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Abstract. We show that the weighted Hardy inequality
∫
Ω
|u|pdΩ

β−p ≤
C

∫
Ω
|∇u|pdΩ

β , where dΩ(x) = dist(x, ∂Ω), holds for all u ∈ C∞
0 (Ω) even

for certain (sharp) exponents β > p − 1 when the visual boundary of
the domain Ω ⊂ Rn is sufficiently big. In the case of the usual von
Koch snowflake domain the sharp bound is shown to be β < p− 2 + λ,
where λ = log 4/ log 3. These results are based on new pointwise Hardy
inequalities.

1. Introduction

The classical Hardy inequality

(1)
∫

Ω
|u(x)|p d(x, ∂Ω)β−p dx ≤ C

∫
Ω
|∇u(x)|p d(x, ∂Ω)β dx ,

where 1 < p < ∞, was first considered by G. H. Hardy [6], [7] in the one-
dimensional, unweighted (β = 0) case with Ω = (0,∞) ⊂ R. It was later
proved by Hardy et al. (cf. [8, Section 9.8] and references therein) that if u is
an absolutely continuous function and u(0) = 0, the weighted inequality (1)
holds in (0,∞) with a constant C = C(p, β) > 0 whenever β < p− 1. Since
then, it has been a question of considerable interest to find conditions which
guarantee that the (p, β)-Hardy inequality (1) is valid in some more general
settings. The situation we are interested in this paper is the one where Ω
is a domain in Rn, n ≥ 2, and (1) holds for all functions u ∈ C∞

0 (Ω) with a
constant CΩ = CΩ(p, β) > 0. If this is the case, we say that the domain Ω
admits the (p, β)-Hardy inequality.

Let us briefly discuss the know results for (p, β)-Hardy inequalities in this
setting for a fixed 1 < p < ∞. In the unweighted case β = 0, it is well known
by results of Ancona [1] (for p = n = 2), Lewis [16], and Wannebo [26], that
Ω ⊂ Rn admits the p-Hardy inequality provided that the boundary of Ω is
sufficiently big everywhere, namely

(2) Hλ
∞
(
∂Ω ∩B(w, r)

)
≥ Crλ for all w ∈ ∂Ω, 0 < r < diam(Ω),

where λ > n− p. Moreover, Wannebo [26] proved in fact that, under condi-
tion (2), there exists some small positive β0 = β0(p, n, Ω) so that Ω admits
the weighted Hardy inequality (1) for all β < β0. If Ω  Rn, that is, Ω is
a proper subdomain of Rn, then Ω satisfies (2) with λ = 0, and hence Ω
admits the p-Hardy inequality for every p > n.

Note that in all the results above the density condition was given in terms
of the local p-capacity of the complement of Ω, but such a condition is always
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true if (2) holds, see e.g. calculations in the proof of [12, Theorem 5.9].
Conversely, positive p-capacity implies positive (n − p)-Hausdorff content
with estimates, cf. [11, Theorem 2.27]. Since the p-capacity condition has a
self-improving property [16, Theorem 1], it is in fact equivalent to (2).

On the other hand, Nečas proved in [20] that if Ω ⊂ Rn, n ≥ 2, is a
bounded Lipschitz domain, then Ω admits (p, β)-Hardy inequalities for all
β < β0, where β0 = p − 1; see also Kufner [15]. In this case, Ω satisfies
the condition (2) with λ = n − 1. The bound β < p − 1 for Lipschitz
domains is also sharp, since the (p, β)-Hardy inequality fails e.g. in the unit
ball B(0, 1) ⊂ Rn for every β ≥ p− 1.

Based on the above considerations, one could ask if (2) with λ = n − 1
is enough to guarantee (p, β)-Hardy inequalities for all β < β0 = p − 1, or
even if (2) with some λ > n − 1 would imply (p, β)-Hardy inequalities for
all β < β0, where β0 > p − 1. For example, if Ω is the von Koch snowflake
domain in the plane, then (2) holds with λ = dim ∂Ω = log 4/ log 3, and
direct calculations indicate that when β < β0, where β0 = p− 2 + λ > p− 1,
the (p, β)-Hardy inequality should hold for all u ∈ C∞

0 (Ω).
It turns out, however, that this is not true in general; in this paper we

give a construction which proves the next theorem.

Theorem 1.1. For every 1 < λ < 2 there exists a simply connected domain
Ω = Ωλ ⊂ R2 so that Ω satisfies the condition (2) with the exponent λ, but
Ω fails to admit the (p, p− 1)-Hardy inequality.

See Example 6.2 for the proof of Theorem 1.1. Actually, in Example 6.3
we construct for any 1 ≤ σ < λ < 2 a domain Ω = Ωλ,σ such that Ω satisfies
the condition (2) with the given exponent λ, and admits the (p, β)-Hardy
inequality for all β < p − 2 + λ but for β(σ) = p − 2 + σ. So the thickness
of the boundary ∂Ω, in the sense of (2) with λ > n − 1, is not sufficient
to guarantee that Ω admits (p, β)-Hardy inequalities for all β < β0(p, n, Ω),
where β0 > p−1. Nevertheless, the von Koch snowfake example leads one to
ask if it is possible to obtain results for β ≥ p−1 under additional conditions
on the domain. For instance, it is well-known that snowflake type domains
are John domains, which implies that all the boundary points are “visible”
or “easily accessible” from the points inside the domain. This motivates the
definition of the visual boundary vx(c)–∂Ω near x ∈ Ω (see Section 2.5). The
next theorem, which is the main theorem of this paper, states that if the
visual part of the boundary is big enough near every x ∈ Ω, then Ω admits
the desired Hardy inequalities.

Theorem 1.2. Let 1 < p < ∞ and let Ω ⊂ Rn be a domain. Assume that
there exist 0 ≤ λ ≤ n, c ≥ 1, and CΩ > 0 so that

Hλ
∞
(
vx(c)–∂Ω

)
≥ CΩd(x, ∂Ω)λ for every x ∈ Ω.

Then Ω admits the (p, β)-Hardy inequality whenever β < β0, where β0 =
β0(p, n, Ω) = p− n + λ.

As a direct consequence of Theorem 1.2, we obtain the fact that if Ω ⊂ R2

is a von Koch snowflake type domain with dim ∂Ω = λ ∈ (1, 2), then Ω
indeed admits (p, β)-Hardy inequalities for all 1 < p < ∞ and β < β0 =
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p− 2 + λ. Furthermore, this β0 is critical, since Ω fails to admit the (p, β)-
Hardy inequality whenever β ≥ β0.

Even though the visual boundary condition in Theorem 1.2 is closely re-
lated to John domains, it is not true that Theorem 1.2 holds for all John
domains with uniformly big boundary, in the sense of (2); the domain con-
structed in Example 6.2 works as a counterexample. However, we prove
that each simply connected John domain in the plane admits (p, β)-Hardy
inequalities for all β < p − 1. This improves on the result of Nečas, where
one assumes that Ω is a bounded Lipschitz domain; each Lipschitz domain is
in fact a John domain. More generally, if Ω ⊂ Rn, n ≥ 3, is a John domain
and if in addition Ω is quasiconformally equivalent to the unit ball of Rn,
then Ω admits (p, β)-Hardy inequalities for all β < p− 1. See Section 5 for
the proofs.

In spite of these results on John domains, we presume that, in the case
β < p − 1, the visibility of the boundary plays no essential role. We state
this as a conjecture.

Conjecture 1.3. Let 1 < p < ∞ and β < p − 1. If Ω ⊂ Rn satisfies
the density condition (2) with λ = n − 1, then Ω admits the (p, β)-Hardy
inequality. In particular, if Ω is a simply connected domain in the plane,
then Ω admits the (p, β)-Hardy inequality for all β < p− 1.

