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Abstract

We show that the Orlicz-Sobolev space W1®(R") can be characterized in
terms of the (generalized) ®-Poincaré inequality. We also prove similar results
in the general metric space setting.
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1 Introduction

Let ® be a Young function and let Q@ C R™ be open. A pair (u, g) of measurable
functions, u € LL () and g > 0, satisfies the ®-Poincaré inequality in €, if
there are constants Cp > 1 and 7 > 1 such that

]{B|u—u3|du < Cprp®d~! <]{B®(g) du> (1)

for every ball B = B(z,rp) such that 7B C Q. Here, up = fpudy =
ﬁ Jgu and 7B = B(x,7rp). It is well known that u € T/VI(I)CI(Q) satisfies
the 1-Poincaré inequality

][ lu —up|dp < CPTB][ |Vu| dp
B B

for every ball B C . Thus, by Jensen’s inequality, (1) holds with 7 = 1 and
g = |Vu|. Our first result says that also the converse holds: If u € L®(2) and
there exists g € L®(Q) such that (1) holds (for the normalized pair), then u
belongs to the Sobolev class WH®(Q).

Theorem 1.1 Suppose that ® is an N-function, Q@ C R"™ is open, u,g €
L®(Q) and that the pair (u/llgllze > 9/ 119l L)) satisfies the ®-Poincaré in-
equality in Q. Then v € WH®(Q) and [[Vull[ze @) < C(Cp, 1)l e (0)-
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For the definitions of Young and N-functions, see Section 2.1 below. Theorem
1.1 was proven by Hajtasz in [4] for ®(¢) = tP, p > 1, and by Tuominen in [13]
for a doubling ® whose conjugate is also doubling.

Our second result is a counterpart of Theorem 1.1 in the general metric
setting. Let X = (X,d, 1) be a metric measure space with p a Borel regular
outer measure satisfying 0 < u(U) < oo, whenever U is nonempty, open and
bounded. Suppose further that p is doubling, that is, there exists a constant
Cy such that

1(2B) < Cap(B), (2)
whenever B is a ball.

Our substitute for the usual Sobolev class W1 is based on upper gradients.
We call a Borel function g : X — [0,00] an upper gradient of a function
uw: X — R, if

ur(0) ~ a5 < [ gds (3

gl
for all rectifiable curves 7 : [0,1] — X. The concept of an upper gradient was
introduced in [8]; also see [9]. Further, g as above is called a ®-weak upper
gradient if (3) holds for all curves v except for a family of ®-modulus zero,
see Section 2.2 below. The Sobolev space N®(X) consists of all functions in
L®(X) that have a (®-weak) upper gradient that belongs to L®(X).

Theorem 1.2 Suppose that ¢ is a doubling Young function, Q C X is open,
u,g € L*(), and that the pair (u/llglle @y, 9/I9ll o)) satisfies the ®-
Poincaré inequality in Q. Then a representative of u has a ®-weak upper
gradient g, such that ||gul|pe ) < C(Ca, Cp, 7)l|gllLe @)

In the case ®(t) = tP, p > 1, the result was essentially proven in [3], see [5].

In many important settings, including Riemannian manifolds with non-
negative Ricci curvature and Carnot-Carathéodory spaces associated with a
system of vector fields satisfying Hormander’s condition, the ®-Poincaré in-
equality holds for pairs (u, g), where v € NV®(X) and g is an upper gradient of
u, see [6]. In these settings Theorem 1.2 gives a characterization for N1®(X).

If both @ and its conjugate are doubling, then the assumptions of Theorem
1.2 can be relaxed. In order to conclude that a representative of u € L*() is
in N1®(Q), it suffices to assume that the number

w | Z(r;]lB fu — up| ds) X5 Lo o). (4)

S
BeB-(Q) pen

HUHA}‘I’(Q)

where
B-(€2) = {{B;} : balls 7B; are disjoint and contained in Q},

is finite. Notice that ”UHALCI)(Q) < X if and only if there is a functional v :
{B C Q: Bisaball} — [0,00) such that

> uB) <, (5)
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whenever the balls B; are disjoint, and that the generalized ®-Poincaré in-

]{9 lu — up|dp < Arp®! (’;((T;)) (6)

holds whenever 7B C Q. In particular, if a pair (u/|gllLe ), 9/ll9llLe @)
satisfies the ®-Poincaré inequality in €2, then

equality

[ull gr2 gy < CPligllLe()- (7)

loc

The spaces Ar®(Q) = {u € LL () : HUHAL@(Q) < oo}, for ®(t) = tP, were
studied in |7]. Theorem 1.3 below is a generalization of |7, Theorem 1.1].

