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Abstract

We study the self-improving properties of (generalized) Φ-Poincaré inequal-
ities in connected metric spaces equipped with a doubling measure. Our results
are optimal and generalize some of the results of Cianchi [1, 2], Hajªasz and
Koskela [5, 6], and MacManus and Pérez [12].
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1 Introduction and main results

Let X = (X, d, µ) be a metric measure space with µ a Borel regular outer mea-
sure satisfying 0 < µ(U) < ∞, whenever U is nonempty, open and bounded.
Suppose further that µ is doubling, that is, there exists a constant Cd such
that

µ(2B) ≤ Cdµ(B), (1)

whenever B is a ball. It is easy to see that the doubling property is equivalent
to the existence of constants s and Cs such that

µ(B(x, r))
µ(B(x0, r0))

≥ C−1
s

(
r

r0

)s

(2)

holds, whenever x ∈ B(x0, r0) and r ≤ r0.
A pair (u, g) of measurable functions, g ≥ 0, satis�es the p-Poincaré in-

equality, if there exist constants CP and τ ≥ 1 such that

−
∫

B
|u− uB| dµ ≤ CP rB

(
−
∫

τB
gp dµ

)1/p

(3)

for every ball B = B(x, r) ⊂ X. Hajªasz and Koskela [5, 6] proved the
following self-improving properties of (3): Assume that µ satis�es (2), and
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that a pair (u, g), where g ∈ Lp
loc

(X) satis�es the p-Poincaré inequality (3).

Let δ > 0 and B̂ = (1 + δ)τB. There exists a constant C = C(Cs, s, CP , τ, δ)
such that the following holds.

1) If p < s, then

sup
t>0

t

(
µ({x : |u(x)− uB| > t}

µ(B)

)1/ps

≤ CrB

(
−
∫

B̂
gp dµ

)1/p

, (4)

where ps = sp
s−p . Consequently, for q < ps, we have(
−
∫

B
|u− uB|q dµ

)1/q

≤ C ′rB

(
−
∫

τ ′B
gp dµ

)1/p

, (5)

where C ′ depends on C and q. In general, (3) does not yield (5) with
q = ps. However, if a pair (u, g) has the truncation property, which
means that for every b ∈ R, 0 < t1 < t2 < ∞ and ε ∈ {−1, 1}, the pair
(vt2

t1
, gχ{t1<v≤t2}), where v = ε(u− b) and vt2

t1
= min{max{0, v− t1}, t2−

t1}, satis�es the p-Poincaré inequality, then we have (5) with q = ps.

2) If p = s > 1 and X is connected, then

‖u− uB‖−LΦ(B) ≤ CrB‖g‖−Ls(B̂), (6)

where ‖ · ‖−LΦ(B) is the normalized Luxemburg norm generated by the

function Φ(t) = exp(ts
′
)− 1 (see Section 2) and s′ = s

s−1 .

3) If p > s, then u has a locally Hölder continuous representative, for which

|u(x)− u(y)| ≤ Cr
s/p
B d(x, y)1−s/p

(
−
∫

B̂
gp dµ

)1/p

(7)

for x, y ∈ B.

Franchi, Pérez and Wheeden [4] and MacManus and Pérez [11, 12] studied
the self-improving properties of inequalities of type

−
∫

B
|u− uB| dµ ≤ ‖u‖aa(τB), (8)

where ‖u‖a > 0, τ ≥ 1 and a : {B ⊂ X : B is a ball} → [0,∞) is a functional
that satis�es certain discrete summability conditions. In [11] MacManus and
Pérez showed that if δ > 0 is �xed, and the functional a satis�es condition∑

a(Bi)rµ(Bi) ≤ cra(B)rµ(B), (9)

whenever the balls Bi are disjoint and contained in the ball B, then the
Poincaré-type inequality (8) improves to

sup
λ>0

λ

(
µ({x ∈ B : |u(x)− uB| > λ})

µ(B)

)1/r

≤ C‖a‖‖u‖aa(B̂), (10)
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where ‖a‖ is the minimum of the constants c so that (9) holds and B̂ =
(1 + δ)τB. In [12], they proved that if X is connected, r > 1, and a satis�es
the stronger condition ∑

a(Bi)r ≤ cra(B)r, (11)

whenever the balls Bi are disjoint and contained in the ball B, then

‖u− uB‖−LΦ(B) ≤ Ca(B̂), (12)

where Φ(t) = exp(tr
′
)− 1 and r′ = r

r−1 .
To see that the results of MacManus and Pérez generalize those of Hajªasz

and Koskela, simply note that if µ satis�es (2), then the functional

a(B) = rB

(
−
∫

B
gp dµ

)1/p

,

where 0 ≤ g ∈ Lp
loc

(X), satis�es condition (9) with r = sp/(s − p), if p < s,
and condition (11) with r = s, if p = s.

In this paper we are interested in the self-improving properties of the fol-
lowing Φ-Poincaré inequality, introduced recently in [14]. For the de�nition
and properties of Young functions and Orlicz spaces, see Section 2.

De�nition 1.1 Let Φ be a Young function. A pair (u, g) of measurable func-
tions, u ∈ L1

loc
(X) and g ≥ 0, satis�es the Φ-Poincaré inequality (in an open

set U), if there are constants CP and τ such that

−
∫

B
|u− uB| dµ ≤ CP rBΦ−1

(
−
∫

τB
Φ (g) dµ

)
(13)

for every ball B ⊂ X (such that τB ⊂ U).

Assuming that the underlying space is connected, we obtain results which
are sharp in the sense that they reproduce a version of Cianchi's optimal
embedding theorem for Orlicz-Sobolev spaces on Rn [1, 2]. Notice that a
pair (u, |∇u|) of a weakly di�erentiable function and the length of its weak
gradient satis�es the 1-Poincaré inequality, and so, by Jensen's inequality, the
Φ-Poincaré inequality for every Young function Φ.