In order to prove the (p, β)-Hardy inequalities of Theorem 1.2, we in fact
establish as a tool stronger inequalities, pointwise (p, β)-Hardy inequalities,
which are also of their own independent interest. In the unweighted case
β = 0, pointwise Hardy inequalities were introduced by Haj lasz [5], and also
Kinnunen and Martio considered similar inequalities independently in [14].
Generalizing the approach of [5] we call the inequality

(3) |u(x)| ≤ CdΩ(x)1−
β
p MLdΩ(x),q

(
|∇u|dΩ

β/p
)
(x),

where u ∈ C∞
0 (Ω), 1 < q < p, and L ≥ 1, the pointwise (p, β)-Hardy in-

equality; see Proposition 3.1 for the justification of this notation. In (3)
we denote MR,qf = (MRf q)1/q, where MRf is the usual restricted Hardy-
Littlewood maximal function of f , and dΩ(x) = d(x, ∂Ω). We say that a
domain Ω ⊂ Rn admits the pointwise (p, β)-Hardy inequality if there ex-
ist some 1 < q < p and constants L ≥ 1, CΩ = CΩ(p, β, q) > 0, so that
the inequality (3) holds for every u ∈ C∞

0 (Ω) with these q, L and CΩ. It
was proved in [5] (see also [14]) that in all unweighted cases considered by
Ancona, Lewis and Wannebo, one obtains in fact pointwise p-Hardy inequal-
ities. However, the pointwise (p, β)-Hardy inequality is not equivalent to the
usual (p, β)-Hardy inequality, since there are domains which admit the lat-
ter for some p and β, but the corresponding pointwise inequality fails; see
Examples 6.2 and 6.3. In particular, when Ω ⊂ Rn and 1 < p < ∞ is fixed,
the set of β’s for which Ω admits the pointwise (p, β)-Hardy inequality is
always an interval — see Lemma 3.2 — but this is not necessarily the case
with the usual Hardy inequality, as can be seen for instance in Examples 6.2
and 6.3.

The outline of this paper is as follows: In Section 2 we go through some
basic notation and definitions used in the rest of the paper, especially we
give the exact definition of the visual boundary. Section 3 is devoted to some
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preliminary results on the pointwise Hardy inequalities and technical lemmas
that we use in the proof of our main theorem in Section 4. Next, in Section
5, we prove results on John domains, and finally, in Section 6 we give some
examples which show that Condition 2.1 is essentially the weakest possible
condition that guarantees a domain Ω to admit the (pointwise) (p, β)-Hardy
inequality for all 1 < p < ∞ and β < n − p + λ. As noted before, these
examples also shed some light to many other questions concerning usual and
pointwise Hardy inequalities and their relations.

2. Definitions

2.1. Notation. Let A be a subset of the n-dimensional Euclidean space
Rn, n ≥ 1. Then ∂A denotes the boundary of A, A is the closure of A, and
the n-dimensional Lebesgue measure of A is denoted |A|, provided that A
is measurable. The characteristic function of A is χ

A
, and diam(A) is the

usual Euclidean diameter of A. For A ⊂ Rn, b ∈ Rn, and κ ∈ R (we allow
also κ ∈ C if n = 2) we denote κA + b = {κx + b : x ∈ A}, unless A is a
cube, cf. 2.2. Depending on the situation, d(·, ·) denotes either the Euclidean
distance between two points, two sets, or a point and a set. We use also the
notation |x| for the Euclidean norm of x ∈ Rn; then |x − y| = d(x, y). An
open ball with center x ∈ Rn and radius r > 0 is denoted B(x, r). An open
and connected set Ω ⊂ Rn is called a domain. As in the introduction, we
denote dΩ(x) = d(x, ∂Ω) for x ∈ Ω.

Let U ⊂ Rn and let f : U → Rm be a mapping. If A ⊂ U , f |A denotes
the restriction of f to A. The support of f , spt(f), is the closure of the
set where f is non-zero. For f ∈ L1

loc(U) and a measurable A ⊂ U with
0 < |A| < ∞ we denote

fA =
∫
A
f(x) dx =

1
|A|

∫
A

f(x) dx .

All the integrals in this paper are taken with respect to the n-dimensional
Lebesgue measure, if not stated otherwise.

A continuous mapping γ : [a, b] → Rn, a, b ∈ R, n ≥ 2, as well as the
image γ = γ([a, b]) ⊂ Rn, is called a curve . The Euclidean length of a curve
γ is denoted l(γ). A curve γ is rectifiable if l(γ) < ∞. Every rectifiable
curve γ can be parameterized by arc length, i.e. γ = γ : [0, l] → Rn so that
l(γ|[0,t]) = t for all t ∈ [0, l]. We say that a curve γ : [a, b] → Rn joins x to y
(in A ⊂ Rn), if γ(a) = x and γ(b) = y (and γ ⊂ A). When x, y ∈ Rn, [x, y]
is the line segment with endpoints x and y.

We use the letter C to denote various positive constants, which may vary
from expression to expression. If g and h are some quantities, we write g . h
if there exists a constant C > 0 so that g ≤ Ch. When F is a finite set, #F
denotes the cardinality of F .

2.2. Whitney decomposition. Let Ω ( Rn, n ≥ 2, be a proper sub-
domain. Then W = W(Ω) denotes a Whitney decomposition of Ω, i.e. a
collection of cubes Q ⊂ Ω with pairwise disjoint interiors and having edges
parallel to the coordinate axes. Also, the diameters of Q ∈ W are in the set
{2−j : j ∈ Z} and satisfy the condition

diam(Q) ≤ d(Q, ∂Ω) ≤ 4 diam(Q).
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We refer to [24] for the existence and further properties of Whitney decom-
positions. For j ∈ Z we define

Wj = {Q ∈ W : diam(Q) = 2−j}.
When Q is a cube, cQ denotes the center point of Q, and if L > 0, then LQ
is the cube with the center point cQ and diameter L diam(Q).

2.3. Maximal functions. The classical restricted Hardy-Littlewood maxi-
mal function of f ∈ L1

loc(Rn) is defined by

MRf(x) = sup
0<r<R

∫
B(x,r)

|f(y)| dy ,

where 0 < R ≤ ∞ may depend on x. In the case R = ∞ we denote
M∞f = Mf . The well-known maximal function theorem of Hardy, Lit-
tlewood and Wiener (see e.g. [24]) states that if 1 < p < ∞, we have
||MRf ||p ≤ C(n, p)||f ||p for all 0 < R ≤ ∞.

However, in this paper it will be more convenient to consider maximal
functions where the integrals are taken over cubes instead of balls. For
f ∈ L1

loc(Rn) we define

M cf(x) = sup
Q3x

∫
Q
|f(y)| dy ,

where the supremum is taken over all (closed) cubes Q with x ∈ Q. We
need also a restricted version of M c, and therefore we fix for each x a cube
Q(x) 3 x and define

M c
Q(x)f(x) = sup

x∈Q̃⊂Q(x)

∫
Q̃
|f(y)| dy.

Maximal functions Mf and M cf are equivalent in the sense that there
exist constants 0 < c1 < c2 < ∞ so that c1Mf ≤ M cf ≤ c2Mf for each
f ∈ L1

loc(Rn), so especially a version of the maximal function theorem holds
also for M cf .

When 1 < q < ∞, we define Mqf =
(
Mf q

)1/q; MR,q, M c
q and M c

Q(x),q are
then defined similarly. From the maximal function theorem it follows that
Mq is bounded on Lp for each q < p < ∞.

2.4. John domains and uniform domains. Let Ω ⊂ Rn be a domain
and let c ≥ 1. We say that Ω is a c-John domain with center point x0 if
for every x ∈ Ω there exists a curve (called a John curve) γ : [0, l] → Ω,
parameterized by arc length, so that γ(0) = x, γ(l) = x0, and

(4) d(γ(t), ∂Ω) ≥ 1
c t

for each t ∈ [0, l]. Geometrically this means that each point in Ω can be
joined to the central point by a “twisted cone”, which is sometimes called
also a “carrot”. If Ω is a c-John domain with center point x0, then Ω ⊂
B
(
x0, c d(x0, ∂Ω)

)
, so in particular Ω is bounded. Also, if Ω is a c-John

domain, then for each w ∈ ∂Ω there is a curve γ : [0, l] → Ω∪ {w} joining w
to x0 and satisfying (4). We say also in this case that γ joins w to x0 in Ω.
John domains were introduced in [22] and named in [17] after F. John who
had considered a similar class of domains earlier (cf. [13]). There are also
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several other ways to define John domains, see [21]. However, for bounded
domains Ω ⊂ Rn these definitions are equivalent, but with possibly different
constants.

