

The paper is organized as follows: Chapter 2 is devoted to the def-
initions that are in use throughout the whole article, both in finite
and infinite dimensional settings. In Chapter 3 we define the two-
dimensional sectional mappings and give examples of mappings with
dynamics diametrically opposed to the sectional dynamics. In Chapter
4 we do the same in the space SZ to show that the infinite-dimensional
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systems are not different from this point of view.

2. Basic definitions

Let X be a topological space equipped with some reasonable back-
ground measure λ that gives positive measure to open sets and let
f : X → X be a mapping. For any measure µ we denote the im-
age measure µf−1 by f∗µ. A measure µ is said to be observable, with
respect to f , if there exists an open U ⊂ X such that

1

n

n−1∑

k=0

fk
∗ δx → µ.

for λ-almost all points x ∈ U . Here the convergence is in the normal
weak*-topology. In this paper we require that U = X and take λ to
be the suitable dimensional Lebesgue measure L. In the infinite di-
mensional space we will use the product measure L∞, though it is not
as obvious choice for the background as it is in the finite dimensional
space. In fact, there exists measures with all the finite dimensional
marginals absolutely continuous with respect to the Lebesgue mea-
sure, but which are nevertheless singular with it. For instance, if one
modifies L a bit and takes the product measure of this modified mea-
sure, the result is typically singular with L∞.

Let Qε
x be a family of Borel probability measures on X, defined for

every x ∈ X and ε > 0 such that the mapping x 7→ Qε
x is continuous.

Moreover, let

sup
x∈X

|
∫

g(y)dQε
x(y)− g(x)| → 0

as ε → 0 for every continuous g : X → R. We say that a probability
measure µε is an invariant measure of the random ε-perturbation of
f : X → X, if

µε(B) =

∫
Qε

f(x)(B)dµε(x)

for every Borel set B ⊂ X. These invariant measures are not necessarily
unique. (See [9] for details. The setting there is somewhat more general
than ours.) Let µ be an invariant measure of the unperturbed mapping
f . We say that µ is stochastically stable, if measures µε exist and

µε → µ

weakly* as ε → 0. The stochastic stability makes sense in any metric
space, so it is applicable also in the infinite dimensional case.
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3. Two-dimensional sectional mappings

3.1. Definitions. As an illustration we first define the sections of a
mapping in a two-dimensional space. Of course one could define the
concept right away for any multi-dimensional space, but it is easier to
see the main idea involved here by starting from the simplest case.

Let S be the unit circle and T = S× S the torus, which we often iden-
tify with the unit square. Consider a mapping f : T → T, that is
f(x, y) = (f1(x, y), f2(x, y)), where f1 and f2 are from T to S. For a
fixed a ∈ S this f defines two sectional mappings. The vertical section
is Va(y) = f2(a, y) and the horizontal one Ha(x) = f1(x, a). Both of
them are from the unit circle to itself.

In the following we require that the mapping f as well as the sections
Va and Ha are non-singular for every a ∈ S. This means that they map
every set with positive Lebesgue measure (with the dimension of the
domain space) to a set of positive measure.

We say that dynamics is contracting if its observable measure is a Dirac
measure, and chaotic if the observable measure is absolutely continuous
with respect to the Lebesgue measure. These wide terms describe here
two qualitatively opposite types of dynamics. The sectional dynamics
is called chaotic or contracting, if all the sectional mappings (both hor-
izontal and vertical) have such dynamics, with the respective measures
in their domain spaces. This definition can be easily generalized to any
finite-dimensional space.

3.2. A function with chaotic dynamics and contracting sec-
tional dynamics. Let f : T→ T be a function defined as

f(x, y) = (3y + ϕ(x), 3x + ϕ(y)) (mod 1) =: (f1(x, y), f2(x, y)),

where ϕ(·) is a smooth function with 0 < |dϕ(x)
dx
| < 1 everywhere. (For

instance take x(x−1)
4

.) The Jacobian determinant is 6= 0 everywhere,
so it is non-singular. Also its sectional mappings are non-singular. All
the mappings considered are smooth as well. Obviously f is basically
(3y, 3x) (mod 1), but the small additional terms are needed to secure
the non-singularity of the sectional mappings.

Fix x ∈ [0, 1]. Then Vx(y) = 3x + ϕ(y) is a contracting function in y,

since |dVx(y)
dy

| < 1 everywhere, and it has an attracting fixed point, say

z, that attracts all points. Its observable measure is thus δz. The hori-
zontal sections have similar dynamics and the same kind of observable
measures. Therefore the sectional dynamics is contracting. However,
the absolute values of both eigenvalues of the Jacobian matrix of f are
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greater than 1, so the function is expanding. By [3] it has a unique
ergodic invariant measure µ that is equivalent with the Lebesgue mea-
sure. Since the measure is invariant and ergodic, it is also observable
by the Birkhoff ergodic theorem. Thus the dynamics is chaotic.
In order to use the result in [3], we must identify the torus with [0, 1]2.
Taken as a function operating in the unit square, f is C∞ wherever it is
continuous. Therefore it is enough to check the pieces bounded by the
points of discontinuity, that is, the points in f−1

1 ({0, 1}) ∪ f−1
2 ({0, 1}).

