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Abstract

We show that the Orlicz-Sobolev space W 1,Φ(Rn) can be characterized in
terms of the (generalized) Φ-Poincaré inequality. We also prove similar results
in the general metric space setting.
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1 Introduction

Let Φ be a Young function and let Ω ⊂ Rn be open. A pair (u, g) of measurable
functions, u ∈ L1

loc(Ω) and g ≥ 0, satis�es the Φ-Poincaré inequality in Ω, if
there are constants CP ≥ 1 and τ ≥ 1 such that

−
∫
B
|u− uB| dµ ≤ CP rBΦ−1

(
−
∫
τB

Φ (g) dµ
)

(1)

for every ball B = B(x, rB) such that τB ⊂ Ω. Here, uB = −
∫
B u dµ =

1
µ(B)

∫
B u and τB = B(x, τrB). It is well known that u ∈ W 1,1

loc (Ω) satis�es
the 1-Poincaré inequality

−
∫
B
|u− uB| dµ ≤ CP rB−

∫
B
|∇u| dµ

for every ball B ⊂ Ω. Thus, by Jensen's inequality, (1) holds with τ = 1 and
g = |∇u|. Our �rst result says that also the converse holds: If u ∈ LΦ(Ω) and
there exists g ∈ LΦ(Ω) such that (1) holds (for the normalized pair), then u
belongs to the Sobolev class W 1,Φ(Ω).

Theorem 1.1 Suppose that Φ is an N -function, Ω ⊂ Rn is open, u, g ∈
LΦ(Ω) and that the pair (u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω)) satis�es the Φ-Poincaré in-

equality in Ω. Then u ∈W 1,Φ(Ω) and ‖|∇u|‖LΦ(Ω) ≤ C(CP , τ, n)‖g‖LΦ(Ω).
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For the de�nitions of Young and N -functions, see Section 2.1 below. Theorem
1.1 was proven by Hajªasz in [4] for Φ(t) = tp, p ≥ 1, and by Tuominen in [13]
for a doubling Φ whose conjugate is also doubling.

Our second result is a counterpart of Theorem 1.1 in the general metric
setting. Let X = (X, d, µ) be a metric measure space with µ a Borel regular
outer measure satisfying 0 < µ(U) < ∞, whenever U is nonempty, open and
bounded. Suppose further that µ is doubling, that is, there exists a constant
Cd such that

µ(2B) ≤ Cdµ(B), (2)

whenever B is a ball.
Our substitute for the usual Sobolev classW 1,Φ is based on upper gradients.

We call a Borel function g : X → [0,∞] an upper gradient of a function
u : X → R, if

|u(γ(0))− u(γ(l))| ≤
∫
γ
g ds (3)

for all recti�able curves γ : [0, l] → X. The concept of an upper gradient was
introduced in [8]; also see [9]. Further, g as above is called a Φ-weak upper
gradient if (3) holds for all curves γ except for a family of Φ-modulus zero,
see Section 2.2 below. The Sobolev space N1,Φ(X) consists of all functions in
LΦ(X) that have a (Φ-weak) upper gradient that belongs to LΦ(X).

Theorem 1.2 Suppose that Φ is a doubling Young function, Ω ⊂ X is open,

u, g ∈ LΦ(Ω), and that the pair (u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω)) satis�es the Φ-

Poincaré inequality in Ω. Then a representative of u has a Φ-weak upper

gradient gu such that ‖gu‖LΦ(Ω) ≤ C(Cd, CP , τ)‖g‖LΦ(Ω).

In the case Φ(t) = tp, p ≥ 1, the result was essentially proven in [3], see [5].
In many important settings, including Riemannian manifolds with non-

negative Ricci curvature and Carnot-Carathéodory spaces associated with a
system of vector �elds satisfying Hörmander's condition, the Φ-Poincaré in-
equality holds for pairs (u, g), where u ∈ N1,Φ(X) and g is an upper gradient of
u, see [6]. In these settings Theorem 1.2 gives a characterization for N1,Φ(X).