A domain Ω ⊂ Rn is uniform if there is a constant C ≥ 1 so that each
pair of points x, y ∈ Ω can be joined by a curve γ : [0, l] → Ω, parameterized
by arc length, so that l ≤ Cd(x, y) and d(z, ∂Ω) ≥ 1

C min{d(z, x), d(z, y)}
for each z ∈ γ . Such a curve γ is called a “double cone” or a “cigar” arc.
Every bounded uniform domain is also a c-John domain for some c ≥ 1.

Let Ω be a c-John domain with center point x0 and let w ∈ ∂Ω. Let
Jc(w, x0) denote the collection of all c-John curves joining w to x0 in Ω. We
then define

P (w) =
{
Q ∈ W : Q ∩ γ 6= ∅ for some γ ∈ Jc(w, x0)

}
.

When E ⊂ ∂Ω, we also denote

P (E) =
⋃

w∈E

P (w).

The (John-)shadow S(Q) of a cube Q ∈ W on the boundary ∂Ω is now
defined by

S(Q) = {w ∈ ∂Ω : Q ∈ P (w)}.
Then S(Q) is a closed set for each Q ∈ W. Indeed, if wj ∈ S(Q) and wj → w
as j →∞, we have for each j ∈ N a curve γj ∈ Jc(wj , x0) so that γj∩Q 6= ∅.
It follows from the Arzelà-Ascoli theorem that there exists a subsequence of
(γj) converging uniformly to a curve γ. It is then easy to show that γ is a
c-John curve joining w to x0 and intersecting Q.

Estimates for the sizes of these shadows will provide us with one key
element in the proof of our main theorem.

2.5. Visual boundary and the main condition. Let Ω ⊂ Rn be a do-
main. When x ∈ Ω and c ≥ 1 is a constant we define a subdomain Ωx(c)
by

Ωx(c) =
⋃
{U ⊂ Ω : U is a c-John domain with center point x}.

Then clearly ∅ 6= Ωx(c) ⊂ Ω and Ωx(c) is also a c-John domain with center
point x. We say that the set

vx(c)–∂Ω = ∂Ω ∩ ∂Ωx(c)

is the c-visual boundary of Ω near x. In our main theorem, as well as in the
corresponding pointwise result, we assume that the visual boundary of Ω
near each point x ∈ Ω is uniformly big, in the sense of the following density
condition.

Condition 2.1. Let Ω ⊂ Rn be a domain. We assume that there exist
constants c ≥ 1, C0 > 0, and λ > 0 so that for each x ∈ Ω

(5) Hλ
∞
(
vx(c)–∂Ω

)
≥ C0d(x, ∂Ω)λ .

Here Hλ
∞ is the λ-Hausdorff content of a set, defined by

Hλ
∞(A) = inf

{ ∞∑
k=1

diam(Ek)λ : A ⊂
∞⋃

k=1

Ek

}



WEIGHTED POINTWISE HARDY INEQUALITIES 7

for A ⊂ Rn. The Hausdorff dimension of a set A ⊂ Rn is then

dim(A) = inf{λ > 0 : Hλ
∞(A) = 0}.

Notice that a domain Ω ⊂ Rn satisfies Condition 2.1 if and only if for
each x ∈ Ω there exists some c-John domain Ux ⊂ Ω with center point x so
that

Hλ
∞(∂Ux ∩ ∂Ω) ≥ C0d(x, ∂Ω)λ .

If Ω ⊂ Rn is a uniform domain, then it is sufficient to assume merely that
the usual boundary ∂Ω satisfies a density condition similar to (5), since then
we conclude using the uniformity of Ω that Ω satisfies Condition 2.1. Let us
state this as a proposition:

Proposition 2.2. Let Ω ⊂ Rn be a uniform domain and let 1 < p < ∞.
Assume that there exist constants τ ≥ 1, C0 > 0, and λ > 0 so that

Hλ
∞
(
∂Ω ∩B

(
x, τd(x, ∂Ω)

))
≥ C0d(x, ∂Ω)λ

for each x ∈ Ω. Then Ω satisfies Condition 2.1.

Proof. Let CU be the constant from the uniformity condition for Ω. Let
x0 ∈ Ω and let B0 = B

(
x0, τdΩ(x0)

)
. Then it is easy to show that if

x ∈ B0 ∩Ω, the double cone arc γx joining x to x0 is also a c-John arc, with
a constant c = c(CU , τ) > 0. Denote for x ∈ B0 ∩ Ω

Cig(x) =
⋃

z∈γx

B
(
z, CU

−1 min
{
d(z, x), d(z, x0)

})
.

Then Ux0 =
⋃

x∈B0∩Ω Cig(x) is a c-John domain satisfying B0∩∂Ω ⊂ ∂Ux0∩
∂Ω. This, together with the density assumption, implies that Condition 2.1
holds in Ω. �

It follows that a uniform domain Ω satisfying the density condition in
Proposition 2.2 admits the Hardy inequalities of Theorem 1.2. In fact, such
a domain admits also the corresponding pointwise inequalities; see Theorem
4.1.

3. Preliminary results

We begin by recording some basic properties of the weighted pointwise
Hardy inequalities. First, let us justify the notation of the pointwise (p, β)-
Hardy inequality, i.e. that the pointwise inequality always implies the usual
(p, β)-Hardy inequality. We give the proof, which uses some well-known
arguments, for the sake of the completeness.

Proposition 3.1. Suppose that the pointwise (p, β)-Hardy inequality (3)
holds for a function u ∈ C∞

0 (Ω) with a constant C1 > 0. Then u satisfies
the (p, β)-Hardy inequality (1) with a constant C = C(C1, p, n) > 0.

Proof. Denote R = R(x) = LdΩ(x). Divide the inequality (3) by dΩ(x)1−
β
p ,

integrate to power p over Ω, and use the fact that MR,q is bounded on Lp
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to obtain∫
Ω
|u(x)|pdΩ(x)β−p dx ≤ Cp

1

∫
Ω

(
MR,q

(
|∇u|dΩ

β/p
)
(x)
)p

dx

≤ C

∫
Ω

(
|∇u(x)|qdΩ(x)β(q/p)

)p/q
dx

= C

∫
Ω
|∇u(x)|pdΩ(x)β dx .

Here the constant C > 0 depends only on C1, p, and the constant from the
maximal function theorem, so that C = C(C1, n, p). �

From the next lemma we obtain the fact that the pointwise (p, β0)-Hardy
inequality implies pointwise (p, β)-Hardy inequalities for all β < β0.

Lemma 3.2. Let u ∈ C∞
0 (Ω) and let 1 < p < ∞, β0 ∈ R. If u satisfies the

pointwise (p, β0)-Hardy inequality (3) with 1 < q < p, L ≥ 1, and C1 > 0,
then u satisfies the pointwise (p, β)-Hardy inequality for all β < β0 with q,
L and a constant C = C(C1, L, p, β0, β) > 0.

