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Abstract

The sharp self-improving properties of generalized ®-Poincaré inequalities
in connected metric measure spaces were recently obtained in [6]. In this paper
we investigate the general setting. We also include the case where ® increases
essentially more slowly than the function ¢ — ¢. Our results generalize some
results of Hajtasz and Koskela [4, 5] and MacManus and Pérez [8].
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1 Introduction and main results

Let X = (X, d, ) be a metric measure space with u a Borel regular outer mea-
sure satisfying 0 < u(U) < oo, whenever U is nonempty, open and bounded.
Suppose further that u is doubling, that is, there exists a constant C; such
that

w(2B) < Cqu(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cy such that

W(B@r) )
W(Blwo.r0) ~ <o)

holds, whenever x € B(xg,rq) and r < rg.

(2)

Definition 1.1 (|10]) Let @ : [0,00) — [0,00) be an increasing bijection. A
pair (u,g) of measurable functions, u € L} (X) and g > 0, satisfies the ®-

loc
Poincaré inequality (in an open set U), if there are constants Cp and T such

that
f = usldn < corot (f 200) an) 3)
B B
for every ball B C X (such that TB C U).
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The following sharp self-improving result for the ®-Poincaré inequality was

recently proved in [6].

Theorem A Assume that ® is a Young function, X is connected, u
satisfies (2) with 1 < s < oo, BC X isa ball, § >0, 7>1, B=(140)7B,
and that a pair (4, g), where 4 = HgHqu) ~uand § = ||g||2;(é)g, satisfies the

(B)
®-Poincaré inequality in B.

1) If
1 " s'—1 e t s'—1
/0 ((ID(t)> dt < oo and /0 <<I>(t)) dt = oo,
then
lu = usllpzs ) < CrauB) ™ ligl a s,
where

then, for Lebesgue points x,y € B of u,

[u(@) — u(y)| < Creu(B)~*|gll Lo zyws (W(B) ' rid(e,y)~*),

where
wi () = (e~ (t*))®
and O~ is the left-continuous inverse of the function given by

O(r) =+ /OO ) dt

tl+s’ :

Here, C = C(Cs,s,Cp,T,0).
Let U C X be open, 0 < s < oo and 7 > 1. Denote

B, (U) = {{B;} : balls 7B; are disjoint and contained in U},

ul| y@.5, = sSUp MB_I/S][ U —up d,u)XB @
lal e, BEBT(U)HBZEB(( 7o f b= sl di) xallo

and
AZ*(U) = {u € L'(U) : [lull you gy < 00}



It is easy to see that HUHA‘I’S( o <A if and only if there is a functional
v:{BCU: Bisaball } - [0,00) such that

> u(B (12)

whenever the balls B; are disjoint, and that

T 1/sq—1 v(TB)
£ = uslau < iz ran (U7, (13)

whenever 7B C U. The self-improving properties of abstract Poincaré-type
inequalities similar to (13), for ®(¢) = t?, were studied by Franchi, Pérez and
Wheeden [2, 3], and MacManus and Pérez [8, 9].

If pu satisfies (2) and a pair (4, ), where @ = ||g\|qu>(B)u and g = H9HZ<11>(3)97
satisfies the ®-Poincaré inequality in a ball B, then

“llgll o 5)- (14)

Jull g2 ) < Cru(B)

Thus, the first case of Theorem A is a consequence of the following embedding
theorem for the space Ar*(U).

Theorem B [6, Theorem 1.9] Let X be connected, u doubling, ® a Young
function, BC X a ball, 1 < s <oo, 7>1andd > 0. Denote B= (1+9)7B.

1) If (4) holds, then
= usll e gy < Clul oo

where O is defined by (6)-(7).
2) If (8) holds, then, for Lebesgue points x,y € B of u,

[u(z) = u()] < Cllull yo.s pyws (1 Bay) ™),

where Byy = B(x,2d(x,y)), and ws is defined by (10)-(11).
Here, C = C(Cy,,9).

It is essential in the above theorems that the underlying space X is con-
nected. In this paper we investigate the general case. Instead of assuming
that ® is a Young function, we assume the following:

(®-1) @ :[0,00) — [0,00) is an increasing bijection.

(®-2) The function ¢ +— tﬁ% is increasing.

Notice that (®-2) allows ® to increase essentially more slowly than any Young

function. The results concerning such ® are new also for connected spaces.