Let s > 1. For a Young function Φ satisfying∫ 1

0

(
t

Φ(t)

)s′−1

dt < ∞ and

∫ ∞

0

(
t

Φ(t)

)s′−1

dt = ∞, (14)

de�ne
Φs = Φ ◦Ψ−1

s , (15)

where

Ψs(r) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

. (16)
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If ∫ ∞( t

Φ(t)

)s′−1

dt < ∞, (17)

de�ne
ωs(t) = (tΘ−1(ts

′
))s′ , (18)

where Θ−1 is the left-continuous inverse of the function given by

Θ(r) = s′
∫ ∞

r

Φ̂(t)
t1+s′

dt (19)

and Φ̂ is the conjugate of Φ. We wish to point out that, under (14), functions
Φ,Ψs and Φs are bijections. Notice also that one can modify any Young
function Φ near zero so that the condition∫ 1

0

(
t

Φ̃(t)

)s′−1

dt < ∞

is satis�ed for the modi�ed function Φ̃ and that LΦ̃
loc

(X) = LΦ
loc

(X).
We will state Cianchi's result only for balls, but it actually holds for much

more general domains (see [1, 2, 3]): Let s ≥ 2, let B ⊂ Rs be a ball, and let
u be a weakly di�erentiable function such that |∇u| ∈ LΦ(B). Then there is a
constant C depending only on s such that

1) If (14) holds, then

‖u− uB‖LΦs (B) ≤ C‖|∇u|‖LΦ(B).

Moreover, LΦs(B) is the smallest Orlicz space into which W 1,Φ(B) can
be continuously embedded.

2) If (17) holds, then u has a continuous representative for which

|u(x)− u(y)| ≤ C‖|∇u|‖LΦ(B)ω
−1
s (|x− y|−s),

for x, y ∈ B.

Theorems 1.2 and 1.4 below generalize the result of Cianchi.

Theorem 1.2 Assume that X is connected, µ satis�es (2) with 1 < s < ∞,
B ⊂ X is a ball, δ > 0, B̂ = (1 + δ)τB, g ∈ LΦ(B̂), and that a pair (û, ĝ),
where û = ‖g‖−1

LΦ(B̂)
u and ĝ = ‖g‖−1

LΦ(B̂)
g, satis�es the Φ-Poincaré inequality

in B̂.

1) If (14) holds, then

‖u− uB‖LΦs
w (B)

≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (20)

where Φs is de�ned by (15)-(16).
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2) If (17) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (rs

Bµ(B)−1d(x, y)−s), (21)

where ωs is de�ned by (18)-(19).

Here, C = C(Cs, s, CP , τ, δ).

If the Φ-Poincaré inequality is stable under truncations, the weak estimate
(20) turns into a strong one.

De�nition 1.3 A pair (u, g) has the truncation property, if for every b ∈ R,
0 < t1 < t2 < ∞ and ε ∈ {−1, 1}, the pair (vt2

t1
, gχ{t1<v≤t2}), where v =

ε(u− b) and
vt2
t1

= min{max{0, v − t1}, t2 − t1},

satis�es the Φ-Poincaré inequality (with �xed constants).

A weakly di�erentiable function u on Rn satis�es |∇vt2
t1
| = |∇u|χ{t1<v≤t2},

which implies that the pair (u, |∇u|) has the truncation property.

Theorem 1.4 Suppose that the assumptions of Theorem 1.2 are in force, (14)
holds, and that the pair (û, ĝ) has the truncation property. Then

‖u− uB‖LΦs (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂), (22)

where Φs is de�ned by (15)-(16) and C = C(Cs, s, CP , τ, δ).

The following example gives concrete expressions for the �Sobolev conju-
gate� Φs.

Example 1.5 Let Φ be equivalent to the function tp logq t near in�nity, where
either p = 1 and q ≥ 0 or p > 1 and q ∈ R. Then Φs is equivalent near in�nity
to 

tsp/(s−p)(log t)sq/(s−p) if 1 ≤ p < s

exp(ts/(s−1−q)) if p = s, q < s− 1
exp(exp(ts/(s−1))) if p = s, q = s− 1.

In a general metric space we cannot talk about partial derivatives, but the
concept of an upper gradient has turned out to be a useful substitute for the
length of a gradient.

De�nition 1.6 ([10]) A Borel function g : X → [0,∞] is an upper gradient
of a function u : X → R, if for all recti�able curves γ : [0, l] → X,

|u(γ(0))− u(γ(l))| ≤
∫

γ
g ds (23)

whenever both u(γ(0)) and u(γ(l)) are �nite, and
∫
γ g ds = ∞ otherwise.
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More generally, g is a Φ-weak upper gradient of u, if the family of recti�able
curves for which (23) does not hold has zero Φ-modulus (see Section 2). The
Orlicz-Sobolev space N1,Φ(X) consisting of functions u ∈ LΦ(X) having a
Φ-weak upper gradient g ∈ LΦ(X) was recently studied by Tuominen [14].
We say that X supports the Φ-Poincaré inequality, if the Φ-Poincaré inequal-
ity holds for all locally integrable functions and their upper gradients. If X
supports the Φ-Poincaré inequality, then any pair (u, g) of a locally integrable
function and its Φ-weak upper gradient g ∈ LΦ(X) has the truncation prop-
erty (Lemma 2.4). Thus, we obtain an optimal embedding theorem for the
space N1,Φ(X).

Theorem 1.7 Assume that (X, d, µ) is a doubling metric measure space that
supports the Φ-Poincaré inequality and satis�es (2) with s > 1. Let B be a
ball, δ > 0 and B̂ = (1 + δ)τB.

1) If Φ satis�es (14), then N1,Φ(B̂) ⊂ LΦs(B), where Φs is de�ned by (15)-
(16). Moreover, for every u ∈ N1,Φ(B̂) and for every Φ-weak upper
gradient g of u, we have

‖u− uB‖LΦs (B) ≤ CrBµ(B)−1/s‖g‖LΦ(B̂).

2) If Φ satis�es (17), then every u ∈ N1,Φ(B̂) has a locally uniformly con-
tinuous representative. Moreover, for every Φ-weak upper gradient g of
u, we have

|u(x)− u(y)| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (rs

Bµ(B)−1d(x, y)−s),

for x, y ∈ B, where ωs is de�ned by (18)-(19).

Here, C = C(Cs, s, CP , τ, δ).