Proof. Let β < β0 and denote α = β0 − β > 0. If 0 < r ≤ LdΩ(x) and
y ∈ B(x, r), we have that dΩ(y) ≤ (L + 1)dΩ(x). Thus we obtain from the
pointwise (p, β)-Hardy inequality that

|u(x)| ≤ C1dΩ(x)1−
β0
p MLdΩ(x),q

(
|∇u|dΩ

β0/p
)
(x)

≤ C1dΩ(x)1−
β0
p (L + 1)

α
p dΩ(x)

α
p

·

(
sup

0<r<LdΩ(x)

∫
B(x,r)

|∇u(y)|qdΩ(y)β0
q
p
−α q

p dy

)1/q

≤ CdΩ(x)1−
β
p MLdΩ(x),q

(
|∇u|dΩ

β/p
)
(x),

where C = C(C1, L, p, β0, β) > 0. �

Next we prove some simple results on John-domains that we need in the
proof of our main theorem. First of all, the diameter of the shadow of a
Whitney cube is bounded, up to a constant, by the diameter of the cube
itself.

Lemma 3.3. Let Ω ⊂ Rn be a c-John domain. Then there exists a constant
C = C(c) > 0 so that

diam(S(Q)) ≤ C diam(Q)

for each Q ∈ W.

Proof. If S(Q) = ∅ there is nothing to prove, so we may assume that S(Q) 6=
∅ . Let w ∈ S(Q). Then there exists, by definition, a c-John curve γ joining
w to x0 in Ω so that γ(tQ) ∈ Q for some tQ ∈ [0, l(γ)]. It follows that

d(w,Q) ≤ d(w, γ(tQ)) ≤ l
(
γ|[0,tQ]

)
= tQ

≤ c d(γ(tQ), ∂Ω) ≤ 5c diam(Q),
(6)

and hence, by the triangle inequality, diam(S(Q)) ≤ (10c + 1) diam(Q). �
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In the last lemma of this section we show that the shadows of the Whitney
cubes of a given size have bounded overlap, and hence we obtain a bound
for the sum of the measures of these shadows as well.

Lemma 3.4. Let Ω ⊂ Rn be a c-John domain. Then there exists a constant
C = C(n, c) > 0 so that
(i) for each j ∈ Z and each w ∈ ∂Ω,

#{Q ∈ Wj : w ∈ S(Q)} ≤ C.

(ii) if µ is a Borel measure on ∂Ω, we have for every measurable subset
E ⊂ ∂Ω and each j ∈ Z that∑

Q∈Wj

µ(S(Q) ∩ E) ≤ Cµ(E).

Proof. (i) When w ∈ S(Q) (i.e. Q ∈ P (w)) we have, by (6), that

Q ⊂ B
(
w, (5c + 1) diam(Q)

)
.

Now, let us fix w ∈ ∂Ω and j ∈ Z. Also, denote

aj = #{Q ∈ Wj : w ∈ S(Q)} = #{Q ∈ Wj : Q ∈ P (w)},
and let dj = 2−j . Since the cubes Q ∈ Wj are essentially disjoint, we obtain
that

aj dj
n = C(n)

∑
Q∈Wj∩P (w)

|Q| ≤ C(n)
∣∣B(w, (5c + 1)dj

)∣∣
≤ C(n, c)dj

n .

Thus aj ≤ C(n, c).
(ii) Let µ be a Borel measure on ∂Ω and let E ⊂ ∂Ω be a µ-measurable

set. By the the first part of the lemma, #{Q ∈ Wj : w ∈ S(Q)} is uniformly
bounded on E by a constant C = C(n, c) > 0, independent of j. Since S(Q)
is closed, it is µ-measurable, and hence∑

Q∈Wj

µ(S(Q) ∩ E) =
∫

E

∑
Q∈Wj

χ
S(Q)

(w) dµ(w) ≤ Cµ(E).

This proves the lemma. �

4. The proof of the Main Theorem

In this section, we give the proof of our main result, Theorem 1.2. In fact,
we prove the next theorem, which is the corresponding result for pointwise
Hardy inequalities.

Theorem 4.1. Let 1 < p < ∞. Assume that Ω ⊂ Rn is a domain satisfying
Condition 2.1 with exponent λ, and let β < p − n + λ. Then Ω admits the
pointwise (p, β)-Hardy inequality, i.e. there exist 1 < q < p, L ≥ 1, and
C > 0 so that

|u(x)| ≤ CdΩ(x)1−
β
p MLdΩ(x),q

(
|∇u|dΩ

β/p
)
(x)

whenever u ∈ C∞
0 (Ω) and x ∈ Ω.

By Proposition 3.1, Theorem 1.2 is a direct consequence of Theorem 4.1.
The proof of Theorem 4.1 relies on the following lemma.



10 PEKKA KOSKELA AND JUHA LEHRBÄCK

Lemma 4.2. Let Ω ⊂ Rn be a domain satisfying Condition 2.1 with expo-
nent λ. Then, if 1 < p < ∞ and β < p− n + λ, there exist 1 ≤ q0 < p and
L ≥ 1 with the following property: For every q0 < q < p there is a constant
C > 0 such that the inequality

|uQ| ≤ C diam(Q)1−
β
p

(∫
LQ
|∇u(y)|q dΩ(y)

β
p

q
dy

)1/q

holds for every Q ∈ W(Ω) and every u ∈ C∞
0 (Ω). Here the constants q0

and L depend only on n, p, β, and the constants in Condition 2.1 ; C may
depend also on q.

Proof. Fix a cube Q0 ∈ W(Ω) and take j0 ∈ Z so that diam(Q0) = 2−j0 . Let
Ω0 = ΩcQ0

be the c-John domain with center point cQ0 from the definition
of the visual boundary in Section 2.5. Then there exists L ≥ 1, depending
only on n and c, so that Ω0 ⊂ LQ0. From now on, let W denote a Whitney
decomposition of Ω0. We may assume that also Q0 ∈ W, since from the
definition of Ω0 it follows that d(Q0, ∂Ω0) = d(Q0, ∂Ω). In addition, we may
assume, for simplicity, that diam(Q) ≤ diam(Q0) for all Q ∈ W = W(Ω0).
This last claim can be justified by the nature of our calculations in the proof
and the fact that diam(Ω0) ≤ L diam(Q0).

Now let 1 < p < ∞ and β < p− n + λ, and define

q0 = max
(

1, p
n− λ

p− β

)
.

Since 0 ≤ n − λ < p − β, we have that 1 ≤ q0 < p. Let q0 < q < p and
denote β′ = q

pβ. Then q/p > (n− λ)/(p− β), and thus we obtain

λ + q − β′ − n = λ + q
p(p− β)− n > λ + (n− λ)− n = 0.

Denote E = ∂Ω ∩ ∂Ω0 (i.e. E is the c-visual boundary of Ω near cQ0),
let w ∈ E, and let γ be a c-John curve joining w to cQ0 in Ω0. We apply a
chaining argument involving the Poincaré inequality on cubes, similar to the
one in [23, Lemma 8], for the cubes Q ∈ W intersecting γ, and we obtain

|uQ0 | = |uQ0 − u(w)| ≤ C
∑

Q∈P (w)

diam(Q)
∫
Q
|∇u(y)| dy ,

where the constant C > 0 is independent of w. A simple use of Hölder’s
inequality leads us to

(7) |uQ0 | ≤ C
∑

Q∈P (w)

diam(Q)1−
β
p

(∫
Q
|∇u(y)|q dΩ(y)

β
p

q
dy

)1/q

.

Note that here we have to use different sides of the inequality

diam(Q) ≤ dΩ(y) ≤ 5 diam(Q) for all y ∈ Q ∈ W

depending whether β ≥ 0 or β < 0.
From now on, let us denote g(y) = |∇u(y)| dΩ(y)β/p. We apply Frostman’s

lemma (see e.g. [18, Theorem 8.8]) and choose a Radon measure µ such that
µ is supported on E, µ(B(x, r)) ≤ rλ for all x ∈ Rn and r > 0, and
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µ(E) ≥ CHλ
∞(E). Integration of (7) over E with respect to the measure µ

yields

(8) |uQ0 |µ(E) ≤ C

∫
E

∑
Q∈P (w)

diam(Q)1−
β
p

(∫
Q
g(y)q dy

)1/q

dµ(w).