Our first result is a counterpart of Theorem A in the general setting. It
extends the results of Hajlasz and Koskela [4, 5].



Theorem 1.2 Assume that ® satisfies (P-1) and (9-2), p satisfies (2) with
0<s<oo, BCXisabal o6>0,7>1, B=(1+0)TB, and that a
pair (U, §), where 4 = HgHZi(B)u and g = HgHZi(B)g, satisfies the ®-Poincaré
inequality in B.

1) 1If
1 (I)_l(t) 00 (I)_l(t)
/0 W dt < 0 and /0 t1+1/5 dt = o0, (15)
then
Ju— sl 5. ) < Crmn(B) ™ gl oy (10
where "
~ TOTH(t
-1 .
2) If
oo (I)_l(t)

then, for Lebesgue points x,y € B of u,

lu(@) = u(y)| < Crpu(B) ™ |gll Lo p)@s(1(B) " rid(z,y) =),

o] -1
Du(r) = / KON (19)

tl+1/s

where

Here, C = C(Cs,s,Cp,T,0).

If the ®-Poincaré inequality is stable under truncations, the weak estimate
(5) turns into a strong one. We say that a pair (u,g) has the truncation
property, if for every b € R, 0 < ¢; < t2 < o0 and ¢ € {—1,1}, the pair
(vff,gx{tl@gm}), where v = ¢(u — b) and

Uff = min{max{0,v — t;},t2 — {1},
satisfies the ®-Poincaré inequality (with fixed constants).

Theorem 1.3 Suppose that the assumptions of Theorem 1.2 are in force, (15)
holds, and that the pair (4, g) has the truncation property. Then

= usl o, ) < Cren(B)~llgll oz (20)

where @ is defined by (6)-(7) and C = C(Cs, s,Cp,T,0).

How good is Theorem 1.2 compared to Theorem A? If ® is "close” to the
function ¢ — t°, then @, increases essentially more slowly than ®,.



Example 1.4 Let & be equivalent near infinity to the function t*log?t. Then
the function @4 is equivalent near infinity to

exp(t*/(5=1-0)) ifg<s—1
exp(exp(t/7V)) if g =51,

and the function & is equivalent near infinity to
exp(t¥/(=D) if g < s
exp(exp(t)) ifq=s.

If ® is a Young function such that the function ¢t — ®(¢)/tP is either
decreasing for some p < s, or increasing for some p > s, then Theorem 1.2
gives the same result as Theorem A. In these cases the Sobolev conjugate @
and the function w, can be represented in a very simple form.

Theorem 1.5 (1) Suppose that ® satisfies (®-1) and (®-2) and that the
function t — ®(t)/tP is decreasing for some p < s. Then @y is globally
equivalent to the function ®% whose inverse is given by

(@0) 7 () = &Ly,

s

If ® is a Young function, then also ® is globally equivalent to ®%.

(2) If ® is a Young function such that ®(t)/tP is increasing for some p > s,
then both ws and ws are comparable the function w} given by

wi(r) = & (),

Let us now turn to the results concerning the embeddings of spaces A?’S(U).
We begin with the case s = co. Theorem 1.6 below extends (the non-weighted
version of) the result of MacManus and Pérez [8].

Theorem 1.6 Assume that p is doubling, s = 0o, ® is doubling and satisfies
(®-1) and (®-2), BC X isa ball, 7> 1 and § > 0. Then

= usll sy < Cllull go.m -
where B = (14 6)7B and C = C(Cy, 1,0, ®).
Since, by Lemma 3.3,

[l (21)

A?S’OO(U) S ||u”A?VS(U)7

we have the following.

Theorem 1.7 Assume that p is doubling, ® satisfies (®-1) and (®-2), (15)
holds and that ®5 is doubling. Let B C X a ball, 7> 1 and § > 0. Then

s — sl . ) < Cllull goo . (22)

L2 (B)

where B = (14 6)7B and C = C(Cy, 7,6, s, ).



Under the extra assumption that singletons have zero measure, (22) holds
also for non-doubling ®,.

Theorem 1.8 Assume that p is doubling, u({z}) =0 forz € X, 0 < s < o0,
and that @ satisfies (©-1) and (®-2). Let B C X be a ball, 7 > 1 and § > 0.
Denote B = (1+ 9)7B.

