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Abstract

The sharp self-improving properties of generalized Φ-Poincaré inequalities
in connected metric measure spaces were recently obtained in [6]. In this paper
we investigate the general setting. We also include the case where Φ increases
essentially more slowly than the function t 7→ t. Our results generalize some
results of Hajªasz and Koskela [4, 5] and MacManus and Pérez [8].
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1 Introduction and main results

Let X = (X, d, µ) be a metric measure space with µ a Borel regular outer mea-
sure satisfying 0 < µ(U) < ∞, whenever U is nonempty, open and bounded.
Suppose further that µ is doubling, that is, there exists a constant Cd such
that

µ(2B) ≤ Cdµ(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cs such that

µ(B(x, r))
µ(B(x0, r0))

≥ C−1
s

(
r

r0

)s

(2)

holds, whenever x ∈ B(x0, r0) and r ≤ r0.

De�nition 1.1 ([10]) Let Φ : [0,∞) → [0,∞) be an increasing bijection. A

pair (u, g) of measurable functions, u ∈ L1
loc

(X) and g ≥ 0, satis�es the Φ-

Poincaré inequality (in an open set U), if there are constants CP and τ such

that

−
∫

B
|u− uB| dµ ≤ CP rBΦ−1

(
−
∫

τB
Φ (g) dµ

)
(3)

for every ball B ⊂ X (such that τB ⊂ U).
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The following sharp self-improving result for the Φ-Poincaré inequality was
recently proved in [6].

Theorem A Assume that Φ is a Young function, X is connected, µ
satis�es (2) with 1 < s < ∞, B ⊂ X is a ball, δ > 0, τ ≥ 1, B̂ = (1 + δ)τB,

and that a pair (û, ĝ), where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the

Φ-Poincaré inequality in B̂.

1) If ∫ 1

0

(
t

Φ(t)

)s′−1

dt < ∞ and

∫ ∞

0

(
t

Φ(t)

)s′−1

dt = ∞, (4)

then

‖u− uB‖LΦs
w (B)

≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (5)

where

Φs = Φ ◦Ψ−1
s , (6)

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

(7)

and s′ = s/(s− 1).

2) If ∫ ∞( t

Φ(t)

)s′−1

dt < ∞, (8)

then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ωs(µ(B)−1rs
Bd(x, y)−s), (9)

where

ω−1
s (t) = (tΘ−1(ts

′
))s′ (10)

and Θ−1 is the left-continuous inverse of the function given by

Θ(r) = s′
∫ ∞

r

Φ̂(t)
t1+s′

dt. (11)

Here, C = C(Cs, s, CP , τ, δ).

Let U ⊂ X be open, 0 < s ≤ ∞ and τ ≥ 1. Denote

Bτ (U) = {{Bi} : balls τBi are disjoint and contained in U},

‖u‖
AΦ,s

τ (U)
= sup

B∈Bτ (U)
‖
∑
B∈B

(
µ(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖LΦ(X)

and
AΦ,s

τ (U) = {u ∈ L1(U) : ‖u‖
AΦ,s

τ (U)
< ∞}.
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It is easy to see that ‖u‖
AΦ,s

τ (U)
≤ λ, if and only if there is a functional

ν : {B ⊂ U : B is a ball } → [0,∞) such that∑
ν(Bi) ≤ 1, (12)

whenever the balls Bi are disjoint, and that

−
∫

B
|u− uB| dµ ≤ λµ(B)1/sΦ−1

(
ν(τB)
µ(B)

)
, (13)

whenever τB ⊂ U . The self-improving properties of abstract Poincaré-type
inequalities similar to (13), for Φ(t) = tp, were studied by Franchi, Pérez and
Wheeden [2, 3], and MacManus and Pérez [8, 9].

If µ satis�es (2) and a pair (û, ĝ), where û = ‖g‖−1
LΦ(B)

u and ĝ = ‖g‖−1
LΦ(B)

g,

satis�es the Φ-Poincaré inequality in a ball B, then

‖u‖
AΦ,s

τ (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B). (14)

Thus, the �rst case of Theorem A is a consequence of the following embedding
theorem for the space AΦ,s

τ (U).

