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Abstract

We study conformal deformations of the Euclidean metric in the
unit ball Bn. We assume that the density associated with the defor-
mation satisfies a Harnack inequality and an arbitrary volume growth
condition on the isodiametric profile. We establish a Hausdorff (gauge)
dimension estimate for the set E ⊂ ∂Bn where such a deformation
mapping can “blow up”. We also prove a generalization of Gerasch’s
theorem in our setting.

1 Introduction

We consider conformal deformations of type f := Id : (Bn, g0) → (Bn, dρ)
where g0 is the canonical metric of the Euclidean unit ball Bn and dρ is a
conformal metric derived from the continuous density ρ : Bn → R+ in the
usual way:

dρ(x, y) = inf
γ

∫

γ
ρ(z)|dz| for x, y ∈ Bn,

where the infimum is taken over all rectifiable curves joining x and y in Bn.
We also define a measure µρ by setting

µρ(E) = Volρ(E) =
∫

E
ρndmn for a Borel set E ⊂ Bn,

where mn denotes the n-dimensional Lebesgue measure. Deformations of
this kind are originally motivated by the theory of (quasi)conformal map-
pings. We refer the reader to [1], [2] and [5] for more information and con-
crete examples of conformal metrics. Further, we say that the deformation
mapping f blows up at a point z ∈ ∂Bn if

lim
x→z

dρ(0, x) = ∞.

In our setting we assume that the density ρ satisfies a Harnack inequality,
i.e., there exists a constant A ≥ 1 so that

1
A
≤ ρ(x)
ρ(y)

≤ A (1.1)
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whenever y ∈ B(x, 1
2d(x, ∂B

n)) for some x ∈ Bn. This is equivalent to
assuming that the identity mapping f above is uniformly quasi-symmetric
in each ball B(x, 1

2(1−|x|)). Note that in (1.1) the point x is the center of the
Whitney-type ball instead of an arbitrary point. We prefer this formulation
for technical reasons.

We also assume a growth condition on the isodiametric profile of (Bn, dρ)
which we, following [5], define as a function ηρ : [0, diamρ(Bn)] → [0,∞],

ηρ(r) = sup{µρ(D) : D ⊂ Bn and diamρ(D) ≤ r}.

Notice that the condition ηρ(r) ≤ Crn for all r > 0 is equivalent to
assuming the so called volume growth condition

µρ(B(x, r)) ≤ Crn for all x ∈ Bn and r > 0. (1.2)

It was shown in [2, Theorem 4.4] that if a continuous density ρ satisfies the
Harnack inequality and the volume growth condition (1.2), then there is a
set E ⊂ ∂Bn of n-capacity zero so that

lengthρ([0, ξ)) <∞ for all ξ ∈ ∂Bn \ E,

and thus f cannot blow up on a set E ⊂ ∂Bn of positive n-capacity. This
classical result was obtained by relying on the Gehring-Hayman inequality.

In this paper we shall establish a more general relationship between
the growth of the isodiametric profile and the size of the set E ⊂ ∂Bn

where the deformation mapping f can blow up. In our more general setting
the Gehring-Hayman theorem is no longer available and, thus, a different
approach is needed. Previously it was shown in [5, Theorem 5B] that the
condition ηρ(r) ≤ Crn+ε with ε = ε(n,A) > 0 together with the Harnack
inequality is enough to guarantee that f cannot blow up on a set E ⊂ ∂Bn

of positive (n− 1)-Hausdorff measure. We shall extend this result.
First, observe that if the density ρ satisfies the Harnack inequality with

a constant A < 2, then f cannot blow up anywhere on the boundary of Bn,
regardless of the growth of the isodiametric profile. Namely, in this case it
follows immediately from the Harnack inequality that there is a constant
a < 1 so that ρ(z(1 − t)) ≤ Ct−a for all z ∈ ∂Bn and 0 < t < 1, see [5,
Proposition 1]. Consequently, the integral

∫
[0,z) ρ(x)|dx| converges for all

z ∈ ∂Bn.
If A ≥ 2, then the situation is no longer trivial. However, our first

theorem will imply, for instance, that if A > 2 and ηρ(r) = o(rn(log r)p) as
r → ∞ for some p > 0, then f cannot blow up on a subset E ⊂ ∂Bn of
positive h-measure of gauge

h(t) =
1

log(1
t )

p+n−1
.
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On the other hand, if A = 2, a much weaker growth condition on the
isodiametric profile is sufficient for the previous conclusion. Indeed, our
second theorem will show that it suffices to assume that ηρ(r) = o(rn+p) as
r →∞.