Apart from the case X = Rn, theorems 1.2, 1.4 and 1.7 seem to be new even if
the Φ-Poincaré inequality in the assumptions is replaced by the 1-Poincaré in-
equality. The spaces supporting the 1-Poincaré inequality include Riemannian
manifolds with nonnegative Ricci curvature, Q-regular orientable topological
manifolds satisfying the local linear contractability condition, Carnot groups
and more general Carnot-Carathéodory spaces associated with a system of
vector �elds satisfying Hörmander's condition, as well as more exotic spaces
constructed by Bourdon and Pajot, Laakso, and Hanson and Heinonen, see [6]
and the references therein.

Our next result is an embedding theorem for the space AΦ,s
τ (U) de�ned as

follows.

De�nition 1.8 Let U be an open set, Φ a Young function, τ ≥ 1 and 0 <
s ≤ ∞. Denote

Bτ (U) = {{Bi} : balls τBi are disjoint and contained in U}
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and

‖u‖
AΦ,s

τ (U)
= sup

B∈Bτ (U)
‖
∑
B∈B

(
µ(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖LΦ(U ;µ).

Then AΦ,s
τ (U) consists of all locally integrable functions u for which the number

‖u‖
AΦ,s

τ (U)
is �nite.

Notice that below 1 < s < ∞ is any number and need not have anything
to do with (2).

Theorem 1.9 Let X be connected, µ doubling, Φ a Young function, B ⊂ X
a ball, 1 < s < ∞, τ ≥ 1 and δ > 0. Denote B̂ = (1 + δ)τB.

1) If (14) holds, then

‖u− uB‖LΦs
w (B)

≤ C‖u‖
AΦ,s

τ (B̂)
, (24)

where Φs is de�ned by (15)-(16).

2) If (17) holds, then, for Lebesgue points x, y ∈ B of u,

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω−1

s (µ(Bxy)−1), (25)

where Bxy = B(x, 2d(x, y)), and ωs is de�ned by (18)-(19).

Here, C = C(Cd, τ, δ).

It is easy to see that the �rst part of Theorem 1.2 is a consequence of
inequality (24). In Section 4 we will show that it also implies the generalized
Trudinger inequality (12) of MacManus and Peréz.

The results in this paper deal with connected spaces. The setting of a
disconnected space will be investigated in the forthcoming paper [8].

2 Preliminaries

2.1 Metric measure spaces

Throughout this paper X = (X, d, µ) is a metric space equipped with a
measure µ. By a measure we mean Borel regular outer measure satisfying
0 < µ(U) < ∞ whenever U is open and bounded.

Open and closed balls of radius r centered at x will be denoted by B(x, r)
and B(x, r). Sometimes we denote the radius of a ball B by rB. For a positive
number λ, we de�ne λB(x, r) := B(x, λr).

Recall from the introduction that the doubling property of a measure im-
plies a lower decay estimate (2) for the measure of a ball. In connected spaces
we can estimate the measure of a ball also from above.
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Lemma 2.1 Let X be connected and µ doubling. Then there are constants
α > 0 and C ≥ 1 depending only on Cd such that

µ(B(x, r))
µ(B(x0, r0))

≤ C

(
r

r0

)α

, (26)

whenever x ∈ B(x0, r0) and r ≤ r0.

For a proof, see for example [12].

2.2 Young functions and Orlicz spaces

In this subsection we give a brief review of Young functions and Orlicz spaces.
A more detailed treatment of the subject can be found for example in [13].

A function Φ : [0,∞) → [0,∞] is called a Young function if it has the form

Φ(t) =
∫ t

0
φ(s) ds,

where φ : [0,∞) → [0,∞] is increasing, left-continuous function, which is
neither identically zero nor identically in�nite on (0,∞). A Young function is
convex and, in particular, satis�es

Φ(εt) ≤ εΦ(t) (27)

for 0 < ε ≤ 1 and 0 ≤ t < ∞.
The right-continuous generalized inverse of a Young function Φ is

Φ−1(t) = inf{s : Φ(s) > t}.

We have that
Φ(Φ−1(t)) ≤ t ≤ Φ−1(Φ(t))

for t ≥ 0.
The conjugate of a Young function Φ is the Young function de�ned by

Φ̂(t) = sup{ts− Φ(s) : s > 0}

for t ≥ 0.
Let Φ be a Young function. The Orlicz space LΦ(X) is the set of all

measurable functions u for which there exists λ > 0 such that∫
X

Φ
(
|u(x)|

λ

)
dµ(x) < ∞.

The Luxemburg norm of u ∈ LΦ(X) is

‖u‖LΦ(X) = ‖u‖LΦ(X;µ) = inf{λ > 0 :
∫

X
Φ
(
|u(x)|

λ

)
dµ(x) ≤ 1}.
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If ‖u‖LΦ(X) 6= 0, we have that

∫
X

Φ

(
|u(x)|

‖u‖LΦ(X)

)
dµ(x) ≤ 1.

The following generalized Hölder inequality holds for Luxemburg norms:∫
X

u(x)v(x) dµ(x) ≤ 2‖u‖LΦ(X)‖v‖LΦ̂(X)
.

The weak Orlicz space LΦ
w(X) is de�ned to be the set of all those measur-

able functions for which the weak Luxemburg norm

‖u‖LΦ
w(X) = inf{λ > 0 : sup

t>0
Φ(t)µ({x ∈ X :

|u(x)|
λ

> t}) ≤ 1}

is �nite. If ‖u‖LΦ
w(X) 6= 0, it follows that

sup
t>0

Φ(t)µ({x ∈ X :
|u(x)|

‖u‖LΦ
w(X)

> t}) ≤ 1.

The normalized (weak) Luxemburg norm, that is, the (weak) Luxemburg norm
taken with respect to measure µ(X)−1µ, will be denoted by ‖ · ‖−LΦ(X) (‖ ·
‖−LΦ

w(X)).
A function Φ dominates a function Ψ globally (resp. near in�nity), if there

is a constant C such that
Ψ(t) ≤ Φ(Ct)

for all t ≥ 0 (resp. for t larger than some t0).
Functions Φ and Ψ are equivalent globally (near in�nity), if each dominates

the other globally (near in�nity).
If µ(X) < ∞ and Φ dominates Ψ near in�nity, we have that

‖u‖−LΨ(X) ≤ C(Φ,Ψ)‖u‖−LΦ(X). (28)

2.3 Φ-weak upper gradients

Let Φ be a Young function. The Φ-modulus of a curve family Γ is

ModΦ(Γ) = inf
{
‖g‖LΦ(X) :

∫
γ
g ds ≥ 1 for all γ ∈ Γ

}
.