Theorem B [6, Theorem 1.9] Let X be connected, µ doubling, Φ a Young

function, B ⊂ X a ball, 1 < s < ∞, τ ≥ 1 and δ > 0. Denote B̂ = (1 + δ)τB.

1) If (4) holds, then

‖u− uB‖LΦs
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
,

where Φs is de�ned by (6)-(7).

2) If (8) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ωs(µ(Bxy)−1),

where Bxy = B(x, 2d(x, y)), and ωs is de�ned by (10)-(11).

Here, C = C(Cd, τ, δ).

It is essential in the above theorems that the underlying space X is con-
nected. In this paper we investigate the general case. Instead of assuming
that Φ is a Young function, we assume the following:

(Φ-1) Φ : [0,∞) → [0,∞) is an increasing bijection.

(Φ-2) The function t 7→ Φ(t)

ts/(s+1) is increasing.

Notice that (Φ-2) allows Φ to increase essentially more slowly than any Young
function. The results concerning such Φ are new also for connected spaces.

Our �rst result is a counterpart of Theorem A in the general setting. It
extends the results of Hajªasz and Koskela [4, 5].
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Theorem 1.2 Assume that Φ satis�es (Φ-1) and (Φ-2), µ satis�es (2) with

0 < s < ∞, B ⊂ X is a ball, δ > 0, τ ≥ 1, B̂ = (1 + δ)τB, and that a

pair (û, ĝ), where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the Φ-Poincaré

inequality in B̂.

1) If ∫ 1

0

Φ−1(t)
t1+1/s

dt < ∞ and

∫ ∞

0

Φ−1(t)
t1+1/s

dt = ∞, (15)

then

‖u− uB‖LΦ̃s
w (B)

≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (16)

where

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)
t1+1/s

dt. (17)

2) If ∫ ∞ Φ−1(t)
t1+1/s

dt < ∞, (18)

then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω̃s(µ(B)−1rs
Bd(x, y)−s),

where

ω̃s(r) =
∫ ∞

r

Φ−1(t)
t1+1/s

dt. (19)

Here, C = C(Cs, s, CP , τ, δ).

If the Φ-Poincaré inequality is stable under truncations, the weak estimate
(5) turns into a strong one. We say that a pair (u, g) has the truncation
property, if for every b ∈ R, 0 < t1 < t2 < ∞ and ε ∈ {−1, 1}, the pair
(vt2

t1
, gχ{t1<v≤t2}), where v = ε(u− b) and

vt2
t1

= min{max{0, v − t1}, t2 − t1},

satis�es the Φ-Poincaré inequality (with �xed constants).

Theorem 1.3 Suppose that the assumptions of Theorem 1.2 are in force, (15)
holds, and that the pair (û, ĝ) has the truncation property. Then

‖u− uB‖LΦ̃s (B)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (20)

where Φs is de�ned by (6)-(7) and C = C(Cs, s, CP , τ, δ).

How good is Theorem 1.2 compared to Theorem A? If Φ is �close� to the
function t 7→ ts, then Φ̃s increases essentially more slowly than Φs.
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Example 1.4 Let Φ be equivalent near in�nity to the function ts logq t. Then
the function Φs is equivalent near in�nity to{

exp(ts/(s−1−q)) if q < s− 1
exp(exp(ts/(s−1))) if q = s− 1,

and the function Φ̃s is equivalent near in�nity to{
exp(ts/(s−q)) if q < s

exp(exp(t)) if q = s.

If Φ is a Young function such that the function t 7→ Φ(t)/tp is either
decreasing for some p < s, or increasing for some p > s, then Theorem 1.2
gives the same result as Theorem A. In these cases the Sobolev conjugate Φs

and the function ωs can be represented in a very simple form.

Theorem 1.5 (1) Suppose that Φ satis�es (Φ-1) and (Φ-2) and that the

function t 7→ Φ(t)/tp is decreasing for some p < s. Then Φ̃s is globally

equivalent to the function Φ∗s whose inverse is given by

(Φ∗s)
−1(r) = Φ−1(r)r−1/s.

If Φ is a Young function, then also Φs is globally equivalent to Φ∗s.