We are now ready to state our results. The first theorem covers the case
A > 2:

Theorem 1.1. Let A > 2 and c = 2 log2A− 2. Let ψ(r) be an increasing,
differentiable and doubling function such that

h(t) =
ψ′(t−c)n−1t(−c)(n−1)

ψ(t−c)n

is increasing, continuous and doubling so that h(t) → 0 as t → 0. Suppose
that ηρ(r) = o(rnψ(r)) as r → ∞. Then f cannot blow up on a subset
E ⊂ ∂Bn of positive h-measure.

Recall that a function h(t) is doubling if there exists a constant β > 0
such that h(2t) ≤ βh(t) for all t > 0. Notice also that the qualitative
properties of monotonity, differentiability or continuity for the functions ψ
and h are only needed to guarantee that h is a proper “gauge function”.
Recall that the generalized Hausdorff h-measure, or simply h-measure, is
defined by

Hh(E) = lim
r→0

(
inf

{∑
h(diamBi) : E ⊂

⋃
Bi, diam(Bi) ≤ r

})
,

where the dimension gauge function h is required to be continuous and
increasing with h(0) = 0. In particular, if h(t) = tα with some α > 0, then
Hh is the usual α-dimensional Hausdorff measure, denoted also by Hα. See
[8] or [3] for more information on the generalized Hausdorff measure.

The next theorem covers the case A = 2. Instead of assuming the dou-
bling condition for ψ, it now suffices to assume that, for some β > 0, the
function ψ satisfies

ψ(r + 1) ≤ βψ(r) (1.3)

for all r > 0. Observe that even the function ψ(r) = exp(r) satisfies this
weaker condition.

Theorem 1.2. Let A = 2 and c = 4ρ(0)/ log 2 and let ψ(r) be an increasing,
differentiable function satisfying (1.3) such that

h(t) =
ψ′(c log 1

t )
n−1

ψ(c log 1
t )

n

is increasing, continuous and doubling so that h(t) → 0 as t → 0. Suppose
that ηρ(r) = o(rnψ(r)) as r → ∞. Then f cannot blow up on a subset
E ⊂ ∂Bn of positive h-measure.
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Let us now consider some concrete examples that show how our re-
sults parallel previous recent results. This discussion also demonstrates
the essential sharpness of our results. For instance, suppose that the den-
sity ρ satisfies, in addition to the Harnack inequality, the growth condition
ηρ(r) = o(rn+p) as r → ∞ with some p > 0. Then Theorem 1.1 implies
that f cannot blow up on a subset E ⊂ ∂Bn of positive α-dimensional
Hausdorff-measure where α = cp > 0 depends only on A and p. In par-
ticular, if p = (n − 1)/c, then f cannot blow up on a set E of positive
(n − 1)-Hausdorff measure. Thus we recover [5, Theorem 5B] as a special
case of Theorem 1.1.

If ρ satisfies the Harnack inequality with the constant A = 2, then The-
orem 1.2 implies even a stronger result. Namely, it suffices to assume that
ηρ(r) = o(exp(pr)) as r → ∞ with a sufficiently small constant p > 0 de-
pending only on n and ρ(0) in order to conclude that f cannot blow up on
a subset E ⊂ ∂Bn of positive (n− 1)-dimensional Hausdorff measure. Note
that this estimate is essentially sharp in the following sense: There exists
a density ρ so that A = 2, the growth of ηρ is exponential and f blows up
on the entire boundary ∂Bn. To see this, simply consider the radial density
ρ(x) = (1− |x|)−1.

In the classical setting, where ηρ(r) ≤ Crn for all r > 0, we essentially
recover the result of [2, Theorem 4.4], as the next remark shows. As a matter
of fact, this even can be considered as a slight generalization, since we only
require that ηρ(r) = O(rn) as r →∞.