Theorem 1.3 Let Q@ C X be an open set and let ® be a doubling Young
function whose conjugate is doubling. Then a representative of u € Ai’q)(ﬂ) N
L®(Q) has a ®-weak upper gradient g with 9l e ) < C’(Cd,T)||uHA1,q>(Q).

If the assumptions of Theorem 1.3 are in force and the space X supports the ®-
Poincaré inequality (that is, (1) holds for pairs (u, g), where u € N“®(X) and
g is an upper gradient of u), then Ai’q)(Q) N L®(Q) is isomorphic to N1 ®(Q)
and the norms | - [|peq) + || - HAl’é(Q) and || - [[y1.e(q) are equivalent.

2  Preliminaries

Throughout this paper C' will denote a positive constant whose value is not
necessarily the same at each occurrence. By writing C' = C(Aq,...,\,) we
indicate that the constant depends only on Aq,..., A,.

2.1 Young functions and Orlicz spaces

In this subsection we recall the basic facts about Young functions and Orlicz
spaces. An exhaustive treatment of the subject is [11].
A function @ : [0,00) — [0, o] is called a Young function if it has the form

o(t) = /0 o(s) ds,

where ¢ : [0,00) — [0, 00] is an increasing, left-continuous function, which is
neither identically zero nor identically infinite on (0, c0).

If, in addition, ¢(0) = 0, 0 < ¢(t) < oo for t > 0 and limy_,o ¢(t) = o0,
then @ is called an N-function.

A Young function is convex and, in particular, satisfies

B(ct) < £B(t) (8)

for0<e<land 0<t < o0.



If ® is a Young function and pu(X) < oo, then Jensen’s inequality

(4 udu) <4 ®u)du (9)
(fae) <4,

holds for 0 < u € LY(X).
The right-continuous generalized inverse of a Young function & is

d7(t) = inf{s: B(s) > t}.

We have that
D(@7(1) <t < D1 (B())

for t > 0.
The conjugate of a Young function @ is the Young function defined by

®(t) = sup{ts — ®(s) : s > 0}

for t > 0.
Let ® be a Young function. The Orlicz space L*(X) is the set of all
measurable functions u for which there exists A > 0 such that

/X o <‘“(Ax)‘> du(z) < oo.

The Luxemburg norm of u € L®(X) is

lull oy = mE{A > 0 /
X

) (’“(;)’> dp(z) < 1.

If [ullpo(x) # 0, we have that

/<I> _u(@)] du(x) < 1.
X HUHL<I>(X)

The following generalized Hoélder inequality holds for Luxemburg norms:
[ @@ dute) < 2lulleco ol o

Let E®(X) denote the closure of the space of bounded, boundedly sup-
ported functions in L®(X).

Lemma 2.1 Let ® be an N -function.

(a) The dual of E‘I)(X:) is isomorphic to Li)(X); For every F € (E®(X))*,
there ezists v € L*(X) such that

Flu) = / wo .

Moreover,
ol oy < 11 < 20l .



(b) If Q C R" is open, then C$°(Q) is dense in E®(Q).

A Young function ® is doubling, if there exists a constant Cp > 1 such
that
d(2t) < CpP(t)

for ¢t > 0.

Lemma 2.2 Let ® be doubling a Young function.
1) The space Cy(X) of bounded, boundedly supported continuous functions
is dense in L?(X).

2) The modular convergence and the norm convergence are equivalent, that
15,
1fi = fllzex) — 0,

if and only if
[ 208~ hau—o.

Lemma 2.3 Suppose that ® is a doubling Young function and that {g;} C
L®(X) satisfies
sup [|gill Lo (x) < 00
(2

and

lim su/fb O du = 0.
i sup | (9i) dp

Then there exists a subsequence (g;;) of (g;) and g € L®(X) such that gi;, — 9
weakly in L®(X).

Lemma 2.3 easily follows from [11, p.144, Corollary 2].
If both ® and ® are doubling, then L®(X) is reflexive, and so every
bounded sequence in L®(X) admits a weakly converging subsequence.

2.2 Sobolev spaces on metric measure spaces
The ®-modulus of a curve family I' is
Modg(T) = inf{||g||Lq>(X) : /gds > 1 for all y € r}. (10)
Y

The Sobolev space NV®(X), defined by Tuominen in [12], consists of the
functions u € L®(X) having a ®-weak upper gradient g € L*(X). The space
N1®(X) is a Banach space with the norm

[ullvrexy = llull Lo x) + inf [|gll Lo (x),

where the infimum is taken over ®-weak upper gradients g € L?(X) of w.
We need the following lemma from [12].



Lemma 2.4 ([12], Theorem 4.17) Suppose that u; — v € L*(X) and g; —
g € L*(X) weakly in L®(X) and that g; is a ®-weak upper gradient of u;. Then
g 1s a ®-weak upper gradient of a representative of u.