(2) If Φ is a Young function such that Φ(t)/tp is increasing for some p > s,
then both ωs and ω̃s are comparable the function ω∗s given by

ω∗s(r) = Φ−1(r)r−1/s.

Let us now turn to the results concerning the embeddings of spaces AΦ,s
τ (U).

We begin with the case s = ∞. Theorem 1.6 below extends (the non-weighted
version of) the result of MacManus and Pérez [8].

Theorem 1.6 Assume that µ is doubling, s = ∞, Φ is doubling and satis�es

(Φ-1) and (Φ-2), B ⊂ X is a ball, τ ≥ 1 and δ > 0. Then

‖u− uB‖LΦ
w(B) ≤ C‖u‖

AΦ,∞
τ (B̂)

,

where B̂ = (1 + δ)τB and C = C(Cd, τ, δ, Φ).

Since, by Lemma 3.3,

‖u‖
AΦ̃s,∞

τ (U)
≤ ‖u‖

AΦ,s
τ (U)

, (21)

we have the following.

Theorem 1.7 Assume that µ is doubling, Φ satis�es (Φ-1) and (Φ-2), (15)
holds and that Φ̃s is doubling. Let B ⊂ X a ball, τ ≥ 1 and δ > 0. Then

‖u− uB‖LΦ̃s
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
, (22)

where B̂ = (1 + δ)τB and C = C(Cd, τ, δ, s,Φ).
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Under the extra assumption that singletons have zero measure, (22) holds
also for non-doubling Φ̃s.

Theorem 1.8 Assume that µ is doubling, µ({x}) = 0 for x ∈ X, 0 < s < ∞,

and that Φ satis�es (Φ-1) and (Φ-2). Let B ⊂ X be a ball, τ ≥ 1 and δ > 0.
Denote B̂ = (1 + δ)τB.

1) If (15) holds, then

‖u− uB‖LΦ̃s
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
,

where Φ̃s is de�ned by (17).

2) If (18) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(Bxy)−1),

where Bxy = B(x, 2d(x, y)) and ω̃s is de�ned by (19).

Here, C = C(Cd, τ, δ, s).

2 Preliminaries

Throughout this paper X = (X, d, µ) is a metric space equipped with a mea-
sure µ. By a measure we mean a Borel regular outer measure satisfying
0 < µ(U) < ∞ whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x, r)
and B(x, r). Sometimes we denote the radius of a ball B by rB. For a positive
number λ we de�ne λB(x, r) := B(x, λr).

Let Φ : [0,∞) → [0,∞) be an increasing bijection. Denote by LΦ(X) the
set of all measurable functions u for which there exists λ > 0 such that∫

X
Φ
(
|u(x)|

λ

)
dµ(x) < ∞.

For u ∈ LΦ(X), de�ne

‖u‖LΦ(X) = inf{λ > 0 :
∫

X
Φ
(
|u(x)|

λ

)
dµ(x) ≤ 1}.

If Φ is convex, the functional ‖ · ‖LΦ(X) is a norm on LΦ(X).
If ‖u‖LΦ(X) 6= 0, we have that∫

X
Φ

(
|u(x)|

‖u‖LΦ(X)

)
dµ(x) ≤ 1.

Denote by LΦ
w(X) the set of all measurable functions for which the number

‖u‖LΦ
w(X) = inf{λ > 0 : sup

t>0
Φ(t)µ({x ∈ X :

|u(x)|
λ

> t}) ≤ 1}
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is �nite. If ‖u‖LΦ
w(X) 6= 0, it follows that

sup
t>0

Φ(t)µ({x ∈ X :
|u(x)|

‖u‖LΦ
w(X)

> t}) ≤ 1.

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =
∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞] is increasing, left-continuous function, which is
neither identically zero nor identically in�nite on (0,∞). A Young function is
convex and, in particular, satis�es

Φ(εt) ≤ εΦ(t) (23)

for 0 < ε ≤ 1 and 0 ≤ t < ∞.
The right-continuous generalized inverse of a Young function Φ is

Φ−1(t) = inf{s : Φ(s) > t}.

