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Abstract. Quasiregular mappings f : Ω ⊂ Rn → Rn are a natural generalization
of analytic functions from complex analysis and provide a theory which is rich with
new phenomena. In this paper we extend a well-known result of A. Chang and
D. Marshall on exponential integrability of analytic functions in the disk, to the
case of quasiregular mappings defined in the unit ball of Rn. To this end, we first
establish an “egg-yolk” principle for such maps, which extends a recent result of the
first author. Our work leaves open an interesting problem regarding n-harmonic
functions.

1. Introduction

We will denote an n-dimensional ball with center a and radius r by Bn(a, r). The

unit ball is Bn. Sometimes the notation rBn for Bn(0, r) is used. Similarly, the

notations Sn−1(a, r) and Sn−1 for the corresponding (n − 1)-spheres will be used,

respectively. The s-dimensional Hausdorff measure will be denoted by Hs. The

volume of Bn is denoted by αn, and the (n− 1)-measure of Sn−1 by ωn−1.

A mapping f : Ω ⊂ Rn → Rn is called quasiregular (qr) if it belongs to the Sobolev

class W 1,n
loc (Ω,Rn), and, for some K ≥ 1, it satisfies the distortion inequality

‖Df(x)‖n ≤ KJ(x, f)

for almost every x ∈ Ω, where ‖Df(x)‖ is the operator norm of the matrix derivative

Df(x) =
(
∂fi

∂xj

)n
i,j=1

, which is well-defined for almost every x ∈ Rn, and J(x, f)

is the Jacobian determinant of f at x, i.e., J(x, f) = detDf(x). It is well-known

that quasiregular mappings are continuous and almost everywhere differentiable, and,

when non-constant, they are open and discrete. Also when n = 2 and K = 1 they are

analytic functions. They provide a fruitful generalization of classical function theory

to higher (real) dimensional spaces. We refer to [Res89] and [Ric93] for the basic

theory of quasiregular mappings. The theory of these mappings is often referred to,

in colorful language, as the quasiworld.
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The purpose of this paper is twofold. We extend the exponential integrability result

of [CM85] to the quasiworld. But, to do this, we also need to extend an “egg-yolk

principle for the inverse map” conjectured by D. Marshall in [Mar89], which has been

shown to hold in the classical case in [PC].

1.1. Exponential integrability. The following result is proved in [CM85].

Theorem A (Chang-Marshall [CM85]). There is a universal constant C < ∞ so

that if f is analytic in D, f(0) = 0, and

(1.1)

∫
D
|f ′(z)|2 dA(z)/π ≤ 1,

then ∫ 2π

0

exp
(
|f ?(eiθ)|2

)
dθ ≤ C.

where f ? is the trace of f on ∂D, i.e., f ?(ζ) = limt↑1 f(tζ) for H1-a.e. ζ ∈ ∂D.

This result is moreover “sharp”. Indeed, even though for any given β > 0 and any

analytic function f on D, satisfying f(0) = 0 and (1.1), the integral∫ 2π

0

exp
(
β|f ?(eiθ)|2

)
dθ

is finite, there is a family of functions, the Beurling functions

Ba(z) =

(
log

1

1− az

)(
log

1

1− a2

)−1
2

0 < a < 1

that are analytic in D, satisfy Ba(0) = 0 and (1.1), with the property that for any

given α > 1, one can choose a so that the integral∫ 2π

0

exp
(
α|Ba(e

iθ)|2
)
dθ

is as large as desired.

In this paper we extend the Chang-Marshall result to quasiregular mappings.

Theorem 1.1. There exists a constant C = C(n,K) < ∞ so that if f : Bn → Rn,

n ≥ 2, is a K-quasiregular mapping with f(0) = 0 and

(1.2)

∫
Bn

J(x, f) dx ≤ αn,

then ∫
Sn−1

exp

(
(n− 1)

( n

2K

) 1
n−1 |f ?(ζ)|

n
n−1

)
dHn−1(ζ) ≤ C,

where f ? is the trace of f on Sn−1, i.e., f ?(ζ) = limt↑1 f(tζ) for Hn−1-a.e. ζ ∈ Sn−1.
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The trace f ? in Theorem 1.1 is well-defined, since a quasiregular mapping f :

Bn → Rn satisfying (1.2) has radial limits at almost every θ ∈ Sn−1, see [Ric93], VII

Theorem 2.7.

For a mapping satisfying the assumptions of Theorem 1.1,∫
Sn−1

exp
(
β|f ?(ζ)|

n
n−1

)
dHn−1(ζ) <∞

for every β > 0. This is a consequence of Theorem 1.5 as will be shown at the end of

Section 5.