It is quite easy to see that these pieces do not contain cusps, which is
required in [3].

Remark 1. The above example is robust under random perturbations.
Indeed, we know, by [9, Thm 1.1, Prop. 1.4, Thm. 4.2 (p.154) ], that
the random ε-perturbations of f have invariant measures µε, and if µ
is the weak limit of some sequence of measures µε as ε → 0, then µ is
absolutely continuous with respect to the Lebesgue measure, since f is
expanding. We know also, again by the aforementioned results, that
the measure µ is invariant. By the uniqueness the observable measure
is stochastically stable. It is easy to see that the non-wandering set
of any sectional mapping consists of the fixed point z and therefore δz

is also stochastically stable. (For this result and for the definition of
non-wandering set, see [9, Thm.4.4, p.50].)

3.3. A function with contracting dynamics and chaotic sec-
tional dynamics. Let f : T→ T (the torus taken as the unit square)
be a mapping defined as f(x, y) = (f1(x, y), f2(x, y)), where

{
f1(x, y) = f2(x, y) + ε(x, y)

f2(x, y) = 3x− 2y (mod 1).

Set A = {(x, y) ∈ T | x ≥ y, 3x − 2y ≤ 1}. We define the function ε
such that f will be smooth and f(T) ⊂ A.

The function f2 : T → [0, 1] is affine in sets that are bounded by lines
3x − 2y = m, where m = 0,±1,±2 The same holds for the function

ϕ(x, y) = 1−f2(x,y)
3

. Take ρ to be a C∞ function T→ [0, 1] such that on
the lines 3x− 2y = m and on the set {(x, y) | x = 0 or y = 0 (mod1)}
both ρ and the derivatives dρ

dx
and dρ

dy
vanish. (One can build this func-

tion for instance by using suitable polynomials.) We require also that
ρ 6= 0 outside these lines. Since the derivatives dϕ

dx
and dϕ

dy
are con-

stants where they exist, and ϕ is piecewise affine, one can rescale ρ
such that 0 ≤ ρ ≤ ϕ. By rescaling it again, if needed, and modifying
it in a suitable manner, we get a function ε which has the properties
of ρ mentioned above and in addition 0 ≤ | dε

dx
| ≤ 1 and 2 dε

dx
+ 3 dε

dy
6= 0

almost everywhere. This makes the function f non-singular, because
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its Jacobian determinant is −(2 dε
dx

+ 3 dε
dy

) 6= 0 almost everywhere. Also

the sections are non-singular.

Since ε vanishes in the set {(x, y) | x = 0 or y = 0 (mod1)}, the func-
tion f is continuous on the torus. In fact it is C∞. Moreover, for every
(x, y) ∈ T we have

3f1(x, y)− 2f2(x, y) = f2(x, y) + 3ε(x, y) ≤ f2(x, y) + 3ϕ(x, y) = 1,

and f1(x, y) ≥ f2(x, y), which means f(T) ⊂ A.

Let (x, y) ∈ A, define x0 = x, y0 = y and xn+1 = f1(xn, yn), yn+1 =
f2(xn, yn). Then

(3.1)

{
xn+1 = 3xn − 2yn + ε(xn, yn)

yn+1 = 3xn − 2yn.

Now xn ≥ yn, when n ≥ 1, and yn = 3xn−1−2yn−1 ≥ xn−1, when n ≥ 2.
Thus the sequences (xn) and (yn) are increasing and dominated by 1.
Therefore the limit x′ = limn→∞ xn exists and is equal to limn→∞ yn,
since xn ≥ yn ≥ xn−1. From the equations (3.1) and the definition of
f we see that (x′, x′) is a fixed point of f and x′ = 3x′− 2x′ + ε(x′, x′),
which is equivalent to ε(x′, x′) = 0. Since that happens only on the
boundary of A and the only fixed point on this boundary is (1, 1), we
have limn→∞ fn(x, y) = (1, 1).

We have seen that fn(x, y) → (1, 1) when n →∞ for every (x, y) ∈ X.
Therefore δ(1,1) is observable for f . Also |df1

dx
| ≥ 3 − 1 = 2, because

| dε
dx
| ≤ 1. Obviously df2

dy
= −2. Therefore, the sectional mappings

are expanding, mixing, and by [10] have a unique Lebesgue-equivalent,
ergodic invariant measure, which is again observable by the same ar-
guments as in the previous example. Therefore the sectional dynamics
is chaotic.