We have that
Φ(Φ−1(t)) ≤ t ≤ Φ−1(Φ(t))

for t ≥ 0.
The conjugate of a Young function Φ is the Young function de�ned by

Φ̂(t) = sup{ts− Φ(s) : s > 0}

for t ≥ 0.
We have that

t ≤ Φ−1(t)Φ̂−1(t) ≤ 2t (24)

for t ≥ 0.
A function Φ dominates a function Ψ globally (resp. near in�nity), if there

is a constant C such that
Ψ(t) ≤ Φ(Ct)

for all t ≥ 0 (resp. for t larger than some t0).
Functions Φ and Ψ are equivalent globally (near in�nity), if each dominates

the other globally (near in�nity).
If Φ dominates Ψ near in�nity and Φ and Ψ are not equivalent near in�nity,

then Ψ increases essentially more slowly that Φ.
Φ is doubling, if there is a constant C such that

Φ(2t) ≤ CΦ(t)

for all t.
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3 Proofs

Lemma 3.1 Suppose that Φ satis�es (Φ-1) and (Φ-2). Then, for 0 ≤ ε ≤ 1
and t ≥ 0,

Φ(εt) ≤ εs/(s+1)Φ(t), (25)

Φ̃s(εt) ≤ εΦ̃s(t), (26)

and

ω̃s(εt) ≤ ε−1/sω̃s(t), (27)

Proof . We have

Φ(εt) =
Φ(εt)

(εt)s/(s+1)
(εt)s/(s+1) ≤ Φ(t)

ts/(s+1)
(εt)s/(s+1) = εs/(s+1)Φ(t).

By (Φ-2), the function Φ−1(t)/t1+1/s is decreasing. Hence

Φ̃−1
s (ε−1r) =

∫ ε−1r

0

Φ−1(t)
t1+1/s

dt = ε−1

∫ r

0

Φ−1(ε−1t)
(ε−1t)1+1/s

dt

≤ ε−1

∫ r

0

Φ−1(t)
t1+1/s

dt = ε−1Φ̃−1
s (r),

which is equivalent to (26). Since Φ−1 is increasing, we have

ω̃s(εr) =
∫ ∞

εr

Φ−1(t)
t1+1/s

dt = ε

∫ ∞

r

Φ−1(εt)
(εt)1+1/s

dt ≤ ε−1/sω̃s(r).

2

Let U ⊂ X be open and let v ∈ L1(U). The maximal function of v is

MUv(x) = sup
x∈B⊂U

−
∫

B
|v| dµ.

It is well known that there is a constant C = C(Cd) such that

‖MUv‖L1
w(U) ≤ C‖v‖L1(U). (28)

Proof of Theorem 1.2. We may assume that ‖g‖LΦ(B̂) = 1.
1) It su�ces to show that the pointwise inequality

|u(x)− uB| ≤ CrBµ(B)−1/sΦ̃−1
s

(
MB̂Φ(g)(x)

)
, (29)

holds for Lebesgue points x ∈ B of u. Indeed, if (29) holds, then by (28),∥∥∥∥Φ̃s

(
|u− uB|

CrBµ(B)−1/s

)∥∥∥∥
L1

w(B)

≤
∥∥MB̂Φ(g)

∥∥
L1

w(B)
≤ C ‖Φ(g)‖L1(B̂) ≤ C,

and the claim follows by (26).
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Fix a Lebesgue point x of u. For i ≥ 1, let Bi = B(x, 2−i/sδ). By the
Lebesgue di�erentiation theorem, limi→∞ uBi = u(x). So

|u(x)− uB1 | ≤
∞∑
i=1

|uBi − uBi+1 | ≤ C
∞∑
i=1

−
∫

Bi

|u− uBi | dµ.

By denoting B0 = (1 + δ)B,

|uB − uB1 | ≤ |uB − uB0 |+ |uB0 − uB1 | ≤ C−
∫

B0

|u− uB0 | dµ.

Thus

|u(x)− uB| ≤ C
∞∑
i=0

−
∫

Bi

|u− uBi | dµ.

By (3) and (2),

−
∫

Bi

|u− uBi | dµ ≤ CriΦ−1(µ(Bi)−1)

≤ CriΦ−1((CBri)−s),

where CB = r−1
B µ(B)1/s. Hence, by denoting ti = (CBri)−s,

k∑
i=0

−
∫

Bi

|u− uBi | dµ ≤ CC−1
B

k∑
i=0

t
−1/s
i Φ−1(ti)

= CrBµ(B)−1/s
k∑

i=0

ti
Φ−1(ti)

t
1+1/s
i

.