If X supports the Φ-Poincaré inequality, then (13) holds for functions and
their Φ-weak upper gradients. This is an immediate consequence of the fol-
lowing lemma ([14], Lemma 4.3).

Lemma 2.2 Let Φ be a Young function and let g ∈ LΦ(X) be a Φ-weak upper
gradient of a function u. Then there is a decreasing sequence (gi) of upper
gradients of u such that gi → g in LΦ(X).
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An important property of Φ-weak upper gradients is the following ([14],Lemma
4.11).

Lemma 2.3 Let Φ be a Young function. Assume that u ∈ ACCΦ(X) and
that the functions v and w have Φ-weak upper gradients gv, gw ∈ LΦ(X). If E
is a Borel set such that u|E = v and u|X\E = w, then the function

g = gvχE + gwχX\E

is a Φ-weak upper gradient of u.

Here �u ∈ ACCΦ(X)� means that the family Γ of recti�able curves for which
u ◦ γ is not absolutely continuous on [0, l(γ)] has zero Φ-modulus.

It follows from the lemma above that if g ∈ LΦ(X) is a Φ-weak upper gra-
dient of a measurable function v, then gχ{t1<v≤t2} is a Φ-weak upper gradient

of the function vt2
t1

= min{max{0, v−t1}, t2−t1}. Thus, we have the following.

Lemma 2.4 If X supports the Φ-Poincaré inequality, then every pair (u, g)
of a locally integrable function and its Φ-weak upper gradient g ∈ LΦ(X) has
the truncation property.

3 Proofs of main theorems

The proof of Theorem 1.9 requires several lemmas. In the �rst three lemmas
equivalent representations of conditions (14) and (17) and of functions Φs and
ωs are given. The proofs of lemmas 3.1 and 3.2 can be found in [3], and the
proof of 3.3 in [1].

Lemma 3.1 Let Φ be a Young function. We have∫
0

Φ̂(t)
t1+s′

dt < ∞ if and only if

∫
0

(
t

Φ(t)

)s′−1

dt < ∞ (29)

and ∫ ∞ Φ̂(t)
t1+s′

dt < ∞ if and only if

∫ ∞( t

Φ(t)

)s′−1

dt < ∞. (30)

Moreover, the function Φs is globally equivalent to the function Ds given by

Ds(t) = (tJ−1(ts
′
))s′ (31)

for t ≥ 0, where J−1 is the left-continuous inverse of the function given by

J(r) = s′
∫ r

0

Φ̂(t)
t1+s′

dt. (32)
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Lemma 3.2 Let Φ be a Young function. Then ‖r−1/s′‖
LΦ̂(t,∞)

< ∞ for every

t > 0, if and only if ∫
0

Φ̂(t)
t1+s′

dt < ∞. (33)

Moreover,
‖r−1/s′‖

LΦ̂(t,∞)
= D−1

s (1/t) (34)

for t > 0, where D−1
s is the right-continuous inverse of Ds.

(35)

Lemma 3.3 Let Φ be a Young function. Then ‖r−1/s′‖
LΦ̂(0,t)

< ∞ for every

t > 0, if and only if ∫ ∞ Φ̂(t)
t1+s′

dt < ∞. (36)

Moreover,
‖r−1/s′‖

LΦ̂(0,t)
= ω−1

s (1/t) (37)

for t > 0, where ω−1
s is the right-continuous inverse of ωs.

It is easy to see that, for C ≥ 1,

D−1
s (Ct) ≤ CD−1

s (t) (38)

and
ω−1

s (C−1t) ≤ Cω−1
s (t). (39)

Lemma 3.4 Let Φ be a Young function. Then

Φ(r)−1/sr ≤ Φ−1
s (Φ(r))

for r ≥ 0.

Proof Since Φ is convex, the function t 7→ t/Φ(t) is decreasing. Hence

Φ−1
s (Φ(r)) =

(∫ r

0

(
t

Φ(t)

)s′−1

dt

)1/s′

≥

(
r

(
r

Φ(r)

)s′−1
)1/s′

= Φ(r)−1/sr.

2

The next lemma is the part of the proofs of theorems 1.9 and 1.2, where
the connectedness of the space comes into play.

Lemma 3.5 Assume that X is connected, µ doubling, τ ≥ 1 and δ > 0. Let
B be a ball, x ∈ B and 0 < r < δrB. Then there is a sequence {B0, . . . , Bk}
of balls contained in (1 + δ)B such that µ(B0) is comparable to µ(B), µ(Bk)
is comparable to µ(B(x, r)), {B1, . . . , Bk} ∈ Bτ (B̂),

2µ(Bi+1) ≤ µ(Bi) ≤ Cµ(Bi+1), (40)
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for 1 ≤ i < k, and

|uB(x,r) − uB0 | ≤ C

k∑
i=1

−
∫

Bi

|u− uBi | dµ, (41)

where C = C(Cd, τ, δ).

Proof Fix x ∈ B and 0 < r < δrB. Let Cj be a cover of Aj = B(x, 2−jδrB) \
B(x, 2−j−1δrB) by balls of radius (20τ)−12−jδrB centered at Aj such that
the balls 1

2D, D ∈ Cj , are disjoint. It follows easily from the doubling
property of µ that #Cj ≤ C. Since X is connected, there must be a se-
quence {B′

0, . . . , B
′
k−1} ⊂ ∪m

j=1Cj so that B′
0 ∈ C1, B′

i ∩ B′
i+1 6= ∅ for all i,

B′
k−1 ⊂ B(x, r) and µ(B′

k−1) is comparable to µ(B(x, r)). Denote B0 = B′
0,

Bk = B′
k = B(x, r) and Bi := 5B′

i for 1 ≤ i < k. Then B′
i ⊂ Bi+1, and so

|uB′
i
− uB′

i+1
| ≤ |uB′

i
− uBi+1 |+ |uBi+1 − uB′

i+1
| ≤ C−

∫
Bi+1

|u− uBi+1 | dµ.

