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Abstract

We study the self-improving properties of (generalized) ®-Poincaré inequal-
ities in connected metric spaces equipped with a doubling measure. Our results
are optimal and generalize some of the results of Cianchi [1, 2|, Hajtasz and
Koskela [5, 6], and MacManus and Pérez [12].
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1 Introduction and main results

Let X = (X, d, ) be a metric measure space with p a Borel regular outer mea-
sure satisfying 0 < pu(U) < oo, whenever U is nonempty, open and bounded.
Suppose further that u is doubling, that is, there exists a constant Cy such
that

1(2B) < Cap(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cy such that

p(B(z,r)) (e
M(B(&“o#o))zc‘g (7"0) @)

holds, whenever = € B(zg,ro) and r < rg.
A pair (u,g) of measurable functions, g > 0, satisfies the p-Poincaré in-
equality, if there exist constants Cp and 7 > 1 such that

1/p
][ |lu—up|du < Cprp (][ g* du) (3)
B TB

for every ball B = B(z,r) C X. Hajtasz and Koskela [5, 6] proved the
following self-improving properties of (3): Assume that p satisfies (2), and
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that a pair (u,g), where g € L} (X) satisfies the p-Poincaré¢ inequality (3).
Let 6 > 0 and B = (1 + 0)7B. There exists a constant C = C(Cy, s,Cp, T, 8)
such that the following holds.

1) If p < s, then

ot (M) ol 2 01Y (]

B
where ps = - Consequently, for ¢ < ps, we have

1/q 1/p
(][ |u—uB|qd,u> <C'rp <][ gpd,u> , (5)
B B

where C’ depends on C and ¢. In general, (3) does not yield (5) with
g = ps. However, if a pair (u,g) has the truncation property, which
means that for every b € R, 0 < t; < t3 < oo and € € {—1, 1}, the pair
(’Uff,gx{tl@gb}), where v = e(u —b) and vif = min{max{0,v —t1},ta —
t1}, satisfies the p-Poincaré inequality, then we have (5) with ¢ = ps.

1/p
gpdu) , (4

2) If p=s>1and X is connected, then

lw = upllzo(p) < Crallgll Lo (s, (6)
where || - || zo(p) is the normalized Luxemburg norm generated by the
function ®(t) = exp(t*) — 1 (see Section 2) and s’ = —

3) If p > s, then u has a locally Holder continuous representative, for which

1/p
fuz) — uly)| < CrifPd(z,y) /P (]i . du) ™

for z,y € B.

Franchi, Pérez and Wheeden [4] and MacManus and Pérez [11, 12] studied
the self-improving properties of inequalities of type

][ fu — up| dp < [lullaa(rB), (s)
B

where |lu|lq >0, 7>1and a:{B C X : Bis a ball} — [0,00) is a functional
that satisfies certain discrete summability conditions. In [11] MacManus and
Pérez showed that if 6 > 0 is fixed, and the functional a satisfies condition

S a(B) u(B) < a(BY u(B), (9)

whenever the balls B; are disjoint and contained in the ball B, then the
Poincaré-type inequality (8) improves to

p{z € B Ju(z) —up| > AN\’ -
sup o ) = Clalllulat). (10
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where ||a|| is the minimum of the constants ¢ so that (9) holds and B =
(14 6)7B. In [12], they proved that if X is connected, r > 1, and a satisfies
the stronger condition

Za(Bi)T < c"a(B)", (11)

whenever the balls B; are disjoint and contained in the ball B, then
lu = upl 25y < Ca(B), (12)

where ®(t) = exp(tr/) —1land ' = 5.
To see that the results of MacManus and Pérez generalize those of Hajtasz

and Koskela, simply note that if p satisfies (2), then the functional

a(B) =rp (]{3 9" du)l/p,

where 0 < g € L} (X), satisfies condition (9) with » = sp/(s — p), if p < s,
and condition (11) with r = s, if p = s.

In this paper we are interested in the self-improving properties of the fol-
lowing ®-Poincaré inequality, introduced recently in [14]. For the definition

and properties of Young functions and Orlicz spaces, see Section 2.

Definition 1.1 Let ® be a Young function. A pair (u,g) of measurable func-
tions, u € Llloc(X) and g > 0, satisfies the ®-Poincaré inequality (in an open
set U ), if there are constants Cp and T such that

][ lu —ug|dp < Cprg®1 <][ ® (9) du) (13)
B B
for every ball B C X (such that TB C U).

Assuming that the underlying space is connected, we obtain results which
are sharp in the sense that they reproduce a version of Cianchi’s optimal
embedding theorem for Orlicz-Sobolev spaces on R™ [1, 2]. Notice that a
pair (u,|Vu|) of a weakly differentiable function and the length of its weak
gradient satisfies the 1-Poincaré inequality, and so, by Jensen’s inequality, the
®-Poincaré inequality for every Young function &.