Since the function t 7→ Φ−1(t)

t1+1/s is decreasing, we have that

ti
Φ−1(ti)

t
1+1/s
i

≤ 2
∫ ti

1
2
ti

Φ−1(t)
t1+1/s

dt,

for i ≥ 0. So, by summing and noting that ti ≤ 1
2 ti+1, we obtain

k∑
i=0

−
∫

Bi

|u− uBi | dµ ≤ CrBµ(B)−1/s

∫ tk

1
2
t0

Φ−1(t)
t1+1/s

dt. (30)

Thus
k∑

i=0

−
∫

Bi

|u− uBi | dµ ≤ CrBµ(B)−1/sΦ̃−1
s (tk). (31)

The remaining part of the series will be estimated in terms of MΦ(g):
∞∑

i=k

−
∫

Bi

|u− uBi | dµ ≤ C

∞∑
i=k

riΦ−1
(
MB̂Φ(g)(x)

)
≤ CrkΦ−1

(
MB̂Φ(g)(x)

)
= CrBµ(B)−1/st

−1/s
k Φ−1

(
MB̂Φ(g)(x)

)
.

(32)
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By combining (31) and (32), we obtain

|u(x)− uB| ≤ CrBµ(B)−1/s
(
Φ̃−1

s (tk) + t
−1/s
k Φ−1

(
MB̂Φ(g)(x)

))
. (33)

Since, by (Φ-2), the function Φ−1(t)/t1+1/s is decreasing, we have that

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)
t1+1/s

dt ≥ r
Φ−1(r)
r1+1/s

= r−1/sΦ−1(r). (34)

If MB̂Φ(g)(x) ≥ t0, we choose k such that

tk ≤ MB̂Φ(g)(x) ≤ Ctk.

Then, by (33) and (34), we obtain (29). If MB̂Φ(g)(x) < t0, it su�ces to use
(32), with k = 0, and (34).

2) We may assume that δ < 1/2. Let D be a ball centered at B so that
D̂ = (1 + δ)τD ⊂ B̂. Fix a Lebesgue point x ∈ D of u. Let B0 = (1 + δ)D
and Bi = B(x, 2−i/sδ) for i ≥ 1. By the same argument that led to (30), we
have that

∞∑
i=0

−
∫

Bi

|u− uBi | dµ ≤ CrBµ(B)−1/s

∫ ∞

C−1µ(B)−1rs
Br−s

D

Φ−1(t)
t1+1/s

dt.

Thus
|u(x)− uD| ≤ CrBµ(B)−1/sω̃s(C−1µ(B)−1rs

Br−s
D ). (35)

Let x, y ∈ B be Lebesgue points of u. If d(x, y) > 1
3δrB, then (35), with

D = B, yields

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ CrBµ(B)−1/sω̃s(C−1µ(B)−1rs

Bd(x, y)−s).

If d(x, y) ≤ 1
3δrB, then D̂ ⊂ B̂, for the ball D = B(x, 2d(x, y)), and so, by

(35),

|u(x)− u(y)| ≤ |u(x)− uD|+ |u(y)− uD|
≤ CrBµ(B)−1/sω̃s(C−1µ(B)−1rs

Bd(x, y)−s).

Thus, the claim follows by (27). 2

The proof of Theorem 1.3 is completely analogous to the proof of Theorem
1.4 in [6]. We will not repeat the details.

Proof of Theorem 1.5 (1) By (34),

Φ̃−1
s (r) ≥ r−1/sΦ−1(r).

If t 7→ Φ(t)/tp is decreasing, then t 7→ Φ−1(t)/t1/p is increasing. Hence, if
p < s,

Φ̃−1
s (r) =

∫ r

0

Φ−1(t)
t1+1/s

dt ≤ Φ−1(r)
r1/p

∫ r

0
t1/p−1/s−1 dt = (1/p− 1/s)−1 Φ−1(r)

r1/s
.
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Thus Φ̃s and Φ∗s are globally equivalent. Let Φ be a Young function. Then
the function t 7→ t/Φ(t) is decreasing and so

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

≥

(
r

(
r

Φ(r)

)s′−1
)1/s′

= Φ(r)−1/sr.