Then interchange the order of summation and integration in (8) and use
Hölder’s inequality for sums to obtain

|uQ0 | ≤ Cµ(E)−1
∑

Q∈P (E)

µ(S(Q)) diam(Q)1−
β
p
−n

q

(∫
Q

g(y)q dy

)1/q

≤ Cµ(E)−1

( ∑
Q∈P (E)

µ(S(Q))
q

q−1 diam(Q)
q−β′−n

q−1

) q−1
q

·
( ∑

Q∈P (E)

∫
Q

g(y)q dy

)1/q

.

(9)

In the next step we estimate the sum in (9):∑
Q∈P (E)

µ(S(Q))
q

q−1 diam(Q)
q−β′−n

q−1

≤
∞∑

j=j0

max
Q∈Wj

(
µ(S(Q))

1
q−1 diam(Q)

q−β′−n
q−1

) ∑
Q∈Wj

µ(S(Q)) ,

(10)

where by Lemma 3.4(ii)

(11)
∑

Q∈Wj

µ(S(Q)) ≤ Cµ(E).

For the cubes Q ∈ Wj we have by definition that diam(Q) = 2−j , and
further, by the properties of µ and Lemma 3.3, we obtain

µ(S(Q)) ≤ C diam(S(Q))λ ≤ C diam(Q)λ ≤ C2−jλ .

Recall that by the choice of q and β′ we have λ + q − β′ − n > 0, so that
∞∑

j=j0

max
Q∈Wj

(
µ(S(Q))

1
q−1 diam(Q)

q−β′−n
q−1

)
≤

∞∑
j=j0

C2−j λ+q−β′−n
q−1

≤ C 2−j0
λ+q−β′−n

q−1 .

Combining this with equations (9), (10), and (11) yields

|uQ0 | ≤ Cµ(E)−1+ q−1
q

(
2−j0

λ+q−β′−n
q−1

) q−1
q

(∫
LQ0

g(y)q dy

)1/q

≤ Cµ(E)−
1
q diam(Q0)

λ+q−β′−n
q

(∫
LQ0

g(y)q dy

)1/q

.

(12)

Finally, the properties of the Frostman measure µ and Condition 2.1 together
imply that

diam(Q0)λ ≤ CHλ
∞(E) ≤ Cµ(E),
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and hence we obtain from (12) that

|uQ0 | ≤ C diam(Q0)1−
β
p

(∫
LQ0

|∇u(y)|q dΩ(y)β′ dy

)1/q

.

This proves the lemma. �

We are now ready to prove the pointwise (p, β)-Hardy inequality for the
domains in question.

Proof of Theorem 4.1. Let x ∈ Ω and let u ∈ C∞
0 (Ω). Choose Q ∈ W so

that x ∈ Q. By Lemma 4.2, there exist some 1 < q < p and L ≥ 1 so that

|uQ| ≤ C diam(Q)1−
β
p M c

LQ,qg(x)

≤ CdΩ(x)1−
β
p M c

LQ,qg(x),

where we denote as before g(x) = |∇u(x)| dΩ(x)β/p. Using variations of the
well-known inequalities [4, Lemma 7.16] and [9, Lemma (a)] we obtain that

|u(x)− uQ| ≤ C diam(Q)M c
Q∇u(x),

where C = C(n) > 0. Therefore we have for each 1 < q < ∞ that

|u(x)− uQ| ≤ CdΩ(x)1−
β
p sup

x∈Q̃⊂Q

∫
Q̃
|∇u(y)|dΩ(y)β/p dy

≤ CdΩ(x)1−
β
p M c

LQ,qg(x),

where the second inequality follows from Hölder’s inequality. Hence

|u(x)| ≤ |u(x)− uQ|+ |uQ| ≤ CdΩ(x)1−
β
p M c

LQ,qg(x).

We may now choose L′ = L′(L, n) ≥ 1 so that the pointwise (p, β)-Hardy
inequality, i.e. the above inequality with M c

LQ,q replaced by ML′dΩ(x),q , holds
with a constant C > 0, independent of x ∈ Ω and u ∈ C∞

0 (Ω). �

Condition 2.1 is not very meaningful when λ = 0; in fact, this kind of a
condition is satisfied whenever Ω  Rn is a proper subdomain, since then
∂Ω 6= ∅, and thus vx(1)–∂Ω 6= ∅ for each x ∈ Ω. Hence we obtain that

H0
∞
(
vx(1)–∂Ω

)
= 1 = d(x, ∂Ω)0

for every x ∈ Ω. Lemma 4.2 holds also in this case — the proof is just a
simplified version of the proof above — and we obtain the following corollary
which generalizes the result known for β = 0.

Corollary 4.3. Let 1 < p < ∞. Then each subdomain Ω  Rn admits the
pointwise (p, β)-Hardy inequality for every β < p− n.

We note that the bound β < p − n in Corollary 4.3 is sharp, since the
(p, p− n)-Hardy inequality fails e.g. in Rn \ {0} and in B(0, 1) \ {0} ⊂ Rn,
as can be seen with elementary calculations.
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5. John domains quasiconformally equivalent to the unit ball

Recall that a homeomorphism f : Ω → Ω′ between domains Ω, Ω′ ⊂ Rn,
n ≥ 2, is called a (K-)quasiconformal (qc) mapping if f belongs to the
Sobolev class W 1,n

loc (Ω;Rn) and there is a constant K ≥ 1 so that

||Df(x)||n ≤ K Jf (x) for a.e. x ∈ Ω.

Here || · || denotes the operator norm and Jf is the Jacobian determinant
of f . Domains Ω and Ω′ are said to be quasiconformally equivalent if there
exists a qc mapping f : Ω → Ω′. We refer to [25] for the basic theory of qc
mappings.

John domains which are in addition quasiconformally equivalent to the
unit ball have some special properties among all John domains (see [10] and
references therein). In the proof of the next theorem we need to use one
of those properties together with general results on qc mappings and John
domains.

Theorem 5.1. Let Ω ⊂ Rn be a John domain that is quasiconformally
equivalent to the unit ball B(0, 1) ⊂ Rn, and let 1 < p < ∞. Then Ω admits
the pointwise (p, β)-Hardy inequality for each β < p− 1.

Proof. Denote B = B(0, 1) ⊂ Rn and let f : B → Ω be a K-qc mapping. Fix
a point y ∈ Ω and take x ∈ B so that f(x) = y. Since Ω is a John domain,
f extends continuously to ∂Ω (cf. [25, Corollary 17.14] and [21, 2.17]). It
follows from [25, Theorem 18.1] that there is a constant α = α(n, K) > 0 so
that f

(
B
(
x, α d(x, ∂B)

))
⊂ B

(
y, 1

2 d(y, ∂Ω)
)
. By [2, Corollary 6.4], we have

that
Hn−1
∞
(
f(Sx)

)
≥ C d

(
y, ∂Ω

)n−1
,

where Sx is the radial projection of the ball B
(
x, α d(x, ∂B)

)
on ∂B and

C = C(n, K, α) > 0. Note that in [2] they have α = 1
2 , but the results hold

for any fixed 0 < α < 1 as well.
In order to prove the theorem it is now enough to show that for each

w ∈ f(Sx) ⊂ ∂Ω there is a John curve γ joining w to y, with a John
constant independent of w and y, since then Ω satisfies the visual boundary
Condition 2.1 with λ = n − 1, and Theorem 4.1 gives the claim. To this
end, let w ∈ f(Sx) and let w′ ∈ Sx be a preimage of w. Choose x′ ∈
B
(
x, α d(x, ∂B)

)
so that x′ ∈ [0, w′]. We now define a curve γ1 : [0, 1] → Ω

by γ1(t) = f
(
w′ + t(x′ − w′)

)
for all t ∈ [0, 1]. Note that γ1 need not

to be rectifiable. However, by [10, Theorem 3.1], there exists a constant
b = b(n, K, Ω) ≥ 1 so that if z = w′ + t(x′ − w′) ∈ [w′, x′] for t ∈ [0, 1], we
have

diam
(
γ1([0, t])

)
= diam

(
f [w′, z]

)
≤ b d

(
f(z), ∂Ω

)
= b d

(
γ1(t), ∂Ω

)
.