Let s > 1. For a Young function ® satisfying

/01 <(I)Et)>8/_1 dt < oo and /OOO <@Et)>8/_1 dt = oo, (14)

b, =do W, (15)

U,(r) = (/0 <¢'gt>>8/1 dt) . (16)

define

where



f ’
I /Oo (q)’ét)> <o, (17)

ws(t) = (t071(t))", (18)

define

where ©7! is the left-continuous inverse of the function given by

o(r) = /OO () 4, (19)

tl-i—s’

and @ is the conjugate of ®. We wish to point out that, under (14), functions
® U, and &, are bijections. Notice also that one can modify any Young
function ® near zero so that the condition

/01 <i)7(ft)>8/_1 dt < 0o

is satisfied for the modified function ® and that L%C(X) =LY (X).

We will state Cianchi’s result only for balls, but it actually holds for much
more general domains (see [1, 2, 3|): Let s > 2, let B C R® be a ball, and let
u be a weakly differentiable function such that |Vu| € L®(B). Then there is a
constant C depending only on s such that

1) If (14) holds, then
|u—upllpes 3y < ClIVulllLo(m)-

Moreover, L®(B) is the smallest Orlicz space into which WY®(B) can
be continuously embedded.

2) If (17) holds, then u has a continuous representative for which
Ju(z) —u(y)| < C|lIVulll Lo (o =y ™),
for x,y € B.

Theorems 1.2 and 1.4 below generalize the result of Cianchi.

Theorem 1.2 Assume that X is connected, p satisfies (2) with 1 < s < o0,
BC X isabal 6 >0, B=(14+0)7B, g¢c L*B), and that a pair (1,§),
where 4 = ||g||£ql> ~uoand § = HgH;ql)(B)g, satisfies the ®-Poincaré inequality

R (B)
in B.
1) If (14) holds, then
= wzloe ) < Cran(B) gl o s (20)

where O is defined by (15)-(16).



2) If (17) holds, then, for Lebesgque points x,y € B of u,
u(@) = u(y)] < Creu(B)*|lgll o pyws  (reu(B) " d(z,y)~*), (21)

where wg is defined by (18)-(19).
Here, C = C(Cs,s,Cp,T,0).

If the ®-Poincaré inequality is stable under truncations, the weak estimate
(20) turns into a strong one.

Definition 1.3 A pair (u, g) has the truncation property, if for every b € R,
0 <t <ty < oo ande € {—1,1}, the pair (vgf,gx{tl@gb}), where v =
e(u—10b) and

o2 = min{max{0,v — t1},t2 — t1 },
satisfies the ®-Poincaré inequality (with fized constants).
A weakly differentiable function u on R™ satisfies \vaf] = |VulxX{, <o<ta}s
which implies that the pair (u,|Vu|) has the truncation property.

Theorem 1.4 Suppose that the assumptions of Theorem 1.2 are in force, (14)
holds, and that the pair (4, g) has the truncation property. Then

lu —upllpo. () < Crau(B)™lgl a5, (22)

where 4 is defined by (15)-(16) and C' = C(Cs,s,Cp,T,9).

The following example gives concrete expressions for the "Sobolev conju-
gate” O,.

Example 1.5 Let ® be equivalent to the function tP log? t near infinity, where
eitherp=1andq>0o0rp>1andqeR. Then @, is equivalent near infinity

to
£/ (57P) (log ¢)°¢/(=P)if 1 < p <s

exp(ts/(s_l_q)) fp=s,g<s—1
explexp(t/C))  ifp=s, q=s—1L
In a general metric space we cannot talk about partial derivatives, but the

concept of an upper gradient has turned out to be a useful substitute for the
length of a gradient.

Definition 1.6 ([10]) A Borel function g : X — [0,00] is an upper gradient
of a function u: X — R, if for all rectifiable curves v :[0,1] — X,

mww»—mwwng/g@ (23)

v

whenever both u(y(0)) and u(v(l)) are finite, and f,ygds = 00 otherwise.



More generally, g is a ®-weak upper gradient of u, if the family of rectifiable
curves for which (23) does not hold has zero ®-modulus (see Section 2). The
Orlicz-Sobolev space N®(X) consisting of functions v € L*(X) having a
d-weak upper gradient g € L®(X) was recently studied by Tuominen [14].
We say that X supports the ®-Poincaré inequality, if the ®-Poincaré inequal-
ity holds for all locally integrable functions and their upper gradients. If X
supports the ®-Poincaré inequality, then any pair (u, g) of a locally integrable
function and its ®-weak upper gradient g € L®(X) has the truncation prop-
erty (Lemma 2.4). Thus, we obtain an optimal embedding theorem for the
space N®(X).