Remark 1.3. Let A ≥ 1 and let h be a proper gauge function satisfying
∫

0

h(t)1/(n−1)

t
dt <∞. (1.4)

Suppose that ηρ(r) = O(rn) as r →∞. Then f cannot blow up on a subset
E ⊂ ∂Bn of positive h-measure.

In particular, the set E above cannot be of positive h-measure of gauge
1/(log 1

t )
n−1+ε, where ε > 0 is arbitrary. Thus we essentially (in terms of a

gauge dimension) recover the sharp result of [2, Theorem 4.4], which states
that E has n-capacity zero.

As a consequence for Theorems 1.1 and 1.2 we shall establish the follow-
ing corollaries. They provide us a generalization of results of [7, Theorem
1] and [2, Lemma 7.5], which in turn are extensions of a theorem originally
due to Gerasch [4], on the broadly accessibility of the boundary points of
domains quasiconformally equivalent to a ball.

Corollary 1.4. Let A and c be as in Theorem 1.1 and write α = cp for
0 < p ≤ (n − 1)/c. Suppose that ηρ(r) = o(rn+p) as r → ∞. Then outside
an α-dimensional set E for all z ∈ ∂Bn there is a sequence (tk) → 1 such
that

z ∈ Bρ

(
tkz, Cρ(tkz)(1− |tkz|)

)
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for all k ∈ N. Here C > 0 depends only on A, p and n.

Corollary 1.5. Let A ≤ 2 and let c be as in Theorem 1.2 and write α = cp
for 0 < p ≤ (n− 1)/c. Suppose that ηρ(r) = o(rn exp(pr)) as r →∞. Then
outside an α-dimensional set E for all z ∈ ∂Bn there is a sequence (tk) → 1
such that

z ∈ Bρ

(
tkz, Cρ(tkz)(1− |tkz|)

)

for all k ∈ N. Here C > 0 depends only on A, p and n.

2 Proofs of the results

The proof of Theorem 1.1. Let E ⊂ ∂Bn consist of all points where f blows
up. Then E ⊂ {z ∈ ∂Bn :

∫
[0,z) ρ(x)|dx| = ∞}. Fix r > 0 and put

Er = {z ∈ ∂Bn :
∫

[0,z)
ρ(x)|dx| ≥ r}.

Assume towards a contradiction that Hh(E) > 0, whence also Hh(Er) > 0
since E ⊂ Er. Then, by Frostman’s lemma [6, Theorem 8.8], there exists
a Radon measure µ supported in Er such that µ(B(x, r̂)) ≤ h(r̂) for all
x ∈ ∂Bn and r̂ > 0 and that

µ(Er) ≥ CHh
∞(Er) ≥ CHh

∞(E) > 0, (2.1)

where Hh∞(E) = inf{∑i h(ri) : E ⊂ ⋃
iB(xi, ri)} is the usual Hausdorff

h-content of E and the constant C > 0 depends only on n.
We write

Ar = {x ∈ Bn : x/|x| ∈ Er ∧ r

2
≤ dρ(0, x) ≤ r}.

Let W be a Whitney decomposition of Bn and let Wr be the collection of
all the cubes Q ∈ W for which Q∩Ar 6= ∅. Further, we denote the union of
all the cubes Q ∈ Wr by Dr. Then it follows from the Harnack inequality
that diamρ(Dr) ≤ C(A)r for some constant C(A) ≥ 1.

For a point z ∈ ∂Bn, we define tz(r̂) by

∫ 1

tz(r̂)
ρ(φ(z, t))dt = r̂,

where φ(z, t) = z(1 − t) ∈ Bn. Now, by the inequalities of Harnack and
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Hölder, we have

r

2
µ(Er) ≤

∫

∂Bn

∫

[tz(r),tz(r/2)]
ρ(φ(z, t))dtdµ

≤
∑

Q∈Wr

µ(S(Q)) diamρ(Q)

≤ c0
∑

Q∈Wr

µ(S(Q))
(∫

Q
ρndm

)1/n

≤ c0

( ∑

Q∈Wr

∫

Q
ρndm

)1/n( ∑

Q∈Wr

µ(S(Q))
n

n−1

)n−1
n

= c0 Volρ(Dr)1/n
( ∑

Q∈Wr

µ(S(Q))
n

n−1

)n−1
n
. (2.2)

Here and throughout the proof ci denotes constants depending at most on
A,n, ρ(0) and the doubling constants of ψ and h. Also, we write S(Q) ⊂ ∂Bn

for the “shadow” of the cube Q, i.e., S(Q) consists of all points z ∈ ∂Bn for
which the radius [0, z) intersects the cube Q.