1) If (15) holds, then

lu—usll 5.y < Cllul o

L2 (B)

where ® is defined by (17).
2) If (18) holds, then, for Lebesgue points x,y € B of u,

Jule) — ()] < Cllull . gy @a((Bey) ),

where Byy = B(x,2d(x,y)) and & is defined by (19).
Here, C = C(Cy,T,9,s).

2 Preliminaries

Throughout this paper X = (X, d, u) is a metric space equipped with a mea-
sure . By a measure we mean a Borel regular outer measure satisfying
0 < u(U) < oo whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x,r)
and B(z,r). Sometimes we denote the radius of a ball B by 7. For a positive
number A\ we define A\B(z,r) := B(x, \r).

Let @ : [0,00) — [0,00) be an increasing bijection. Denote by L®(X) the
set of all measurable functions u for which there exists A > 0 such that

/X o <\u(;;)\> du(z) < oo,

For u € L?(X), define
¢ (!u(/\x)]) du(x) < 1}.

If @ is convex, the functional || - [ e x) is a norm on L?(X).
If [[ullpe(x) # 0, we have that

/<I> _u(@)] du(x) < 1.
D'e HU||L<I>(X)

Denote by LE(X) the set of all measurable functions for which the number

[ull e (xy = inf{A > 0 : sup @(t)u({z € X : ]u(;;)] >t}) <1}

t>0

lull o) = mf{A > 0 /
X



is finite. If [|ul| 2 x) # 0, it follows that

supP(t)u({zx € X : _Ju@)] >t}) <1
>0 HUHLg(X)

A function @ : [0,00) — [0, 0] is called a Young function if it has the form

B (1) = /0 o(s) ds,

where ¢ : [0,00) — [0,00] is increasing, left-continuous function, which is
neither identically zero nor identically infinite on (0,00). A Young function is
convex and, in particular, satisfies

O(et) < ed(t) (23)

for0<e<1land 0<t < o0.
The right-continuous generalized inverse of a Young function & is

d1(t) = inf{s: B(s) > t}.

We have that
(O 1(t) <t < B H(D(t))

for t > 0.
The conjugate of a Young function @ is the Young function defined by

®(t) = sup{ts — ®(s) : s > 0}

for ¢t > 0.
We have that R
t< o L()d ) < 2t (24)

for t > 0.
A function ® dominates a function ¥ globally (resp. near infinity), if there

is a constant C such that
U(t) < ®(Ct)

for all ¢ > 0 (resp. for ¢ larger than some t).

Functions ® and ¥ are equivalent globally (near infinity), if each dominates
the other globally (near infinity).

If ® dominates ¥ near infinity and ® and W are not equivalent near infinity,
then U increases essentially more slowly that ®.

® is doubling, if there is a constant C such that

B(2t) < CD(L)

for all ¢.



3 Proofs

Lemma 3.1 Suppose that ® satisfies (®-1) and (9-2). Then, for 0 < e <1
andt >0,

®(et) < e/CHD@(1), (25)
(is(gt) < 5(§S(t)a (26)

and
@s(et) < e Voag(t), (27)

Proof. We have

q)(Et) s/(s+1 (I)(t) s/(s+1 s/(s+1

By (®-2), the function ®~1(t)/t'*1/* is decreasing. Hence

e lr ;-1 r —1/—1
- 4, O (¢) _ O (e7t)
T—1,\ _ _ -1
(bs (5 T‘) _/0 t1+1/s dt & /0 (571t)1+1/5 dt

T (I)_l(t) B
-1 _ 151
<e /0 /s dt = o, (r),

which is equivalent to (26). Since ®~! is increasing, we have

LDS(ET) = /OO (I)_l(t) dt = 5/00 mdt S 6—1/8&8(74)'

tl+1/s (6t)1+1/s
|
Let U C X be open and let v € L}(U). The maximal function of v is
Myv(x) = sup ][ |v| dps.
reBCUJB
It is well known that there is a constant C' = C'(Cy) such that
Myl @y < Cllvlliywy- (28)
Proof of Theorem 1.2. We may assume that HQHLé(B) =1
1) It suffices to show that the pointwise inequality
[u() = up| < Crpp(B) /&1 (Mg0(g)() ), (29)

holds for Lebesgue points z € B of u. Indeed, if (29) holds, then by (28),

(i)( lu — up| >
° CTB,LL(B)*I/S

and the claim follows by (26).