If ® is doubling and Q C R™ is an open set, then N»®(Q) is isomorphic
to WH®(Q) [12, Theorem 6.19]. As usual, W1®(Q) is the space of functions
u € L?(Q) having weak partial derivatives in L®(Q2). A function du/dz; €

L] () is a weak partial derivative of u (w.r.t. z;) if
o ou
U— = —
8xi (9.%'2 14

for all p € CF°(Q).

2.3 Lipschitz functions

A function u : X — R is L-Lipschitz if |u(z) — u(y)| < Ld(z,y) for all
z,y € X. The lower and upper pointwise Lipschitz constants of a locally
Lipschitz function u are

L L
lipu(x) = liminf M and Lipu(x) = limsup M7
=0 r r—0 T

where

L(u,2,r) = sup |u(x)—u(y)|
d(z,y)<r

The lower Lipschitz constant lip w, and hence also Lip u, is an upper gradient
of a locally Lipschitz function u (cf. [1]).

3 Proofs

Proof of Theorem 1.1 We may assume that |g| ;¢ = 1. By Lemma 2.1,
it suffices to show that the functional %‘i 1050 () — R;

ou Jp

= u
a(L'i

oz, ] :

is bounded with respect to the norm || - HL‘i’(Q) and satisfies || % | < C. Choose

0 <9 € C5°(B(0,1)) such that [¢ =1 and let ¥.(z) = e "p(x/¢) for e > 0.
Then

ou . . 8@0 T awa
it ==t [rvagl =i [ (03 o
By the Holder inequality,
ou e 31/15
[ga]‘ < 2liminf ||u * (12l . :
ox; e—0 il 2% (supp o) L® (supp ¢)



Since [ %—ff = 0, we have that

(u . gﬁ > (2) = ((u () * ‘ZZ) ().

u *

(z) < Ce™ ! / [u(y)~up(eldy < CO <][ 2(g(y)) dy) :
B(z,e) B(z,re)

Let K = supp ¢ and let € > 0 be such that K;. = {x € R" : d(z, K) < 7¢} C
Q. Then, by Fubini’s theorem,

8337;

[oleos) = £, swns
K a IL‘ TE

— [ W) / 1B, )| e dy.

Kre B(y,re)NK

< | ®gy)dy

<1
Thus a

lim 1nf Ve <C,
=0 8:@ L®(supp ¢)

which completes the proof. 0

For the proofs of Theorem 1.2 and Theorem 1.3, which are based on ap-
proximation by discrete convolutions, we need a couple of lemmas. Lemma
3.1 follows from a Whitney type covering result for doubling metric measure
spaces, see |2, Theorem III1.1.3|, [10, Lemma 2.9|. For the proof of Lemma 3.2,
we refer to [10, Lemma 2.16].

Lemma 3.1 Let Q C X be open. Given € > 0, A > 1, there is a cover
{B; = B(x;, )} of Q with the following properties:

(1) r; <e foralli,

(2) AB; C ) for all i,

(3) if AB; meets ABj, then r; < 2rj,

(4) each ball AB; meets at most C' = C(Cy, \) balls AB;.

A collection {B;} as above is called an (e, A)-covering of Q. Clearly, an (e, \)-
cover is an (¢/, \')-cover provided &’ > ¢ and ' < A

Lemma 3.2 Let Q C X be open, and let B = {B; = B(x;,7i)} be an (c0,2)-
cover of Q. Then there is a collection {¢;} of functions Q — R such that

1) each @; is C(Cq)r;*-Lipschitz.

2) 0<; <1 foralli,



3) pi(x) =0 for x € X \ 2B; for all i,
4) > pi(x) =1 for all x € Q.

A collection {p;} as above is called a partition of unity with respect to B.

Let B = {B;} be as in the lemma above, and let {¢;} be a partition of unity
with respect to B. For a locally integrable function u on 2, define

=Y unpila). (11)

The following lemma describes the most important properties of ug.

Lemma 3.3

1) The function ug is locally Lipschitz. Moreover, for each x € B;,
Lipup(z) < C(Cd)rBil][ |u — usp, | du.
5B;

2) Let ® be a doubling Young function and let v € L®(Q). If By, is an
(ek,2)-cover of Q and e — 0 as k — oo, then up, — u in LT(Q).

Proof 1) Let z,y € B;, and let J = {j : 2B; N 2B; # 0}. Then #J < C(Cy)
and B; C 5B; for each j € J. Using the properties of the functions ¢;, we
have that

[us(2) — us(y)] = S (u, — us,) (p(2) — 250))|
jeJ
< C(Cy)ry d(z,y) max up; —us,]

< CCrg et fu=usn|dp,
5B;

and the first claim follows.
2) We begin by showing that, for every w € L®(Q),

lwsllze @) < C(Ca)llw| L) (12)

We may assume that |w| ey = 1. By Jensen’s inequality ®(|wg|) <
(®(Jw|))s. Hence, by the properties of the functions ¢;,

[ @usd < [ @(uhyedn < > | @) g
<Z/ (), d,u<CdZ/ (jwl) d
= Cu [ @) 3 xp,die < C(Co) [ () d

< C(Cy).