Theorem 1.1 is sharp for n = 2, in the sense that for any K ≥ 1 the constant K−1

cannot be improved on. To see this, first map the unit disk onto the upper half plane

by a Möbius transformation, so that (1, 0) is mapped to the origin. Then apply the

radial stretching z 7→ z|z|K−1, which is a K-quasiconformal map, and map back to

the disk. Finally, apply the Beurling functions Ba. The compositions of these maps,

BK,a, are K-quasiregular maps satisfying the assumptions of Theorem 1.1, and for

each β > K−1,

sup
0<a<1

∫ 2π

0

exp
(
β|B?

K,a(e
iθ)|2

)
dθ = ∞.

In dimensions higher than two the situation is different. Indeed, by the Liou-

ville theorem of Gehring and Reshetnyak, see [Res89], Theorem 5.10, 1-quasiregular

mappings in dimensions three or higher are Möbius transformations. Moreover, the

L∞-norm of a Möbius transformation satisfying the assumptions of Theorem 1.1 is

bounded by two. We expect that the constant (n − 1)
(
n

2K

) 1
n−1 is not sharp for any

n ≥ 3 and any K ≥ 1. In particular, it would be interesting to determine whether the

sharp constant stays bounded as n tends to infinity. Spatial maps that are similar to

the Beurling functions can be constructed by using cylinder maps (K-quasiconformal

maps mapping Bn onto an infinite cylinder). The best dilatation constant K for

cylinder maps is not known, see [GV65], Section 8.

1.2. Further remarks. The Chang-Marshall theorem has the following two corol-

laries for harmonic and Sobolev functions.

Corollary D. There is a universal constant C <∞ so that if u : D → R is harmonic

with u(0) = 0 and ∫
D
|∇u(z)|2 dA(z)/π ≤ 1,

then ∫ 2π

0

exp
(
u?(eiθ)2

)
dθ ≤ C

where u? is the trace of u on ∂D, i.e., u?(ζ) = limt↑1 u(tζ) = u?(ζ) for H1-a.e. ζ ∈ ∂D.
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Proof. Let ũ be the harmonic conjugate of u such that ũ(0) = 0. Then f = u + iũ

satisfies the hypothesis of Theorem C, since |f ′| = |∇u|. So∫ 2π

0

exp
(
u?(eiθ)2

)
dθ ≤

∫ 2π

0

exp(u?(eiθ)2 + ũ?(eiθ)2) dθ ≤ C.

�

Corollary E. There is a universal constant C < ∞ so that if v ∈ W 1,2(D) with∫
∂D v

?(eiθ) dθ = 0 and ∫
D
|∇v(z)|2 dA(z)/π ≤ 1,

then ∫ 2π

0

exp
(
v?(eiθ)2

)
dθ ≤ C

where v? is the Sobolev trace of v on ∂D.

For the concept of Sobolev trace see [Zie89], pages 189–191.

Proof. Let v? be the trace of v on the circle ∂D. Solve the Dirichlet problem with

these boundary values, to get u harmonic in D with∫
D
|∇u|2dA/π ≤

∫
D
|∇v|2 dA/π ≤ 1.

Then Corollary D implies
∫ 2π

0
exp

(
u?(eiθ)2

)
dθ ≤ C, but u? = v?. So the same is true

for v?. �

Remark 1.2. In terms of statements we have:

Theorem A =⇒ Corollary D ⇐⇒ Corollary E

Corollary E could possibly be proved by “Sobolev” methods, see for instance the

similar Theorem 3.2.1 of [AH96]. When a seemingly stronger normalization∫
1
2

Bn

u(x) dx = 0

is assumed, the techniques below can be used to prove results like Corollary E in all

dimensions, see comments at the end of Section 4.

Remark 1.3. Condition (1.1) says that the Euclidean area of f(D) counting multi-

plicity is less or equal to π. In [Ess87] it is shown that (1.1) can be replaced by

the condition that the area of the set f(D) is less or equal to π, without counting

multiplicity.



EGG-YOLK PRINCIPLE AND EXPONENTIAL INTEGRABILITY 5

1.3. Open Questions. In view of Corollary D we ask:

Question 1.4. What is the best constant β for which there exists C > 0 so that if

u ∈ W 1,n(Bn), n ≥ 2, is n-harmonic on Bn, u(0) = 0, and∫
Bn

|∇u(x)|n dx ≤ αn,

then ∫
Sn−1

exp
(
β|u?(ζ)|

n
n−1

)
dHn−1(ζ) ≤ C?