On the other hand, if t 7→ Φ(t)/tp is decreasing, with p < s, then

Ψs(r) =

(∫ r

0

(
t

Φ(t)

) 1
s−1

dt

) s−1
s

≤ rp/s

Φ(r)1/s

(∫ r

0
t

s−p
s−1

−1dt

) s−1
s

=
rp/s

Φ(r)1/s

(
s− 1
s− p

r
s−p
s−1

) s−1
s

=
(

s− 1
s− p

) s−1
s r

Φ(r)1/s
.

Since Φ−1
s = Ψs ◦ Φ−1, we have that

Φ−1(r)
r1/s

≤ Φ−1
s (r) ≤

(
s− 1
s− p

) s−1
s Φ−1(r)

r1/s
.

(2) Let p > s and let Φ(t)/tp be increasing. Then Φ−1(t)/t1/p is decreasing
and so

ω̃s(r) =
∫ ∞

r

Φ−1(t)
t1+1/s

dt ≤ Φ−1(r)
r1/p

∫ ∞

r
t1/p−1/s−1 dt = (1/s− 1/p)−1 Φ−1(r)

r1/s
.

On the other hand,

ω̃s(r) ≥
∫ 2r

r

Φ−1(t)
t1+1/s

dt ≥ r
Φ−1(2r)
(2r)1+1/s

≥ 2−1−1/s Φ−1(r)
r1/s

.

It was shown in [1] that

ωs(r) = ‖t−1/s′‖
LΦ̂((0,1/r))

. (36)

Since ∫ 1/r

0
Φ̂(t−1/s′/λ) dt ≥ r−1Φ̂(r1/s′/λ),

it follows that
ωs(r) ≥ r1/s′Φ̂−1(r)−1.

Hence, by (24),

ωs(r) ≥
1
2
Φ−1(r)r−1/s.

Assume that Φ(t)/tp is increasing. Let t > t′. By using (24), the fact that
Φ−1(t)/t1/p is decreasing, and (24) again, we obtain

Φ̂(t) ≤ Φ−1(Φ̂(t))t ≤ Φ−1(Φ̂(t′))

(
Φ̂(t)
Φ̂(t′)

)1/p

t ≤ 2
Φ̂(t′)

t′

(
Φ̂(t)
Φ̂(t′)

)1/p

t,
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which implies that
Φ̂(t)
tp′

≤ 2p′ Φ̂(t′)
t′p′

.

If p > s, then p′ < s′. So,∫ 1/r

0
Φ̂(t−1/s′/λ) dt ≤ 2p′ Φ̂(r1/s′/λ)

rp′/s′

∫ 1/r

0
t−p′/s′ dt

= Cr−1Φ̂(r1/s′/λ)

≤ r−1Φ̂(Cr1/s′/λ),

where the last inequality comes from (23) and C = 2p′(1 − p′/s′)−1. Hence,
by (36) and (24),

ωs(r) ≤ Cr1/s′Φ̂−1(r)−1 ≤ CΦ−1(r)r−1/s.

2

For a ball B0 ⊂ X, u ∈ L1(B0) and 0 < s ≤ ∞, de�ne

M#
s,B0

u(x) = sup
x∈B⊂B0

µ(B)−1/s−
∫

B
|u− uB| dµ. (37)

Lemma 3.2 Let Φ satisfy (Φ-1) and (Φ-2). Then

‖M#
s,Bu‖LΦ

w(B) ≤ C‖u‖
AΦ,s

τ (τB)
,

where C = C(Cd, τ, s).

Proof . Wemay assume that ‖u‖
AΦ,s

τ (τB)
= 1. Let x ∈ B such that M#

s,Bu(x) >

λ. By the de�nition of M#
s,Bu, there is a ball Bx ⊂ B containing x such that

µ(Bx)−1/s−
∫

Bx

|u− uBx | dµ > λ.