Thus

|uB(x,r) − uB0 | ≤
k−1∑
i=0

|uB′
i
− uB′

i+1
| ≤ C

k∑
i=1

−
∫

Bi

|u− uBi | dµ.

We will show that {Bi} has a subsequence that belongs to Bτ (B̂) and satis�es
(40) and (41). For 1 ≤ j ≤ m, choose Dj ∈ {Bi} centered at Aj such that

−
∫

Dj

|u− uDj | dµ = max
{
−
∫

Bi

|u− uBi | dµ : xBi ∈ Aj

}
,

where xBi denotes the center of Bi. Then

|uB(x,r) − uB0 | ≤ C
m∑

j=1

−
∫

Dj

|u− uDj | dµ.

If |i− j| ≥ 2, then τDi ∩ τDj = ∅.
By (2) and (26) there are constants α > 0 and β > 0 depending on Cd

such that

C−12−βn ≤ µ(Dj+n)
µ(Dj)

≤ C2−αn (42)

for j, n ≥ 1. Let n ≥ 2 be such that C2−αn ≤ 2−1. For p + (i − 1)n ≤ m,
denote Bp

i = Dp+(i−1)n . Then the sequence {Bp
1 , Bp

2 . . . } satis�es (40) and

belongs to Bτ (B̂). By choosing 1 ≤ p < n such that∑
i

−
∫

Bp
i

|u− uBp
i
| dµ = max

1≤q<n

∑
i

−
∫

Bq
i

|u− uBq
i
| dµ,

we obtain

|u(x)− uB0 | ≤ C
∑

i

−
∫

Bp
i

|u− uBp
i
| dµ.
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The proof is complete. 2

We need one more lemma, a weak-type estimate for a sharp fractional
maximal function de�ned by

M#
s,B0

u(x) = sup
x∈B⊂B0

µ(B)−1/s−
∫

B
|u− uB| dµ, (43)

for a ball B0 ⊂ X, u ∈ L1(B0) and 0 < s ≤ ∞.

Lemma 3.6 Let Φ be a Young function. Then

‖M#
s,Bu‖LΦ

w(B) ≤ C(Cd, τ)‖u‖
AΦ,s

τ (τB)
.

Proof We may assume that ‖u‖
AΦ,s

τ (τB)
= 1. Let x ∈ B such that M#

s,Bu(x) >

λ. By the de�nition of M#
s,Bu, there is a ball Bx ⊂ B containing x such that

µ(Bx)−1/s−
∫

Bx

|u− uBx | dµ > λ.

So,

µ(Bx) ≤ Φ(λ)−1Φ
(
µ(Bx)−1/s−

∫
Bx

|u− uBx | dµ
)
µ(Bx). (44)

By the standard 5r-covering lemma ([9, Theorem 1.16]), we can cover the set

{x ∈ B : M#
s,B(x) > λ}

by balls 5τBi such that the balls τBi are disjoint and that each Bi is contained
in B and satis�es (44). Using the doubling property of µ, estimate (44),
inequality (27), and the fact that {Bi} ∈ Bτ (τB), we obtain

µ({x ∈ B : M#
s,Bu(x) > λ}) ≤

∑
i

µ(5τBi) ≤ C(Cd, τ)
∑

i

µ(Bi)

≤ C(Cd, τ)Φ (λ)−1
∑

i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ)

)−1∑
i

Φ
(
µ(Bi)−1/s−

∫
Bi

|u− uBi | dµ
)
µ(Bi)

≤ Φ
(

λ

C(Cd, τ)

)−1

.

The claim follows by the de�nition of ‖ · ‖LΦ
w
. 2

Proof of Theorem 1.9. 1) Denote B′ = (1 + δ)B. It su�ces to show
that the pointwise inequality

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)
Φ−1

s

(
Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

))
(45)

13



holds for Lebesgue points x ∈ B. Indeed, if (45) holds, then

µ

(
x ∈ B :

|u(x)− uB|
C‖u‖

AΦ,s
τ (B̂)

> t

)
≤ µ

(
x ∈ B : Φ−1

s ◦ Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
> t

)

≤ µ

(
x ∈ B :

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

> Φ−1 ◦ Φs (t)

)
≤ Φs (t)−1 .

Fix a Lebesgue point x ∈ B of u and 0 < r ≤ δrB. Let {B0, . . . Bk} be the
chain from Lemma 3.5 corresponding to x and r. Since the balls Bi, i ≥ 1,
are disjoint, we have that

k∑
i=1

−
∫

Bi

|u− uBi | dµ = ‖
k∑

i=1

−
∫

Bi

|u− uBi | dµ
χBi

µ(Bi)
‖L1(X)

and

k∑
i=1

−
∫

Bi

|u−uBi | dµ
χBi

µ(Bi)
=

k∑
i=1

µ(Bi)−1/s−
∫

Bi

|u−uBi | dµχBi ·
k∑

i=1

µ(Bi)−1/s′χBi .

Hence, by the Hölder inequality,

k∑
i=1

−
∫

Bi

|u− uBi | dµ

≤ 2‖
k∑

i=1

µ(Bi)−1/s−
∫

Bi

|u− uBi | dµχBi‖LΦ(X) · ‖
k∑

i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)

≤ 2‖u‖
AΦ,s

τ (B̂)
· ‖

k∑
i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)
.

By the de�nition of Luxemburg norm

‖
k∑

i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)
= inf{λ > 0 :

k∑
i=1

Φ̂

(
µ(Bi)−1/s′

λ

)
µ(Bi) ≤ 1}.

For each i, we have that

Φ̂

(
µ(Bi)−1/s′

λ

)
µ(Bi) ≤ 2

∫ µ(Bi)

µ(Bi)

2

Φ̂

(
t−1/s′

λ

)
dt

≤
∫ µ(Bi)

µ(Bi)

2

Φ̂

(
2t−1/s′

λ

)
dt,

where the �rst inequality follows from the fact that the function

t 7→ Φ̂(t−1/s′/λ)

14



is decreasing, and the second from (27). Since

µ(Bi+1) ≤
µ(Bi)

2
,

we obtain

k∑
i=1

Φ̂

(
µ(Bi)−1/s′

λ

)
µ(Bi) ≤

∫ µ(B1)

µ(Bk)

2

Φ̂

(
2t−1/s′

λ

)
dt,

which implies that

‖
k∑

i=1

µ(Bi)−1/s′χBi‖LΦ̂(X)
≤ inf{λ > 0 :

∫ µ(B1)

µ(Bk)

2

Φ̂

(
2t−1/s′

λ

)
dt ≤ 1}

= 2‖t−1/s′‖
LΦ̂(

µ(Bk)

2
,µ(B1))

.