1.4. Beurling’s estimate. In [Mar89], Don Marshall deduces Theorem A from an

estimate of Beurling, Theorem B below. We denote Et = {x ∈ Bn : |f(x)| = t}, and

F ?
s = {θ ∈ Sn−1 : |f(θ)| > s}. The following is an unpublished estimate of A. Beurling

which is stated and proved in [Mar89]. Here “Cap” denotes logarithmic capacity.

Theorem B (Beurling). Suppose f is analytic in a neighborhood of D and suppose

that |f(z)| ≤M for |z| ≤ r < 1, for some 0 < r < 1. Then, for every s > M ,

CapF ?
s ≤ r

−1
2 exp

(
−π
∫ s

M

dt

|f(Et)|

)
where |f(Et)| denotes the length of f(Et) counting multiplicity.

We establish a similar estimate in space. For a quasiregular map f : Bn → Rn,

n ≥ 2, we denote the (n− 1)-measure of f(Et) counting multiplicity by An−1f(Et);

An−1f(Et) =

∫
Sn−1(0,t)

card f−1(y) dHn−1(y).

Theorem 1.5. Let f be a K-quasiregular mapping defined in a neighborhood of Bn
,

n ≥ 2, and suppose that |f(x)| ≤M for |x| ≤ r < 1. Then, for every s > M ,

(1.3) Hn−1(F
?
s ) ≤ C1 exp

(
(1− n)

(ωn−1

2K

) 1
n−1

∫ s

M

dt

(An−1f(Et))
1

n−1

)
,

where C1 depends only on n, K and r.

1.5. An egg-yolk principle for the inverse. In [Mar89], Don Marshall conjec-

tures an egg-yolk principle that would have simplified his argument for passing from

Theorem B to Theorem A. This was proved in [PC] by the first author.

Theorem C ([PC]). There is a universal constant 0 < r0 < 1 such that whenever f

is analytic on D := {z ∈ C : |z| < 1} with f(0) = 0, and whenever M > 0 is such

that ∫
{z∈D:|f(z)|<M}

|f ′(z)|2 dA(z) < πM2,

then we have that |z| < r0 implies |f(z)| < M .
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Here we prove that Theorem C extends to quasiregular maps, and this will allow

us to deduce Theorem 1.1 from Theorem 1.5.

Theorem 1.6. Given n ≥ 2 and K ≥ 1, there exists a constant 0 < r0(n,K) < 1, so

that whenever f : Bn → Rn is a K-quasiregular mapping with f(0) = 0 and whenever

M > 0 is such that

(1.4)

∫
{x∈Bn:|f(x)|<M}

J(x, f) dx < αnM
n,

then we have that |x| < r0 implies |f(x)| < M .

Theorem 1.6 is equivalent to the following.

Corollary 1.7. For n ≥ 2 and K ≥ 1, there exists a constant 0 < r0(n,K) < 1

so that if f : Bn → Rn is a K-quasiregular mapping with f(0) = 0, then 0 ≤ M <

max|x|≤r0 |f(x)| implies ∫
{x∈Bn:|f(x)|<M}

J(x, f) dx ≥ αnM
n.

Theorem 1.6 no longer holds true if instead of (1.4) it is assumed that Bn \f(Bn) 6=
∅, see [PC], Remark 1.5.

Acknowledgements

We thank Pekka Koskela for useful discussions.

2. Proof of Theorem 1.6

We first recall the classical (conformal) modulus for path families in Rn. Let Γ be

a family of paths γ, i.e., continuous functions γ : I → Rn, where I = [a, b] or [a, b).

We say that a Borel measurable function ρ : Rn → [0,+∞] is admissible for Γ if∫
γ

ρ ds ≥ 1 ∀γ ∈ Γ.

Then the modulus of Γ is

Mod Γ := inf

{∫
Rn

ρ(x)n dx : ρ admissible

}
.

We recall two classical results concerning conformal modulus.

Lemma 2.1 (Poletsky’s inequality, [Ric93], II Theorem 8.1). Let f : Ω → Rn be a

non-constant K-quasiregular mapping, and Γ a family of paths in Ω. Then

Mod fΓ ≤ Kn−1 Mod Γ.
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Lemma 2.2 ([Väi71], Theorem 10.12). Suppose that J is a measurable set of radii,

and p ∈ Rn. For each r ∈ J , consider distinct points ar, br in Sn−1(p, r). Set

Γ = {γ : [a, b) → Sn−1(p, r)| r ∈ J, γ connects ar and br}.

