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Abstract. It is well known that the open set condition and the positivity of
the t-dimensional Hausdorff measure are equivalent on self-similar sets, where t

is the zero of the topological pressure. We prove an analogous result for a class
of Moran constructions and we study different kinds of Moran constructions
with this respect.

1. Introduction and notation

The origin of fractal mathematics goes back to the early works of Cantor [4].
He showed that a nonempty perfect subset of the real line is uncountable. At that
time, fractal type behavior were seen in many examples, which, however, were
considered to be only pathological counterexamples for some property. For exam-
ple, the Weierstrass function is an example of a continuous and nondifferentiable
function. The later development of geometric measure theory gave necessary
tools for studying these kinds of objects. A nice overview for the beginning of
fractal mathematics can be found in the book of Edgar [6].

Mainly because of Mandelbrot’s intuition [20], fractals started to be seen as
models of real world phenomena instead of pathological examples. Although
there is no generally accepted definition for the term “fractal”, the fundamental
idea behind this notion is self-similarity: small pieces of a set appear to be
similar to the whole set. A mathematical class of self-similar sets was introduced
by Hutchinson [12]. A mapping ϕ : Rd → Rd is called a similitude mapping if
there is s > 0 such that |ϕ(x) − ϕ(y)| = s|x − y| whenever x, y ∈ R

d.
If the similitude mappings ϕ1, . . . , ϕk are contractive, that is, all the Lipschitz

constants are strictly less than one, then a nonempty compact set E ⊂ Rd is
called self-similar provided that it satisfies

E = ϕ1(E) ∪ · · · ∪ ϕk(E).

From this, one can easily see that the set E consists of smaller and smaller pieces
which are geometrically similar to E. However, the self-similar structure is hard
to recognize if these pieces overlap too much. Hutchinson [12] used a separation
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condition which guarantees that we can distinguish the pieces. The idea goes
back to Moran [25] who studied similar constructions but without mappings. In
the open set condition, it is required that there exists an open set V such that
all the images ϕi(V ) are pairwise disjoint and contained in V . Lalley [17] used a
stronger version of the open set condition. In the strong open set condition, it is
required that the open set V above can be chosen such that V ∩ E 6= ∅.

Assuming the open set condition, Hutchinson [12, §5.3] proved that the t-
dimensional Hausdorff measure Ht of E is positive, where t is the zero of the
so-called topological pressure. See also Moran [25, Theorem III] for the corre-
sponding theorem for the Moran constructions. Schief [28, Theorem 2.1] showed,
extending the ideas of Bandt and Graf [2], that the open set condition is not
only sufficient but also a necessary condition for the positivity of the Hausdorff
measure. In fact, he proved that Ht(E) > 0 implies the strong open set condi-
tion. Later, Peres, Rams, Simon, and Solomyak [27, Theorem 1.1] showed that
this equivalence also holds for self-conformal sets. See also Fan and Lau [9] and
Fan, Lau, and Ye [10].

The main theme in this article is to study the relationship between various
separation conditions and the Hausdorff measure on Moran constructions. More
precisely, we study what can be said about Schief’s result in this setting. Since
the open set condition requires the use of mappings, we introduce a representative
form for it to be used on Moran constructions. We also study measure theoretical
properties of limit sets of various classes of Moran constructions and invariant
sets of various iterated function systems. We generalize many classical results
into these settings.

Before going into more detailed preliminaries, let us fix some notation to be
used throughout this article. As usual, let I be a finite set with at least two
elements. Put I∗ =

⋃∞
n=1 In and I∞ = IN. Now for each i ∈ I∗, there is

n ∈ N such that i = (i1, . . . , in) ∈ In. We call this n the length of i and we
denote |i| = n. The length of elements in I∞ is infinity. Moreover, if i ∈ I∗

and j ∈ I∗ ∪ I∞, then with the notation ij, we mean the element obtained
by juxtaposing the terms of i and j. For i ∈ I∗ and A ⊂ I∞, we define
[i; A] = {ij : j ∈ A} and we call the set [i] = [i; I∞] a cylinder set of level |i|.
If j ∈ I∗ ∪ I∞ and 1 ≤ n < |j|, we define j|n to be the unique element i ∈ In

for which j ∈ [i]. We also denote i− = i||i|−1. With the notation i⊥j, we mean
that the elements i, j ∈ I∗ are incomparable, that is, [i] ∩ [j] = ∅. We call a set
A ⊂ I∗ incomparable if all of its elements are mutually incomparable. Finally,
with the notation i ∧ j, we mean the common beginning of i ∈ I∗ and j ∈ I∗,
that is, i ∧ j = i|n = j|n, where n = min{k − 1 : i|k 6= j|n}.

Defining

|i− j| =

{

2−|i∧j|, i 6= j

0, i = j
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for each i, j ∈ I∞, the couple (I∞, | · |) is a compact metric space. We call
(I∞, | · |) a symbol space and an element i ∈ I∞ a symbol. If there is no danger
of misunderstanding, let us call also an element i ∈ I∗ a symbol. Define the left
shift σ : I∞ → I∞ by setting

σ(i1, i2, . . .) = (i2, i3, . . .).

With the notation σ(i1, . . . , in), we mean the symbol (i2, . . . , in) ∈ In−1. Observe
that to be precise in our definitions, we need to work with “empty symbols”, that
is, symbols with zero length. However, this is left to the reader.

In this article, we study the controlled Moran construction (CMC), that is, the
collection {Xi ⊂ Rd : i ∈ I∗} of compact sets with positive diameter satisfying

(M1) Xii ⊂ Xi as i ∈ I∗ and i ∈ I,
(M2) there exists a constant D ≥ 1 such that

D−1 ≤ diam(Xij)

diam(Xi) diam(Xj)
≤ D

whenever i, j ∈ I∗,
(M3) there exists n ∈ N such that

max
i∈In

diam(Xi) < D−1.

Here with the notation diam(A), we mean the diameter of a given set A. The
fact that we can define a continuous mapping π : I∞ → Rd by setting {π(i)} =
⋂∞

n=1 Xi|n ties the CMC and the symbol space together. We shall focus on
measure theoretical properties of the compact limit set

E =
⋃

i∈I∞

∞
⋂

n=1

Xi|n = π(I∞).

Assuming a natural separation condition, the ball condition (see Definition 3.3)
and some natural regularity assumptions, there is a constant c ≥ 1 such that the
Hausdorff measure restricted to the set E satisfies

c−1 diam(Xi)
t ≤ Ht|E(Xi) ≤ c diam(Xi)

t

whenever i ∈ I∗ and
Ht|E(Xi ∩ Xj) = 0

whenever i⊥j. Here t ≥ 0 is the zero of the topological pressure P defined in
(3.1). See Proposition 3.2, Theorem 3.5, Lemma 3.6, and Remark 3.8. From this,
it follows immediately that dimH(E) = dimM(E) = t, where dimH denotes the
Hausdorff dimension and dimM the upper Minkowski dimension. For a suitably
chosen subclass of CMC’s, the so-called tractable CMC’s, we show in Theorem
3.9 that the positivity of Ht(E) conversely implies the uniform ball condition.

In Chapter 4, we introduce the congruent CMC, that is, the collection {Xi ⊂
Rd : i ∈ I∗} of compact sets with positive diameter satisfying
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(C1) Xii ⊂ Xi as i ∈ I∗ and i ∈ I,
(C2) there exist i, j ∈ I∗ such that Xi ∩ Xj = ∅,
(C3) limn→∞ diam(Xi|n) = 0 for every i ∈ I∞,
(C4) there exists a constant C ≥ 1 such that

dist(Xhi, Xhj)

diam(Xh)
≤ C

dist(Xki, Xkj)

diam(Xk)

whenever h, k, i, j ∈ I∗.

Here with the notation dist(A, B), we mean the distance between given sets A
and B. The fact that this kind of a collection is a tractable CMC together with
the assumption (C4) justify the use of the name “congruent CMC”. Observe that
the role of the assumption (C2) is just to ensure that diam(E) > 0. We shall
show that the congruence of a CMC is bi-Lipschitz invariant and hence, the class
of all congruent CMC’s is sufficiently large. Furthermore, we prove in Theorem
4.3 that the Hausdorff dimension and the upper Minkowski dimension coincide
even without assuming the ball condition. This is a consequence of a fact that the
limit set is “approximately self-similar” by the assumption (C4). Generalizing
the argument of Schief [28, Theorem 2.1] into this setting, we notice in Corollary
4.8 that the ball condition has a self-improvement property. In Proposition
4.9, we prove that assuming the ball condition, the Hausdorff dimension of the
intersection π([i]) ∩ π([j]) is strictly smaller than dimH(E) as i⊥j. Because of
these properties, congruent CMC’s can be thought as a natural generalization of
conformal iterated function systems into the setting of Moran constructions.