Thus

k∑
i=1

−
∫

Bi

|u− uBi | dµ ≤ C‖u‖
AΦ,s

τ (B̂)
‖t−1/s′‖

LΦ̂(
µ(Bk)

2
,µ(B1))

. (46)

By similar reasoning,

|uB0 − uB| ≤ |uB0 − uB′ |+ |uB′ − uB| ≤ C−
∫

B′
|u− uB′ | dµ

≤ C‖u‖
AΦ,s

τ (B̂)
‖t−1/s′‖

LΦ̂(
µ(B′)

2
,µ(B′))

.
(47)

It follows from estimates (46) and (47) that

|uB(x,r) − uB| ≤ C‖u‖
AΦ,s

τ (B̂)
‖t−1/s′‖

LΦ̂(C−1µ(B(x,r)),Cµ(B))
. (48)

Hence, by lemmas 3.1 and 3.2, and by (38),

|uB(x,r) − uB| ≤ C‖u‖
AΦ,s

τ (B̂)
Φ−1

s (µ(B(x, r))−1). (49)

Next, we will estimate |u(x)− uB(x,r)| in terms of maximal function (43). For
i ≥ 0, denote Bi = B(x, 2−ir). By the Lebesgue di�erentiation theorem ([9,
Theorem 1.8]), uBi → u(x), as i →∞. Thus, by (1) and (26),

|u(x)− uB(x,r)| ≤
∑
i≥0

|uBi − uBi+1 |

≤ C
∑
i≥0

−
∫

Bi

|u− uBi | dµ

≤ C
∑
i≥0

µ(Bi)1/sM#
s,B′u(x)

≤ Cµ(B(x, r))1/sM#
s,B′u(x).
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So, by Lemma 3.6,

|u(x)− uB(x,r)| ≤ C‖u‖
AΦ,s

τ (B̂)
µ(B(x, r))1/s

M#
s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

. (50)

Combining the above estimates, we obtain

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)

(
Φ−1

s (µ(Br)−1) + µ(Br)1/s
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
,

where Br = B(x, r). If Φ
(

M#

s,B′u(x)

‖M#

s,B′u‖LΦ
w(B′)

)
≥ µ(BδrB

)−1, we can choose r ≤

δrB such that

µ(Br)−1 ≤ Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
≤ Cµ(Br)−1.

Then

µ(Br)1/s
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

≤ CΦ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)−1/s
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

≤ CΦ−1
s

(
Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

))
,

(51)

where the last inequality comes from Lemma 3.4. Thus, we obtain (45).
If

Φ

(
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

)
< µ(BδrB

)−1,

it su�ces to combine estimate (50), where r = δrB, with the estimate

|uBδrB
− uB| ≤ C−

∫
B′
|u− uB′ | dµ

≤ Cµ(B′)1/sM#
s,B′u(x)

≤ C‖u‖
AΦ,s

τ (B̂)
µ(BδrB

)1/s
M#

s,B′u(x)

‖M#
s,B′u‖LΦ

w(B′)

and argue as in (51).
2) Letting r tend to zero in (48) and using Lemma 3.3 and (39), we obtain

|u(x)− uB| ≤ C‖u‖
AΦ,s

τ (B̂)
ω−1

s (µ(B)−1). (52)

Let x, y ∈ B be Lebesgue points of u. Denote Bxy = B(x, 2d(x, y)). If
d(x, y) > 1

3δrB, then µ(B) ≤ Cµ(Bxy). So

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ C‖u‖

AΦ,s
τ (B̂)

ω−1
s (µ(B)−1)

≤ C‖u‖
AΦ,s

τ (B̂)
ω−1

s (µ(Bxy)−1).
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If d(x, y) ≤ 1
3δrB, then (52), applied to the ball Bxy, yields

|u(x)− u(y)| ≤ |u(x)− uBxy |+ |u(y)− uBxy |
≤ C‖u‖

AΦ,s
τ (B̂xy)

ω−1
s (µ(Bxy)−1).

Since we may assume that δ < 1/2, it follows that B̂xy ⊂ B̂. Hence

|u(x)− u(y)| ≤ C‖u‖
AΦ,s

τ (B̂)
ω−1

s (µ(Bxy)−1).

2

Proof of Theorem 1.2. 1) By Theorem 1.9, it su�ces to show that

‖u‖
AΦ,s

τ (B̂)
≤ CrBµ(B)−1/s‖g‖LΦ(B̂). (53)

We may assume that ‖g‖LΦ(B̂) = 1. Let D be a ball such that τD ⊂ B̂. Then,

by (13) and (2),

−
∫

D
|u− uD| dµ ≤ CprDΦ−1

(
−
∫

τD
Φ(g) dµ

)
≤ CrBµ(B)−1/sµ(D)1/sΦ−1

(
−
∫

τD
Φ(g) dµ

)
.

Hence, for D ∈ Bτ (B̂),

∑
D∈D

Φ

(
µ(D)−1/s−

∫
D |u− uD| dµ

CrBµ(B)−1/s

)
µ(D) ≤

∑
D∈D

∫
τD

Φ(g) dµ ≤
∫

B̂
Φ(g) dµ ≤ 1,

which implies that

‖
∑
D∈D

(
µ(D)−1/s−

∫
D
|u− uD| dµ

)
χD‖LΦ(B̂) ≤ CrBµ(B)−1/s.