If both Φ and its conjugate are doubling, then the assumptions of Theorem
1.2 can be relaxed. In order to conclude that a representative of u ∈ LΦ(Ω) is
in N1,Φ(Ω), it su�ces to assume that the number

‖u‖A1,Φ
τ (Ω)

= sup
B∈Bτ (Ω)

‖
∑
B∈B

(
r−1
B −
∫
B
|u− uB| dµ

)
χB‖LΦ(Ω), (4)

where

Bτ (Ω) =
{
{Bi} : balls τBi are disjoint and contained in Ω

}
,

is �nite. Notice that ‖u‖A1,Φ
τ (Ω)

≤ λ if and only if there is a functional ν :
{B ⊂ Ω : B is a ball} → [0,∞) such that∑

i

ν(Bi) ≤ 1, (5)
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whenever the balls Bi are disjoint, and that the generalized Φ-Poincaré in-
equality

−
∫
B
|u− uB| dµ ≤ λrBΦ−1

(
ν(τB)
µ(B)

)
(6)

holds whenever τB ⊂ Ω. In particular, if a pair (u/‖g‖LΦ(Ω), g/‖g‖LΦ(Ω))
satis�es the Φ-Poincaré inequality in Ω, then

‖u‖A1,Φ
τ (Ω)

≤ CP ‖g‖LΦ(Ω). (7)

The spaces A1,Φ
τ (Ω) = {u ∈ L1

loc(Ω) : ‖u‖A1,Φ
τ (Ω)

< ∞}, for Φ(t) = tp, were

studied in [7]. Theorem 1.3 below is a generalization of [7, Theorem 1.1].

Theorem 1.3 Let Ω ⊂ X be an open set and let Φ be a doubling Young

function whose conjugate is doubling. Then a representative of u ∈ A1,Φ
τ (Ω)∩

LΦ(Ω) has a Φ-weak upper gradient g with ‖g‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

.

If the assumptions of Theorem 1.3 are in force and the spaceX supports the Φ-
Poincaré inequality (that is, (1) holds for pairs (u, g), where u ∈ N1,Φ(X) and
g is an upper gradient of u), then A1,Φ

τ (Ω) ∩ LΦ(Ω) is isomorphic to N1,Φ(Ω)
and the norms ‖ · ‖LΦ(Ω) + ‖ · ‖A1,Φ

τ (Ω)
and ‖ · ‖N1,Φ(Ω) are equivalent.

2 Preliminaries

Throughout this paper C will denote a positive constant whose value is not
necessarily the same at each occurrence. By writing C = C(λ1, . . . , λn) we
indicate that the constant depends only on λ1, . . . , λn.

2.1 Young functions and Orlicz spaces

In this subsection we recall the basic facts about Young functions and Orlicz
spaces. An exhaustive treatment of the subject is [11].

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =
∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞] is an increasing, left-continuous function, which is
neither identically zero nor identically in�nite on (0,∞).

If, in addition, φ(0) = 0, 0 < φ(t) < ∞ for t > 0 and limt→∞ φ(t) = ∞,
then Φ is called an N -function.

A Young function is convex and, in particular, satis�es

Φ(εt) ≤ εΦ(t) (8)

for 0 < ε ≤ 1 and 0 ≤ t <∞.
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If Φ is a Young function and µ(X) <∞, then Jensen's inequality

Φ
(
−
∫
X
u dµ

)
≤ −
∫
X

Φ(u) dµ (9)

holds for 0 ≤ u ∈ L1(X).
The right-continuous generalized inverse of a Young function Φ is

Φ−1(t) = inf{s : Φ(s) > t}.

We have that
Φ(Φ−1(t)) ≤ t ≤ Φ−1(Φ(t))

for t ≥ 0.
The conjugate of a Young function Φ is the Young function de�ned by

Φ̂(t) = sup{ts− Φ(s) : s > 0}

for t ≥ 0.
Let Φ be a Young function. The Orlicz space LΦ(X) is the set of all

measurable functions u for which there exists λ > 0 such that∫
X

Φ
(
|u(x)|
λ

)
dµ(x) <∞.

The Luxemburg norm of u ∈ LΦ(X) is

‖u‖LΦ(X) = inf{λ > 0 :
∫
X

Φ
(
|u(x)|
λ

)
dµ(x) ≤ 1}.