Theorem 1.7 Assume that (X, d, 1) is a doubling metric measure space that
supports the @—Ifoincare’ inequality and satisfies (2) with s > 1. Let B be a
ball, § >0 and B = (1+0)7B.

1) If ® satisfies (14), then NY®(B) C L®(B), where ®, is defined by (15)-
(16). Moreover, for every u € NV®(B) and for every ®-weak upper
gradient g of u, we have

lu = up| Loe () < Crpp(B)~*

HgHch(B)-

2) If & satisfies (17), then every u € NY®(B) has a locally uniformly con-
tinuous representative. Moreover, for every ®-weak upper gradient g of
u, we have

fu(e) — uy)| < Crau(B) gl a s (riu(B)d(a,y) ),

for x,y € B, where ws is defined by (18)-(19).
Here, C = C(Cs,s,Cp,T,0).

Apart from the case X = R", theorems 1.2, 1.4 and 1.7 seem to be new even if
the ®-Poincaré inequality in the assumptions is replaced by the 1-Poincaré in-
equality. The spaces supporting the 1-Poincaré inequality include Riemannian
manifolds with nonnegative Ricci curvature, Q)-regular orientable topological
manifolds satisfying the local linear contractability condition, Carnot groups
and more general Carnot-Carathéodory spaces associated with a system of
vector fields satisfying Hormander’s condition, as well as more exotic spaces
constructed by Bourdon and Pajot, Laakso, and Hanson and Heinonen, see [6]
and the references therein.

Our next result is an embedding theorem for the space AT *(U) defined as
follows.

Definition 1.8 Let U be an open set, ® a Young function, 7 > 1 and 0 <
s < 0. Denote

B-(U) = {{Bi} : balls TB; are disjoint and contained in U}



and

ol ey = sp \|§j:(ucB>-L“jgru——uB|du>;XBHL¢aﬁﬂy

BeB-(U) peg

Then A?’S(U) consists of all locally integrable functions u for which the number
||uHA<TI>,s(U) is finite.

Notice that below 1 < s < o0 is any number and need not have anything
to do with (2).

Theorem 1.9 Let X be connected, p doubling, ® a Young function, B C X
aball, 1 <s<oo,7>1andé>0. Denote B= (1+9)7B.

1) If (14) holds, then
HU—’U/BHL%(B) < CHUHA;?S(B)a (24)

where O is defined by (15)-(16).
2) If (17) holds, then, for Lebesgque points x,y € B of u,

fu(@) = u(y)| < Cllull yo.s g5 (1(Bay) ™. (25)

where Byy = B(x,2d(x,y)), and ws is defined by (18)-(19).
Here, C = C(Cy,T,96).

It is easy to see that the first part of Theorem 1.2 is a consequence of
inequality (24). In Section 4 we will show that it also implies the generalized
Trudinger inequality (12) of MacManus and Peréz.

The results in this paper deal with connected spaces. The setting of a
disconnected space will be investigated in the forthcoming paper [8|.

2 Preliminaries

2.1 Metric measure spaces

Throughout this paper X = (X,d,u) is a metric space equipped with a
measure p. By a measure we mean Borel regular outer measure satisfying
0 < u(U) < oo whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x,r)
and B(z,r). Sometimes we denote the radius of a ball B by rg. For a positive
number A\, we define AB(z,r) := B(z, \r).

Recall from the introduction that the doubling property of a measure im-
plies a lower decay estimate (2) for the measure of a ball. In connected spaces
we can estimate the measure of a ball also from above.



Lemma 2.1 Let X be connected and p doubling. Then there are constants
a >0 and C > 1 depending only on Cy such that

W(B(e.r) [\
u<B<x07r0>>§C<ro) ’ (26)

whenever x € B(xg,19) and r < 71g.

For a proof, see for example [12].

2.2 Young functions and Orlicz spaces

In this subsection we give a brief review of Young functions and Orlicz spaces.
A more detailed treatment of the subject can be found for example in [13].
A function @ : [0,00) — [0, o0] is called a Young function if it has the form

D(t) = /0 o(s) ds,

where ¢ : [0,00) — [0,00] is increasing, left-continuous function, which is
neither identically zero nor identically infinite on (0,00). A Young function is
convex and, in particular, satisfies

B(ct) < ed(t) (27)

for0<e<land 0<t< o0.
The right-continuous generalized inverse of a Young function & is

d1(t) = inf{s: B(s) > t}.

We have that
(@ (1) <t < O7H(D(H))

for t > 0.
The conjugate of a Young function @ is the Young function defined by

®(t) = sup{ts — ®(s) : s > 0}

for ¢t > 0.
Let ® be a Young function. The Orlicz space L*(X) is the set of all
measurable functions u for which there exists A > 0 such that

/X<1> <|“(;)|> dp(z) < 0.