Then

Mod Γ ≥ cn

∫
J

dr

r
,

where cn > 0 only depends on n.

Let f satisfy the assumptions of Theorem 1.6. We lose no generality by assuming

M = 1. Let δ denote the largest radius so that

f(Bn(0, δ)) ⊂ Bn.

In order to prove Theorem 1.6 we need to show that δ ≥ C(n,K). Also, we let

F0 = Bn \ f(Bn),

F1 = {y ∈ Bn : card f−1(y) = 1},

Fm = {y ∈ Bn : card f−1(y) ≥ 2} = Bn \ (F0 ∪ F1).

By (1.4) and a change of variables, we have

αn >

∫
{x∈Bn:f(x)∈Bn}

J(x, f) dx =

∫
Bn

card f−1(y) dy.

Therefore F0 6= ∅.
We first prove Theorem 1.6 under the assumption

(2.1) |F0| ≥ αn100−n.

We denote by T the set of those radii 0 < r < 1 for which

Sn−1(0, r) ∩ F0 6= ∅.

Lemma 2.3. Assume that (2.1) holds true. Then∫
T

dr

r
≥ n−1100−n.

Proof. Since r < 1, we have∫
T

dr

r
= ω−1

n−1

∫
T

∫
Sn−1(0,r)

r−n dHn−1 dr ≥ ω−1
n−1

∫
Rn

χ{y:|y|∈T}(x) dx

= ω−1
n−1|{y : |y| ∈ T}| ≥ ω−1

n−1|F0| ≥ αnω
−1
n−1100−n = n−1100−n.

�

Proposition 2.4. Theorem 1.6 holds true under assumption (2.1).
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Proof. By definition of T , for each r ∈ T , we can choose points qr ∈ F0 ∩ Sn−1(0, r).

Also, since f(Bn(0, δ)) is a connected set containing 0 and a point in Sn−1, for each

r ∈ T , we can choose points ar ∈ Bn(0, δ) such that f(ar) ∈ Sn−1(0, r). Then, for

every path γ starting at f(ar) and joining f(ar) to qr in Sn−1(0, r), every maximal

lift γ′ of γ starting at ar accumulates on Sn−1 (see [Ric93], II.3 for the definition of

a maximal lift). Hence, if we denote the family of all such lifts, for any r ∈ T , by Γ,

we have

(2.2) Mod Γ ≤ ωn−1

(
log δ−1

)1−n
.

On the other hand, by Lemmas 2.2 and 2.3,

(2.3) Mod fΓ ≥ cn

∫
T

dr

r
≥ cnn

−1100−n.

By combining (2.2), (2.3) and Lemma 2.1, we have

cnn
−1100−n ≤ Kn−1ωn−1

(
log δ−1

)1−n
,

Thus Theorem 1.6 holds in this case with

r0(n,K) = exp
(
−
(
100nc−1

n nKn−1ωn−1

) 1
n−1
)
.

�

We now treat the case when (2.1) fails. First we establish a geometric lemma.

Lemma 2.5. Fix q ∈ F0. Then there exists a point w ∈ Bn, and 1/4 ≤ s < 1, such

that for all r ∈ (s,
√

3s), we have q ∈ Bn(w, r) and Sn−1(w, r) ∩ f(Bn(0, δ)) 6= ∅.

Proof. First assume |q| ≤ 1/2. Then, since f(Bn(0, δ)) is a connected set containing

0 and a point in Sn−1,

Sn−1(0, r) ∩ f(Bn(0, δ)) 6= ∅ ∀ r ∈

(
1

2
,

√
3

2

)
.

Hence we may choose w = 0, s = 1/2.

Thus assume |q| > 1/2. Choose p ∈ Bn(0, δ) such that |f(p)| = |q|. Consider the

triangle with vertices 0, f(p) and q/2. Then, if the angle of the triangle at q/2 is less

than π/2, we have, for each r ∈ (|q|/2,
√

3|q|/2),

0, q ∈ Bn(q/2, r), f(p) /∈ Bn(q/2, r).

Since 0, f(p) ∈ f(Bn(0, δ)), there exists, for each such r, a point ηr ∈ Bn(0, δ) such

that f(ηr) ∈ Sn−1(q/2, r). Hence we may choose w = q/2 and s = |q|/2 > 1/4 in this

case.
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If the angle is greater than or equal to π/2, we have, for each r ∈ (|q|/2,
√

3|q|/2),

f(p), q ∈ Bn

(
f(p) + q

2
, r

)
, 0 /∈ Bn

(
f(p) + q

2
, r

)
.