Now, by [17, Lemma 2.7] (see also [21, Section 2]), there is a constant
c = c(b, n) ≥ 1 and a c-John curve γ2 joining w to f(x′) in Ω.

If f(x′) = y, we take γ = γ2 and the proof is complete. Otherwise we
define our curve γ in parts:

γ(t) =

γ2(t) , 0 ≤ t ≤ l(γ2)

f(x′) +
(
t− l(γ2)

) y − f(x′)
|y − f(x′)|

, l(γ2) < t ≤ l(γ2) + |y − f(x′)| ,
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and it easily follows that γ is a c1-John curve joining w to y in Ω, with a
constant c1 = c1(n, K, Ω) > 0. �

The following planar result is an immediate consequence of Theorem 5.1,
since by the Riemann mapping theorem each simply connected proper sub-
domain Ω ( R2 is conformally, and thus especially quasiconformally equiv-
alent to the unit ball B(0, 1) ⊂ R2.

Corollary 5.2. Let Ω be a simply connected John domain in the plane and
let 1 < p < ∞. Then Ω admits the pointwise (p, β)-Hardy inequality for
each β < p− 1.

6. Examples

In this section, we give various planar examples which prove the essential
sharpness of our theorems; higher dimensional examples can be constructed
along same lines. The first brief example, however, shows that, at least in
the case of β < p− 1, Condition 2.1 is not very restrictive. Also, we record
for von Koch -type snowflake domains the Hardy inequalities mentioned in
the Introduction.

Example 6.1. (a) It is not necessary for a domain to be John, or even
bounded, in order to satisfy Condition 2.1: Let Ω ⊂ Rn be a strip,

Ω = {(x1, . . . , xn) ∈ Rn : 0 < xn < 1}.
Then Ω is unbounded, but it satisfies Condition 2.1 with λ = n − 1, and
thus Ω admits the pointwise (p, β)-Hardy inequality for all β < p− 1.
(b) Let Ω ⊂ Rn be a “room-and-corridor”-type domain which are widely
used in the study of the Poincaré inequalities (see e.g. [23, Section 10] and
references therein). Then Ω is not necessarily a John domain, but it satisfies
clearly Condition 2.1 with λ = n− 1 and admits the pointwise (p, β)-Hardy
inequality for all β < p− 1.
(c) Let 1 < λ < 2 and let Ω ⊂ R2 be a λ-snowflake domain, i.e. a “triangle”
whose edges are copies of the von Koch -type snowflake curve Kλ with
dim(Kλ) = λ. Then Ω is a uniform domain, and by the self-similarity of the
snowflake curve (cf. [3]) it is clear that the density assumption of Proposition
2.2 is satisfied. Hence Condition 2.1 holds in Ω with the exponent λ, and
we conclude that Ω admits the pointwise (p, β)-Hardy inequality whenever
1 < p < ∞ and β < β0 = p + λ− 2. Furthermore, by considering functions
uj ∈ C∞

0 (Ω) such that uj(x) = 1 if dΩ(x) ≥ 2−j , and |∇u| . 2j if dΩ(x) ≤
2−j , it is easy to see that the (p, β)-Hardy inequality fails whenever β ≥ β0.

In the following examples we show that a density condition of the type

(13) Hλ
∞
(
∂Ω ∩B

(
x, τdΩ(x)

))
≥ CdΩ(x)λ for all x ∈ Ω,

for some constants τ ≥ 1 and C > 0, is not sufficient to guarantee (p, β)-
Hardy inequalities in Ω for all β < p − n + λ. Therefore some kind of an
accessibility condition similar to our visible boundary condition 2.1 is really
needed.

We use both complex and vector notation in the following constructions,
so, for instance, i denotes always the imaginary unit, and when x ∈ R2 = C,
we write x = (x1, x2) = x1 + ix2.
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Example 6.2. Let 1 < p < ∞ and 1 < λ < 2. We construct a simply
connected John domain Ωλ ⊂ R2 which satisfies the condition (13) with the
exponent λ, but fails to admit the (p, β)-Hardy inequality for β = p − 1 <
p−2+λ. Furthermore, by Lemma 3.2, the pointwise (p, β)-Hardy inequality
fails in Ωλ for every β ≥ p−1, too. Nevertheless, it turns out that Ωλ admits
the usual (p, β)-Hardy inequality also when p− 1 < β < p− 2 + λ.

Figure 1. The domain Ωλ of Example 6.2 for λ = 1.45

We begin by constructing a self-similar fractal called “the antenna set”
in the (complex) plane. Let 0 < α < 1

2 and let Fα = {f1, f2, f3, f4} be the
iterated function system of similitudes

f1(x) =1
2x , f3(x) = αix + 1

2 ,

f2(x) =1
2x + 1

2 , f4(x) = −αix + 1
2 + αi .

Then there exists a unique compact set K = Kα ⊂ R2 which is invariant
under Fα, i.e. K =

⋃4
j=1 fj(K). This K is the antenna set. It is easy

to check that K satisfies the open set condition, and hence the Hausdorff
dimension of K is λ = λ(α), where 1 < λ < 2 is the solution of the equation

2 · 2−λ + 2αλ = 1 ,

and furthermore, we have that 0 < Hλ(K) < ∞. See e.g. [3, Chapter 9] for
detailed information about iterated function systems, self-similar sets, and
the open set condition. We now choose 0 < α < 1

2 so that dim(Kα) = λ for
the fixed λ.

Take κ = 1
4 . Consider the unit square [0, 1]2 and replace each of the edges

by four copies of κ K, that is, K dilated by the factor 1
4 , oriented so that the

“antennas” are inside the unit square. We call this domain Ω1
λ. Notice that

Ω1
λ satisfies Condition 2.1 for λ, even though it is not a uniform domain.

Next we remove from Ω1
λ the sets κ K + i

2 , −κ K + i
2 + κ, and finally the set

A = −κ K + i
2 +2κ. We have then constructed our domain Ω = Ωλ (see Fig.

1) which can quite easily be seen to be a simply connected John domain.
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Let then x ∈ Ω. Pick a point wx ∈ ∂Ω so that d(x,wx) = d(x, ∂Ω). Then
B
(
wx, dΩ(x)

)
⊂ B

(
x, 2dΩ(x)

)
, and from the self-similarity of the antenna

set we obtain

Hλ
∞
(
B(wx, dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ ,

where C > 0 is a constant independent of x. Hence Ω satisfies the condition
(13), but it does not satisfy Condition 2.1 for any λ > 1.

Since Ω is a simply connected John domain, we know by Corollary 5.2 that
Ω admits the (p, β)-Hardy inequality (even pointwise) whenever 1 < p < ∞
and β < p − 1. Next we show that Ω fails to admit the (p, p − 1)-Hardy
inequality for every 1 < p < ∞.

The failure happens above the “one-sided antenna” A. To see this, choose
an open square S ⊂ Ω so that one edge of S is a subset of A and dΩ(x) =
d(x,A) for every x ∈ S. It is then enough to show that the (p, p− 1)-Hardy
inequality fails in the upper half plane H+ = {(x1, x2) ∈ R2 : x2 > 0} for
functions in C∞

0 ([0, 3]2), since then the case with [0, 3]2 and ∂H+ replaced
by S and A follows with a composition of a dilatation and a transformation.

