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Abstract

We study homeomorphisms of finite exponentially integrable dis-
tortion of the unit ball B™ onto a domain {2 of finite volume. We show
that under such a mapping the images of almost all radii (in terms of
a gauge dimension) have finite discrete length. We also show that our
dimension estimate is essentially sharp.

1 Introduction

We continue the study of mappings f : B" — Q C R” of finite distortion
defined in the unit ball B™ of the Euclidean space R", n > 2. Thus f belongs
to the Sobolev space WI})’Cl(B",]R”), the Jacobian determinant J; is locally
integrable in B", and there is a measurable function K > 1 so that K is
finite almost everywhere in B™ and that f satisfies the distortion inequality

|IDf(x)|" < K(x)J¢(x) for almost every x € B". (1.1)

Here | D f(x)| denotes the operator norm of the differential D f. In our setting
we also assume that f is a homeomorphism. Thus, if we were to require
that K be bounded, then f would be a quasiconformal mapping. However,
instead of boundedness we only require that K is exponentially integrable,
i.e. there exists a constant A > 0 such that exp(AK) € L'(B"). The
mappings of this kind have been studied extensively in the recent years. See
e.g. [1], [5], [6], [8], [9], [11], [12] for some important properties of (possibly
non-homeomorphic) mappings of finite distortion. Also see [13], [15] and
[17] for boundary behavior properties.

In this paper we show that if f(B™) has finite volume, then the images
of “most” radii under a homeomorphism f of finite exponentially integrable
distortion have finite discrete length. This is an analog of Beurling’s theorem
about the existence of radial limits for conformal homeomorphisms, see [2].
More precisely, our main result is the following:
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Theorem 1.1. Let f : B" — f(B"™) C R™ be a homeomorphism of finite
distortion so that f(B™) has finite volume and exp(AK) € L*(B™) for some
A > 0. Let h be a doubling weight function such that

1/(n—1)
/ <h(t) log 1) dt < 0. (1.2)
0 t t

Then there ezists a set E C OB™ so that H"(E) = 0 and length,(f(I¢)) <
oo for all £ € 9B™ \ E.

Here I; C B™ denotes the radius corresponding to the point £ € 0B"
and the discrete length of the image of I¢ is defined by

lengthy(f(I) = Y diam(f(Q)),
QeEW: QNIg#£D

where W is a fixed Whitney decomposition of B™, i.e. W is a collection of
closed dyadic cubes () C B™ with pairwise disjoint interiors such that

U oo

QeW

and that diam(Q) < dist(Q, 9B™) < 4diam(Q). Recall that the generalized
Hausdorff h-measure, or simply h-measure, is defined by

H"(B) = tim ((inf { 3 h(diam B;) : E € | J Bi, diam(B;) <r}),

where the dimension gauge function h is required to be continuous and
increasing with ~(0) = 0. In particular, if h(t) = t* with some a > 0, then
H" is the usual a-dimensional Hausdorff measure, denoted also by H®. See
[16] for more information on the generalized Hausdorff measure.

The notion of discrete length was used already by Heinonen and Rohde
in [7] as a tool for proving the Gehring-Hayman inequality for quasihyper-
bolic geodesics. The use of the discrete length in Theorem 1.1 instead of the
ordinary length is essential. Indeed, there exists even a bounded quasicon-
formal mapping of B" so that f(I¢) has infinite length for all { € E C 0B™,
where E has Hausdorff dimension n — 1, see [7].

In [4, Theorem 4.4] a quasiconformal version of Beurling’s theorem was
established by relying on the Gehring-Hayman Theorem. In our setting,
however, the Gehring-Hayman Theorem is not available, and thus a different
technique is applied in the proof of Theorem 1.1. This is also the reason why
our estimate for the size of the exceptional set E is in terms of Hausdorff
(gauge) dimension instead of capacity. Nevertheless, the dimension estimate
of Theorem 1.1 is sharp at least in the plane:



Theorem 1.2. For any dimension gauge h satisfying

/h(t) log(l/t)% = 00, (1.3)
0

there exists a homeomorphism f : B?> — f(B?) C R? of finite distortion
satisfying the assumptions of Theorem 1.1 and a set E C 0B? so that
length,(f(I¢)) = oo for all ¢ € E and that H"(E) > 0.