The Luxemburg norm of u € L*(X) is

. u(x
[ull Lo (xy = llullLe(x;,) = inf{A >0 / ) (’ ()\)’> du(x) <1}

X



If [|ul| pe(x) # 0, we have that

/<I> _Ju@)l du(z) < 1.
X ||U||L<I>(X)

The following generalized Holder inequality holds for Luxemburg norms:
[ @@ dnte) < 2lullzoco ol o s

The weak Orlicz space L2 (X) is defined to be the set of all those measur-
able functions for which the weak Luxemburg norm
|u(z)]

lullg o = nf{r > 0:sup@(t)u({z € X : =52 > 1)) <1)

is finite. If [[ul|z2 x) # 0, it follows that

supP(t)u({zx € X : _fu@)l >t}) <1
>0 lull e x)

The normalized (weak) Luxemburg norm, that is, the (weak) Luxemburg norm
taken with respect to measure pu(X) 'u, will be denoted by || - lexy (I
22 (x))-
A function ® dominates a function ¥ globally (resp. near infinity), if there
is a constant C' such that
U(t) < ®(Ct)

for all t > 0 (resp. for t larger than some %p).

Functions ® and ¥ are equivalent globally (near infinity), if each dominates
the other globally (near infinity).

If u(X) < oo and ¢ dominates ¥ near infinity, we have that

[ullgv () < C(@, W) |ull go(x)- (28)

2.3 &-weak upper gradients

Let ® be a Young function. The ®-modulus of a curve family I is
Modg(T) = inf {||9||L<I>(X) : /gds >1forall vy € F} .
¥

If X supports the ®-Poincaré inequality, then (13) holds for functions and
their ®-weak upper gradients. This is an immediate consequence of the fol-
lowing lemma ([14], Lemma 4.3).

Lemma 2.2 Let ® be a Young function and let g € L®(X) be a ®-weak upper
gradient of a function u. Then there is a decreasing sequence (g;) of upper
gradients of u such that g; — g in L*(X).



An important property of ®-weak upper gradients is the following ([14],Lemma

4.11).

Lemma 2.3 Let ® be a Young function. Assume that u € ACCq(X) and
that the functions v and w have ®-weak upper gradients g,, g € L®(X). If E
is a Borel set such that u|p = v and u|x\g = w, then the function

9 = GoXE T JuXX\E
1s a ®-weak upper gradient of u.

Here "u € ACC%(X)” means that the family I" of rectifiable curves for which
w o7y is not absolutely continuous on [0, [(+y)] has zero ®-modulus.

It follows from the lemma above that if g € L®(X) is a ®-weak upper gra-
dient of a measurable function v, then gx (¢, <y<s,} is @ ®-weak upper gradient
of the function vff = min{max{0,v—t;},t2—t1}. Thus, we have the following.

Lemma 2.4 If X supports the ®-Poincaré inequality, then every pair (u,g)
of a locally integrable function and its ®-weak upper gradient g € L®(X) has
the truncation property.

3 Proofs of main theorems

The proof of Theorem 1.9 requires several lemmas. In the first three lemmas
equivalent representations of conditions (14) and (17) and of functions ®, and
ws are given. The proofs of lemmas 3.1 and 3.2 can be found in [3], and the
proof of 3.3 in [1].

Lemma 3.1 Let ® be a Young function. We have

~ s —1
/th;‘(i)' dt < oo if and only if /0 (@Et)) dt < oo (29)

and

0o & 0 s'—1
/ ;I;(rts), dt < oo if and only if / ((I)i(ft)) dt < 0. (30)

Moreover, the function @ is globally equivalent to the function Dy given by
Dy(t) = (¢ ()" (31)
for t >0, where J=1 is the left-continuous inverse of the function given by

J(r) = ¢ /O ' fl’fj, dt. (32)

10



1/s'

Lemma 3.2 Let ® be a Young function. Then ||r~ < oo for every

t > 0, if and only if

HL‘i’(t,oo)

(1)
——=dt < 0. (33)
/0 tl+s
Moreover,
P o) = D3 (110 (34)

for t >0, where D' is the right-continuous inverse of Ds.
(35)

Lemma 3.3 Let ® be a Young function. Then Hr‘l/SIHL@(O p < 0 for every
t >0, if and only if

* o(t)
/ S dt < oo (36)
Moreover,
1 a0 = w3 (/1) (37)

fort >0, where w; ! is the right-continuous inverse of ws.

It is easy to see that, for C' > 1,
D'(Ct) < CD;(t) (38)

and
w;H(C7H) < Cw (1), (39)

S
Lemma 3.4 Let ® be a Young function. Then
O(r)~or < @71 (D(r))
forr > 0.

Proof Since ® is convex, the function ¢ +— ¢/®(t) is decreasing. Hence

v (@) - ( [ (qj(ft))dt) s ( ((I)()))/ _ ()

g

The next lemma is the part of the proofs of theorems 1.9 and 1.2, where
the connectedness of the space comes into play.