With the congruent iterated function system (IFS), we mean a collection {ϕi :
i ∈ I} of mappings satisfying

si|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ si|x − y|,
where 0 < D−1si ≤ si ≤ si < 1 for a constant D ≥ 1 and ϕi = ϕi1 ◦ · · · ◦ ϕin

as i ∈ In and n ∈ N. We also assume there exists a closed and nonempty set X
such that ϕi(X) ⊂ X for each i ∈ I. We show that a congruent IFS defines a
congruent CMC. In Example 6.8, we note that each conformal IFS is congruent
and also that there exist natural examples of congruent IFS’s which are not
conformal. We stress that the use of differentiable mappings is not a necessity in
order to obtain the classical results. Indeed, from Lemma 5.3, Proposition 5.4,
and Theorems 3.9 and 5.5, we derive the following.

Theorem 1.1. For a congruent IFS, the following conditions are equivalent:

(1) The ball condition.
(2) The open set condition.
(3) The strong open set condition.
(4) Ht(E) > 0, where t is the zero of the topological pressure.

We also show that E is the closure of its interior provided that the underlying
congruent IFS satisfies the open set condition and dimH(E) = d.
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The last chapter is devoted to examples.

2. Semiconformal measure

In this chapter we work only in the symbol space. We present sufficient con-
ditions for the existence of the so-called semiconformal measure. Suppose the
collection {si > 0 : i ∈ I∗} satisfies the following two assumptions:

(S1) There exists a constant D ≥ 1 such that

D−1sisj ≤ sij ≤ Dsisj

whenever i, j ∈ I∗.
(S2) maxi∈In si → 0 as n → ∞.

Given t ≥ 0, we define the topological pressure to be

P (t) = lim
n→∞

1
n

log
∑

i∈In

st
i.

The limit above exists by the standard theory of subadditive sequences since
∑

i∈In+m

st
i ≤ Dt

∑

ij∈In+m

st
is

t
j = Dt

∑

i∈In

st
i

∑

j∈Im

st
j

using (S1).
As a function, P : [0,∞) → R is convex: Let 0 ≤ t1 ≤ t2 and λ ∈ (0, 1). Now

Hölder’s inequality implies

∑

i∈In

s
λt1+(1−λ)t2
i =

∑

i∈In

(st1
i )λ(st2

i )1−λ ≤
(

∑

i∈In

st1
i

)λ(
∑

i∈In

st2
i

)1−λ

from which the claim follows. According to (S2), we choose n ∈ N such that
maxi∈In si < D−1. Then, using (S1), we observe that

P (t) ≤ lim
k→∞

1
kn

log

(

Dt
∑

i∈In

st
i

)k

≤ 1
n

log
(

D max
i∈In

si
)t

+ 1
n

log #In −→ −∞

as t → ∞. Hence there exists a unique t ≥ 0 for which P (t) = 0.

Lemma 2.1. Suppose P (t) = 0. Then

D−t ≤
∑

i∈In

st
i ≤ Dt

whenever n ∈ N.

Proof. Since

P (t) = inf
n∈N

1
n

(

log
∑

i∈In

st
i + log Dt

)

,
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we have
∑

i∈In

st
i ≥ D−tenP (t)

as n ∈ N. On the other hand,

P (t) ≥ lim
k→∞

1
kn

log

(

D−t
∑

i∈In

st
i

)k

= log

(

∑

i∈In

st
i

)1/n

+ log D−t/n

implies
∑

i∈In

st
i ≤ DtenP (t)

for each n ∈ N. �

Let l∞ be the linear space of all bounded sequences on the real line. Recalling
[26, Theorem 7.2], we say that the Banach limit is the mapping L : l∞ → R for
which

(L1) L is linear,
(L2) L is positive, that is, L

(

(xn)n∈N

)

≥ 0 if xn ≥ 0 for all n ∈ N,

(L3) L
(

(xn)n∈N

)

= L
(

(xn+1)n∈N

)

,

(L4) lim infn→∞ xn ≤ L
(

(xn)n∈N

)

≤ lim supn→∞ xn.

To simplify the notation, we denote Limn xn = L
(

(xn)n∈N

)

.
A Borel probability measure µ on I∞ is called t-semiconformal if there exists

a constant c ≥ 1 such that

c−1st
i ≤ µ([i]) ≤ cst

i

whenever i ∈ I∗. We call a Borel probability measure µ on I∞ invariant if
µ([i]) = µ

(

σ−1([i])
)

for each i ∈ I∗ and ergodic if µ(A) = 0 or µ(A) = 1 for
every Borel set A ⊂ I∞ for which A = σ−1(A). The use of the Banach limit is a
rather standard tool in producing an invariant measure from a given measure, for
example, see [31, Corollary 1] and [23, Theorem 3.8]. In the following theorem, we
shall find the semiconformal measure by applying the Banach limit to a collection
of set functions.

Theorem 2.2. Assuming P (t) = 0, there exists a unique invariant t-semi-
conformal measure. Furthermore, it is ergodic.

Proof. Take t ≥ 0 such that P (t) = 0. Define for each i ∈ I∗ and n ∈ N

νn(i) =

∑

j∈In st
ij

∑

j∈I|i|+n st
j

. (2.1)
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Letting ν(i) = Limn νn(i), we have ν(i) > 0 and, using (L1) and (L3),

∑

j∈I

ν(ij) =
∑

j∈I

Lim
n

νn(ij) = Lim
n

∑

j∈I

∑

j∈In st
ijj

∑

j∈I|i|+1+n st
j

= Lim
n

νn+1(i) = Lim
n

νn(i) = ν(i)

(2.2)

whenever i ∈ I∗. Since, by Lemma 2.1 and (S1),

νn(i) ≤ Dt
∑

j∈In

st
ij ≤ D2t

∑

j∈In

st
is

t
j ≤ D3tst

i

and similarly the other way around, we have, using (L4),

D−3tst
i ≤ ν(i) ≤ D3tst

i. (2.3)

Now, identifying i ∈ I∗ with the cylinder [i], we notice, using (2.2), that ν is
a probability measure on the semi-algebra of all cylinder sets. Hence, using the
Carathéodory-Hahn Theorem (see [32, Theorem 11.20]), ν extends to a Borel
probability measure on I∞.

Define for each n ∈ N a Borel probability measure

µn = 1
n

n−1
∑

j=0

ν ◦ σ−j

and take µ to be an accumulation point of the set {µn}n∈N in the weak topology.
For any i ∈ I∗, we have

∣

∣µn([i]) − µn

(

σ−1([i])
)
∣

∣ = 1
n

∣

∣ν([i]) − ν
(

σ−n([i])
)
∣

∣ ≤ 1
n
−→ 0

as n → ∞. Thus µ is invariant. We also have, using (2.3), (S1), and Lemma 2.1,
that for each i ∈ I∗

µ([i]) = lim
n→∞

1
n

n−1
∑

j=0

ν ◦ σ−j([i]) = lim
n→∞

1
n

n−1
∑

j=0

∑

j∈Ij

ν([ji])

≤ D3t lim
n→∞

1
n

n−1
∑

j=0

∑

j∈Ij

st
ji ≤ D4t lim

n→∞
1
n

n−1
∑

j=0

st
i

∑

j∈Ij

st
j ≤ D5tst

i

since cylinder sets have empty boundary. Estimating similarly into the other
direction, we have shown that µ is a semiconformal measure with

D−5tst
i ≤ µ([i]) ≤ D5tst

i (2.4)

as i ∈ I∗.
We shall next prove that µ is ergodic. We have learned the following argument

from the proof of [23, Theorem 3.8]. Assume on the contrary that there exists a
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µ-measurable set A ⊂ I∞ such that σ−1(A) = A and 0 < µ(A) < 1. Fix i ∈ I∗

and take an incomparable set R ⊂ I∗ for which I∞ \ A ⊂ ⋃

j∈R[j] and
∑

j∈R

µ([ij]) ≤ 2µ([i; I∞ \ A]).

Using (2.4) and (S1), we infer

µ([i; I∞ \ A]) ≥ 2−1D−6tst
i

∑

j∈R

st
j ≥ 2−1D−16tµ([i])

∑

j∈R

µ([j])

≥ 2−1D−16tµ([i])µ(I∞ \ A).

Therefore

µ
(

σ−n(A) ∩ [i]
)

= µ([i; A]) = µ([i]) − µ([i; I∞ \ A])

≤
(

1 − 2−1D−16tµ(I∞ \ A)
)

µ([i])
(2.5)

for each i ∈ I∗. Denote γ =
(

1− 2−1D−16tµ(I∞ \A)
)

and η = (1+γ−1)/2. Take
an incomparable set R ⊂ I∗ for which A ⊂ ⋃

i∈R[i] and
∑

i∈R µ([i]) ≤ ηµ(A).
Since now, using (2.5),

µ(A) =
∑

i∈R

µ(A ∩ [i]) =
∑

i∈R

µ
(

σ−n(A) ∩ [i]
)

≤
∑

i∈R

γµ([i]) ≤ γηµ(A) < µ(A),

we have finished the proof of the ergodicity.
To prove the uniqueness, assume that µ̃ is another invariant t-semiconformal

measure. Now there exists c ≥ 1 such that µ̃([i]) ≤ cµ([i]) whenever i ∈ I ∗.
According to the uniqueness of the Carathéodory-Hahn extension, this inequality
implies that also µ̃ ≤ cµ. Using the ergodicity of the measure µ, it follows that
µ̃ = µ, see [30, Theorem 6.10]. The proof is finished. �

Remark 2.3. Observe that the use of the Banach limit in the proof of Theorem
2.2 is not a necessity. Defining for each n ∈ N a measure

ν̃n =

∑

j∈In st
jδjh

∑

j∈In st
j

,

where δh is a probability measure with support {h}, we have for each i ∈ I∗ and
n > |i|

ν̃n([i]) =
∑

j∈In−|i|

ν̃n([ij]) =

∑

j∈In−|i| st
ij

∑

k∈In st
k

= νn−|i|(i),

where νn(i) is as in (2.1). Therefore, instead of using νn(i) and its Banach limit,
we would have worked with ν̃n and its weak limit.
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Let us next prove two lemmas for future reference. Define for i ∈ I∗

Ωi = {j ∈ I∞ : σn−1(j) ∈ [i] with infinitely many n ∈ N}
and

Ω0
i = {j ∈ I∞ : σn−1(j) /∈ [i] for every n ∈ N}.