In particular, Theorem 1.1 implies that if a mapping f : B> — f(B?) C
R? satisfies the assumptions of Theorem 1.1, then the exceptional set E =
{¢ € OB% : lengthy(f(I¢)) = oo} has h-measure zero with the dimension

gauge
1

h(t) = W’

where € > 0 is arbitrary. On the other hand, Theorem 1.2 implies that there
exists a mapping f satisfying the assumptions of Theorem 1.1 such that the
set E above has positive h-measure with the dimension gauge

1
(log $)*

For a quasiconformal mapping (f as above but with a bounded distortion
K) our proof implies that the exceptional set E has h-measure zero with

any h satisfying
/ hOVTY
0 t '

In particular, H"*(E) = 0 with h(t) = 1/(log 1)"~1*¢, where ¢ > 0 is ar-

bitrary. Thus, in this setting, we essentially (in terms of gauge dimension)

recover the sharp classical result, which states that E has n-capacity zero.
The next corollary follows immediately from Theorem 1.1:

Corollary 1.3. Let f : B* — f(B™) C R"™ be a homeomorphism of finite
distortion so that f(B™) has finite volume and exp(AK) € L*(B™) for some
A > 0. Let h be a doubling weight function satisfying (1.2). Then the radial
limit limy_1 f(t€) exists for H"-almost every & € OB™.

h(t) = (1.4)

2 Proof of the main result

Proof of Theorem 1.1. Let E = {z € 0B™ : length,(f(I;)) = oo}. Fix
k € N and put Ey, = {x € 0B™ : length,(f(I,)) > k}. Assume towards a
contradiction that H"(E) > 0, whence also H"(E}) > 0 because E C Ej.
Then, by Frostman’s lemma [14, Theorem 8.8], there exists a Radon measure
w supported in Ej, so that u(B(z,r)) < h(r) for all z € 9B™ and r > 0 and
that

u(Ex) = HY(By) > HE(E) > 0, (2.1)



where H! (E) = inf{}_, h(r;) : E C U, B(zi,r;)} is the usual Hausdorff
h-content of E. Here and throughout the proof we denote by <, =< or 2 an
inequality up to some positive constant depending only on n.

Define for each Q@ € W a ball Bg = B(zg, diam(Q)/2), where zq is the
center of (). Let B be the collection of all such balls.

Because f € W (B" R") and exp(AK) € L'(B") and Jy € L (B"),

loc loc

the distortion inequality (1.1) together with Holder’s inequality implies that
VS VVI})’I)(B",R") for all p < n. Fix n —1 < p < n. Let x be the center of

C

some ball B = B(x,r) € B and let ¢ = ¢(n) > 1 so that dist(cB,0B"™) >
3 dist(B,9B™). By Sobolev’s inequality we deduce that (cf. [9, Lemma
4.10.1])

diam(f(S" L (z,1))) S 77 (/

Sn—1(z,t

o) )

for a.e. t €]r,cr[. Here S"1(z,t) denotes an z-centered sphere of radius
t. Hence we can choose t €]r, cr| so that the inequality (2.2) holds together

with )
[ ot [ o
Sn=1(z,t) T JB(z,cr)

Moreover, since f is a homeomorphism, we have that
diam(f(B(x,7))) < diam(f(S" ! (z,1))).

Thus we arrive at

_n-1 /
diam(f(B(z, 1) S 7 G/m >’Dfp)1p

[ e

By applying (1.1) and Holder’s inequality, we deduce further that

1/p L) 1/p
oo 0"

Lo )"y 5
e (/B(xﬂ) Jf) . (]{B(xﬂ) Kn%p)T;) (2.4)

By combining (2.3) and (2.4) we conclude that

IN

A

diam(f(B(x, ) < ( /B . Jf)l/ "(é . K—) (2.5)

It follows from the assumption exp(AK) € L! by Jensen’s inequality that

| KT <alos1/r) T
B(z,r)
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for any ball B(z,r) C B™ with r < % Here and throughout the proof we
denote by ¢; positive constants depending only on A, n, [ pn €xp(AK) and the
doubling constant of h. Combining this with (2.5) we obtain

diam(f(B)) < 02< / Jf)l/ n(log(l/diam(B)))l/ ! (2.6)

cB

for all B € B.

For a point © € 9B"™ let B(x) consist of all the balls B € B such that
the radius I, intersects the ball B. Furthermore, denote by B; the balls
corresponding to the jth generation of Whitney cubes, i.e. B; consists of all

the balls B € B of radius @2*3'. By using (2.6), the definition of Ej and
Hoélder’s inequality we obtain the following chain of inequalities:

Bk < /8  lengthy(f(L)) dyr

< /8 S diam(f(B)) dya

B" peB(x)

< Z )) diam(f(B))

BeB

oY M(S(B))< o) (1ost diaan(y)
BeB ¢

<X [ )" u(S(Q))ﬁUog(l/diam(B)))ﬁ)T
BeB BEB

<af [ )" (33 usmte) T 1)

j=1 BeB;

where S(B) C 0B" denotes the “shadow” of a ball B, i.e. those points
x € OB™ for which I, N B # (. Note that the balls ¢cB, B € B, have
bounded overlap. Furthermore, since diam(S(B)) < C277 for all B € B;
with some C' > 0 depending only on n, we deduce that