Remark 2. To see the stochastic stability of these measures it suf-
fices to point out that the non-wandering set for the mapping f is
its fixed point (1, 1) and therefore the Dirac-measure in this point is
stochastically stable. The Lebesgue-equivalent invariant measures of
the sectional mappings are also stochastically stable, since the sections
are expanding.

4. Infinite dimensional case

4.1. The definition and the setting. Let X = SZ and recall that
we think S as [0, 1] with the endpoints identified. We equip X with
the product topology. The symbol xn means the nth coordinate of x.
Let Λ ⊂ Z be finite and a ∈ SZ\Λ. These Λ and a define a sectional
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mapping from SΛ to itself, which we denote by fΛ,a. Take x ∈ SΛ and
define x ∨ a ∈ X as

(x ∨ a)n =

{
xn, n ∈ Λ

an, n ∈ Z \ Λ
.

Then

fΛ,a(x)n = f(x ∨ a)n,

where n ∈ Λ.

The idea in the following is the same as in the two-dimensional case.
The sectional dynamics is defined in the same manner. Recall that the
domain of fΛ is a finite dimensional space SΛ. We say that sectional
dynamics is contracting (resp. chaotic) if the dynamics of fΛ,a for every
finite Λ and L∞-almost all a is contracting (chaotic) in the finite sense.
We say that f has chaotic dynamics, if it has an invariant measure
whose finite dimensional marginals are absolutely continuous with the
corresponding Lebesgue measure. The dynamics is contracting if the
observable measure with L∞ as the background is a Dirac-measure.

4.2. A function with chaotic dynamics and contracting sec-
tional dynamics. We define a function f : X→ X as a coupled map
f = gε ◦ h, where h(x)n = 4xn (mod1). The coupling gε is given by
gε(x)n = xn + ε ·λ(xn−1) (mod1), where λ is a contracting C∞-function
S→ S. For some ε small enough, this function f has an invariant mea-
sure µ with finite dimensional marginals absolutely continuous with
respect to the Lebesgue measure, by [7]. This µ is also unique in the
set of sufficiently regular measures B1 defined in [7].

Let σ be a shift in X, defined by σ(x)n = xn+1. Let us define

q(x)n = f ◦ σ(x)n = 4xn+1 + ε · λ(4xn) = σ ◦ f(x)n.

This q is obviously non-singular and C∞. Since σ ◦ f = f ◦ σ, we
see that f∗σ∗µ = σ∗f∗µ = σ∗µ, and thus σ∗µ is also invariant mea-
sure of f . It is easy to see that the measure σ∗µ also belongs to the
set B1 and therefore by the uniqueness we have σ∗µ = µ. Moreover
q∗µ = f∗σ∗µ = µ, which shows µ to be q-invariant, and therefore, the
dynamics of q is chaotic.

Take arbitrary Λ and a ∈ X as above and let m be the maximal
integer of Λ. Without loss of generality, we can assume that Λ =
{m,m − 1,m − 2, . . . ,m − l}, so that it is “a box”. (Remark that in
any case it is a finite union of boxes.) The function qΛ,a is smooth and
non-singular.
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We proceed as follows. First we show that qk
Λ,a(x)m tends to the same

constant for every x ∈ SΛ as k → ∞. This is obvious, because
qk
Λ,a(x)m depends essentially only on the constant am+1. Then we pro-

ceed by showing that also qk
Λ,a(x)m−1 tends to some constant for all x,

as k →∞. This is also easy, since qk
Λ,a(x)m−1 depends on qk−1

Λ,a (x)m and
this we have shown to be approximately constant for large k. The rest
of the argument follows by induction.

Let us denote the lifts of the corresponding functions by upper-case let-
ters. Define b := 4am+1 and P : R→ R to be P (z) = b+L(z), where L
is the lift of ελ. We use here z as a real variable, leaving x to be in SZ.
Let QΛ,a be the lift of qΛ,a to RΛ. We see that Qk

Λ,a(x)m = P k(xm) has
the same limit for all x, as k → ∞, since P is a contracting mapping
in R as well as L. (They have the same derivative.)