Lemma 3.5 Assume that X is connected, p doubling, T > 1 and § > 0. Let
B be a ball, x € B and 0 < r < orp. Then there is a sequence {By, ..., B}
of balls contained in (1 + §)B such that p(By) is comparable to p(B), p(Bx)
is comparable to p(B(z,r)), {Bi,..., By} € B-(B),

2u(Bi+1) < u(B;) < Cu(Biy1), (40)

11



for1 <i<k, and

k
ey — ume < CY ]{5 = ug, | dp, (41)
=1 i

where C' = C(Cy,T,9).

Proof Fix x € B and 0 < r < érp. Let C;j be a cover of A; = B(x,2798rg) \
B(z,2797rg) by balls of radius (207)712778rp centered at A; such that
the balls %D, D € Cj, are disjoint. It follows easily from the doubling
property of p that #C; < C. Since X is connected, there must be a se-
quence {By,...,B;_;} C UJL,C; so that By € Ci, BN Bj,y # 0 for all 4,
B, C B(z,r) and u(Bj,_,) is comparable to u(B(z,r)). Denote By = B,
By = B}, = B(z,r) and B; := 5B for 1 <i < k. Then B] C Bj;1, and so

lupg; —up:, | < lup —up, | + |up,, —up, | < C]{B lu—up,,, | dp.
i+1

Thus

k—1 k
upery — u| < 3 sy~ | <O f Ju undu
i=0 i=1" Bi

We will show that {B;} has a subsequence that belongs to B,(B) and satisfies
(40) and (41). For 1 < j < 'm, choose D; € {B;} centered at A; such that

]{)V\u—uDAd,u:maX{]{B. |u —up,|du : zp, GA]},

J

where zp, denotes the center of B;. Then

m
[UB(z,r) — UBy| < C’Z][ |u —up,|du.
j=1"Di

If |i — j| > 2, then TD; N 7D; = 0.
By (2) and (26) there are constants o > 0 and 5 > 0 depending on Cy
such that

—log—pn ~ M(Dj‘i‘”) < —an
Tt < S < 02 (42)

for j,n > 1. Let n > 2 be such that C27°" < 27! For p+ (i — 1)n < m,
denote B} = Dy (;_1), - Then the sequence {BY,Bj ...} satisfies (40) and
belongs to By (B). By choosing 1 < p < n such that

Z]ip | — upr|dp = 1@?2%2]; |u — ups| dp,
1 2 A 7

we obtain

) = us| <O ju= gyl n

12



The proof is complete. o

We need one more lemma, a weak-type estimate for a sharp fractional
maximal function defined by

Miputa) = sup u(B) o fu—usldn, (43)
r€eBCBg B

for a ball By C X, u € L*(Bp) and 0 < s < c0.
Lemma 3.6 Let ® be a Young function. Then
1M gull g 5y < C(Cay Tl yo.s s 3y

Proof We may assume that HuHA?,S(TB) = 1. Let z € B such that MfBu(x) >
A. By the definition of MS#BU, there is a ball B, C B containing x such that

u(erl/s][ o — up, | du > A

So,
u(By) < <I>(A)‘1<I>(M(Bx)‘”s]{9 = up, | dyp) p(B). (44)
By the standard 5r-covering lemma (|9, Theorem 1.16]), we can cover the set
{z€B: MIy(z) > A}

by balls 57 B; such that the balls 7B; are disjoint and that each B; is contained
in B and satisfies (44). Using the doubling property of u, estimate (44),
inequality (27), and the fact that {B;} € B.(7B), we obtain

p({z € B: MIgu(z) > A}) < Z w(57B;) < C(Cy,7) Z 1(B;)

< CC e T @ (B o - s du ()

)

<o(oos) S0 (uB) = v i)

<o)

The claim follows by the definition of || - || za. O

Proof of Theorem 1.9. 1) Denote B’ = (1 + §)B. It suffices to show
that the pointwise inequality

u(@) — up| < Cllul go 5 @71 (cb( ML) )) (5)
ulx) —upg| < U 4505 P ’
478 IMZ 5 ull o

13




holds for Lebesgue points 2 € B. Indeed, if (45) holds, then

B M7 u(z
N<x63:ww>t)gu(xegz@;o¢( iy )>t)
Clull o s 1M prull g s

M#,ux

||MfB/U||L3(B')

<o, ()"

Fix a Lebesgue point € B of uw and 0 < r < drp. Let {By,... Bx} be the
chain from Lemma 3.5 corresponding to z and r. Since the balls B;, i > 1,
are disjoint, we have that

Z][ |u—uB\du—HZ][ =

k

Z 1/8][ lu—up,| duxs; ZM VX,

=1

Hence, by the Holder inequality,

k
S fu und
i=1" Bi
k k
<2 Zu(Bz-)‘l/s][ = s dix e oo - IS BB ™ X8 o,
=1 i =1

< QH’U’HA‘}S HZM 1/8 XBzHLCi;'(X)