> u(S(B)TT < max u(S(B)TT Y u(S(B))
BeB, ’ BeB,

S S max n(S(B)) T p(E)

< W(O27) 7 ()
< esh(279) 7 p(E), (2.8)

where the last inequality follows by the doubling property of h. Finally, by
(2.7) and (2.8) we conclude that

-1

w(Ep)/ "k < C5</B” Jf> 1/n(§:h(2j)nlljnil>nn7
j=1



where the sum on the right-hand side of the inequality converges by the
assumption (1.2). Notice that [, Jf < co because f(B™) has finite volume,
see [9, Theorem 6.2.1]. Hence u(Ex) — 0 when k — oo, but this is a
contradiction with (2.1). It follows that H"(E) = 0.

Remark 2.1. The above proof gives us a stronger statement than what is
asserted in Theorem 1.1. Indeed, one has the estimate H" (Ey) < C/k"™,
where the constant C may depend on h.

3 Sharpness of the result

This section is devoted to proving Theorem 1.2. The main idea of our proof
is the following: We will first construct a set F on the boundary of the unit
square Q = [—1,1]2 (it is easier to work in the square) with H*(E) > 0 and
a homeomorphism f : ) — @ of finite exponentially integrable distortion so
that it maps the set E to a set of zero logarithmic capacity on the boundary
of Q. We will then map @ conformally to a ‘logarithmic spiral’ around the
origin so that f(E) C 0Q (of zero logarithmic capacity) gets mapped to the
origin.

For the sake of simplicity, we will write the detailed proof in the case
that the set F has positive h-measure with the concrete dimension gauge

After dealing with this special case we will discuss the modifications needed
in the construction of E in order to obtain the estimate H"(E) > 0 for any
given dimension gauge h satisfying (1.3).

Proof of Theorem 1.2. Let tg = 1 and let t;, = exp(—2¥/2) for all k =
1,2,.... We construct a “Cantor-like” set E C [0,1] x {—1} on the boundary
of @ in the following way. Starting with the unit interval [0, 1] of length ¢y,
we select two intervals, each of length ¢;, one from the middle of [0, 1/2] and
one from the middle of [1/2,1]. This gives us our first generation of basic
intervals. We now iterate the process: given a (k — 1)st generation basic
interval I, we select two intervals, each of length t;, one from the middle of
each of the two halves of I. This will give us 2¥ kth generation intervals each
of length t;,. We define the set E to be the intersection over all generations
of the unions of all kth generation basic intervals. A standard calculation
reveals that H"(E) > 0 for h(t) = 1/(log 1)*.

In the same way we also construct a set E' C [0, 1] x {—1} by choosing
th = 1 and ¢}, = exp(—2F) for all kK = 1,2,... and carrying out the same
construction outlined above. For the resulting Cantor set we have that
H"(E') < 0o with the dimension gauge ho(t) = 1/log(1/t). This implies
that E’ has zero logarithmic capacity.



Next we construct a homemorphism f : Q — @ such that f(F) = E" and
the restriction of f to the interior of ) has finite exponentially integrable
distortion. We accomplish this by modifying the construction found in [6].
Given a kth generation basic interval Iy, i € {1,2,...,2%}, for E, let Q;
denote the closed square of sidelength t; centered at the center of Ii;. Then
denote by Py; a bigger square, concentric about Q; and of sidelength t5_1 /2.
Set Ag; = Pr; \ Q. Hence Ay; is a ‘frame’ or a ‘spherical ring’ when we
work with the norm

2]l = l|#]loc = max{|z1], 2]}

In the same way we define cubes @, and P/, with sidelengths ¢} and
t._,/2 respectively. Thus @), are formed using the kth generation basic
intervals in the construction of E’ while P/, are formed using the halves of
the (k — 1)st generation basic intervals. We then define A}, = P/, \ Q..

In the picture below there is an illustration of the squares Q;_1); and

ék—l)j for some k and j. Thus the horizontal line across the center of the
left-hand side square illustrates some (k — 1)th generation basic interval of
length t;,_1, while the corresponding line in the right-hand side square has
length ¢, _,. Note that the two squares Tkli and T,fi both have sidelength

tp_1/4, and the squares T}L and T both have sidelength t,_, /4.