Lemma 2.4. Suppose µ is an invariant ergodic Borel probability measure on I∞.
Then µ(Ω0

i) = 0 and µ(Ωi) = 1 for every i ∈ I∗ provided that µ([i]) > 0.

Proof. Take i ∈ I∗ such that µ([i]) > 0. Notice that σ−1(I∞ \Ω0
i) ⊂ I∞ \Ω0

i and
due to the invariance of µ, it holds that µ

(

σ−1(I∞ \ Ω0
i)

)

= µ(I∞ \ Ω0
i). Since

Ωi =
⋂∞

n=0 σ−n(I∞ \ Ω0
i), we have σ−1(Ωi) = Ωi and using the ergodicity of µ,

we have either µ(Ωi) = 0 or µ(Ωi) = 1. Since

µ(Ωi) = lim
n→∞

µ
(

σ−n(I∞ \ Ω0
i)

)

= µ(I∞ \ Ω0
i) ≥ µ([i]) > 0,

it follows that µ(I∞ \ Ω0
i) = µ(Ωi) = 1. The proof is finished. �

Assume that I has at least three elements. For a fixed j ∈ I, we denote
Ij = I \ {j} and define

Pj(t) = lim
n→∞

1
n

log
∑

i∈In
j

st
i.

Lemma 2.5. Suppose P (t) = 0. Then Pj(t) < 0 for every j ∈ I.

Proof. Using Theorem 2.2, we denote with µ the invariant ergodic Borel proba-
bility measure on I∞ for which

c−1st
i ≤ µ([i]) ≤ cst

i

for a constant c ≥ 1 whenever i ∈ I∗. Assume now on the contrary that there
is j ∈ I such that Pj(t) = 0. Using Theorem 2.2, we denote with µj the unique
invariant t-semiconformal measure on I∞

j . Observe that there exists a constant
cj ≥ 1 such that

c−1
j st

i ≤ µj([i]) ≤ cjs
t
i

whenever i ∈ I∗
j . Notice also that µj(I

∞ \ I∞
j ) = 0 and µ(I∞

j ) = 0 by Lemma

2.4. Defining λj = 1
2
(µ + µj), we have for each i ∈ I∗

j

λj([i]) = λj([i] \ I∞
j ) + λj([i] ∩ I∞

j )

= 1
2
µ([i]) + 1

2
µj([i]) ≤ 1

2
(c + cj)s

t
i

and similarly the other way around. Hence also λj is invariant and t-semi-
conformal on I∞

j . From the uniqueness, we infer λj = µj, and therefore

1 = µj(I
∞
j ) = λj(I

∞
j ) = 1

2
(µ + µj)(I

∞
j ) = 1

2
.

This contradiction finishes the proof. �
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3. Controlled Moran construction

The collection of compact sets with positive diameter {Xi ⊂ R
d : i ∈ I∗} is

called a controlled Moran construction (CMC) if

(M1) Xii ⊂ Xi as i ∈ I∗ and i ∈ I,
(M2) there exists a constant D ≥ 1 such that

D−1 ≤ diam(Xij)

diam(Xi) diam(Xj)
≤ D

whenever i, j ∈ I∗,
(M3) there exists n ∈ N such that

max
i∈In

diam(Xi) < D−1.

Lemma 3.1. Given CMC, there are constants c > 0 and 0 < % < 1 such that
maxi∈In diam(Xi) ≤ c%n for all n ∈ N.

Proof. Using (M3), we find k ∈ N and 0 < a < 1 such that diam(Xi) < a/D for
every i ∈ Ik. Fix n > k, take i ∈ In and denote i = i1i2 · · ·il, where l − 1 is
the integer part of n/k, ij ∈ Ik for j ∈ {1, . . . , l − 1}, and 0 < |il| ≤ k. Since
now, by (M2),

diam(Xi) ≤ Dl−1 diam(Xi1) diam(Xi2) · · ·diam(Xil−1
) diam(Xil

)

≤ Dl−1
(

a/D
)l−1

max
0<|i|≤k

diam(Xi) ≤ a−1 max
0<|i|≤k

diam(Xi)
(

a1/k
)n

,

the proof is finished. �

Using the assumption (M1) and Lemma 3.1, we define a projection mapping
π : I∞ → X such that

{π(i)} =
∞
⋂

n=1

Xi|n

as i ∈ I∞. It is clear that π is continuous. The compact set E = π(I∞) is
called a limit set (of the CMC). We call a Borel probability measure m on E
t-semiconformal if there exists a constant c ≥ 1 such that

c−1 diam(Xi)
t ≤ m(Xi) ≤ c diam(Xi)

t

whenever i ∈ I∗ and
m(Xi ∩ Xj) = 0

whenever i⊥j. Observe that in Chapter 2 we defined a semiconformal measure
on I∞. The overlapping terminology should not be confusing as it is clear from
the content which definition we use. Furthermore, for each t ≥ 0, we set

P (t) = lim
n→∞

1
n

log
∑

i∈In

diam(Xi)
t (3.1)



SEPARATION CONDITIONS ON CONTROLLED MORAN CONSTRUCTIONS 11

provided that the limit exists. It follows straight from the definition that if there
exists a t-semiconformal measure on E then P (t) = 0. Recalling Lemma 2.1,
the equation P (t) = 0 gives a natural upper bound for the Hausdorff dimension
of E, dimH(E) ≤ t. Finally, we say that a CMC satisfies a bounded overlapping
property if supx∈E sup

{

#R : R ⊂ {i ∈ I∗ : x ∈ Xi} is incomparable
}

< ∞.

Proposition 3.2. Given CMC, the limit in (3.1) exists and there is a unique
t ≥ 0 such that P (t) = 0. Assuming P (t) = 0, there exists an invariant ergodic
Borel probability measure µ on I∞ and constants c, c′ > 0 such that

c−1 diam(Xi)
t ≤ µ([i]) ≤ c diam(Xi)

t

whenever i ∈ I∗ and denoting m = µ ◦ π−1, we have Ht(A) ≤ c′m(A) for every
m-measurable A ⊂ E. Furthermore, if in addition the CMC satisfies the bounded
overlapping property and for each i, j ∈ I∗ and h ∈ I∞ it holds that π(ih) ∈ Xij

whenever π(h) ∈ Xj then m is a t-semiconformal measure on E.

Proof. According to (M2) and Lemma 3.1, the collection {diam(Xi) : i ∈ I∗}
satisfies (S1) and (S2). The proof of the first claim is now trivial. Suppose
P (t) = 0 and denote with µ the t-semiconformal measure on I∞ associated to this
collection, see Theorem 2.2. For fixed x ∈ E and r > 0 take i = (i1, i2, . . .) ∈ I∞

such that π(i) = x and choose n to be the smallest integer for which Xi|n ⊂
B(x, r). Denoting m = µ ◦ π−1 and using (M2), we obtain

m
(

B(x, r)
)

≥ m(Xi|n) ≥ µ([i|n]) ≥ c−1 diam(Xi|n)t

≥ c−1D−1 diam(Xi|n−1
)t diam(Xin)t

≥ c−1D−1 min
i∈I

diam(Xi)
trt,

which, according to [8, Proposition 2.2(b)], gives the second claim. Here with the
notation B(x, r), we mean the open ball centered at x with radius r. Furthermore,
if the bounded overlapping property is satisfied then the proof of [14, Theorem
3.7] shows that

m(Xi ∩ Xj) = 0

whenever i⊥j provided that for each i, h, k ∈ I∗ it holds µ
(

[i; π−1(Xh ∩Xk)]
)

≤
m(Xih ∩ Xik). This is guaranteed by our extra assumption. Hence

m(Xi) = m
(

Xi \
⋃

i⊥j

Xj ∩ Xi

)

= µ
(

π−1(Xi) \
⋃

i⊥j

π−1(Xj ∩ Xi)
)

= µ([i]),

which finishes the proof of the last claim. �
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In the definition that follows, we introduce a natural separation condition to
be used on Moran constructions. Given CMC, define for r > 0

Z(r) = {i ∈ I∗ : diam(Xi) ≤ r < diam(Xi−)}

and if in addition x ∈ E, we set

Z(x, r) = {i ∈ Z(r) : Xi ∩ B(x, r) 6= ∅}.