< HMBq)(g)HL}U(B) S C'HCI)(Q)”LI(B) <G,
Ly,(B)



Fix a Lebesgue point z of u. For i > 1, let B; = B(x,Q*i/sé). By the
Lebesgue differentiation theorem, lim; .. up, = u(x). So

() — up,| <3 Jup, — up,,,] < 02][ ot — g, d.
i=1 =17 Bi
By denoting By = (1 + 9)B,
fup — up,| < Jup — o] + [y — up,| < c]l ju — wgo| dp.
Bg
Thus -
lu(z) — up| < cz][ lu—up,| du.
=0 Bi
By (3) and (2),
F lu— s dn < Crat u(m) )
B;
< Cry®d Y ((Cpri)~*),

where Cp = r5'u(B)Y/*. Hence, by denoting t; = (Cpr;)~%,

k k
Sof uunldn <Oy e )
=0 Bi =0
sy, 7N E)
i=0 Y
Since the function t — 31711(/? is decreasing, we have that
—1(4. ti H—1
2 ) 2/ *®) 4
1
2

til—l—l/s — t t1+1/s

for 4 > 0. So, by summing and noting that ¢; < %ti—i—l; we obtain

k tr @71

> 4 lu—up,|dp < Crpu(B) '/ ® 4 (30)

: ) i 1 t1+1/5

i=0Y Bi to

Thus
k ~

S F luunldn < Crop() ™ a;" (0) (31)
=0 Bi

The remaining part of the series will be estimated in terms of M ®(g):

2]{9 lu—up,|dp < C 2 @ <MB‘I)(9)($))

< On @™ (Mp0(9) (@)

= Crpu(B) 4,07 (M ®(g) (@) ).

(32)

9



By combining (31) and (32), we obtain
[u(x) — up| < Crpu(B) ™" (374 (1) + 6,07} (M@ (9)(@)) ) . (33)
Since, by (®-2), the function ®~1(¢)/t!T1/* is decreasing, we have that

. T o(t) ()
1 _ _ 1/s 1
D (7“)—/0 RESY dtZTT.Hl/s = Vg (r). (34)

If Mz®(g)(x) > to, we choose k such that
ty < Mp®(g)(z) < Cty.

Then, by (33) and (34), we obtain (29). If Mz®(g)(x) < to, it suffices to use
(32), with £ = 0, and (34).

2) We may assume that 0 < 1/2. Let D be a ball centered at B so that
D = (14 6)rD C B. Fix a Lebesgue point 2 € D of u. Let By = (14 6)D
and B; = B(z,27%/%8) for i > 1. By the same argument that led to (30), we
have that

> o0 (¢
g ][ lu —up,|du < CTB,u(B)l/S/ Adt.
/B Z O tu(B)triprpt T

Thus
lu(z) — up| < Crpu(B) " @,(C~ u(B) 'rirp?). (35)

Let z,y € B be Lebesgue points of u. If d(z,y) > %57’3, then (35), with
D = B, yields
u(z) —u(y)| < |u(z) —up|+ |u(y) — us|
< Crpu(B)V*0,(C7 u(B) rgd(z,y) ™).
If d(z,y) < $rp, then D C B, for the ball D = B(x,2d(z,y)), and so, by
(35),
u(z) — u(y)| < |u(z) — up| + |u(y) — up
< Crpp(B) ™o (C7 u(B) ryd(z, y)~*).
Thus, the claim follows by (27). O

The proof of Theorem 1.3 is completely analogous to the proof of Theorem
1.4 in [6]. We will not repeat the details.

Proof of Theorem 1.5 (1) By (34),
) > rmYsem ().

S

If t — ®(t)/tP is decreasing, then t — ®~1(t)/t'/P is increasing. Hence, if
p<s,

51(r) — To(t) ) [T apetys—1 _ B 871‘1)_1(7“)
@s()_/o it < /t dt = (1/p—1/s) .

t1+1/s - yl/p 0 rl/s

10



Thus @, and ®% are globally equivalent. Let ® be a Young function. Then
the function ¢ +— t/®(t) is decreasing and so

Wo(r) = (/0 <<I>§t)>8,_1 dt) " > (7“ ((I):r))d_l) " B(r) Ve,

On the other hand, if ¢ — ®(t)/tP is decreasing, with p < s, then

s—1

o= ([ (i) 7o) =at ([ "
s (53 = (5) s

Since & L= W, 0® ! we have that

d=1(r) 1 s—1 = “1(r)
rl/s <) < (s —p> rl/s °

(2) Let p > s and let ®(t)/t? be increasing. Then ®~'(t)/t'/? is decreasing
and so