If ‖u‖LΦ(X) 6= 0, we have that∫
X

Φ

(
|u(x)|

‖u‖LΦ(X)

)
dµ(x) ≤ 1.

The following generalized Hölder inequality holds for Luxemburg norms:∫
X
u(x)v(x) dµ(x) ≤ 2‖u‖LΦ(X)‖v‖LΦ̂(X)

.

Let EΦ(X) denote the closure of the space of bounded, boundedly sup-
ported functions in LΦ(X).

Lemma 2.1 Let Φ be an N -function.

(a) The dual of EΦ(X) is isomorphic to LΦ̂(X); For every F ∈ (EΦ(X))∗,
there exists v ∈ LΦ̂(X) such that

F (u) =
∫
uv dµ.

Moreover,

‖v‖
LΦ̂(X)

≤ ‖F‖ ≤ 2‖v‖
LΦ̂(X)

.
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(b) If Ω ⊂ Rn is open, then C∞0 (Ω) is dense in EΦ(Ω).

A Young function Φ is doubling, if there exists a constant CΦ ≥ 1 such
that

Φ(2t) ≤ CΦΦ(t)

for t ≥ 0.

Lemma 2.2 Let Φ be doubling a Young function.

1) The space C0(X) of bounded, boundedly supported continuous functions

is dense in LΦ(X).

2) The modular convergence and the norm convergence are equivalent, that

is,

‖fj − f‖LΦ(X) → 0,

if and only if ∫
X

Φ(|fj − f |) dµ→ 0.

Lemma 2.3 Suppose that Φ is a doubling Young function and that {gi} ⊂
LΦ(X) satis�es

sup
i
‖gi‖LΦ(X) <∞

and

lim
µ(A)→0

sup
i

∫
A

Φ(gi) dµ = 0.

Then there exists a subsequence (gij ) of (gi) and g ∈ LΦ(X) such that gij → g
weakly in LΦ(X).

Lemma 2.3 easily follows from [11, p.144, Corollary 2].
If both Φ and Φ̂ are doubling, then LΦ(X) is re�exive, and so every

bounded sequence in LΦ(X) admits a weakly converging subsequence.

2.2 Sobolev spaces on metric measure spaces

The Φ-modulus of a curve family Γ is

ModΦ(Γ) = inf
{
‖g‖LΦ(X) :

∫
γ
g ds ≥ 1 for all γ ∈ Γ

}
. (10)

The Sobolev space N1,Φ(X), de�ned by Tuominen in [12], consists of the
functions u ∈ LΦ(X) having a Φ-weak upper gradient g ∈ LΦ(X). The space
N1,Φ(X) is a Banach space with the norm

‖u‖N1,Φ(X) = ‖u‖LΦ(X) + inf ‖g‖LΦ(X),

where the in�mum is taken over Φ-weak upper gradients g ∈ LΦ(X) of u.
We need the following lemma from [12].
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Lemma 2.4 ([12], Theorem 4.17) Suppose that ui → u ∈ LΦ(X) and gi →
g ∈ LΦ(X) weakly in LΦ(X) and that gi is a Φ-weak upper gradient of ui. Then
g is a Φ-weak upper gradient of a representative of u.

If Φ is doubling and Ω ⊂ Rn is an open set, then N1,Φ(Ω) is isomorphic
to W 1,Φ(Ω) [12, Theorem 6.19]. As usual, W 1,Φ(Ω) is the space of functions
u ∈ LΦ(Ω) having weak partial derivatives in LΦ(Ω). A function ∂u/∂xi ∈
L1
loc(Ω) is a weak partial derivative of u (w.r.t. xi) if∫

u
∂ϕ

∂xi
= −

∫
∂u

∂xi
ϕ

for all ϕ ∈ C∞0 (Ω).

2.3 Lipschitz functions

A function u : X → R is L-Lipschitz if |u(x) − u(y)| ≤ Ld(x, y) for all
x, y ∈ X. The lower and upper pointwise Lipschitz constants of a locally
Lipschitz function u are

lipu(x) = lim inf
r→0

L(u, x, r)
r

and Lipu(x) = lim sup
r→0

L(u, x, r)
r

,

where
L(u, x, r) = sup

d(x,y)≤r
|u(x)− u(y)|.