It is often useful to know the cardinality of the set Z(x, r). We say that a
CMC satisfies a finite clustering property if supx∈E lim supr↓0 #Z(x, r) < ∞.
Furthermore, if supx∈E supr>0 #Z(x, r) < ∞ then the CMC is said to satisfy a
uniform finite clustering property.

Definition 3.3. We say that a CMC satisfies a ball condition if there exists a
constant 0 < δ < 1 such that for each x ∈ E there is r0 > 0 such that for
every 0 < r < r0 there exists a set {xi ∈ conv(Xi) : i ∈ Z(x, r)} such that the
collection {B(xi, δr) : i ∈ Z(x, r)} is disjoint. If r0 > 0 above can be chosen
to be infinity for every x ∈ E then the CMC is said to satisfy a uniform ball
condition. Here with the notation conv(A), we mean the convex hull of a given
set A.

We shall next prove that the (uniform) ball condition and the (uniform) finite
clustering property are equivalent.

Lemma 3.4. Given compact and connected set A ⊂ Rn and k ∈ N, there exists
points x1, . . . , xk ∈ A such that the collection of balls

{

B
(

xi, (2k)−1 diam(A)
)

:

i ∈ {1, . . . , k}
}

is disjoint and #
{

i ∈ {1, . . . , k} : B
(

xi, (2k)−1 diam(A)
)

∩
B

(

x, (2k)−1 diam(A)
)

6= ∅
}

≤ 2 for every x ∈ Rn.

Proof. Choose y1, yk ∈ A such that |y1 − yk| = diam(A). Denote the line going
through y1 and yk with L and define for each i ∈ {2, . . . , k − 1} a point yi =
(

1− i
k

)

y1+
i
k
yk ∈ L. Using the connectedness of A, we find for each i ∈ {1, . . . , k}

a point xi ∈ A for which the inner product (xi − yi) · (yk − y1) = 0. The proof is
finished. �

Theorem 3.5. A CMC satisfies the (uniform) ball condition exactly when it
satisfies the (uniform) finite clustering property.

Proof. We shall prove the non-uniform case. The uniform case follows similarly.
Assuming the ball condition, take x ∈ E and 0 < r < r0. Choose for each
i ∈ Z(x, r) a point xi ∈ conv(Xi) such that the balls B(xi, δr) are disjoint as
i ∈ Z(x, r). Now clearly

B(xi, δr) ⊂ B
(

x, (2 + δ)r
)
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for every i ∈ Z(x, r). Hence

#Z(x, r)δdrdα(d) =
∑

i∈Z(x,r)

Hd
(

B(xi, δr)
)

= Hd

(

⋃

i∈Z(x,r)

B(xi, δr)

)

≤ Hd
(

B
(

x, (2 + δ)r
))

= (2 + δ)drdα(d),

where α(d) denotes the d-dimensional Hausdorff measure of the unit ball. This
shows that the CMC satisfies the finite clustering property.

Conversely, by the finite clustering property, there exists M > 0 such that
for each x ∈ E there is r0 > 0 such that #Z(x, r) < M whenever 0 < r < r0.
Choose δ = (4MD)−1 mini∈I diam(Xi) and for fixed x ∈ E and 0 < r < r0

denote the symbols of Z(x, r) with i1, . . . , in, where n = #Z(x, r). We shall de-
fine the points xi1 , . . . , xin

needed in the ball condition inductively. Choose
xi1 to be any point of conv(Xi1) and assume the points xi1 , . . . , xik

, where
k ∈ {1, . . . , n − 1}, have already been chosen such that the collection of balls
{

B(xii
, δr) : i ∈ {1, . . . , k}

}

is disjoint. Using Lemma 3.4, we find points

y1, . . . , y2n ∈ conv(Xik+1
) such that the collection

{

B
(

yj, (4n)−1 diam(Xik+1
)
)

:

j ∈ {1, . . . , 2n}
}

is disjoint. Since, using (M2),

δr ≤ (4MD)−1 min
i∈I

diam(Xi) diam(Xi−) ≤ (4n)−1 diam(Xi)

for every i ∈ Z(x, r), Lemma 3.4 says also that the balls B(xii
, δr), i ∈ {1, . . . , k},

can intersect at most 2k of balls B
(

yj, (4n)−1 diam(Xik+1
)
)

, j ∈ {1, . . . , 2n}.
Hence, choosing xik+1

∈ {y1, . . . , y2n} such that B
(

xik+1
, (4n)−1 diam(Xik+1

)
)

∩
B(xii

, δr) = ∅ for every i ∈ {1, . . . , k}, we have finished the proof. �

It is evident that the bounded overlapping property does not imply the finite
clustering property and in Example 6.1, we show that the converse does not
hold either. The natural condition according to which supx∈E,r>0 sup

{

#R : R ⊂
{i ∈ I∗ : Xi ∩ B(x, r) 6= ∅ and diam(Xi−) > r} is incomparable

}

< ∞ clearly
implies both the bounded overlapping property and the uniform finite clustering
property. See also [23, Lemma 2.7]. However, we do not need this condition as
under a minor technical assumption, the finite clustering property implies the
bounded overlapping property.

Lemma 3.6. If a CMC satisfies the finite clustering property then it satisfies
the bounded overlapping property provided that

Xi ∩ E = π([i])

for each i ∈ I∗.

Proof. Set M = supx∈E lim supr↓0 #Z(x, r). Fix x ∈ E and assume that R ⊂ I∗

is a finite and incomparable set such that x ∈ Xi for each i ∈ R. Choose r > 0
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small enough so that #Z(x, r) ≤ M and

min
j∈Z(x,r)

|j| > max
i∈R

|i|.

According to the assumption, x ∈ ⋂

i∈R π([i]), and hence, for each i ∈ R there
exists a unique i∗ ∈ Z(x, r) such that i∗|n = i for some n ∈ N. The incom-
parability of R now implies that i∗ 6= j∗ for distinct i, j ∈ R. Consequently,
#R ≤ #Z(x, r) ≤ M . �

Let us examine how the Hausdorff measure is related to the ball condition.
Bear in mind that the finite clustering property and the ball condition are equiv-
alent.

Theorem 3.7. If a CMC satisfies the uniform finite clustering property, P (t) =
0, and m is the measure of Proposition 3.2 then there exist constants r0 > 0 and
K ≥ 1 such that

K−1rt ≤ m
(

B(x, r)
)

≤ Krt

whenever x ∈ E and 0 < r < r0. Consequently, dimH(E) = dimM(E) = t.

Proof. Suppose P (t) = 0 and m = µ ◦ π−1 is the measure of Proposition 3.2.
Seeing that π−1

(

B(x, r)
)

⊂ ⋃

i∈Z(x,r)[i], we get for fixed x ∈ E and r > 0

m
(

B(x, r)
)

≤ µ

(

⋃

i∈Z(x,r)

[i]

)

≤
∑

i∈Z(x,r)

µ([i])

≤ c
∑

i∈Z(x,r)

diam(Xi)
t ≤ #Z(x, r)crt,

which, together with the uniform finite clustering property and the proof of
Proposition 3.2, gives the first claim.

The second claim follows immediately from [22, Theorem 5.7]. �

Remark 3.8. We remark that in Theorem 3.7, the measure m can be replaced
with the Hausdorff measure Ht|E by recalling [8, Proposition 2.2]. In fact, it is
sufficient to assume the finite clustering property instead of the uniform finite
clustering property to see that Ht|E is proportional to m. Especially, under this
assumption, it holds that 0 < Ht(E) < ∞.

One could easily prove that if Ht|E is t-semiconformal for some t ≥ 0 then there
exists a set A ⊂ E with Ht(E \ A) = 0 such that supx∈A lim supr↓0 #Z(x, r) <
∞. Since this hardly generalizes to the whole set E without any additional
assumption, we propose the following definition. We say that a CMC is tractable
if there exists a constant C ≥ 1 such that for each r > 0 we have

dist(Xhi, Xhj) ≤ C diam(Xh)r (3.2)
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whenever h ∈ I∗, i, j ∈ Z(r), and dist(Xi, Xj) ≤ r. See Example 6.2 for an
example of a nontractable CMC. Compare the following theorem to [28, Theorem
2.1] and [27, Theorem 1.1].

Theorem 3.9. A tractable CMC satisfies the uniform finite clustering property
provided that P (t) = 0 and Ht(E) > 0.