We know already that Qk
Λ,a(x)m = P k(xm) tends to a constant for all

x, but we still have to show this for Qk
Λ,a(x)i, where m > i ∈ Λ. Let us

write 4Qk−1
Λ,a (x)i+1 = bk(x, i + 1) = bk. Now

Qk
Λ,a(x)i = bk+L(bk−1+L(bk−2+L(. . .+L(xi)))) = Kk◦Kk−1◦· · ·◦K1(xi),

where Kk(z) = bk + L(z). Next we proceed inductively (with respect
to i) and assume bk(x, i + 1) → b(i + 1) = b′ for all x, when k →
∞. Define P (z) = b′ + L(z). As above, we see that P n(z) has the
same limit, say y, for all z ∈ R as n → ∞. We can require that
supz∈R |P n(z) − y| → 0 as n → ∞. (This can be required of ελ.)
Moreover supz∈R |Kk(z)− P (z)| → 0 as k →∞. Hence we can take n
and n′ such that supz∈R |P n(z)−y| < ε

2
and supz∈R |Kk(z)−P (z)| < ε

2n
for k ≥ n′. Now

|Kn+n′ ◦ · · · ◦K1(z)− y| < |P n(Kn′ ◦ · · · ◦K1(z))− y|+ ε

2
< ε.

Therefore Qk
Λ,a(x)i and also qk

Λ,a(x)i have the same limit for all x ∈ RΛ

as k → ∞. Thus its observable measure will be some Dirac measure
and the dynamics of qΛ,a is contracting.

Remark 3. The stochastic stability of the invariant measure of the
sectional mappings is seen in the same way here as in the finite di-
mensional case. For the mapping q, or more precisely for the coupled
lattice map f , the stochastic stability can be proved by the results in
[8, p. 150]. The definition of a random perturbation in [8] is different
from ours in, but the stochastic stability turns out to be a special case
of the one introduced in [9].

4.3. A function with contracting dynamics and chaotic sec-
tional dynamics. Let X = SZ and let 0 < λ < 1. If one thinks
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S as the interval [0, 1] with the endpoints identified, one can define
J = [λ, 1] ⊂ S. Set g : [0, 1] → J to be the continuous mapping that is
identity on J and an affine bijection on [0, 1] \ J . Let a : J → [0, 1] be
the affine order-preserving bijection.

The idea below is that we define a mapping T : X → JZ that is con-
tracting, if x is in JZ and expanding outside of it. Most of the sectional
functions have such boundary values, that every iterate falls outside of
the set JZ,under section, and thus they will be expanding. However the
function itself will be contracting as the first iterate throws everything
in JZ.

Define G(x)n = g(xn) and B : X → [0, 1) as B(x) = inf{xi | x =
(. . . , x−1, x0, x1, . . .)}, where the representation (. . . , x−1, x0, x1, . . .) does
not contain any ones. Take h : [0, 1] → [0, 1] to be the standard tent
map

h(x) =

{
2x, 0 ≤ x < 1

2

2(1− x), 1
2
≤ x ≤ 1

.

We know that Lebesgue measure is observable for h. Set p : [0, 1] →
[0, 1] to be a piecewise affine bijection such that p(0) = 1 and p(x) ≤ 1

4
,

when λ ≤ x ≤ 1. Finally define

T (x)n = a−1 ◦ (p(B(x)) · h) ◦ a ◦ g(xn)).

Now T : X→ JZ, and T is thus singular with respect to L∞, but TΛ,a is
non-singular, continuous and smooth everywhere save for some linear
subspaces.

It is easy to see that for almost every x ∈ X, with respect to the mea-
sure L∞, we have B(x) = 0 and on the other hand B(x) ≥ λ for every
x ∈ JZ. Since T (x)n ⊂ J , and p(B(x)) ≤ 1

4
everywhere in JZ we get

that T is highly contracting in JZ, since Tm+1(x)n = a−1◦βh◦a(T (x)n),
where β < 1

4
. Obviously for all x the sum 1

n

∑n−1
k=0 T k

∗ δx tends to δλZ .

However, the dynamics of the sectional mapping TΛ,a is different for
almost all a ∈ X. Namely for almost all points (. . . , a−1, a0, a1, . . .) we
have p(B(a)) = p(0) = 1, and therefore

Tm
Λ,a(x)n = (a−1 ◦ h ◦ a)m(xn),

where n ∈ Λ. The observable measure of TΛ,a is absolutely continuous
with respect to LΛ This is because h has Lebesgue-equivalent observ-
able measure, and the conjugate function a preserves this, since it is
affine. The mapping TΛ,a is basically a direct product of expanding
functions in J and therefore itself expanding in JΛ. One can again use
the result in [3] to see that the sectional dynamics is chaotic.
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Remark 4. It is easy to see that {λZ} is the non-wandering set of T
so the stochastic stability of the measure δλZ can be seen by [9, Thm
4.4]. (One needs the fact that SZ is separable.) Similarly the stochastic
stability for the sectional dynamics can be established the same way as
in the similar finite dimensional case.
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suggesting me its topic and for important comments. For details I
have also received help from Jouni Parkkonen, Tuomas Puurtinen and
Tapio Rajala. I am thankful for the hospitality of professor Jean-Pierre
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