By the definition of Luxemburg norm

k

k /
_1/s . 2 B;)~'/s
1> 1B Xy = nE{A > 0 j@(“(i) u(B:) <1},
=1

=1

For each ¢, we have that

where the first inequality follows from the fact that the function

t &N

14



is decreasing, and the second from (27). Since

p(Biy1) <

k ) 1/8 /L(Bl) . 2[4;—1/8/
Z u(B;) < / oy | Tt

which implies that

w(Br) [ op—1/s
-1/s
HE n(B XBill i x) < inf{A >0 ﬁwk) <1>< X )dt§1}
2

|

we obtain

. _
Lo (M5 (By))

Thus

k
_ =18y
S, il < Cllll el stz 46)

By similar reasoning,

lug, —up| < |up, —up/|+ |lup —up| < C][ |lu —up|dp
B/

(47)
—1/s
< CHUHA(I’ s ||t /s ”L<I> #(B) (B
It follows from estimates (46) and (47) that
—1/s

[up(z,n — uBl < CHUHA?S(B)W / ”L‘i)(C'*l,u(B(x,r)),C,u(B))' (48)

Hence, by lemmas 3.1 and 3.2, and by (38),
) — ] < Ollul gon gy 25 (B, 1) 7). (19)

Next, we will estimate |u(z) — up(s,)| in terms of maximal function (43). For
i > 0, denote B; = B(x,27%r). By the Lebesgue differentiation theorem (|9,
Theorem 1.8]), up, — u(z), as ¢ — oco. Thus, by (1) and (26),

]u(:c) - 'U'B(a:,r)’ < Z |U’Bi - uBi+1‘

>0
<CZ][ |lu —up,|dp
>0
<Cz,u B)YsM* o pu(z)
>0

< Cu(B(w, 1) *MP 5 u(z).

15



So, by Lemma 3.6,
M#B,u(:v)

u(@) = up(en| < Clull yo.s gy u(Bla,r)*— - (50)
o 1M 5wl oy
Combining the above estimates, we obtain
MfB/U(CU)
u(e) — upl < Cllull s 5, <<I>51<M<BT>1> (B ,
||M8,B/UHL$(B/)

M* ru()
where B, = B(z,r). f & [ —>——

1M

= > 11(Bsyp) "L, we can choose r <
g )

orp such that

M#* u(x
p(B) "t < ‘1’< o ) ) < Cu(B,)~".
||M8,B/U”L$(B')

Then

n(B)

—1/s
M#B,u(a:) _ (1)( MfB,u(x) ) M:EB,u(x)
HMjB/uHL?;(B’)

HM:,#B'UHL?;(B') IIMfB,uHLg(B/)

#
< 0P ! (@ ( M) ))
N 1M gl Lo

where the last inequality comes from Lemma 3.4. Thus, we obtain (45).

If 4
® < MS,B’u(x)

M7 gl Lo

(51)

) < :U'<B67"B)717

it suffices to combine estimate (50), where r = drp, with the estimate
|UB5TB - UB| < C][ |u — ’U,B/| du
B/
< Cu(B)/* MY gu(x)

MfB,u(x)

< Clful| yo.s gy 1(Bsrs)*
" {B) 1Ml o 1)

and argue as in (51).
2) Letting r tend to zero in (48) and using Lemma 3.3 and (39), we obtain

fu(x) — up| < Clul yous oy (1(B) ™). (52)

Let z,y € B be Lebesgue points of u. Denote By, = B(z,2d(x,y)). If
d(z,y) > $0rp, then pu(B) < Cu(Byy). So

u(@) — w(y)| < [u(@) — up| + u(y) — up|
< Cllull o gy (0(B) ™)
< CHU”A?S(B)WS_I(M(B:ry)_l)~

16



If d(z,y) < %57“3, then (52), applied to the ball By, yields

[u() — u(y)| < [u(z) — up,,| + u(y) — us,,|
< Ollull goo s, o5 (1(Bay) ™).

Since we may assume that 6 < 1/2, it follows that Bxy C B. Hence

[u(z) = u(y)] < Cllull yo.s gyws " (1(Bay) ™).

Proof of Theorem 1.2. 1) By Theorem 1.9, it suffices to show that
lull yo.vgy < Cran(B) gl oz (53)

We may assume that HgHL‘?(B) = 1. Let D be a ball such that 7D C B. Then,
by (13) and (2),

][ lu —up|du < Cprp®? <][ ®(g) d,u)
D 7D
< CTBM(B)_l/S/L(D)l/S‘I)_l <][

Hence, for D € B,(B),

p(D)" o4 [u = up| dp
D;)@ ( Crap(B) 15 u(D) < D;;/TD O(g) dp < /B@(g) dp < 1,

which implies that

1Y (w0)of = unldn) xolaq) < Croute) ™.