Proof. Assume on the contrary that for each N ∈ N there are x′
N ∈ E and

r′N > 0 such that #Z(x′
N , r′N) ≥ N . For fixed N ∈ N choose i ∈ Z(x′

N , r′N) so
that x′

N = π(ik0) for some k0 ∈ I∞. We define

Ωi = {k ∈ I∞ : σn−1(k) ∈ [i] with infinitely many n ∈ N}
and taking arbitrary k ∈ Ωi and n ∈ N for which σn(k) ∈ [i], we denote x = π(k)
and h = k|n. Finally, pick j1, . . . , jN ∈ Z(x′

N , r′N) such that ji 6= jj as i 6= j.
Since now dist(Xi, Xji

) ≤ r′N for every i ∈ {1, . . . , N}, we have, according to the
assumption, that dist(Xhi, Xhji

) ≤ C diam(Xh)r
′
N . Hence

π([hji]) ⊂ Xhji
⊂ B

(

x, diam(Xhi) + dist(Xhi, Xhji
) + diam(Xhji

)
)

⊂ B
(

x, (2D + C) diam(Xh)r
′
N

)

for each i ∈ {1, . . . , N} recalling that x ∈ Xhi. Therefore

π

( N
⋃

i=1

[hji]

)

⊂ B(x, rn),

where rn = (2D + C) diam(Xk|n)r′N , and

m
(

B(x, rn)
)

rt
n

≥
∑N

i=1 µ([hji])

rt
n

≥ c−1
∑N

i=1 diam(Xhji
)t

rt
n

≥ c−1D−t diam(Xh)
t
∑N

i=1 diam(Xji
)t

(2D + C)t diam(Xh)tr′N
≥ C0N,

where µ is the measure of Proposition 3.2, m = µ ◦π−1, and the constant C0 > 0
does not depend on n or N . Since rn ↓ 0 as n → ∞, we obtain

lim sup
r↓0

m
(

B(x, r)
)

rt
≥ C0N

for all x ∈ π(Ωi), which, according to [8, Proposition 2.2(b)], gives

Ht
(

π(Ωi)
)

≤ 2tC−1
0 N−1m

(

π(Ωi)
)

. (3.3)

Since 1 = µ(Ωi) ≤ m
(

π(Ωi)
)

≤ 1 by Lemma 2.4, we have, using (3.3) and
Proposition 3.2,

Ht(E) ≤ Ht
(

π(Ωi)
)

+ Ht
(

E \ π(Ωi)
)

≤ 2tC−1
0 N−1m

(

π(Ωi)
)

+ c′m
(

E \ π(Ωi)
)

≤ 2tC−1
0 N−1,

which leads to a contradiction as N → ∞. �
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To summarize the implications of the previous theorem, we finish this chapter
with the following corollary.

Corollary 3.10. For a tractable CMC, the following are equivalent:

(1) The ball condition.
(2) The uniform ball condition.
(3) Ht(E) > 0, where P (t) = 0.
(4) There exist constants r0 > 0 and K ≥ 1 such that

K−1rt ≤ Ht|E
(

B(x, r)
)

≤ Krt

whenever x ∈ E, 0 < r < r0, and P (t) = 0.

4. Congruent Moran construction

In a tractable CMC, we require that the relative positions of the sets Xi,
i ∈ I∗, follow the rule given in (3.2). The only restriction for the shapes of these
sets comes from (M2) and (M3). Assuming more on the shape, we are able to
prove that the Hausdorff dimension and the upper Minkowski dimension of the
limit set coincide and if the uniform ball condition is satisfied then the dimension
of the intersection of incomparable cylinder sets is small. We say that a CMC is
congruent if there is a constant C∗ ≥ 1 such that

dist(Xhi, Xhj)

diam(Xh)
≤ C∗dist(Xki, Xkj)

diam(Xk)

whenever h, k, i, j ∈ I∗. Observe that this is equivalent to the existence of a
constant C ≥ 1 for which

C−1 diam(Xh) dist(Xi, Xj) ≤ dist(Xhi, Xhj) ≤ C diam(Xh) dist(Xi, Xj) (4.1)

whenever h, i, j ∈ I∗. We notice immediately that a congruent CMC is tractable
which indicates, for example, that the finite clustering property and the uniform
finite clustering property are equivalent.

Let us first introduce natural mappings for a congruent CMC.

Lemma 4.1. If a CMC is congruent then for each i ∈ I∗ there exists a mapping
ϕi : E → E such that ϕi

(

π(h)
)

= π(ih) as h ∈ I∞ and

C−1 diam(Xi)|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ C diam(Xi)|x − y|
whenever x, y ∈ E.

Proof. Fix i ∈ I∗ and h, k ∈ I∞. Take ε > 0 and using Lemma 3.1, choose n ∈ N

such that diam(Xi(h|n)) + diam(Xi(k|n)) < ε. Now, using (4.1), we have

|π(ih) − π(ik)| ≤ diam(Xi(h|n)) + dist(Xi(h|n), Xi(k|n)) + diam(Xi(k|n))

≤ C diam(Xi) dist(Xh|n , Xk|n) + ε

≤ C diam(Xi)|π(h) − π(k)| + ε.

(4.2)
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On the other hand, choosing n ∈ N such that diam(Xh|n) + diam(Xk|n) < ε, we
get similarly

|π(ih) − π(ik)| ≥ dist(Xi(h|n), Xi(k|n))

≥ C−1 diam(Xi) dist(Xh|n, Xk|n)

≥ C−1 diam(Xi)
(

|π(h) − π(k)| − diam(Xh|n) − diam(Xk|n)
)

≥ C−1 diam(Xi)|π(h) − π(k)| − C−1 diam(Xi)ε.

The claim follows now by letting ε ↓ 0 since according to (4.2), we may define a
mapping ϕi : E → E by setting ϕi

(

π(h)
)

= π(ih) as h ∈ I∞. �

It follows that the measure of Proposition 3.2 is semiconformal on a congruent
CMC satisfying the finite clustering property in the following sense.

Lemma 4.2. If a congruent CMC satisfies the finite clustering property, P (t) =
0, and m is the measure of Proposition 3.2 then

m
(

ϕi(E) ∩ ϕj(E)
)

= 0

whenever i⊥j. Here ϕi, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. Since Lemma 4.1 clearly implies that diam
(

ϕi(E)
)

is proportional to
diam(Xi), the CMC formed by the sets ϕi(E), i ∈ I∗, has the same topo-
logical pressure as the original CMC. Notice that diam(E) > 0 by the finite
clustering property. By the uniqueness of the invariant semiconformal measure
on I∞, also the semiconformal measures determined by these CMC’s on I∞ are
the same. Noting that the finite clustering property remains satisfied in the new
setting and trivially ϕi(E) ∩ E = π([i]) for each i ∈ I∗, Lemma 3.6 implies the
bounded overlapping property. By the congruence, it is evident that for each
i, j ∈ I∗ and h ∈ I∞ it holds that π(ih) ∈ ϕij(E) whenever π(h) ∈ ϕj(E) and
hence Proposition 3.2 completes the proof. �

Using the mappings of Lemma 4.1, we are able to prove that the Hausdorff
dimension and the upper Minkowski dimension of the limit set of a congruent
CMC coincide even without assuming the ball condition.

Theorem 4.3. If a CMC is congruent and t = dimH(E) then dimM(E) = t and
Ht(E) < ∞.

Proof. We may assume that diam(E) > 0. Let ϕi, i ∈ I∗, be the mappings of
Lemma 4.1. Notice that, using (M2), there exists a constant δ > 0 such that

diam(Xii) ≥ δ diam(Xi) (4.3)

whenever i ∈ I∗ and i ∈ I. Take x0 ∈ E, h ∈ I∞ such that x0 = π(h), and
0 < r < C diam(E)2. Then choose n ∈ N such that h|n ∈ Z

(

C−1 diam(E)−1r
)

.
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Since x0 = ϕh|n
(

π(σn(h))
)

, we have

|x0 − ϕh|n(y)| ≤ C diam(Xh|n)
∣

∣π
(

σn(h)
)

− y
∣

∣

≤ C diam(Xh|n) diam(E) < r

for every y ∈ E. Hence

ϕh|n(E) ⊂ E ∩ B(x0, r).

On the other hand, using (4.3),

|ϕh|n(x) − ϕh|n(y)| ≥ C−1 diam(Xh|n)|x − y|
≥ C−2 diam(E)−1δr|x − y|

whenever x, y ∈ E. Therefore for each x0 ∈ E and 0 < r < C diam(E)2 there is
a mapping g : E → E ∩ B(x0, r) and a constant a = C−2 diam(E)−1δ such that

|g(x) − g(y)| ≥ ar|x − y|
whenever x, y ∈ E. The claim follows now from [8, Theorem 3.2]. �

The following simple proposition shows the bi-Lipschitz invariance of a con-
gruent CMC. Therefore the collection of all congruent CMC’s is sufficiently large.
Observe that despite of this property the geometry of the limit set may change
a lot under a bi-Lipschitz map, see [21, Lemma 3.2].

Proposition 4.4. If {Xi : i ∈ I∗} is a congruent CMC with E as a limit set
and h : R

d → R
d is a bi-Lipschitz mapping then {h(Xi) : i ∈ I∗} is a congruent

CMC with h(E) as a limit set.

Proof. Fix constants a, b > 0 such that

a|x − y| ≤ |h(x) − h(y)| ≤ b|x − y|
for every x, y ∈ X. The condition (M1) is clearly satisfied and since a diam(Xi) ≤
diam

(

h(Xi)
)

≤ b diam(Xi) as i ∈ I∗ and a dist(Xi, Xj) ≤ dist
(

h(Xi), h(Xj)
)

≤
b dist(Xi, Xj) as i, j ∈ I∗, also the conditions (M2), (M3), and (4.1) are satisfied.
The proof is finished. �

Examining the method used in [28, Theorem 2.1], one is easily convinced by
the usefulness of the set of symbols W defined by

W (i) =
{

j ∈ I∗ : j′ ∈ Z
(

diam(Xi′)
)

and

dist(Xi′ , Xj′) ≤ 3 diam(Xi′), where

i′ = σ|i∧j|(i) and j′ = σ|i∧j|(j)
}

(4.4)

as i ∈ I∗. See also [10, §2] and [27, §3]. Notice that i ∈ W (i). The constant
3 in (4.4) is somewhat arbitrary. The reader can easily see that any constant
strictly larger than 2 would suffice. Let us next prove two technical lemmas.
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Lemma 4.5. Given CMC, the set W (i) is incomparable for every i ∈ I ∗. Fur-
thermore, if j ∈ W (i) then

D−3 min
i∈I

diam(Xi) diam(Xi) ≤ diam(Xj) ≤ D2 diam(Xi).