Hence we may in this case choose w = (f(p) + q)/2 and s = |q|/2. �

Let q, w, and s be as in Lemma 2.5. We denote by G the set of all radii r ∈ (s,
√

3s)

for which

F1 ∩ Sn−1(w, r) 6= ∅.

Lemma 2.6. If (2.1) fails, then∫
G

dr

r
≥ n−1100−n.

Proof. As in Lemma 2.3, we have

(2.4)

∫
G

dr

r
≥ ω−1

n−1

∫
G

∫
Sn−1(w,r)

dHn−1 r
−n dr ≥ ω−1

n−1|F1 ∩ (Bn(w,
√

3s) \Bn(w, s))|.

By our assumption (1.4) and a change of variables,

|F1|+2|Fm| ≤
∫

Bn

card f−1(y) dy =

∫
{x∈Bn:f(x)∈Bn}

J(x, f) dx < αn = |F0|+|F1|+|Fm|.

So

(2.5) |Fm| ≤ |F0| ≤ αn100−n,

where the last inequality holds true since we assume the converse of (2.1).

On the other hand, since w ∈ Bn and s ≥ 1/4, we have

(2.6) |(Bn(w,
√

3s) \ Bn(w, s)) ∩ Bn| ≥ αn10−n,

and combining (2.5) and (2.6) yields

|F1 ∩ (Bn(w,
√

3s) \ Bn(w, s))| = |(Bn(w,
√

3s) \ Bn(w, s)) ∩ Bn|(2.7)

− |(Bn(w,
√

3s) \ Bn(w, s)) ∩ (F0 ∪ Fm)| ≥ αn100−n.

The Lemma follows by combining (2.4) and (2.7). �

For each r ∈ G, choose points pr ∈ f−1(F1), ar ∈ Bn(0, δ) such that

f(pr), f(ar) ∈ Sn−1(w, r).

Denote

G1 = {r ∈ G : |pr| ≥ δ
1
2},

G2 = {r ∈ G : |pr| < δ
1
2} = G \G2.



10 PIETRO POGGI-CORRADINI AND KAI RAJALA

Then, by Lemma 2.6, either (2.1) holds, or else we have one of∫
G1

dr

r
≥ 2−1n−1100−n,(2.8)

or ∫
G2

dr

r
≥ 2−1n−1100−n.(2.9)

Proposition 2.7. Theorem 1.6 holds true under assumption (2.8).

Proof. For each r ∈ G1 and each γ starting at f(ar) and joining f(ar) to f(pr) in

Sn−1(w, r), consider a maximal lift γ′ of γ starting at ar. Then, since card f−1(f(pr)) =

1, either γ′ accumulates to Sn−1, or γ′ ends at pr; in any case, γ′ starts at Bn(0, δ)

and leaves Bn(0, δ
1
2 ). Denote the family of all such γ′ by Γ. Then we have

(2.10) Mod Γ ≤ ωn−1

(
log

δ
1
2

δ

)1−n

= ωn−1

(
log δ

−1
2

)1−n
.

On the other hand, combining Lemma 2.2 and (2.8) yields

(2.11) Mod fΓ ≥ cn2
−1n−1100−n.

Furthermore, combining (2.10), (2.11) and Lemma 2.1 gives

cn2
−1n−1100−n ≤ Kn−1ωn−1

(
log δ

−1
2

)1−n
,

Thus Theorem 1.6 holds in this case with

r0(n,K) = exp
(
− 2
(
100n2c−1

n nKn−1ωn−1

) 1
n−1
)
.

�

In order to finish the proof of Theorem 1.6, we need the following auxiliary result.

Lemma 2.8. For each r ∈ G2 there exists τr ∈ Sn−1(0, δ
1
4 ) such that f(τr) ∈

Sn−1(w, r).

Proof. Let Ur be any component of f−1(Bn(w, r)) intersecting Bn(0, δ). Such a com-

ponent exists by Lemma 2.5. Also, by Lemma 2.5, Bn(w, r) \ f(Bn) 6= ∅, and hence

f|Ur : Ur → Bn(w, r) is not onto. Thus, by [Ric93], I Lemma 4.7,

Sn−1(0, t) ∩ Ur 6= ∅ ∀t ∈ (δ, 1).

Choose kr ∈ Ur∩Sn−1(0, δ
1
4 ), and consider all paths joining kr to −kr in Sn−1(0, δ

1
4 ).

If none of the images of these paths intersects Sn−1(w, r), we have

(2.12) f(Sn−1(0, δ
1
4 )) ⊂ Bn(w, r).