We choose a sequence of functions uj ∈ C∞
0 ([0, 3]2) with the following

properties: spt(uj) ⊂ [0, 3]× [2−(j+1), 3], uj(x) = 1 for all x ∈ [1, 2]× [2−j , 2],
|∇uj(x)| ≤ 2j+2 for all x ∈ [0, 3] × [2−(j+1), 2−j ], and |∇uj(x)| ≤ 2 for all
other x ∈ spt(|∇uj |). Then, for 1 < p < ∞ we have∫

H+

|uj(x)|p d(x, ∂H+)(p−1)−p dx ≥
j∑

k=0

∫
[1,2]×[2−k,2−k+1]

d(x, ∂H+)−1 dx

≥
j∑

k=0

2−k 2k−1 = 1
2 (j + 1)

j→∞−−−→∞ ,

but ∫
H+

|∇uj(x)|p d(x, ∂H+)p−1 dx

≤
∫

[0,3]×[2,3]
2p 3p−1 dx +

j∑
k=0

∫
[0,3]×[2−k,2−k+1]

2p 2(−k+1)(p−1) dx

+
∫

[0,3]×[2−(j+1),2−j ]
2(j+2)p 2−j(p−1) dx

≤ C1(p) + C2(p)
j∑

k=0

2−kp + C3(p) = C(p) < ∞ .

Thus the functions in C∞
0 ([0, 3]2) do not satisfy the (p, p−1)-Hardy inequal-

ity with a universal constant in the upper half plane, and so we conclude
that our domain Ω does not admit the (p, p−1)-Hardy inequality. This also
means that Ω does not admit the pointwise (p, p− 1)-Hardy inequality, and
hence, by Lemma 3.2, the pointwise (p, β)-Hardy inequality fails in Ω for
each β ≥ p− 1.

Next we show that Ω admits the usual (p, β)-Hardy inequality also when
p − 1 < β < p − 2 + λ : Denote Sb =

(
1
4 , 1

2

)
×
(

1
2 , 3

4

)
, so that Sb is a

square above the antenna A, and let Ωg = Ω \ Sb . Fix 1 < p < ∞ and
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p− 1 < β < p− 2 + λ. Let u ∈ C∞
0 (Ω) and denote ũ(s, t) = u

(
1
4 + s, 1

2 + t
)
,

d̃Ω(s, t) = dΩ

(
1
4 + s, 1

2 + t
)
. With an application of Fubini’s theorem and

integration by parts, we then calculate (recall that we denote κ = 1
4)∫

Sb

|u|p dΩ
β−p .

∫ κ

0

∫ κ

0
|ũ(s, t)|p tβ−p dt ds

.
∫ κ

0

[
|ũ(s, κ)|p κβ−p+1 +

∫ κ

0
|ũ(s, t)|p−1|∇ũ(s, t)| tβ−p+1 dt

]
ds

.
∫ κ

0
vs(κ) ds +

∫
Sb

|u|p−1|∇u| dΩ
β−p+1 ,

(14)

where we have denoted vs(t) = |ũ(s, t)|p d̃Ω(s, t)β−p+1. Notice that in (14)
we need to use the fact β 6= p− 1. Now

|v′s(t)| . |ũ(s, t)|p−1|∇ũ(s, t)| d̃Ω(s, t)β−p+1 + |ũ(s, t)|p d̃Ω(s, t)β−p

since |∇dΩ| ≤ 1, and thus, by changing the integration to the square
(

1
4 , 1

2

)
×(

3
4 , 1) ∩ Ω ⊂ Ωg above Sb, we obtain∫ κ

0
vs(κ) ds .

∫ κ

0

∫ 2κ

κ
|v′s(t)| dt ds

.
∫

Ωg

|u|p−1|∇u| dΩ
β−p+1 +

∫
Ωg

|u|p dΩ
β−p.

(15)

The pointwise (p, β)-Hardy inequality (3) holds for all x ∈ Ωg with a con-
stant independent of x and u, since these points satisfy the visual boundary
condition (5) with the exponent λ. The use of this fact and the maximal
function theorem yields, together with (14), (15), and Hölder’s inequality,
that ∫

Ω
|u|p dΩ

β−p =
∫

Sb

|u|p dΩ
β−p +

∫
Ωg

|u|p dΩ
β−p

.
∫

Ωg

|u|p−1|∇u| dΩ
β−p+1 +

∫
Ωg

|u|p dΩ
β−p

+
∫

Sb

|u|p−1|∇u| dΩ
β−p+1 +

∫
Ωg

|u|p dΩ
β−p

.
∫

Ω
|∇u|p dΩ

β +
∫

Ω
|u|p−1|∇u| dΩ

β−p+1

.
∫

Ω
|∇u|p dΩ

β +
(∫

Ω
|u|p dΩ

β−p
) p−1

p
(∫

Ω
|∇u|p dΩ

β
) 1

p
.

(16)

It is obvious that all the constants in the above calculations depend only
on p, β, and Ω. We obtain the (p, β)-Hardy inequality from (16), since if
a, b, C1 > 0 and a ≤ C1(b + a1−1/p b1/p), there exists C = C(C1, p) > 0 so
that a ≤ Cb.

Finally, it is clear (cf. Example 6.1(c)) that Ω does not admit the (p, β)-
Hardy inequality when β ≥ p− 2 + λ.
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Remark. By the truncation technique of Maz’ja [19], the (p, β)-Hardy
inequality could also be proven by showing that∫

{x∈Ω:|u(x)|≥1}
dΩ

β−p ≤ C

∫
Ω
|∇u|p dΩ

β

for each u ∈ C∞
0 (Ω).

Example 6.3. Let 1 < p < ∞ and 1 < σ < λ < 2. We construct a simply
connected John domain Ωλ,σ ⊂ R2 which satisfies the density condition (13)
with the exponent λ, admits the (p, β)-Hardy inequality for all β < p−2+σ
and p− 2 + σ < β < p− 2 + λ, but fails to admit the (p, p− 2 + σ)-Hardy
inequality.

The idea of this construction is to modify the domain Ωλ of Example
6.2 so that, instead of a “straight antenna” A, the boundary ∂Ωλ,σ would
contain a more complicated set Aσ, a “snowflake antenna” (see Fig. 2). This
Aσ is constructed as follows:

Let Fσ be the standard von Koch snowflake curve of dimension σ, obtained
as the invariant set of four similitudes ϕ1, . . . , ϕ4 with contraction ratio
1
4 < ρ = ρ(σ) < 1

2 , ordered so that ϕ1(0) = 0, ϕj(1) = ϕj+1(0) for j =
1, 2, 3, and ϕ4(1) = 1. Denote z0 = ϕ2(1), so that z0 is the “top” of Fσ,
and let zj = ϕj(z0) for j ∈ {1, 2, 3, 4}. Denote δ = d(z1, z2) > 0 and
K ′ = K ∪ (−K + 1), where K is the basic antenna set of dimension λ. Then
choose 0 < τ < δ, let K0 = iτK ′ + z0, and define

Kj1,...,jk
= ϕj1 ◦ · · · ◦ ϕjk

(K0).

We then have, for example, that

(17) d(K1,K2) ≥ δ − 2ρ diam(K0) > 0 .

Let A′σ be the union of Fσ and all the images of K0 under iterations of
ϕ1, . . . , ϕ4 :

A′σ = Fσ ∪
∞⋃

k=1

4⋃
j1,...,jk=1

Kj1,...,jk
.

Figure 2. The set A′σ in the construction of Example 6.3
for σ = 1.15 (and λ = 1.45)

Now, we construct the domain Ωλ,σ in the same way as Ωλ in Example
6.2, except that in the last stage we remove, instead of A, the set Aσ =
−κA′σ + i

2 + 2κ. Using (17), the definition of A′σ, and properties of Fσ and
K, it is then straight-forward to verify that Ωλ,σ is a simply connected John
domain. Also, it is rather easy to see that Ωλ,σ satisfies the visible boundary
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condition 2.1 with the exponent σ, and hence, by Theorem 4.1, Ωλ,σ admits
(pointwise) (p, β)-Hardy inequalities for all β < p− 2 + σ.