The lower Lipschitz constant lipu, and hence also Lipu, is an upper gradient
of a locally Lipschitz function u (cf. [1]).

3 Proofs

Proof of Theorem 1.1 We may assume that ‖g‖LΦ(Ω) = 1. By Lemma 2.1,

it su�ces to show that the functional ∂u
∂xi

: C∞0 (Ω) → R;

∂u

∂xi
[ϕ] := −

∫
u
∂ϕ

∂xi

is bounded with respect to the norm ‖·‖
LΦ̂(Ω)

and satis�es ‖ ∂u∂xi
‖ ≤ C. Choose

0 ≤ ψ ∈ C∞0 (B(0, 1)) such that
∫
ψ = 1 and let ψε(x) = ε−nψ(x/ε) for ε > 0.

Then
∂u

∂xi
[ϕ] = − lim

ε→0

∫
(u ∗ ψε)

∂ϕ

∂xi
= lim

ε→0

∫ (
u ∗ ∂ψε

∂xi

)
ϕ.

By the Hölder inequality,∣∣∣∣ ∂u∂xi [ϕ]
∣∣∣∣ ≤ 2 lim inf

ε→0

∥∥∥∥u ∗ ∂ψε∂xi

∥∥∥∥
LΦ(supp ϕ)

‖ϕ‖
LΦ̂(supp ϕ)

.
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Since
∫ ∂ψε

∂xi
= 0, we have that(

u ∗ ∂ψε
∂xi

)
(x) =

(
(u− uB(x,ε)) ∗

∂ψε
∂xi

)
(x).

Thus∣∣∣∣u ∗ ∂ψε∂xi

∣∣∣∣ (x) ≤ Cε−n−1

∫
B(x,ε)

|u(y)−uB(x,ε)| dy ≤ CΦ−1

(
−
∫
B(x,τε)

Φ(g(y)) dy

)
.

Let K = supp ϕ and let ε > 0 be such that Kτε = {x ∈ Rn : d(x,K) < τε} ⊂
Ω. Then, by Fubini's theorem,∫

K
Φ
(
C−1

∣∣∣∣u ∗ ∂ψε∂xi

∣∣∣∣ (x) dx) ≤
∫
K
−
∫
B(x,τε)

Φ(g(y)) dy dx

=
∫
Kτε

Φ(g(y))
∫
B(y,τε)∩K

|B(x, τε)|−1 dx dy.

≤
∫
Kτε

Φ(g(y)) dy

≤ 1.

Thus

lim inf
ε→0

∥∥∥∥u ∗ ∂ψε∂xi

∥∥∥∥
LΦ(supp ϕ)

≤ C,

which completes the proof. 2

For the proofs of Theorem 1.2 and Theorem 1.3, which are based on ap-
proximation by discrete convolutions, we need a couple of lemmas. Lemma
3.1 follows from a Whitney type covering result for doubling metric measure
spaces, see [2, Theorem III.1.3], [10, Lemma 2.9]. For the proof of Lemma 3.2,
we refer to [10, Lemma 2.16].

Lemma 3.1 Let Ω ⊂ X be open. Given ε > 0, λ ≥ 1, there is a cover

{Bi = B(xi, ri)} of Ω with the following properties:

(1) ri ≤ ε for all i,

(2) λBi ⊂ Ω for all i,

(3) if λBi meets λBj, then ri ≤ 2rj,

(4) each ball λBi meets at most C = C(Cd, λ) balls λBj.

A collection {Bi} as above is called an (ε, λ)-covering of Ω. Clearly, an (ε, λ)-
cover is an (ε′, λ′)-cover provided ε′ ≥ ε and λ′ ≤ λ.

Lemma 3.2 Let Ω ⊂ X be open, and let B = {Bi = B(xi, ri)} be an (∞, 2)-
cover of Ω. Then there is a collection {ϕi} of functions Ω → R such that

1) each ϕi is C(Cd)r−1
i -Lipschitz.