Since f is open,

∂f(Bn(0, δ
1
4 )) ⊂ f(Sn−1(0, δ

1
4 )),
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and since f(Bn(0, δ
1
4 )) is bounded, (2.12) further implies

(2.13) f(Bn(0, δ
1
4 )) ⊂ Bn(w, r).

By Lemma 2.5 there are, however, points x ∈ Bn(0, δ) such that f(x) /∈ Bn(w, r)

which contradicts (2.13). The proof is complete. �

Proposition 2.9. Theorem 1.6 holds true under assumption (2.9).

Proof. For each r ∈ G2, and each γ starting at f(τr) (where τr is as in Lemma 2.8)

and joining f(τr) to f(pr) in Sn−1(w, r), consider a maximal lift γ′ of γ starting at τr.

Then, since card f−1(f(pr)) = 1, either γ′ accumulates to Sn−1, or γ′ ends at pr. We

denote the family of all such γ′ for which the first case occurs by Γ1, the family of all

γ′ for which the second case occurs by Γ2, and Γ = Γ1 ∪ Γ2.

Then, since each γ′ ∈ Γ1 connects Sn−1(0, δ
1
4 ) to Sn−1,

(2.14) Mod Γ1 ≤ ωn−1

(
log δ

−1
4

)1−n
.

Similarly, since pr ∈ Bn(0, δ
1
2 ) for all r ∈ G2,

(2.15) Mod Γ2 ≤ ωn−1

(
log

δ
1
4

δ
1
2

)1−n

= ωn−1

(
log δ

−1
4

)1−n
.

By Lemma 2.2 and (2.9),

(2.16) Mod fΓ ≥ cn2
−1n−1100−n.

Hence, combining (2.14), (2.15), (2.16) and Lemma 2.1 yields

cn2
−1n−1100−n ≤ Mod fΓ ≤ Kn−1 Mod Γ ≤ Kn−1(Mod Γ1 + Mod Γ2)

≤ 2Kn−1ωn−1

(
log δ

−1
4

)1−n
,

Thus Theorem 1.6 holds in this case with

r0(n,K) = exp
(
− 4
(
100n4c−1

n nKn−1ωn−1

) 1
n−1
)
.

�

The proof of Theorem 1.6 follows by combining Propositions 2.4, 2.7 and 2.9.

3. Beurling’s modulus estimate

Suppose f is K-quasiregular in a neighborhood of the closed unit ball Bn
, and

for some fixed 0 < r < 1 let M := maxrBn |f |. Recall that for s > M we define

F ?
s = {ζ ∈ Sn−1 : |f(ζ)| ≥ s} and for M < t < s we have Et = {x ∈ Bn : |f(x)| = t}.
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Consider the family Γs consisting of the paths in Bn starting at rBn
and ending at

F ?
s . We claim that

(3.1) Mod Γs ≤ K

(∫ s

M

dt

(An−1f(Et))
1

n−1

)1−n

.

Recall that An−1f(Et) =
∫

Sn−1(0,t)
card f−1(y) dHn−1(y).

Proof. Set ρ : Rn → [0,∞),

ρ(x) =

(∫ s

M

du

(An−1f(Eu))
1

n−1

)−1
‖Df(x)‖

(An−1f(Et))
1

n−1

when |f(x)| = t ∈ (M, s),

and ρ(x) = 0 otherwise. Then, for each γ ∈ Γs,∫
γ

ρ ds ≥

(∫ s

M

du

(An−1f(Eu))
1

n−1

)−1 ∫
f(γ)

(An−1f(E|·|))
−1

n−1 ds ≥ 1.

Moreover, if we denote

I(M, s) =

∫ s

M

du

(An−1f(Eu))
1

n−1

and

A(M, s) = f−1(Bn(0, s) \ Bn(0,M)),

we have

Mod Γs ≤
∫

Rn

ρ(x)n dx = I(M, s)−n
∫
A(M,s)

‖Df(x)‖n

(An−1f(E|f(x)|))
n

n−1

dx

≤ KI(M, s)−n
∫
A(M,s)

J(x, f)

(An−1f(E|f(x)|))
n

n−1

dx

= KI(M, s)−n
∫
f(A(M,s))

card f−1(y)

(An−1f(E|y|))
n

n−1

dy

= KI(M, s)−n
∫ s

M

(An−1f(Et))
−n
n−1

∫
Sn−1(0,t)

card f−1(ϕ) dHn−1(ϕ) dt

= KI(M,S)1−n.