This implies that

µ(Bx) ≤ Φ(λ)−1Φ
(
µ(Bx)−1/s−

∫
Bx

|u− uBx | dµ
)
µ(Bx). (38)

By the standard 5r-covering lemma ([7, Theorem 1.16]), we can cover the set

{x ∈ B : M#
s,B(x) > λ} by balls 5τBi such that the balls τBi are disjoint and

that each Bi is contained in B and satis�es (38). Using the doubling property
of µ, estimate (38), inequality (25), and the fact that {Bi} ∈ Bτ (τB), we

12



obtain

µ({x ∈ B : M#
s,Bu(x) > λ}) ≤

∑
i

µ(5τBi) ≤ C(Cd, τ)
∑

i

µ(Bi)

≤ C(Cd, τ)Φ (λ)−1
∑

i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ, s)

)−1∑
i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ, s)

)−1

.

The claim follows by the de�nition of ‖ · ‖LΦ
w
. 2

Proof of Theorem 1.6. Fix a ball B0 ⊂ X. Denote B′
0 = (1 + δ)B0,

B = {B : xB ∈ B0 and rB ≤ δrB0}, B+ = B ∪ {B′
0},

MBu(x) = sup
x∈B∈B

−
∫

B
|u| dµ and M#

B+u(x) = sup
x∈B∈B+

−
∫

B
|u− uB| dµ.

For λ > 0, let Ωλ = {x : MBu(x) > λ} and Σλ = {x : M#
B+u(x) > λ}. The

following good λ inequality was proved by MacManus and Pérez in [8]: There
are constants C0 and ε0 such that for all λ > 0 and 0 < ε ≤ ε0,

µ(ΩC0λ) ≤ C0εµ(Ωλ) + C0µ(Σελ). (39)

We will show that (39) implies

‖MBu‖LΦ
w(B0) ≤ C‖M#

B+u‖LΦ
w(B0). (40)

We may assume that ‖M#
B+u‖LΦ

w(B) = 1. Then Φ(t)µ(Σt) ≤ 1 for t > 0. Since
Φ is doubling, there is a constant C1 such that Φ(C0λ) ≤ C1Φ(λ) for λ > 0.
By setting

ε = min{ε0, (2C0C1)−1}

in (39), we obtain

Φ(C0λ)µ(ΩC0λ) ≤ 1
2
Φ(λ)µ(Ωλ) + CΦ(ελ)µ(Σελ)

≤ 1
2

sup
λ>0

Φ(λ)µ(Ωλ) + C

for λ > 0. Hence
sup
λ>0

Φ(λ)µ(Ωλ) ≤ C.

By (25), we obtain (40). Denote u0 = u−uB0 . By the Lebesgue di�erentiation
theorem

u0(x) ≤ MBu0(x)
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for almost every x ∈ B0. Hence

‖u− uB0‖LΦ
w(B0) ≤ ‖MBu0‖LΦ

w(B0) ≤ C‖M#
B+u0‖LΦ

w(B0).

Since M#
B+u0 = M#

B+u ≤ M#
∞,B′0

u, the claim follows from Lemma 3.2. 2

Theorem 1.7 follows from Theorem 1.6 via the following lemma.

Lemma 3.3 Assume that U ⊂ X is open, Φ satis�es (Φ-1) and (Φ-2) and

that (15) holds. Then

‖u‖
AΦ̃s,∞

τ (U)
≤ ‖u‖

AΦ,s
τ (U)

.

Proof . Since
Φ̃−1

s (t) ≥ t−1/sΦ−1(t),

we have, in (13), that

µ(B)1/sΦ−1

(
ν(τB)
µ(B)

)
= ν(τB)1/s

(
ν(τB)
µ(B)

)−1/s

Φ−1

(
ν(τB)
µ(B)

)
≤ Φ̃−1

s

(
ν(τB)
µ(B)

)
.

This implies the claim. 2

Proof of Theorem 1.8. 1) It su�ces to show that the pointwise inequality

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)
Φ̃−1

s

(
Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B)

))
, (41)

where B′ = (1 + δ)B, holds for Lebesgue points x ∈ B. Fix such a point x
and choose balls Bi, i ≥ 1, centered at x, so that B1 ⊂ B′, and

rBi+1 = sup{r > 0 : µ(B(x, r)) ≤ 1
2
µ(Bi)}.