2) 0 ≤ ϕi ≤ 1 for all i,

7



3) ϕi(x) = 0 for x ∈ X \ 2Bi for all i,

4)
∑

i ϕi(x) = 1 for all x ∈ Ω.

A collection {ϕi} as above is called a partition of unity with respect to B.

Let B = {Bi} be as in the lemma above, and let {ϕi} be a partition of unity
with respect to B. For a locally integrable function u on Ω, de�ne

uB(x) =
∑
i

uBiϕi(x). (11)

The following lemma describes the most important properties of uB.

Lemma 3.3

1) The function uB is locally Lipschitz. Moreover, for each x ∈ Bi,

LipuB(x) ≤ C(Cd)r−1
Bi
−
∫

5Bi

|u− u5Bi | dµ.

2) Let Φ be a doubling Young function and let u ∈ LΦ(Ω). If Bk is an

(εk, 2)-cover of Ω and εk → 0 as k →∞, then uBk
→ u in LΦ(Ω).

Proof 1) Let x, y ∈ Bi, and let J = {j : 2Bj ∩ 2Bi 6= ∅}. Then #J ≤ C(Cd)
and Bj ⊂ 5Bi for each j ∈ J . Using the properties of the functions ϕi, we
have that

|uB(x)− uB(y)| =
∣∣∣∑
j∈J

(uBj − uBi)
(
ϕj(x)− ϕj(y)

)∣∣∣
≤ C(Cd)r−1

Bi
d(x, y) max

j∈J
|uBj − uBi |

≤ C(Cd)r−1
Bi

d(x, y)−
∫

5Bi

|u− u5Bi | dµ,

and the �rst claim follows.
2) We begin by showing that, for every w ∈ LΦ(Ω),

‖wB‖LΦ(Ω) ≤ C(Cd)‖w‖LΦ(Ω). (12)

We may assume that ‖w‖LΦ(Ω) = 1. By Jensen's inequality Φ(|wB|) ≤
(Φ(|w|))B. Hence, by the properties of the functions ϕi,∫

Ω
Φ(|wB|) dµ ≤

∫
Ω
(Φ(|w|))B dµ ≤

∑
i

∫
Ω
(Φ(|w|))Biϕi dµ

≤
∑
i

∫
2Bi

Φ(|w|)Bi dµ ≤ Cd
∑
i

∫
Bi

Φ(|w|) dµ

= Cd

∫
Ω

Φ(|w|)
∑
i

χBi dµ ≤ C(Cd)
∫

Ω
Φ(|w|) dµ

≤ C(Cd).
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Thus, by (8), we obtain (12).
Let u ∈ LΦ(Ω) and ε > 0. By Lemma 2.2 (1), there exists v ∈ C0(Ω) such

that ‖u− v‖LΦ(Ω) < ε. Then, by (12), we obtain

‖uB − vB‖LΦ(Ω) = ‖(u− v)B‖LΦ(Ω) ≤ C(Cd)‖u− v‖LΦ(Ω) < C(Cd)ε,

and so

‖uB − u‖LΦ(Ω) ≤ ‖uB − vB‖LΦ(Ω) + ‖vB − v‖LΦ(Ω) + ‖v − u‖LΦ(Ω)

< ‖vB − v‖LΦ(Ω) + C(Cd)ε.

Therefore it su�ces to show that ‖vBk
− v‖LΦ(Ω) → 0 as εk → 0. Now |vBk

−
v| ≤ 2 sup |v|, and for all x we have that

|vBk
(x)−v(x)| ≤

∑
2Bi3x

−
∫
Bi

|v(y)−v(x)| dµ(y) ≤ C(Cd)−
∫
B(x,5εk)

|v(y)−v(x)| dµ(y),

which converges to 0 as εk → 0 by the continuity of v. Thus, by the dominated
convergence theorem, ∫

Ω
Φ(|vBk

− v|) dµ→ 0,

and so, by Lemma 2.2 (2), ‖vBk
− v‖LΦ(Ω) → 0. 2

Proof of Theorem 1.3. Let u ∈ A1,Φ
τ (Ω) ∩ LΦ(Ω). For j ∈ N, let Bj be

a (j−1, 5τ)-cover (and hence also a (j−1, 2)-cover) of Ω. Then, by Lemma 3.3
(2), uj := uBj → u in LΦ(Ω). Let us show that

‖Lipuj‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

. (13)

By Lemma 3.3 (1),

Lipuj ≤ C(Cd)
∑
B∈Bj

r−1
B −
∫

5B
|u− u5B| dµχB.