�

4. Capacity and Symmetrization

We recall that a condenser is a pair (Ω, K) with Ω ⊂ Rn, Ω open and K compact

with ∅ 6= K ⊂ Ω. Also, the conformal capacity of (Ω, K) is

Cap(Ω, K) := inf{‖∇u‖nLn(Ω) : u ∈ W 1,p
0 (Ω), u|V ≥ 1, for some V open , V ⊃ K}
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where W 1,p
0 (Ω) is the closure of C∞

0 (Ω) (the smooth functions compactly supported

in Ω) in the norm

‖u‖W 1,p
0 (Ω) =

(∫
Ω

|u(x)|n + |∇u(x)|n dx
) 1

n

.

By Proposition II.10.2 of [Ric93], if Γ(Ω, K) is the family of all paths γ : [a, b) → Ω

such that γ(a) ∈ K and limt→b γ(t) ∈ ∂Ω, then

(4.1) Cap(Ω, K) = Mod Γ(Ω, K).

We are mainly interested in measuring the sets F ?
s defined in Section 3, which are

compact subsets of Sn−1. Therefore, we will fix 0 < r < 1 to be determined later,

consider the spherical ring A(r) = {x ∈ Rn : r < |x| < 1/r}, 0 < r < 1, and compute

Cap(A(r), F ?
s ).

By the symmetry rule, cf. [GM05] IV(3.4), if F ⊂ Sn−1, we have:

(4.2) Mod Γs =
1

2
Mod Γ(A(r), F ) =

1

2
Cap(A(r), F ).

Also, if F ⊂ Sn−1, let C(F ) be the spherical cap centered at e1 = (1, 0, . . . , 0) with

Hn−1(C(F )) = Hn−1(F ). By spherical symmetrization, see [Geh61],

(4.3) Cap(A(r), C(F )) ≤ Cap(A(r), F ).

By [Geh61], Theorem 4, we see that, when Hn−1(F ) ≤ ε(r, n),

(4.4) Cap(A(r), C(F )) ≥ ωn−1 log1−n C2

Hn−1(F )
1

n−1

,

where C2 > 0 depends only on r and n (the results in [Geh61] are stated for n = 3

only, but they extend to all dimensions).

Putting (3.1), (4.1), (4.2), (4.3), and (4.4) together, we obtain (1.3) and thus we

have proved Theorem 1.5 for Hn−1(F
?
s ) ≤ ε(r, n). If Hn−1(F

?
s ) > ε(r, n), then the

arguments above show that

(4.5) Mod Γs ≥ C(r, n).

Combining (4.5) with (3.1) yields∫ s

M

dt

(An−1f(Et))
1

n−1

≤ C(r, n,K).

Hence increasing C1 if necessary gives Theorem 1.5 for all s > M .

We finish this section by briefly commenting on the real-valued case mentioned in

the introduction. Suppose that u : Bn → R belongs to W 1,n(Bn) and satisfies

(4.6)

∫
1
2

Bn

u(x) dx = 0.
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Then, by the Poincaré inequality and (4.6),

|AT | = |{x ∈ 1

2
Bn : |u| ≤ T}| ≥ C(n)

for large enough T depending only on n and the Sobolev norm of u. Hence, by

applying arguments similar to the ones above to the n-capacity related to the sets

AT and U?
s = {y ∈ Sn−1 : |u?(y)| ≥ s}, we have an estimate for the Hn−1-measure of

U?
s in terms of s, T and

∫
{x∈Bn:|u|≤s} |∇u(x)|

n dx.

5. Exponential integrability

In this section we prove Theorem 1.1 by using the results established in previous

sections and arguments similar to those used in [Mar89]. Let f be a K-quasiregular

mapping defined in a neighborhood of Bn and satisfying f(0) = 0 and (1.2). We

denote

β = (n− 1)
( n

2K

) 1
n−1

.

Then

α
1

n−1
n β = (n− 1)

(ωn−1

2K

) 1
n−1

.

Notice that we lose no generality by assuming that f is defined in a neighborhood of

Bn: if we consider a sequence (rj) increasing to one, and functions fj, fj(x) = f(rjx),

then the existence of radial limits at almost every ϕ ∈ Sn−1 and Fatou’s lemma yield∫
Sn−1

exp
(
β|f ?(ζ)|

n
n−1

)
dHn−1(ζ) ≤ lim inf

j

∫
Sn−1

exp
(
β|f ?j (ζ)|

n
n−1

)
dHn−1(ζ).