By taking supremum over Bτ (B̂), we obtain (53).
2) We may assume that δ < 1/2. Let D be a ball centered at B so that

D̂ = (1 + δ)τD ⊂ B̂. Fix a Lebesgue point x ∈ D, 0 < r < δrD and let {Bi}
be the chain from Lemma 3.5 corresponding to D, x and r. Clearly, the chain
can be chosen so that rBi+1 ≤

rBi
2 . Since the balls Bi, i ≥ 1, are disjoint, we

have that

k∑
i=1

−
∫

Bi

|u− uBi | dµ = ‖
k∑

i=1

µ(Bi)−1−
∫

Bi

|u− uBi | dµχBi‖L1(X)

and

k∑
i=1

µ(Bi)−1−
∫

Bi

|u−uBi | dµχBi =
k∑

i=1

r−1
i −
∫

Bi

|u−uBi | dµχBi ·
k∑

i=1

riµ(Bi)−1χBi .
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So, by the Hölder inequality,

k∑
i=1

−
∫

Bi

|u− uBi | dµ

≤ 2‖
k∑

i=1

r−1
i −
∫

Bi

|u− uBi | dµχBi‖LΦ(X) · ‖
k∑

i=1

riµ(Bi)−1χBi‖LΦ̂(X)
.

Since the pair ‖g‖−1

LΦ(B̂)
(u, g) satis�es the Φ-Poincaré inequality in B̂ and

{Bi} ∈ Bτ (D̂) ⊂ Bτ (B̂), we have that

‖
k∑

i=1

r−1
i −
∫

Bi

|u− uBi | dµχBi‖LΦ(X) ≤ C‖g‖LΦ(B̂).

By the de�nition of Luxemburg norm

‖
k∑

i=1

riµ(Bi)−1χBi‖LΦ̂(X)
= inf{λ > 0 :

k∑
i=1

Φ̂
(

riµ(Bi)−1

λ

)
µ(Bi) ≤ 1}.

By (2),
µ(Bi)−1 ≤ (CBri)−s,

where CB = Cr−1
B µ(B)1/s. Since the function t 7→ Φ̂(at)/t is increasing, for

every a > 0, we have

Φ̂
(

riµ(Bi)−1

λ

)
µ(Bi) ≤ Φ̂

(
ri(CBri)−s

λ

)
(CBri)s = Φ̂

(
t
−1/s′

i

CBλ

)
ti,

where ti = (CBri)s. It follows that

‖
k∑

i=1

riµ(Bi)−1χBi‖LΦ̂(X)
≤ C−1

B inf{λ > 0 :
k∑

i=1

Φ̂

(
t
−1/s′

i

λ

)
ti ≤ 1}

≤ 2C−1
B inf{λ > 0 :

∫ t1

0
Φ̂

(
t−1/s′

λ

)
≤ 1}

= 2C−1
B ‖t−1/s′‖

LΦ̂(0,t1)

≤ CrBµ(B)−1/sω−1
s (µ(B)−1rs

Br−s
D ),

where the last inequality comes from Lemma 3.3 and from (39). Thus

|u(x)− uB0 | = lim
r→0

|uB(x,r) − uB0 |

≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (µ(B)−1rs

Br−s
D ).

By similar reasoning,

|uB0 − uD| ≤ |uD′ − uB0 |+ |uB0 − uD′ | ≤ C−
∫

D′
|u− uD′ | dµ

≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (µ(B)−1rs

Br−s
D ).
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So,

|u(x)− uD| ≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω
−1
s (µ(B)−1rs

Br−s
D ). (54)

Let x, y ∈ B be Lebesgue points of u. If d(x, y) > 1
3δrB, then (54) with D = B

yields

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB|
≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω

−1
s (µ(B)−1rs

Bd(x, y)−s).

If d(x, y) ≤ 1
3δrB, then D̂ ⊂ B̂, for the ball D = B(x, 2d(x, y)), and so by (54)

and (39),

|u(x)− u(y)| ≤ |u(x)− uD|+ |u(y)− uD|
≤ CrBµ(B)−1/s‖g‖LΦ(B̂)ω

−1
s (µ(B)−1rs

Bd(x, y)−s).

2

Remark 3.7 As shown above, the �rst part of Theorem 1.2 is a consequence
of Theorem 1.9. More generally, suppose that (2) holds, and that a function u
satis�es an inequality of type

−
∫

D
|u− uD| dµ ≤ ‖u‖νr

α
DΦ−1

(
ν(τD)
µ(τD)

)
, (55)

where α > 0, and ν : {B : B is a ball } → [0,∞) satis�es
∑

ν(Bi) ≤ 1,
whenever the balls Bi are disjoint and contained in B̂. Then, an argument
similar to the proof of (53), shows that

‖u‖
A

Φ,s/α
τ (B̂)

≤ Crα
Bµ(B)−α/s‖u‖ν . (56)

Thus, if (14) holds, with s/α in place of s, Theorem 1.9 yields

‖u− uB‖
L

Φs/α
w (B)

≤ Crα
Bµ(B)−α/s‖u‖ν .

The properties of functions satisfying inequalities of type (55) with Φ(t) = tp

were studied in [7].

Remark 3.8 Suppose that (2) and (14) hold, and that a pair (u, g), where
0 <

∫
B̂ Φ(g) dµ < ∞, satis�es the Φ-Poincaré inequality in B̂. Then, for the

measure µ̂ =
(∫

B̂ Φ(g) dµ
)−1

µ, we have that ‖g‖LΦ(B̂;µ̂) = 1. Since (2) and

(13) trivially hold for µ̂ with the same constants as they hold for µ, Theorem
1.2, for the measure µ̂, yields

‖u− uB‖LΦs
w (B;µ̂)

≤ CrBµ̂(B)−1/s,

which is equivalent to

sup
t>0

Φs

(
t

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ

)−1/s
)

µ({|u− uB| > t}) ≤
∫

B̂
Φ(g) dµ,

(57)
where {|u− uB| > t} = {x ∈ B : |u(x)− uB| > t}.
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Proof of Theorem 1.4. Suppose that (2) and (14) hold, and that a pair
(u, g), where 0 <

∫
B̂ Φ(g) dµ < ∞, has the truncation property. Choose b such

that
µ({u ≥ b}) ≥ µ(B)/2 and µ({u ≤ b}) ≥ µ(B)/2.

Let v+ = max{u − b, 0} and v− = −min{u − b, 0}. We need the following
elementary lemma.

Lemma 3.9 Let ν be a �nite measure on Y . If w ≥ 0 is a ν-measurable
function such that ν({w = 0}) ≥ ν(Y )/2, then, for t > 0,

ν({w > t}) ≤ 2 inf
c∈R

ν({|w − c| > t/2}).