- (1) L) [ 1 176 97 (r)
wS(T):/T\ t1+1/5 dtgr]-/p/r\ t/p / dt:(l/s—l/p) W
On the other hand,

dzs(T‘)Z/% D) gy > p 220 o 511 @70

t1+1/s - r(27,.)1+1/s = ri/s

It was shown in [1] that

Ws(r) = Ht_l/S/||L<i>((071/T))- (36)
Since 1
/ StV N dt > r (Y N,
0

it follows that X
ws(r) > i/ o)L,
Hence, by (24),

we(r) = =& (r)r /e,

Assume that ®(t)/t? is increasing. Let ¢ > ¢. By using (24), the fact that
®~1(t)/t'/P is decreasing, and (24) again, we obtain

A 1/p 2 (4l T 1/p
b(t) < &N (D)t < DH(D(H)) (%) tg@fff) (;(f))> "

DO | =

11



which implies that
F B+
<I>(f€) < 2p,<I>(t/)'
2 t'p

If p> s, then p/ < §'. So,
1/7” fa ! /& 1/5/ A 1/7" / !
/ StV /) dt < 2P (T/)/ P15 gt
0 rp'/s 0
= Or 1o (r1/ /)
<rte(ert N,

where the last inequality comes from (23) and C' = 2 (1 — p//s')~!. Hence,
by (36) and (24),
ws(r) < C’rl/sléfl(r)*l < Ci:[)*l(r)rfl/s.
g
For a ball By C X, u € L*(By) and 0 < s < oo, define
Migua) = swp u(B)f u - usldu. (37)
reBCBy B

Lemma 3.2 Let ® satisfy (P-1) and (P-2). Then

1M pull L s) < Cllull go.s .
where C' = C(Cy, T, ).

Proof. We may assume that H“’HA;‘?’S(TB) = 1. Let # € B such that MfBu(;v) >
A. By the definition of MfBu, there is a ball B, C B containing = such that

p(Ba) [ >

This implies that

(B, < @(A)*@(u(Bx)—”s][ 0 up, | dp) u(B,). (38)

x

By the standard 5r-covering lemma (|7, Theorem 1.16]), we can cover the set
{zreB: MfB(x) > A} by balls 57 B; such that the balls 7B; are disjoint and
that each Bi’ is contained in B and satisfies (38). Using the doubling property
of p, estimate (38), inequality (25), and the fact that {B;} € B.(7B), we

12



obtain

,u({mEB:MfB (z) > A}) <Z,u57'B < C(Cy, T Zu

sc«arwav*Ej@@um]ﬁﬁgu—u&d@u&m

7

< (cicinn) ZH00, vl

A -1
< - .
=® <C(Cd7 T, 3))

The claim follows by the definition of | - || e. O

Proof of Theorem 1.6. Fix a ball By C X. Denote B{, = (1 + 0)Bo,
B={B:xzp € Byand rg <drp,}, Bt = BU{B}},

Mpu(z) = sup ][|u]du and M;iu = sup ][|u—uB\du
reBeB reBeBt

For A > 0, let Q) = {z : Mpu(z) > A\} and ¥\ = {z : M # u(x) > A}. The
following good \ inequality was proved by MacManus and Perez in [8]: There
are constants Cy and €y such that for all A > 0 and 0 < ¢ < gy,

#(Q2cor) < Coep(2) + Cop(Xen)- (39)
We will show that (39) implies
| Myull a5y < ClIME Ul 5,)- (40)

We may assume that ”MgiUHL;I;(B) = 1. Then ®(¢)u(X:) < 1 for ¢ > 0. Since
® is doubling, there is a constant C; such that ®(Cpo\) < C1P(N) for A > 0.
By setting

g = min{so, (200C1)_1}

n (39), we obtain

1
2
1
< 5sup @(N)u() +C
2 x>0

D(CoMN)u(Qcpr) < 5PN () + CP(eA)u(Ben)

for A > 0. Hence

sup (M) () < C.

A>0
By (25), we obtain (40). Denote ugp = u—up,. By the Lebesgue differentiation
theorem

uo(z) < Mpup(x)

13



for almost every = € By. Hence
lu—upyllLe(By) < [IMpuol|re sy < C||M§+U0||L$(Bo)-
Since Mgiuo = Mgiu < Mi’B{)u, the claim follows from Lemma 3.2. o
Theorem 1.7 follows from Theorem 1.6 via the following lemma.