Proof. Fix i ∈ I∗. Observe that if i 6= j ∈ W (i) then clearly i⊥j. Take
j, h ∈ W (i). If now |j ∧ i| < |h ∧ i|, it must be j⊥h since otherwise j = i ∧ j,
which contradicts with the first observation. If |j ∧ i| = |h ∧ i| =: k then
σk(j), σk(h) ∈ Z

(

diam(Xσk(i))
)

and hence j⊥h.

To prove the second claim, fix i ∈ I∗, take j ∈ W (i), and denote i′ = σ|i∧j|(i)
and j′ = σ|i∧j|(j). Since j′ ∈ Z

(

diam(Xi′)
)

, we have, using (M2),

diam(Xi′) ≥ diam(Xj′) ≥ D−1 min
i∈I

diam(Xi) diam(Xi′).

Therefore, according to (M2),

diam(Xj) ≥ D−1 diam(Xi∧j) diam(Xj′)

≥ D−2 min
i∈I

diam(Xi) diam(Xi∧j) diam(Xi′)

≥ D−3 min
i∈I

diam(Xi) diam(Xi)

and

diam(Xj) ≤ D diam(Xi∧j) diam(Xj′)

≤ D diam(Xi∧j) diam(Xi′) ≤ D2 diam(Xi).

The proof is finished. �

Lemma 4.6. If a congruent CMC satisfies the finite clustering property then

sup
i∈I∗

W (i) < ∞.

Proof. Suppose ϕi, i ∈ I∗, are the mappings of Lemma 4.1, P (t) = 0, and
m = µ ◦ π−1 is the measure of Proposition 3.2. According to Corollary 3.10 and
Theorems 3.5 and 3.7, there exists a constant K ≥ 1 such that for every x ∈ E
and r > 0

m
(

B(x, r)
)

≤ Krt.

Fix i ∈ I∗, take j ∈ W (i), and denote i′ = σ|i∧j|(i) and j′ = σ|i∧j|(j). Since
j ∈ W (i) and j′ ∈ Z

(

diam(Xi′)
)

, we have dist(Xi′, Xj′) ≤ diam(Xi′) and

dist(Xi, Xj) ≤ C diam(Xi∧j) dist(Xi′ , Xj′)

≤ 3C diam(Xi∧j) diam(Xi′) ≤ 3CD diam(Xi).

Using Lemma 4.5, we obtain

Xj ⊂ B
(

x, diam(Xi) + 3CD diam(Xi) + diam(Xj)
)

⊂ B
(

x, (1 + 3CD + D2) diam(Xi)
)
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for a point x ∈ π([i]) whenever j ∈ W (i). Hence

m

(

⋃

j∈W (i)

Xj

)

≤ m
(

B
(

x, (1 + 3CD + D2) diam(Xi)
))

≤ K(1 + 3CD + D2)t diam(Xi)
t.

Since, on the other hand, we have a constant c ≥ 1 such that

m

(

⋃

j∈W (i)

Xj

)

≥ m

(

⋃

j∈W (i)

ϕj(E)

)

=
∑

j∈W (i)

m
(

ϕj(E)
)

≥
∑

j∈W (i)

µ([j]) ≥ c−1
∑

j∈W (i)

diam(Xj)
t

≥ #W (i)c−1D−3t min
i∈I

diam(Xi)
t diam(Xi)

t

using Lemmas 4.2 and 4.5, we conclude

#W (i) ≤ cKD3t(1 + 3CD + D2)t

mini∈I diam(Xi)t

whenever i ∈ I∗. �

The following theorem generalizes a crucial point of [28, Theorem 2.1] into the
setting of CMC’s. See also [10, Theorem 3.3] and [27, §3].

Theorem 4.7. If a congruent CMC satisfies the finite clustering property then
there are a constant δ > 0 and a symbol h ∈ I∗ such that

dist(Xih, Xjh) > δ
(

diam(Xi) + diam(Xj)
)

whenever i⊥j.

Proof. Using Lemma 4.6, we choose h ∈ I∗ such that #W (h) = supi∈I∗ #W (i).
Therefore clearly

#{ij : j ∈ W (h)} = #W (h) ≥ #W (ih)

for every i ∈ I∗. Since it follows immediately from the definition (4.4) that

{ij : j ∈ W (h)} ⊂ W (ih),

we infer

W (ih) = {ij : j ∈ W (h)} (4.5)

whenever i ∈ I∗.
Take next i, j ∈ I∗ such that i⊥j and denote i′ = σ|i∧j|(i) and j′ = σ|i∧j|(j).

Let yj′ = π(k) ∈ Xj′h, where k ∈ [j′h], and choose k ∈ N such that k|k ∈
Z

(

diam(Xi′h)
)

. Since k|1 = j′|1 6= i′|1, we have, using (4.5),

k|k /∈ W (i′h).
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Hence the definition (4.4) yields dist(Xk|k , Xi′h) > 3 diam(Xi′h). Since yj′ ∈ Xk|k ,
we also have dist(yj′ , Xi′h) > 3 diam(Xi′h). Similarly, changing the roles of i and
j above, we find yi′ ∈ Xi′h such that dist(yi′, Xj′h) > 3 diam(Xj′h). This implies
that

|yi′ − yj′ | ≥ 3 max{diam(Xi′h), diam(Xj′h)}
≥ 3

2

(

diam(Xi′h) + diam(Xj′h)
)

.

Since, on the other hand,

|yi′ − yj′| ≤ diam(Xi′h) + dist(Xi′h, Xj′h) + diam(Xj′h),

we infer

dist(Xi′h, Xj′h) ≥ 1
2

(

diam(Xi′h) + diam(Xj′h)
)

.

Thus, using (4.1) and (M2),

dist
(

Xih, Xjh

)

≥ C−1 diam(Xi∧j) dist
(

Xi′h, Xj′h

)

≥ (2C)−1 diam(Xi∧j)
(

diam(Xi′h) + diam(Xj′h)
)

≥ (2CD)−1
(

diam(Xih) + diam(Xjh)
)

≥ (2CD2)−1 diam(Xh)
(

diam(Xi) + diam(Xj)
)

whenever i⊥j. Therefore, choosing δ = (3CD2)−1 diam(Xh), we have finished
the proof. �

As a corollary, we notice that for a congruent Moran construction, we may
choose the balls in the ball condition to be centered at E and placed in such
manner that also larger collections (than required in the definition) of them are
disjoint.

Corollary 4.8. If a congruent CMC satisfies the ball condition then there are a
constant δ > 0 and a point x ∈ E such that

B
(

ϕi(x), δ diam(Xi)
)

∩ B
(

ϕj(x), δ diam(Xj)
)

= ∅
whenever i⊥j. Here ϕi, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. Assuming that δ > 0 and h ∈ I∗ are as in Theorem 4.7, the claim follows
immediately from Theorems 3.5 and 4.7 by choosing x ∈ π([h]). �

Compare the following improvement of Lemma 4.2 to [24, Theorem 3.3] and
[18, Theorem 1.6].

Proposition 4.9. If a congruent CMC satisfies the ball condition then

dimH

(

ϕi(E) ∩ ϕj(E)
)

< dimH(E)

whenever i⊥j. Here ϕi, i ∈ I∗, are the mappings of Lemma 4.1.
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Proof. Let δ > 0 and h ∈ I∗ be as in Theorem 4.7 and define

A =
⋃

k∈I∗

ϕk

(

π([h])
)

.

According to Theorem 4.7, we have ϕi

(

π([h])
)

∩ ϕj

(

π([h])
)

= ∅ whenever i⊥j,
and hence also

ϕi(A) ∩ ϕj(A) = ∅
as i⊥j. Thus we get

ϕi(E) ∩ ϕj(E) =
(

ϕi(E \ A) ∩ ϕj(A)
)

∪
(

ϕi(E) ∩ ϕj(E \ A)
)

⊂ ϕi(E \ A) ∪ ϕj(E \ A)

whenever i⊥j from which the Lipschitz continuity implies

dimH

(

ϕi(E) ∩ ϕj(E)
)

≤ dimH

(

ϕi(E \ A) ∪ ϕj(E \ A)
)

≤ dimH(E \ A).

Obviously, {Xi : i ∈ (I |h|)∗} is a CMC having E as a limit set, whereas E \ A
is contained in the limit set F of the subconstruction {Xi : i ∈ (I |h| \ {h})∗}.
Since it is evident that both of these CMC’s satisfy the uniform finite cluster-
ing property, Lemma 2.5 and Theorem 3.7 imply that dimH(F ) < dimH(E).
Consequently, dimH(E \ A) < dimH(E) and the proof is finished. �

We shall finish this chapter with the following observation.