By the Cavalieri principle,

(5.1)∫
Sn−1

exp
(
β|f(ζ)|

n
n−1

)
dHn−1(ζ) = ωn−1 +

βn

n− 1

∫ ∞

0

s
1

n−1Hn−1(F
?
s ) exp(βs

n
n−1 ) ds.

We choose r0 = r0(n,K) as in Theorem 1.6, and let M = max|x|≤r0 |f(x)|. Note that

by Corollary 1.7 and (1.2), we have M < 1 and

(5.2)

∫
{x∈Bn:f(x)∈Bn(0,M)}

J(x, f) dx =

∫ M

0

An−1f(Et) dt ≥ αnM
n.

Using (1.3) and (5.1), we are reduced to estimate

(5.3)

∫ ‖f‖∞

0

s
1

n−1 exp(βs
n

n−1 − ψ(s)) ds,

where ψ(s) = 0 for 0 < s ≤M and

ψ(s) = α
1

n−1
n β

∫ s

M

dt

(An−1f(Et))
1

n−1
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for s ≥M . We modify ψ as follows: for 0 < s ≤M , set

ψ̃(s) := µs,

and for s ≥M ,

ψ̃(s) := ψ(s) + µM,

where

µ =
( Mβn−1αn∫M

0
An−1f(Et) dt

) 1
n−1

.

Note that ψ̃ is strictly increasing for 0 < s ≤ ‖f‖∞ and constant, equal to ‖ψ̃‖∞, for

s > ‖f‖∞. Also ψ̃(0) = 0. Finally, ψ̃ ≤ ψ + µM . So, by (5.2), and since M < 1, it is

enough to estimate (5.3) with ψ replaced by ψ̃.

Let φ(y) := ψ̃−1(y) for 0 < y ≤ ‖ψ̃‖∞ and φ(y) := ‖f‖∞ for y > ‖ψ̃‖∞, so that φ

is strictly increasing for 0 < y ≤ ‖ψ̃‖∞ and φ(0) = 0.

Changing variables y = ψ̃(s) the integral (5.3) becomes∫ ‖ψ̃‖∞

0

exp(βφ(y)
n

n−1 − y)φ′(y)φ(y)
1

n−1 dy

which, since φ′ ≥ 0, is less than or equal to the same integral but from 0 to ∞.

Integrating by parts we then need to estimate

(5.4)

∫ ∞

0

exp(βφ(y)
n

n−1 − y) dy =

∫ ∞

0

exp((β
n−1

n φ(y))
n

n−1 − y) dy.

We have

β
n−1

n φ′(y) =

{
β

n−1
n µ−1, 0 < y < µM,

α
−1

n−1
n β

−1
n (An−1f(Eφ(y)))

1
n−1 , µM < y < ‖ψ̃‖∞.

Thus, by changing variables with s = φ(y), and by our choice of µ,∫ ∞

0

(β
n−1

n φ′(y))n dy =

∫ µM

0

βn−1µ−n dy + α
−n
n−1
n β−1

∫ ‖ψ̃‖∞

µM

(An−1f(Eφ(y)))
n

n−1 dy

= βn−1Mµ1−n + α−1
n

∫ ‖f‖∞

M

An−1f(Et) dt

≤ α−1
n

∫ ∞

0

An−1f(Et) dt ≤ 1.

By applying equation (6), page 1080 of [Mos71] to β
n−1

n φ, we conclude that (5.4) is

bounded from above by a constant depending only on n. The proof of Theorem 1.1

is complete.

We finally note that, under the assumptions of Theorem 1.1, the left hand side of

(5.1) is finite for every β > 0. We fix M > 0, to be chosen later. After applying
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Theorem 1.5 to the right hand term in (5.1), we need to show that

(5.5)

∫ ∞

M

s
1

n−1 exp
(
βs

n
n−1 − C

∫ s

M

dt

(An−1f(Et))
1

n−1

)
ds

is finite, where C > 0.

By Hölder’s inequality,

(5.6)

s−M =

∫ s

M

(An−1f(Et))
1
n

(An−1f(Et))
1
n

dt ≤
(∫ s

M

dt

(An−1f(Et))
1

n−1

)n−1
n
(∫ s

M

An−1f(Et) dt
) 1

n
.

By our assumption
∫∞

0
An−1f(Et) dt is finite. Thus, by choosing M large enough so

that (∫ ∞

M

An−1f(Et) dt
) −1

n−1
>

2β

C
,

and combining this with (5.6), we can estimate (5.5) from above by∫ ∞

M

s
1

n−1 exp(β(s
n

n−1 − 2(s−M)
n

n−1 )) ds,

which is clearly finite.
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