Lemma 3.3 Assume that U C X is open, ® satisfies (®-1) and (®-2) and
that (15) holds. Then

HUHA;{?@,OO(U) S ||UHA?_>,5(U)

Proof. Since

o1 () = e (8),
we have, in (13), that

wB) ! (';((T]_f))) = v(rB)Y* <V(TB)>_1/S ! (”(TB)>

This implies the claim. O
Proof of Theorem 1.8. 1) It suffices to show that the pointwise inequality
- M, u(x)
_ B
lu(z) —up| < CHuHAcp,s 2 Ps 1 (@ (S’ , (41)
— |’MjB/u‘|L$(B)

where B' = (1 + 0)B, holds for Lebesgue points € B. Fix such a point
and choose balls B;, © > 1, centered at z, so that By C B’, and

7By, = sup{r > 0: u(B(z,r)) < é,u(Bl)}

This is possible because lim, .o u(B(z,7)) = p({z}) = 0. By (1), we have
that
2(Bisr) < u(By) < Cu(Biya) (42)

for all i.
By the Lebesgue differentiation theorem, lim; o up, = u(x). So

o0 o
‘U(CC) —up,| < Z ‘uBi - uBi+1’ < CZ][ lu— U’Bi‘ dp.
i=1 i=1"Bi
By denoting By = B,

lup —up,| < |up — upy| + [upy —up,| < C+ |u—up,|dp.
By

14



Thus
[e.9]
uw) ~upl <€ fu—udn
=0 Bi

For every i, we have

]{3 fu— | dp < ul] e (B0 (u(Bi) 7).

Hence
k
Z][ u—up[dp < [lull yo.s 5 Z p(B) e (u(B;) )
k _ B,)-!
= [lull 42 5 Z; (’;(l)fﬂ/)

-1
Since the function t +— %1(/? is decreasing, we have that

w2 B ) 2/#(Bi)_1 20,

(u(B;)~1)1+1/s Lu(B) t1+1/s

for i > 0. So, by summing and noting that p(B;) ™" < 3u(Bi+1)!, we obtain

- n(By) ™ -1(t)
;]{9 lu—up,|dp < Cllul yo.s ) /%H gyt I dt. (43)
Thus
k
ZZ;]{B fu = up,|dp < C‘|“||A;‘?’S(B)‘i’s_l(M(Bk)_l). (44)

The remaining part of the series will be estimated in terms of the sharp frac-
tional maximal function (37). Using (42), we obtain

S fuunldn < €Y (B M u(o)
i=k " Bi i=k
< Cu(Bk)l/SMjB,u(x).

So, by Lemma 3.2,

0 M7 g u(x)
Sl di < Cllul g (B . @)
i=k” Bi | M B/UHL<I> (B")

Combining the estimates (44) and (45), we obtain

M7 u(z
lu(z) —up| < Cllul 4.5 )<cI> Lu(By)™Y) + u(By)* o pu(@) )

M, B/u||L‘1’ (B")
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M#B/u(x) 1
If & —>*—— ) > u(By)~", we choose k such that
HMS,B”U’”Lg(B’)

MfB,u(:c)

p(B) Tt < ( ) < Cp(Br) ™.

HMfB/UHLg(B')

Since, by (34), )
®(r)"or < 371 (D(r)), (46)
we obtain (41).
M# yu(z) .
If ¢ % < u(Bp)~L, it suffices use (45) and (46).

#
|Ms,B’uHL$(B’)

2) Letting k tend to infinity in (43), yields
u(@) — upl <34 fu—ugdp < Cllull goe gy @eu(B) Y. (47)
=0 Bi .

Let z,y € B be Lebesgue points of u. Denote B, = B(x,2d(z,y)). If
d(z,y) > Lérp, then p(B) < Cp(Byy). So, by (47) and (27),
u(z) — u(y)| < |u(z) —up| + [uly) — us|
< CHuHA?S(B)‘DS(H(B)il)
< CHu”Ag’vS(B)‘DS(M(Bxy>71)'

If d(z,y) < %57“3, then (47), applied to the ball B,,, yields

u(z) — u(y)| < |u(z) —up,,| + |u(y) — us,,|
< Cllull g5, @s(1(Bay) ™).

zy

Since we may assume that 6 < 1/2, it follows that Bxy C B. Hence

ue) — uy)] < Cllul yo.e gy @ (1(Bey) ™).
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