Let then w ∈ ∂Ωλ,σ and let 0 < r < 1. If w /∈ Aσ, we obtain as before
that Hλ

∞
(
B(w, r) ∩ ∂Ω

)
≥ Crλ. If w ∈ Aσ, we choose k ∈ N so that

ρk < r ≤ ρk−1; recall that ρ is the contraction ratio of the similitudes in
the construction of the snowflake curve Fσ. Then it follows that there exist
j1, . . . , jk ∈ {1, 2, 3, 4} so that −κKj1,...,jk

+ i
2 + 2κ ⊂ B(w, r), and thus

Hλ
∞
(
B(w, r) ∩ ∂Ω

)
≥ κλHλ

∞
(
Kj1,...,jk

)
= κλ(ρk)λHλ

∞
(
K0

)
≥ Crλ,

where C = C(λ, σ) > 0. This shows that Ωλ,σ satisfies the density condition
(13).

However, Ωλ,σ does not admit the (p, p − 2 + σ)-Hardy inequality. This
can be seen similarly as above for Ωλ, by considering a suitable subdomain
Sσ ⊂ Ωλ,σ above Aσ, chosen so that dim(∂Sσ ∩ ∂Ωλ,σ) = σ, d(x, ∂Ωλ,σ) =
d(x,Aσ) for all x ∈ Sσ, and |Sk

σ | & (4ρ2)k for all k greater than some j0 ∈ N,
where

Sk
σ =

{
x ∈ Sσ : ρk+1 ≤ d(x, ∂Ωλ,σ) ≤ ρk

}
.

We can then choose functions uj ∈ C∞
0 (Sσ) in such a way that |∇uj | . ρ−j

in Sj
σ, |∇uj | . 1 elsewhere in spt(|∇uj |), and

∫
Sk

σ
|uj |p & |Sk

σ | & (4ρ2)k for
all j greater than j0 and all k ∈ {j0, . . . , j − 1}. Then it follows with easy
calculations and the use of the fact σ = (log 4)/(− log ρ) that∫

Ωλ,σ

|uj(x)|p d(x, ∂Ωλ,σ)(p−2+σ)−p dx & (j − j0)
j→∞−−−→∞ ,

but ∫
Ωλ,σ

|∇uj(x)|p d(x, Ωλ,σ)p−2+σ dx ≤ C(p, σ) < ∞ .

Hence the (p, p−2+σ)-Hardy inequality fails in Ωλ,σ. Still, Ωλ,σ admits the
(p, β)-Hardy inequality also when p−2+σ < β < p−2+λ ; the calculations
are similar to those in Example 6.2, and we leave the details to the interested
reader.

Examples 6.2 and 6.3 show that, for planar domains, the density condition
(13) with 1 < λ < 2 is not sufficient to guarantee (p, β)-Hardy inequalities
for all β < p − 2 + λ. For instance, the (p, p − 1)-Hardy inequality fails in
the domain Ωλ, since the dense part of the boundary is completely on the
“wrong side” for points above A. Next we give yet another example in which
a density condition even stronger than (13) is satisfied, but another kind of
a phenomenon prevents the (p, p− 1)-Hardy inequality.

Example 6.4. Let 1 < p < ∞ and 1 < λ < 2. We construct a simply
connected domain Ω = Ωλ ⊂ R2 which satisfies the condition (13) with the
exponent λ, but fails to admit the (p, p− 1)-Hardy inequality. Contrary to
the previous examples, we have also for each x ∈ Ω that

(18) Hλ
∞
(
∂Ω ∩ ∂Ω(x)

)
≥ CdΩ(x)λ,

where Ω(x) is the x-component of the set Ω ∩ B
(
x, 2dΩ(x)

)
. Hence this

example shows that Ωx(c) being a c-John domain is essential in the definition
of the visual boundary in Section 2.5.
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Let K be the basic antenna set of dimension λ, as defined in Example
6.2. We now take the square S = [−1, 1]× [0, 2] and replace the edges, with
the exception of the part

[
− 1

2 , 1
2

]
× {0}, by copies of 1

2 K, oriented so that
the antennas are inside S.

Now choose an increasing sequence (nj), nj ∈ N, and n1 ≥ 2, so that
2−jp nj → ∞ as j → ∞. Let KR

j = i2−njK, KL
j = i2−nj (−K + 1), and

Kj = KR
j ∪KL

j for j ∈ N. Then define

Tj =
2nj−1−1⋃

k=0

(
Kj + ik2−nj

)
,

so that Tj is a “stick”, made of copies of Kj , with diam(Tj) = 1
2 . Further-

more, TR
j and TL

j are defined analogically, with Kj replaced by KR
j and KL

j ,
respectively.

To complete the construction of Ω, we remove from the already modified
square S the following union of sticks:⋃

j∈N

[((
TL

j ∪ 2−njK
)

+ 2−(j+1)
)

∪
2−(j+1)+nj−1⋃

k=1

((
Tj ∪ 2−njK

)
+ 2−(j+1) + k2−nj

)
∪
(
TR

j + 2−j
)]

∪
(

i
2 (−K + 1) + 1

2

)
,

as well as the reflection of the above set with respect to the line iR ⊂ C = R2.
Finally, we have to remove also the line segment [0, i2−1] in order to obtain
a simply connected domain Ω. It is quite obvious that Ω satisfies Condition
2.1 with exponent 1, and hence Ω admits (p, β)-Hardy inequalities for all
β < p − 1. Next we show that Ω does not admit the (p, p − 1)-Hardy
inequality.

Choose functions uj ∈ C∞
0 (Ω) with the following properties for each j ≥ 2:

spt(uj) ⊂ [−2−j , 2−j ]× [2−1 +2−nj , 1], uj = 1 in [−2−(j+1), 2−(j+1)]× [2−1 +
2−nj+1, 1−2−j ], |∇uj | . 2nj in [−2−j , 2−j ]× [2−1 +2−nj , 2−1 +2−nj+1], and
|∇uj | . 2j elsewhere in spt(|∇uj |). Then elementary calculations, similar
to those in Example 6.2, give∫

Ω
|uj |p dΩ

−1 & 2−j nj

and ∫
Ω
|∇uj |p dΩ

p−1 . 2−j 2jp .

From these estimates we see that the (p, p− 1)-Hardy inequality fails in Ω,
since 2−jp nj →∞ as j →∞.

It is left to show that the modified density condition (18) holds for each
x ∈ Ω. By the construction of Ω and the self-similarity of the antenna set,
it is clear that this condition holds with some fixed constant C > 0 for all
x ∈ Ω satisfying d(x, ∂S) ≤ 1

2 . Hence we only need to consider points above
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the sticks, and, in fact, it is enough to consider points x = it for 1
2 < t < 1,

since other points can be treated similarly.
When 2−j+1 ≤ t− 1

2 ≤ 2−j+2 and x = it, the ball B
(
x, 2dΩ(x)

)
intersects

roughly (2−j+nj )2 copies of the scaled antenna Kj ; let Kj denote the union
of these copies. Let Kj ⊂

⋃
k∈N Ak so that

∑
k diam(Ak)λ ≤ 2Hλ

∞(Kj). If
diam(Ak) ≤ 2−nj for all k ∈ N, we obtain that∑

k

diam(Ak)λ & (2−j+nj )2Hλ
∞(Kj)

& (2−j+nj )2 (2−nj )λHλ
∞(K) & (2−j)λ,

and thus
Hλ
∞
(
∂Ω ∩ ∂Ω(x)

)
≥ CdΩ(x)λ.

On the other hand, if diam(Ak0) = δ > 2−nj for some k0 ∈ N, we deduce,
using the facts that the set Kj is made of similar sticks with constant dis-
tances and that {Ak} is an “almost optimal” covering of Kj with respect to
the λ-Hausdorff content, that there exists another “almost optimal” cover-
ing {Ãk} consisting of sets satisfying 1

2 δ ≤ diam(Ãk) ≤ 2δ. To cover the
set Kj , we need to have at least an amount of the order (2−j)2/δ2 of such
sets, and hence we obtain with simple calculations that (18) holds also in
this case. This proves that the density condition (18) holds for all points in
Ω, and hence such a condition is not sufficient to guarantee the (p, β)-Hardy
inequality for all β < p− n + λ.
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