This is possible because limr→0 µ(B(x, r)) = µ({x}) = 0. By (1), we have
that

2µ(Bi+1) ≤ µ(Bi) ≤ Cµ(Bi+1) (42)

for all i.
By the Lebesgue di�erentiation theorem, limi→∞ uBi = u(x). So

|u(x)− uB1 | ≤
∞∑
i=1

|uBi − uBi+1 | ≤ C
∞∑
i=1

−
∫

Bi

|u− uBi | dµ.

By denoting B0 = B′,

|uB − uB1 | ≤ |uB − uB0 |+ |uB0 − uB1 | ≤ C−
∫

B0

|u− uB0 | dµ.
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Thus

|u(x)− uB| ≤ C

∞∑
i=0

−
∫

Bi

|u− uBi | dµ.

For every i, we have

−
∫

Bi

|u− uBi | dµ ≤ ‖u‖
AΦ,s

τ (B̂)
µ(Bi)1/sΦ−1(µ(Bi)−1).

Hence

k∑
i=0

−
∫

Bi

|u− uBi | dµ ≤ ‖u‖
AΦ,s

τ (B̂)

k∑
i=0

µ(Bi)1/sΦ−1(µ(Bi)−1)

= ‖u‖
AΦ,s

τ (B̂)

k∑
i=0

µ(Bi)−1 Φ−1(µ(Bi)−1)
(µ(Bi)−1)1+1/s

.

Since the function t 7→ Φ−1(t)

t1+1/s is decreasing, we have that

µ(Bi)−1 Φ−1(µ(Bi)−1)
(µ(Bi)−1)1+1/s

≤ 2
∫ µ(Bi)

−1

1
2
µ(Bi)−1

Φ−1(t)
t1+1/s

dt,

for i ≥ 0. So, by summing and noting that µ(Bi)−1 ≤ 1
2µ(Bi+1)−1, we obtain

k∑
i=0

−
∫

Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)

∫ µ(Bk)−1

1
2
µ(B0)−1

Φ−1(t)
t1+1/s

dt. (43)

Thus
k∑

i=0

−
∫

Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
Φ̃−1

s (µ(Bk)−1). (44)

The remaining part of the series will be estimated in terms of the sharp frac-
tional maximal function (37). Using (42), we obtain

∞∑
i=k

−
∫

Bi

|u− uBi | dµ ≤ C
∞∑

i=k

µ(Bi)1/sM#
s,B′u(x)

≤ Cµ(Bk)1/sM#
s,B′u(x).

So, by Lemma 3.2,

∞∑
i=k

−
∫

Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
µ(Bk)1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

. (45)

Combining the estimates (44) and (45), we obtain

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)

(
Φ̃−1

s (µ(Bk)−1) + µ(Bk)1/s
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
.
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If Φ
(

M#

s,B′u(x)

‖M#

s,B′u‖LΦ
w(B′)

)
≥ µ(B0)−1, we choose k such that

µ(Bk)−1 ≤ Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
≤ Cµ(Bk)−1.

Since, by (34),
Φ(r)−1/sr ≤ Φ̃−1

s (Φ(r)), (46)

we obtain (41).

If Φ
(

M#

s,B′u(x)

‖M#

s,B′u‖LΦ
w(B′)

)
< µ(B0)−1, it su�ces use (45) and (46).

2) Letting k tend to in�nity in (43), yields

|u(x)− uB| ≤
∞∑
i=0

−
∫

Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(B)−1). (47)

Let x, y ∈ B be Lebesgue points of u. Denote Bxy = B(x, 2d(x, y)). If
d(x, y) > 1

3δrB, then µ(B) ≤ Cµ(Bxy). So, by (47) and (27),

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ C‖u‖

AΦ,s
τ (B̂)

ω̃s(µ(B)−1)

≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(Bxy)−1).

If d(x, y) ≤ 1
3δrB, then (47), applied to the ball Bxy, yields

|u(x)− u(y)| ≤ |u(x)− uBxy |+ |u(y)− uBxy |
≤ C‖u‖

AΦ,s
τ (B̂xy)

ω̃s(µ(Bxy)−1).

Since we may assume that δ < 1/2, it follows that B̂xy ⊂ B̂. Hence

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω̃s(µ(Bxy)−1).

2
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