Proposition 4.10. Suppose a collection of compact sets with positive diameter
{Xi ⊂ Rd : i ∈ I∗} satisfies the following four conditions:

(C1) Xii ⊂ Xi as i ∈ I∗ and i ∈ I,
(C2) there exist i, j ∈ I∗ such that Xi ∩ Xj = ∅,
(C3) limn→∞ diam(Xi|n) = 0 for every i ∈ I∞,
(C4) there exists a constant C ≥ 1 such that

C−1 diam(Xh) dist(Xi, Xj) ≤ dist(Xhi, Xhj) ≤ C diam(Xh) dist(Xi, Xj)

whenever h, i, j ∈ I∗.

Then the collection is a congruent CMC.

Proof. It suffices to prove (M2) and (M3). To show (M2), observe first that the
assumptions (C1) and (C3) guarantee the existence of the limit set E and the
claim in Lemma 4.1 follows from the assumptions (C1), (C3), and (C4). Let ϕi,
i ∈ I∗, be the mappings of Lemma 4.1. Then

diam
(

ϕi(E)
)

≥ |ϕi(x) − ϕi(y)| ≥ C−1 diam(Xi)|x − y|
whenever x, y ∈ E. This implies, using (C2), that

diam(Xi) ≤ C diam(E)−1 diam
(

ϕi(E)
)

(4.6)
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for every i ∈ I∗. Since

diam
(

ϕij(E)
)

= sup
x,y∈E

∣

∣ϕi

(

ϕj(x)
)

− ϕi

(

ϕj(y)
)
∣

∣

≤ C2 diam(Xi) diam(Xj) sup
x,y∈E

|x − y|

whenever i, j ∈ I∗, we get, by (4.6), that

diam(Xij) ≤ C diam(E)−1 diam
(

ϕij(E)
)

≤ C3 diam(Xi) diam(Xj)

whenever i, j ∈ I∗. On the other hand,

diam
(

ϕi(E)
)

= sup
x,y∈E

|ϕi(x) − ϕi(y)| ≤ C diam(Xi) sup
x,y∈E

|x − y|

implies, using (C2), that

diam(Xi) ≥ C−1 diam(E)−1 diam
(

ϕi(E)
)

(4.7)

for every i ∈ I∗. Since

diam
(

ϕij(E)
)

≥
∣

∣ϕi

(

ϕj(x)
)

− ϕi

(

ϕj(y)
)
∣

∣

≥ C−2 diam(Xi) diam(Xj)|x − y|

whenever x, y ∈ E and i, j ∈ I∗, we get, by (4.7), that

diam(Xij) ≥ C−1 diam(E)−1 diam
(

ϕij(E)
)

≥ C−3 diam(Xi) diam(Xj)

whenever i, j ∈ I∗.
Let us then show (M3). Denote Mn = maxi∈In diam(Xi) as n ∈ N and choose

i1, i2, . . . ∈ I∞ such that

Mn = diam(Xin|n)

for every n ∈ N. By the compactness of I∞, the sequence {in}n∈N has a con-
verging subsequence. Let i ∈ I∞ be the limit point of such a subsequence. Now
for each j ∈ N there is n(j) ∈ N such that n(j) ≥ j and in(j) ∈ [i|j]. Since
in(j)|j = i|j for all j ∈ N, we have, using (C1) and (C3),

Mn(j) = diam(Xin(j)|n(j)
)

≤ diam(Xin(j)|j) = diam(Xi|j) → 0

as j → ∞. The proof is finished by choosing j ∈ N such that Mn(j) < C−3. �
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5. Congruent iterated function system

We assume that for each i ∈ I there is a contractive injection ϕi : Ω → Ω de-
fined on an open subset Ω of Rd and that there also exists a closed and nonempty
X ⊂ Ω satisfying

⋃

i∈I

ϕi(X) ⊂ X. (5.1)

Here the contractivity of ϕi means that there is a constant 0 < si < 1 such that

|ϕi(x) − ϕi(y)| ≤ si|x − y| (5.2)

whenever x, y ∈ Ω. The collection {ϕi : i ∈ I} is then called an iterated function
system (IFS). As shown in [12, §3], an elegant application of the Banach fixed
point theorem implies the existence of a unique compact and nonempty set E ⊂
X for which

E =
⋃

i∈I

ϕi(E).

Such a set E is called an invariant set (for the corresponding IFS). As a side note,
it is not necessary to require the mappings ϕi to be injective in order to ensure
the existence of the invariant set. However, under this additional assumption,
it follows from Brouwer’s domain invariance theorem [5, Theorem IV.7.4] that
ϕi(U) is open whenever U is.

Observe that we may replace the set X by the closed neighborhood of the
invariant set E. Indeed, we fix 0 < ε < dist(E, Rd \ Ω) (if Ω = R

d, any positive
ε will do) and take

X = {x ∈ Ω : |x − a| ≤ ε for some a ∈ E}.
The validity of (5.1) is then a consequence of the easily proven fact that

dist
(

ϕi(A), E
)

≤ si dist(A, E) (5.3)

whenever A ⊂ Ω and i ∈ I.
We say that an IFS is controlled if it defines a CMC, that is, there exists a

compact set A ⊂ Ω such that the collection {ϕi(A) : i ∈ I∗} is a CMC. The limit
set of such a CMC is clearly E. Here ϕi = ϕi1 ◦ · · · ◦ ϕin as i = (i1, . . . , in) ∈ In

and n ∈ N.

Lemma 5.1. A controlled IFS defines a tractable CMC.

Proof. Choose a compact set A ⊂ X such that the collection {ϕi(A) : i ∈ I∗} is
a CMC. Define for i ∈ I∗

s′i = inf{s > 0 : |ϕi(x) − ϕi(y)| ≤ s|x − y| for all x, y ∈ X}
and using the compactness, take x, y ∈ A such that |x − y| = diam(A). Since
now

|ϕi(x) − ϕi(y)| ≤ diam
(

ϕi(A)
)

= diam(A)−1 diam
(

ϕi(A)
)

|x − y|,
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we have s′i ≤ diam(A)−1 diam
(

ϕi(A)
)

. Hence it follows that

dist
(

ϕih(A), ϕik(A)
)

≤ s′i dist
(

ϕh(A), ϕk(A)
)

≤ diam(A)−1 diam
(

ϕi(A)
)

dist
(

ϕh(A), ϕk(A)
)

.

This implies (3.2) and finishes the proof. �

Finally, we say that an IFS is congruent if the invariant set E has positive
diameter and there are constants 0 < si ≤ si < 1, i ∈ I∗, and D ≥ 1 for which
si ≤ Dsi as i ∈ I∗ and

si|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ si|x − y| (5.4)

whenever x, y ∈ Ω. The following lemma shows that a congruent IFS defines a
congruent CMC. The natural question whether the converse holds raises from
Lemma 4.1. Sufficient geometric conditions on the limit set for the positive
answer are provided in [1]. See also [29, Example 6.2].

Lemma 5.2. If {ϕi : i ∈ I} is a congruent IFS and a compact set A with positive
diameter satisfies ϕi(A) ⊂ A for every i ∈ I then {ϕi(A) : i ∈ I∗} is a congruent
CMC. Furthermore, the mappings ϕi|E, i ∈ I∗, are the mappings of Lemma 4.1.

Proof. To be able to use Proposition 4.10, we have to verify the required assump-
tions (C1)–(C4). Observe first that (C1) is clearly satisfied and the positivity of
diam(E) implies (C2). Notice also that the sets ϕi(A), i ∈ I∗, are compact with
positive diameter. Since for fixed i ∈ I∗, we have si diam(A) ≤ diam

(

ϕi(A)
)

≤
si diam(A) by (5.4), it follows that

C−1 diam
(

ϕi(A)
)

|x − y| ≤ |ϕi(x) − ϕi(y)| ≤ C diam
(

ϕi(A)
)

|x − y|, (5.5)

where C = D max{diam(A), diam(A)−1} and x, y ∈ A. Hence, applying (5.2)
to (5.5) several times, we get diam

(

ϕi(A)
)

≤ Csi1 · · · si|i| , which implies the

assumption (C3). Since (5.5) gives also the assumption (C4), that is

C−1 diam
(

ϕi(A)
)

dist
(

ϕh(A), ϕk(A)
)

≤ dist
(

ϕih(A), ϕik(A)
)

≤ C diam
(

ϕi(A)
)

dist
(

ϕh(A), ϕk(A)
)

as h, k ∈ I∗, we have finished the proof of the first claim.
The second claim follows immediately since the collection {ϕi(E) : i ∈ I∗} is

a congruent CMC. �

We say that an IFS satisfies an open set condition (OSC), if there exists a
nonempty open set U ⊂ Ω such that

ϕi(U) ∩ ϕj(U) = ∅
whenever i⊥j. See [25, Theorem III] and [12, §5.2] for the motivation of the
definition. Adapting terminology from [3], we call any such nonempty open set
U a feasible set for the OSC. As an immediate consequence of the definition, we
notice that each nonempty open subset and each image ϕi(U) of a feasible set U
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is feasible as well. Thus, using the observation (5.3) repeatedly, we see that the
OSC is equivalent to the existence of a feasible set U ⊂ X. Recall that X is the
fixed compact ε-neighborhood of the invariant set.