It follows from Lemma 3.1 (4) that Bj can be divided into k = C(Cd, τ)
subfamilies Bj,1, . . . ,Bj,k so that each of the families 5τBj,l consists of disjoint
balls. Since the families 5Bj,1, . . . , 5Bj,k belong to Bτ (Ω), we have that

‖Lipuj‖LΦ(Ω) ≤ C(Cd)
k∑
l=1

∥∥ ∑
B∈Bj,l

r−1
B −
∫

5B
|u− u5B| dµχB

∥∥
LΦ(Ω)

≤ C(Cd)
k∑
l=1

∥∥ ∑
B∈5Bj,l

r−1
B −
∫
B
|u− uB| dµχB

∥∥
LΦ(Ω)

≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

.

Since Φ and Φ̂ are doubling, LΦ(Ω) is re�exive. Thus the bounded se-
quence (Lipuj) has a subsequence, also denoted by (Lipuj), that converges
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weakly to some g ∈ LΦ(Ω). By Lemma 2.4, g is a Φ-weak upper gradient of a
representative of u. As a weak limit g satis�es

‖g‖LΦ(Ω) ≤ lim inf
j→∞

‖Lipuj‖LΦ(Ω) ≤ C(Cd, τ)‖u‖A1,Φ
τ (Ω)

.

Proof of Theorem 1.2 We may assume that ‖g‖LΦ(Ω) = 1. De�ne the
functions uj as in the proof of Theorem 1.3. By (13) and (7), we have that

‖Lipuj‖LΦ(Ω) ≤ C(Cd, CP , τ).

Let us show that

lim
µ(E)→0

sup
j

∫
E

Φ(Lipuj) dµ = 0. (14)

By Lemma 3.3 (1) and by the Φ-Poincaré inequality,

Lipuj ≤ C(Cd)
∑
B∈Bj

r−1
B −
∫

5B
|u− u5B| dµχB

≤ C(Cd, CP )
∑
B∈Bj

Φ−1

(
−
∫

5τB
Φ(g) dµ

)
χB.

Thus ∫
E

Φ(Lipuj) dµ ≤ C(Cd, CP , CΦ)
∑
B∈Bj

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ.

Since Bj can be divided into k = C(Cd, τ) subfamilies Bj,1, . . . ,Bj,k so that
each of the families 5τBj,l consists of disjoint balls, it su�ces to show that, for
1 ≤ l ≤ k,

lim
µ(E)→0

∑
B∈Bj,l

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ = 0.

Fix ε > 0. Then there exists δ > 0 such that
∫
A Φ(g) < ε whenever µ(A) < δ.

Denote by B the family of those balls B in Bj,l for which

µ(E ∩B)
µ(5τB)

< ε.

Also, let B′ = Bj,l \ B. Now, if µ(E) < εδ, we have that µ(∪B∈B′5τB) ≤
ε−1µ(E) < δ. Thus∑

B∈Bj,l

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ

=
∑
B∈B

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ+
∑
B∈B′

µ(E ∩B)
µ(5τB)

∫
5τB

Φ(g) dµ

≤ ε

∫
Ω

Φ(g) dµ+
∫
∪B∈B′5τB

Φ(g) dµ

≤ 2ε.
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This completes the proof of (14).
By Lemma 2.3, a subsequence of (Lipuj) converges weakly to some gu ∈

LΦ(Ω), which, by Lemma 2.4, is a Φ-weak upper gradient of a representative
of u. Moreover, as a weak limit, gu satis�es

‖gu‖LΦ(Ω) ≤ lim inf
j→∞

‖Lipuj‖LΦ(Ω) ≤ C(Cd, CP , τ).

2
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