DeD

By taking supremum over B, (B), we obtain (53).

2) We may assume that 6 < 1/2. Let D be a ball centered at B so that
D = (1+6)7D C B. Fix a Lebesgue point z € D, 0 < r < érp and let {B;}
be the chain from Lemma 3.5 corresponding to D, x and r. Clearly, the chain
can be chosen so that rp, , < %. Since the balls B;, i > 1, are disjoint, we
have that

k k
Z][ lu —up,| dp = ||Z“(Bi)_1][ lu —up,| dux sl L (x)
=17 Bi i=1 Bi

2

and

k k k
ZM(Bi)l][ lu—up,|duxp;, = Zm_l][ lu—up,| duxs, - rin(Bi) " xs;.
i—1 B; i=1 B; i=1

17



So, by the Hélder inequality,

k
S fu | du
i=1" Bi

! k
<2 Zﬁl]i lu — up,| duxs | Lex) - |l Zrm(Bi)_leiHL@(X).
i1 i i—1

Since the pair |[|g|| B) (u,g) satisfies the ®-Poincaré inequality in B and

I
{B;} € B.(D) C B,(B), we have that

k
| Zri—l]{g fu—us, | duxs, 1o (x) < Cllgll o)
=1 i

By the definition of Luxemburg norm
k k
_ . < (rip(B) 1
I3 (B0 X sy = (3 >0 3 (P ) e < 1

By (2),
w(B;)~ < (Cpri) %,

where Cp = Cr'u(B)Y/*. Since the function ¢ ®(at)/t is increasing, for
every a > (0, we have

_ s —1/s
- (riu(By) 1 - (1:(Cpr;) s _ &t '
o < 3 w(B;) <@ 3 (Cpry) P o ti,

where t; = (Cpr;)®. It follows that

k k —1/s'
_ 1. [t
1Y rip(Bs) 'XB:ll i x) < Cp'inf{A > 0: > o ( : ) <1}
=1 =1

t1 . t*l/sl
§2031inf{)\>0:/ O <1}
0

_ 2C§1Ht’1/5'||L<i>(07t1)
< Crpu(B)w (u(B) rry),

where the last inequality comes from Lemma 3.3 and from (39). Thus
|u(ac) - UB()’ = 71"1_1)% ‘UB(x,r) - uBo’
< Crau(B) Vgl ogyws ((B) ).
By similar reasoning,
[uBy = up| < |upr — upy| + lup, —up| < CF |u—up|dp
D/

< Crpp(B) 1 llgl o gyws  (u(B) e,

18



So,
u(e) — up| < Crpu(B) Vllgl gy (0(B) i) (54)
Let z,y € B be Lebesgue points of u. If d(z,y) > %57"3, then (54) with D = B
yields
u(z) — w(y)| < |u(z) —us| + |u(y) — us]
< Crn(B) gl o gsyws (1(B) rid(z,5)~).

Ifd(z,y) < %(57"3, then D C B, for the ball D = B(z, 2d(x,)), and so by (54)
and (39),

u(z) = u(y)| < [u(z) —up| +[u(y) - up|
< Orpp(B) "2 |lgll o gyws ! (w(B)'rid(z, ) ™).
0

Remark 3.7 As shown above, the first part of Theorem 1.2 is a consequence
of Theorem 1.9. More generally, suppose that (2) holds, and that a function u
satisfies an inequality of type
_1 (v(TD)
u—upl|du < ||ul|,rH® 1<>, (55)
£ lu—upldi < Julurpe~ (4553

where a« > 0, and v : {B : Bisaball} — [0,00) satisfies Y v(B;) < 1,
whenever the balls B; are disjoint and contained in B. Then, an argument
similar to the proof of (53), shows that

lull o0 3, < Crin(B) [l (56)

Thus, if (14) holds, with s/« in place of s, Theorem 1.9 yields

lu —upll o0 0 < Crgu(B) =" |[ul],.

(B)
The properties of functions satisfying inequalities of type (55) with ®(t) = tP
were studied in [7].

Remark 3.8 Suppose that (2) and (14) hold, and that a pair (u,g), where
0 < [5®(g9)dp < oo, satisfies the ®-Poincaré inequality in B. Then, for the

measure i = ([ ®(g) du)_lu, we have that HgHL‘?(Bﬁ) = 1. Since (2) and
(13) trivially hold for i with the same constants as they hold for p, Theorem

1.2, for the measure [i, yields
lu = upll 2 5 < Croa(B)/7,

which 1s equivalent to

—1/s
sup P ((Jm(;)—l/ (/B ®(9) du) ) p({lu —up| > 1}) < /B<1>(g) du,

(57)
where {|u —up| >t} = {x € B : |u(x) —up| > t}.
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Proof of Theorem 1.4. Suppose that (2) and (14) hold, and that a pair
(u,g), where 0 < [ ®(g) dpu < o0, has the truncation property. Choose b such
that

u({u>b}) > p(B)/2 and p({u<b}) > u(B)/2.