The Harnack inequality guarantees a polynomial growth behavior for the
density ρ. More precisely, ρ(φ(z, t)) ≤ Aρ(0)t−a with a = log2A > 1 for all
z ∈ ∂Bn and all 0 < t < 1 whenever the Harnack inequality is satisfied by
ρ. This in turn implies that

tz(r/2) ≤ c2r
− 1

a−1

and hence, for sufficiently large r, we obtain
( ∑

Q∈Wr

µ(S(Q))
n

n−1

)n−1
n ≤

( ∑

i≥c3 log2 r

∑

Q∈Wi

µ(S(Q))
n

n−1

)n−1
n

≤
( ∑

i≥c3 log2 r

max
Q∈Wi

µ(S(Q))
1

n−1

∑

Q∈Wi

µ(S(Q))
)n−1

n

≤
( ∑

i≥c3 log2 r

max
Q∈Wi

µ(S(Q))
1

n−1µ(Er)
)n−1

n
, (2.3)

whereWi denotes the ith generation of Whitney cubes, i.e., all the cubesQ ∈
W with sidelength 2−i. Here we can take c3 = 1

2(a−1) . Since diam(S(Q)) ≤
C2−i for each Q ∈ Wi and some constant C depending on n, it follows from
the doubling property of h that, for each such Q,

µ(S(Q)) ≤ h(C2−i) ≤ c4h(2−i).

By combining this with (2.2) and (2.3) we arrive at

rnµ(Er) ≤ c5 Volρ(Dr)
( ∑

i≥c3 log2 r

h(2−i)
1

n−1

)n−1
. (2.4)
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Choosing c = 1
c3

= 2 log2A−2 and integrating with a change of variable
we deduce that

∑

i≥c3 log2 r

h(2−i)
1

n−1 ≤ c6

∫ r−c3

0
h(t)

1
n−1

dt

t

= c6

∫ r−c3

0

ψ′(t−c)t−c−1

ψ(t−c)
n

n−1

dt

≤ c7ψ(r)−
1

n−1 . (2.5)

Now we conclude by the definition of the isodiametric profile and (2.4)
and (2.5) and the doubling property of ψ (recall that diamρ(Dr) ≤ C(A)r)
that

ηρ(diamρ(Dr))
diamρ(Dr)nψ(diamρ(Dr))

≥ Volρ(Dr)
diamρ(Dr)nψ(diamρ(Dr))

≥ c8µ(Er)rnψ(r)
diamρ(Dr)nψ(diamρ(Dr))

≥ c8µ(Er)rnψ(r)
c9rnψ(r)

.

Furthermore, by the assumption on ηρ(r), this quantity tends to zero as
r →∞. It follows that

µ(Er) → 0 as r →∞

which is a contradiction with (2.1). Hence the proof is complete. ¤
The proof of Theorem 1.2 The proof of Theorem 1.2 is similar to the

one of Theorem 1.1, and thus we only indicate the important modifications
needed. Notice first that the Harnack inequality with the constant A = 2
implies the growth condition ρ(φ(z, t)) ≤ 2ρ(0)t−1 for all z ∈ ∂Bn and
0 < t < 1. Consequently, we have the estimates

diamρ(Dr) ≤ r + c0 (2.6)

and
tz(r/2) ≤ exp(− r

c1
),

where c0 depends only on n and c1 = 4ρ(0). Hence the inequality corre-
sponding to (2.4) takes the form

rnµ(Er) ≤ c2 Volρ(Dr)
( ∑

i≥r/c1

h(2−i)
1

n−1

)n−1
.
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The integration now implies

∑

i≥r/c1

h(2−i)
1

n−1 ≤ c2

∫ 2−r/c1

0
h(t)