Proof If |c| ≤ t/2, then {w > t} ⊂ {|w − c| > t/2}. Otherwise, {w = 0} ⊂
{|w − c| > t/2}, and so

ν({w > t}) ≤ ν(Y ) ≤ 2ν({w = 0}) ≤ 2ν({|w − c| > t/2}).

2

Let v denote either v+ or v−. For k ∈ Z, denote vk = v2k

2k−1 and gk =
gχ{2k−1<v≤2k}. Then

µ({v > 2k}) ≤ µ({vk > 2k−2}) ≤ 2µ({|vk − (vk)B| > 2k−3}) (58)

for k ∈ Z. Let C = 25C0, where C0 is the constant from inequality (57). Using
(58) and (57) for the pair (vk, gk) we obtain∫

B
Φs

(
v

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ

)−1/s
)

dµ

≤
∑
k∈Z

∫
{2k<v≤2k+1}

Φs

(
v

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ

)−1/s
)

dµ

≤
∑
k∈Z

Φs

(
2k+1

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ

)−1/s
)

µ({v > 2k})

≤
∑
k∈Z

Φs

(
2k−3

C0rµ(B)−1/s

(∫
B̂

Φ(gk) dµ

)−1/s
)

µ({|vk − (vk)B| > 2k−3})

≤
∑
k∈Z

∫
B̂

Φ(gk) dµ

≤
∫

B̂
Φ(g) dµ.

Thus

inf
b∈R

∫
B

Φs

(
|u− b|

Crµ(B)−1/s

(∫
B̂

Φ(g) dµ

)−1/s
)

dµ ≤
∫

B̂
Φ(g) dµ. (59)
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This, for the pair ‖g‖−1

LΦ(B̂)
(u, g) in place of (u, g), yields

inf
b∈R

‖u− b‖LΦs (B) ≤ Crµ(B)−1/s‖g‖LΦ(B̂).

Since ‖u − uB‖LΦ(A) ≤ 2 infb∈R ‖u − b‖LΦ(A) for any set A of �nite measure,
the proof is complete. 2

4 Strong inequalities without truncation

In this section we will show how the weak estimate (24) implies strong ones.
We begin with an easy lemma.

Lemma 4.1 Let µ(X) < ∞, and let Φ and Ψ be Young functions such that∫ ∞

1

Ψ′(t)
Φ(t)

dt < ∞. (60)

Then LΦ
w(X) ⊂ LΨ(X) and there is a constant C = C(Ψ,Φ) such that

‖u‖−LΨ(X) ≤ C‖u‖−LΦ
w(X). (61)

Proof Assume ‖u‖LΦ
w(X) = 1. Denoting µ̃ = µ(X)−1µ, we obtain∫

X
Ψ(|u|) dµ̃ =

∫ ∞

0
Ψ′(t)µ̃({x ∈ X : |u| > t}) dt

≤ Ψ(1) +
∫ ∞

1
Ψ′(t)µ̃({x ∈ X : |u| > t}) dt

≤ Ψ(1) +
∫ ∞

1

Ψ′(t)
Φ(t)

dt =: C ′,

which implies (61) with C = max{C ′, 1}. 2

For a measure ν on X, denote

‖u‖
AΦ,s

τ (U ;ν)
= sup

B∈Bτ (U)
‖
∑
B∈B

(
ν(B)−1/s−

∫
B
|u− uB| dν

)
χB‖LΦ(U ;ν).

For a ball B ⊂ X, denote µB = µ(B)−1µ.

Theorem 4.2 Suppose that the assumptions of Theorem 1.9 are in force, (14)
holds, and that Ψ is a Young function satisfying∫ ∞

1

Ψ′(t)
Φs(t)

dt < ∞. (62)

Then
‖u− uB‖−LΨ(B) ≤ C‖u‖

AΦ,s
τ (B̂;µB̂)

, (63)
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where C = C(Cd, s, τ, δ,Φ,Ψ). Moreover, if µ satis�es (2), g ∈ LΦ(B̂), and a
pair ‖g‖−1

LΦ(B̂)
(u, g) satis�es the Φ-Poincaré inequality in B̂, then

‖u− uB‖−LΨ(B) ≤ CrB‖g‖−LΦ(B̂), (64)

where C = C(Cs, s, CP , τ, δ, Φ,Ψ).

Proof Theorem 1.9, applied to the measure µB = µ(B)−1µ, yields

‖u− uB‖−LΦs
w (B)

≤ C‖u‖
AΦ,s

τ (B̂;µB)
.

So, by Lemma 4.1,

‖u− uB‖−LΨ(B) ≤ C‖u‖
AΦ,s

τ (B̂;µB)
.

Since
‖ · ‖LΦ(B̂;µB) ≤ C‖ · ‖LΦ(B̂;µB̂),

it follows that
‖u‖

AΦ,s
τ (B̂;µB)

≤ C‖u‖
AΦ,s

τ (B̂;µB̂)
.

Inequality (64) follows from inequalities (63) and (53). 2

Notice that if Φs increases quickly enough, condition (62) is satis�ed with
Ψ(t) = Φs(t/2), and we have

‖u− uB‖−LΦs (B) ≤ C‖u‖
AΦ,s

τ (B̂;µB̂)
. (65)

In particular, this is the case when Φ is equivalent to t 7→ ts near in�nity.
Suppose now that (8) holds with a functional a satisfying (11), and that

Φ is equivalent to t 7→ ts near in�nity. Then

‖u‖
AΦ,s

τ (B̂;µB̂)
= sup

B∈Bτ (B̂)

‖
∑
B∈B

(
µB̂(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖−LΦ(B̂)

≤ C sup
B∈Bτ (B̂)

‖
∑
B∈B

(
µB̂(B)−1/s−

∫
B
|u− uB| dµ

)
χB‖−Ls(B̂)

≤ C sup
B∈Bτ (B̂)

(∑
B∈B

(
−
∫

B
|u− uB| dµ

)s
)1/s

≤ C‖u‖a sup
B∈Bτ (B̂)

(∑
B∈B

a(τB)s

)1/s

≤ C ‖u‖aa(B̂),

where the �rst inequality comes from (28). Thus (65) implies the generalized
Trudinger inequality (12).
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