Thus, by (8), we obtain (12).
Let u € L?(Q) and € > 0. By Lemma 2.2 (1), there exists v € Co(£2) such
that ||u — vl eq) < e. Then, by (12), we obtain

[us — vBl[Le ) = (u —v)BllLe@) < C(Ca)llu — v|[Leq) < C(Cy)e,
and so
lus — ullpe @) < llus —vBllLe@) + llvs = vllLe@) + v — ul Le(q)
< ||UB—U||L<1> +C(Cd)

Therefore it suffices to show that |[vg, — v| e — 0 as ey — 0. Now |vp, —
v| < 2sup |v|, and for all x we have that

o, (@) —v(@) | < 3 ][ lo(y)—v(e)| dialy ><c<cd>]l [o(y)—v(@)| dpu(w),

2B;3>x B(z,5¢x)

which converges to 0 as e — 0 by the continuity of v. Thus, by the dominated
convergence theorem,

| @, = ol du =0,

and so, by Lemma 2.2 (2), ||vg, — ”HL‘1>(Q) — 0. .

Proof of Theorem 1.3. Let u € Ai’q’(Q) N L®(Q). For j € N, let B, be
a (71, 57)-cover (and hence also a (571, 2)-cover) of Q2. Then, by Lemma 3.3
2), uj :=up, — uin L*(Q). Let us show that

I Lip | o () < C(Ca, 7)|Jul] 410 (13)

()
By Lemma 3.3 (1),

Lipu; < C(Cy) Z T’B][ lu —usp|du xB.
BeB;

It follows from Lemma 3.1 (4) that B; can be divided into k = C(Cy, )
subfamilies B; 1, ..., Bj so that each of the families 575;; consists of disjoint
balls. Since the families 58,1, ..., 58, belong to B-(£2), we have that

||LipujHLq>(Q)§C(Cd H Z T'B][ IU_U5B|d/JXBHLq>
=1 BeBj;

k
<ceny| S rB][ = sl dpo x| o

I=1 Be5B;,

< C(CdvT)HuHA}CP(Q)'
Since ® and ® are doubling, L®(Q) is reflexive. Thus the bounded se-
quence (Lipu;) has a subsequence, also denoted by (Lipu;), that converges
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weakly to some g € L®(Q). By Lemma 2.4, g is a ®-weak upper gradient of a
representative of u. As a weak limit g satisfies

lgllze (@) < tim inf || Lip ujf| Lo (@) < C(Ca 7)[ull 410 ().
Proof of Theorem 1.2 We may assume that [|g[| ey = 1. Define the
functions w; as in the proof of Theorem 1.3. By (13) and (7), we have that
ILip ujllze(q) < C(Ca, Cp, 7).
Let us show that
M(lér)rio sblp/E ¢ (Lipu;) dp = 0. (14)

By Lemma 3.3 (1) and by the ®-Poincaré inequality,

Lipu; < C(Cy) Z rB][ |u — usg| duxs

BeB;
< C(Ca,Cp) Y @7! <][ ®(g) du) XB
BEB; 57B
Thus
w(E N B)
/E(I)(Llpu])du < C(Cy,Cp, Co) Z LGB Jin ®(g) dp.

BeB,;

Since Bj can be divided into k = C(Cy,7) subfamilies Bj1,...,B; so that
each of the families 578;; consists of disjoint balls, it suffices to show that, for

1<1<Fk,
: n(EN B) /
lim HETIZ) [ &(g)du = 0.
n(E) 2 (57B) Jsrp )
Fix ¢ > 0. Then there exists § > 0 such that [, ®(g) < € whenever p(A) < 4.

Denote by B the family of those balls B in B;; for which

u(ENB)
uGrB) °

Also, let B = Bj; \ B. Now, if u(E) < &6, we have that u(Upep57B) <
e 'u(E) < 6. Thus

ENB
2 ol UL

BeB
wENB ,u (ENB)
:Z<(5TB))/ 9)dn+ 3 u(57B) (9) dp
BeB 1% 57B BeB! 57B
< 5/ ®(g) du+/ ®(g) dp
Q UBGB’5TB
< 2e.
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This completes the proof of (14).

By Lemma 2.3, a subsequence of (Lipu;) converges weakly to some g, €
L®(Q), which, by Lemma 2.4, is a ®-weak upper gradient of a representative
of u. Moreover, as a weak limit, g, satisfies

gulle @) < lim inf | Lip ujl| Lo (o) < C(Cy, Cp, 7).
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