1
n−1

dt

t

= c2

∫ 2−r/c1

0

ψ′(c log 1
t )

ψ(c log 1
t )

n
n−1

dt

t

≤ c3ψ(c log(2r/c1))−
1

n−1

≤ c3ψ(r)−
1

n−1 ,

when we choose c = c1/ log 2 = 4ρ(0)/ log 2. The final conclusions then
follow in the same way as in the proof of Theorem 1.1, except that the
inequality

diamρ(Dr)nψ(diamρ(Dr)) ≤ c9r
nψ(r)

follows from (2.6) and (1.3) instead of the doubling property of ψ. ¤
The proof of Remark 1.3 We modify the proof of Theorem 1.1 in the

following way. It follows from (1.4) that the sum
( ∑

i≥c3 log2 r

h(2−i)
1

n−1

)n−1

in (2.4) tends to zero as r →∞. Consequently, the inequality (2.4) becomes

rnµ(Er) ≤ C Volρ(Dr)ε(r),

where ε(r) → 0 as r →∞. Hence, by the assumption on ηρ(r), the quantity

ηρ(diamρ(Dr))
diamρ(Dr)n

≥ Volρ(Dr)
diamρ(Dr)n

≥ µ(Er)rn

Crnε(r)

stays bounded as r tends to infinity. Thus µ(Er) → 0 as r → ∞ and the
claim follows. ¤

The proof of Corollary 1.4 By Theorem 1.1, there exists a set E∞ of
α-Hausdorff measure zero so that we have dρ(0, z) <∞ for all z ∈ ∂Bn\E∞.
Let us denote the set of such z’s by ∂ρBn.

Lemma 7.5 in [2] states that the claim of the corollary is valid for every
z ∈ ∂Bn for which

ρ(φ(z, t)) = O(t−a) as t→ 0, (2.7)

where a ∈ (0, 1) is a constant. Therefore, it is enough to show that there
is a constant a ∈ (0, 1) depending only on A and n and p so that outside a
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set E of α-Hausdorff measure zero the condition (2.7) holds. (Observe that
now the growth condition implied by the Harnack inequality alone in the
proof of Theorem 1.1 is not sharp enough.)

To that end, we shall next show that Theorem 5.2 in [2] remains valid
also in our setting. More precisely, we shall find a set E with Hα(E) = 0 so
that for all z ∈ ∂ρBn\E we have

ρ(φ(z, t)) = o(t−1+α/n) as t→ 0.

Let us fix α and define, for j ∈ N, sets Gj = {z ∈ ∂ρBn :
∫
[0,z) ρ ds ≤ j}

and
Fj =

⋃

z∈Gj

⋃
{B(

tz,
1
2
(1− t)

)
: 0 ≤ t < 1}.

Then Fj is open. Moreover, it follows from Harnack inequality that

diamρ(Fj) <∞,

cf. (4.1) in [2]. Hence, by the assumption on ηρ(r), we also have Volρ(Fj) <
∞. This implies that the function uj , defined as uj(x) = ρ(x)n for x ∈ Fj

and uj(x) = 0 elsewhere, belongs to L1(Bn). Thus there exists a set Ej ⊂
∂Bn with Hα(Ej) = 0 such that, for all z ∈ ∂Bn\Ej ,

∫

B(z,r)∩Bn

uj dmn = o(rα) as r → 0,

cf. [9, p. 118]. In particular, for each z ∈ Gj\Ej ,
∫

B((1−t)z, 1
2
t)
ρn dmm ≤

∫

B(z, 3
2
t)
uj dmm = o

(
tα

)
as t→ 0,

and so, by the Harnack inequality,

ρ(φ(z, t))n ≤ 2nA2t−n

∫

B((1−t)z, 1
2
t)
ρn dmm = o(tα−n) as t→ 0.

Since
⋃

j∈NGj = ∂ρBn, the desired growth condition holds for all z ∈
∂Bn\E, where E = E∞ ∪⋃

j∈NEj . Clearly, Hα(E) = 0.
We now choose a = −1+α/n in (2.7) and, hence, the constant a depends

only on A and n and p. The conclusion of the corollary follows. ¤
The proof of Corollary 1.5 is very similar to the one of Corollary 1.4 and

is left to the reader.
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