Let vy = max{u — b,0} and v = —min{u — b,0}. We need the following
elementary lemma.

Lemma 3.9 Let v be a finite measure on Y. If w > 0 is a v-measurable
function such that v({w = 0}) > v(Y)/2, then, fort > 0,

v({w>t}) < 2012]1%1/({\111 —c| >t/2}).

Proof If |c| < t/2, then {w >t} C {Jw —¢| > t/2}. Otherwise, {w = 0} C
{lw —¢| > t/2}, and so

v({w>t}) <vY) <2v({w=0}) <2v({|w — ¢| > t/2}).

Let v denote either vy or v—. For k € Z, denote vy = ’U%:_l and g =
gX{Qk—1<U§2k}. Then

u({o > 2) < p({or > 2°2)) < 20({fon — ()l > 253 (38)

for k € Z. Let C = 25Cy, where Cj is the constant from inequality (57). Using
(58) and (57) for the pair (vg, gx) we obtain

- (e (o) ) o
<3 v ® (cmm/ (/20 d“>1/s) o

keZ
ok+1 —1/s .
<3 e (CM/ ([ #wan) )u({v>2 })
9k—3 1/s -
= é‘bs (CW()U </ (gk)du> )N({’Uk_(”k)3‘>2 )
<
kezz/ (gx) dps
< /B<I>(g)d,u.

Thus

inf /B 3 (% < /B o(g) du>_1/s> d < /B o(g)dp.  (59)



This, for the pair Hgﬂ;(é) (u, g) in place of (u, g), yields

' _ —1/s 3

inf ot — bl ) < Cri(B) ™ gl s
Since |lu — up||pe(ay < 2infper ||u — bl @ (4) for any set A of finite measure,
the proof is complete. O

4 Strong inequalities without truncation

In this section we will show how the weak estimate (24) implies strong ones.
We begin with an easy lemma.

Lemma 4.1 Let u(X) < oo, and let ® and V be Young functions such that

/1 B <o (60)

Then LE(X) C LY(X) and there is a constant C = C(V, ®) such that

ull go(xy < Cllull Lo (x)- (61)

Proof Assume [|ul[e(x) = 1. Denoting ji = (X)L, we obtain

o

[ wabdi= [ v e Xl > e ar
X 0

< W(1) +/ V() a({z € X : ju| > t})dt
1
< Y(1 +/ dt =: ',
AN A0
which implies (61) with C' = max{C’,1}. O

For a measure v on X, denote

up VBl/S][ u—u dy>x )
> I (wB) sl ) xslunn

[l gty = 8
T v BGBT BEB

For a ball B C X, denote up = u(B) .

Theorem 4.2 Suppose that the assumptions of Theorem 1.9 are in force, (14)
holds, and that ¥ is a Young function satisfying

/1 N0 dt < oo. (62)

Then

lu—upl o) < Cllull yo. ., (63)

8)’
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where C' = C(Cy, s, 7,0, P, V). Moreover, if u satisfies (2), g € L‘I’(B), and a
pair Hg”;i(g)(u,g) satisfies the ®-Poincaré inequality in B, then

l — usl o sy < Cralgll o s, (64)
where C = C(Cs,s,Cp, 7,0, D, V).
Proof Theorem 1.9, applied to the measure up = p(B) 'y, yields

lu = upllg2s 5y < Cllull y2.2 (4,
So, by Lemma 4.1,

lu —upllgep) < Cllull yo.5 5.,
Since

I ”Lé(B;uB) <l ”Lq)(é;uf;)’
it follows that

HUHA??’S(B;MB) = CHuHAf’S(B;uB)'

Inequality (64) follows from inequalities (63) and (53). O

Notice that if @ increases quickly enough, condition (62) is satisfied with
U(t) = ®s(t/2), and we have
o~ usll o2 3 < Cllul o) (65)

In particular, this is the case when ® is equivalent to ¢ — ¢° near infinity.
Suppose now that (8) holds with a functional a satisfying (11), and that
® is equivalent to ¢t — t° near infinity. Then

il gy = 50 1Y (15B) 5 f sl ) xoll o

BeB,(B) BeB

<0 sw 1Y (a8 f = unld) xnlego

BeB,(B) BeB

S\ 1/s
<C sup (Z (][ IU—UB\du> )
BeB.(B) \Bep VB

1/s
< C|lulla sup (Z a(TB)5>

BeB,(B) \BeB
< Clullaa(B),

where the first inequality comes from (28). Thus (65) implies the generalized
Trudinger inequality (12).
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