1 2
Tki Tki

1’ 2/
Tki Tki

Api

Qi 0

,
TRT

!
Q1)

Qk-1)j

Now define f1 : Q — Q,

the identity outside ]0,1[x] —1, —%[,

a similarity of Q1; N Q onto @}, N Q,

a similarity of Tlli onto Tllll )

a similarity of T12Z~ onto lell )

a ‘radial stretching’ of Ay; N Q onto Alli ne.

fi

Note that the only distortion for f; comes from the ‘radial stretching’ and
this all ‘lives’ in the (upper halves of the) annuli A;; We iterate this con-



struction by defining for all £ > 2 the function f; : Q — @,

fr—1 outside the union (J; Q(x—1);,
a similarity of Q; N Q onto @}, N Q,
fr =1 a similarity of Tklz. onto Tk}; ,
a similarity of T,fi onto T,?Z/ ,
a ‘radial stretching’ of Ay; N Q onto A}, N Q.

Again, the only (new) distortion for fi ‘lives’ in the annuli Ag;. In this way
we obtain a homeomorphism f = limy_,, fx which satisfies f(F) = E’.

Let us next define these radial stretchings more precisely. Consider the
spherical rings (in the || - [|s-metric)

A={z: r<|z|| <R} and A ={y: " <|yl| <R}
and the radial homeomorphism

y=px)= ”i—Hp(HxH), where p(t) = at®  with some a,b > 0.

Now ¢(A) = A’ provided that
r'=ar® and R =aR’,

which implies that
_ log R' —log 1"

b= .
log R — logr
Moreover, an elementary reasoning shows that
p(l|z oz p(||x
ot = ma {0 1oy} ) = 20l
] ]

see for example [10, Lemma 4.1]. It follows that

_[bifb>1
Kol) = { b1 ifb< 1. (3.1)

Now we examine the distortion of f in Ag;. Recall that f maps Ag;
to A}, where the inner, outer radii (in the || - ||sc-metric) are r = t;/2,
R = ty_1/4 for Ay, and v = ¢, /2, R = t;_,/4 for A}, respectively. A
calculation reveals that

log(t),_,/4) — log(t,/2) —2k=1 _log4 + 2% 4+ log?2
b log(tx—1/4) — log(tr/2) — kD2 log 4 + 2k/2 4 log 2
2kl og2
(11— 75)28/2 —log 2
~ 2k/2,



and thus we deduce by (3.1) that f has distortion
Kp<c2"? in A,;NQ (3.2)

with some absolute constant ¢ > 0.

Next we estimate the integral of exp(AKy) over the interior of @ by
applying the estimate (3.2) to all spherical rings Ag;, k =1,2,...,7i = 1,..., 2%
Since each of these rings has measure no larger than the area of Py; or
(te_1/2)? < exp(—2%*+1)/2) we conclude that

AK ) < > 2k _2(k+1)/2 A 2k/2
/intQ exp(AKy) S ; exp ( ) exp ( c )

< i exp (k‘ —o(k1)/2 4 Ac2k/2)
k=1
< o0,

when we choose \ < % Hence the restriction of f to the interior of () has
finite exponentially integrable distortion.

To establish the theorem, we take a conformal mapping g1 : int Q — Q2 C
H such that it maps the set E’ of zero logarithmic capacity to {0} C 9 in
terms of a limit, i.e. g1(x) — 0 when # — E’. Here H denotes the upper
half plane. See a recent result of Bishop for the existence of such a mapping
[3]. Then we take another conformal mapping g, which maps the domain
to a ‘logarithmic spiral’ S so that ga(z) — 0 when z — 0. By a logarithmic
spiral S we mean the image of the set

So={x+iyeC: 2n(e" —2) <y < 2mw(e® —1) and x > 0 and y > 0}

under the analytic mapping exp(—z). Note that the area of S is finite and
that the composition g 0 g1 o f maps E to origin (in terms of a limit).
The claim now follows by considering the composition g, 0 g1 o f o gg :
B? — S, where
_ lel
= x
]

is the “natural” stretching that maps the unit disk to the unit square and
f is the restriction of f to the interior of Q.

Let us close the proof by indicating the important modifications needed
in the above construction in order to obtain a set E for which H"(E) > 0
with a given gauge function h satisfying (1.3). Observe that by choosing
ty = exp(—2"/2/k1/2) and t}, = exp(—2¥/k) in the construction of E and E’,
we would have H"(F) > 0 with the dimension gauge

go:B*—intQ , go(z)

~ 1
() = ,
®) (log%)Qlog log%

(3.3)
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while E’ would still have zero logarithmic capacity. Carrying out the con-
struction of f and choosing gg, g1 and g exactly as above gives us the desired
conclusion with the improved dimension gauge of (3.3). In the same way
one obtains the conclusion of Theorem 1.2 for arbitrary h satisfying (1.3).

Remark 3.1. The construction of the homeomorphism f : QQ — @Q above
can be easily extended to higher dimensions. It appears to be unknown if
the resulting set E' of conformal capacity zero can be mapped to the origin
“through” a logarithmic spiral. We expect this to be the case.
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