Lemma 5.3. An IFS satisfies the OSC exactly when there exists a nonempty
open set V ⊂ X such that

ϕi(V ) ⊂ V

as i ∈ I and

ϕi(V ) ∩ ϕj(V ) = ∅
as i 6= j. Furthermore, there exists a feasible set intersecting E if and only if
there exists a set V as above such that V ∩ E 6= ∅.
Proof. Defining V =

⋃

h∈I∗ ϕh(U), where U ⊂ X is a feasible set for the OSC, we
clearly have ϕi(V ) ⊂ V ⊂ X as i ∈ I. If i 6= j, it holds that

ϕih(U) ∩ ϕjh(U) = ∅
for every h ∈ I∗ and hence

(

⋃

h∈I∗

ϕih(U)

)

∩
(

⋃

h∈I∗

ϕjh(U)

)

= ∅.

Noting that the other direction is trivial we have finished the proof. �

Given IFS, we say that A ⊂ Ω is forwards invariant if ϕi(A) ⊂ A as i ∈ I and
backwards invariant if ϕ−1

i (A) ⊂ A as i ∈ I. For A ⊂ Ω we define

FA =
⋃

i⊥j

ϕ−1
i

(

ϕj(A)
)

and for a congruent IFS we set

OA =
{

x ∈ Ω : D dist(x, A) < dist
(

x, FA ∪ (Rd \ Ω)
)}

.

Here the constant D ≥ 1 is the same as in the definition of the congruent IFS.
Observe that FA ⊂ Ω is backwards invariant.

Proposition 5.4. Suppose a given IFS is congruent. If U ⊂ Ω is a feasible set
for the OSC then OU 6= ∅. Furthermore, if there exists a set A ⊂ Ω such that
OA 6= ∅ then OA is feasible.

Proof. Let U ⊂ Ω be a nonempty open set for which ϕi(U)∩ϕj(U) = ∅ whenever
i⊥j. It follows that U ∩ FU = ∅ and since U is open, we get U ⊂ OU .

Conversely, it suffices to show that ϕi(OA) ∩ ϕj(OA) = ∅ as i⊥j. Suppose
contrarily that there are i, j ∈ I∗ and x, y ∈ OA such that i⊥j and ϕi(x) =
ϕj(y) =: z. Observe that the inverse mapping ϕ−1

i : ϕi(Ω) → Ω has a Lipschitz
constant s−1

i for each i ∈ I∗. According to Kirszbraun’s theorem [11, §2.10.43],
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there exists a Lipschitz extension ϕi : Ω → Rd for the mapping ϕ−1
i having the

same Lipschitz constant. Since ϕi

(

ϕj(A)
)

⊂ FA ∪ (Rd \Ω) and x ∈ OA, we have

dist
(

z, ϕj(A)
)

= dist
(

ϕi(x), ϕj(A)
)

≥ si dist
(

x, ϕi

(

ϕj(A)
))

≥ si dist
(

x, FA ∪ (Rd \ Ω)
)

> siD dist(x, A)

≥ siDs−1
i dist

(

ϕi(x), ϕi(A)
)

≥ dist
(

z, ϕi(A)
)

using (5.4). Changing the roles of i and j above, we end up with a contradiction.
The proof is finished. �

We say that a congruent IFS {ϕi : i ∈ I} satisfies the (uniform) ball condition
if the congruent CMC {ϕi(E) : i ∈ I∗} satisfies the (uniform) ball condition.
Lemma 5.2 guarantees that this is well defined. Recalling the proof of Lemma
4.2, it is clear that in this definition the set E can be replaced with any forwards
invariant compact set A with positive diameter. Observe also that if a congruent
IFS satisfies the OSC then it satisfies the uniform ball condition. See also [14,
Proposition 3.6].

Theorem 5.5. A congruent IFS satisfies the ball condition exactly when OE ∩
E 6= ∅.
Proof. Let us first prove that the uniform ball condition implies OE ∩ E 6= ∅.
Recall that X is the closed ε-neighborhood of E. We may further assume that

F :=
⋃

i⊥j

ϕ−1
i

(

ϕj(E)
)

∩ X 6= ∅

seeing that F = ∅ implies dist(E, FE) ≥ ε, which gives E ⊂ OE. It is now
sufficient to find a point x ∈ E with dist(x, F ) > 0.

According to Theorem 3.5 and Corollary 4.8, there exist a point x ∈ E and a
constant δ > 0 such that

|ϕi(x) − ϕjh(x)| > δ diam
(

ϕi(X)
)

whenever i⊥j and h ∈ I∗. It is easy to see that the set {ϕjh(x) : h ∈ I∗} is dense
in ϕj(E). So, in fact, we have

dist
(

ϕi(x),
⋃

i⊥j

ϕj(E)
)

≥ δ diam
(

ϕi(X)
)

for each i ∈ I∗, which in turn implies that

|ϕi(x) − ϕi(y)| ≥ δ diam
(

ϕi(X)
)

for each y ∈ ϕ−1
i

(

ϕj(E)
)

when i⊥j. On the other hand, the proof of Lemma 5.1
shows that there is a constant C > 0 such that

|ϕi(x) − ϕi(y)| ≤ C diam
(

ϕi(X)
)

|x − y|
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whenever x, y ∈ X and i ∈ I∗. Combining the inequalities above gives

|x − y| ≥ C−1δ

for each y ∈ F and consequently dist(x, F ) > 0 as desired.
Since the other direction follows immediately from Proposition 5.4, the proof

is finished. �

The following proposition generalizes [28, Corollary 2.3] and [27, Corollary 1.2]
into the setting of congruent IFS’s. Although the argument used here is similar
to the proof of [27, Corollary 1.2], we give the details for the convenience of the
reader.

Proposition 5.6. If a congruent IFS satisfies the OSC and dimH(E) = d then
the invariant set E is the closure of its interior.

Proof. As the OSC implies the uniform finite clustering property, we have P (d) =
0. Hence there exists a constant c > 0 such that

∑

i∈In

sd
i ≥ D−d diam(X)−d

∑

i∈In

diam
(

ϕi(X)
)d ≥ c, (5.6)

see the defining equation (3.1) and Lemma 2.1. Choose the forwards invariant
feasible set V ⊂ X as in Lemma 5.3 and consider the set

T = V \
⋃

i∈I

ϕi(V ).

The facts that ϕi(T ) ⊂ ϕi(V ) and ϕi(T ) ∩ ϕij(V ) = ∅ for every i ∈ I∗ and
j ∈ I∗ easily lead to the conclusion that ϕi(T ) ∩ ϕj(T ) = ∅ whenever i 6= j.
Furthermore, since ϕi(T ) ⊂ X for each i ∈ I∗, we have

∞ > Hd(X) ≥ Hd

(

⋃

i∈I∗

ϕi(T )

)

=
∑

n∈N

∑

i∈In

Hd
(

ϕi(T )
)

≥ Hd(T )
∑

n∈N

∑

i∈In

sd
i.

(5.7)

Now (5.6) and (5.7) together imply that Hd(T ) = 0. This in turn shows that the
set

V \
⋃

i∈I

ϕi(V ) = V \
⋃

i∈I

ϕi(V )

is empty, being an open set with zero measure. Here with the notation A, we
mean the closure of a given set A. This means that V =

⋃

i∈I ϕi(V ), giving

E = V by the uniqueness of the invariant set. The proof is complete. �

A similitude IFS, introduced in [12], is the most obvious example of a congruent
IFS. Suppose that for each i ∈ I there is a mapping ϕi : Rd → Rd and a constant
0 < si < 1 such that

|ϕi(x) − ϕi(y)| = si|x − y|
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whenever x, y ∈ Rd. Now for a closed ball B centered at the origin, we have
ϕi(B) ⊂ B whenever i ∈ I provided that the radius of B is chosen large enough.
The collection {ϕi : i ∈ I} is then an IFS and we call it a similitude IFS.

The following proposition is a slightly more general result than [3, Theorem
1].

Proposition 5.7. Given similitude IFS, the set OA is forwards invariant and
feasible for the OSC provided that OA 6= ∅ and A ⊂ X is forwards invariant.

Proof. According to Proposition 5.4, it suffices to show that ϕi(OA) ⊂ OA as
i ∈ I. Assume on the contrary that there exist i ∈ I and x ∈ OA such that
ϕi(x) /∈ OA, that is,

D dist
(

ϕi(x), A
)

≥ dist
(

ϕi(x), FA

)

.

Notice that here D can be chosen to be one. Therefore, since A ⊂ ϕ−1
i (A) and

ϕ−1
i (FA) ⊂ FA for every i ∈ I, we obtain

dist(x, FA) > D dist(x, A) ≥ D dist
(

x, ϕ−1
i (A)

)

= s−1
i D dist

(

ϕi(x), A
)

≥ s−1
i dist

(

ϕi(x), FA

)

= dist
(

x, ϕ−1
i (FA)

)

≥ dist(x, FA).

This contradiction finishes the proof. �

6. Examples

In the last chapter, we illustrate the preceding theory by providing the reader
with several examples. We begin by showing that the uniform finite clustering
property does not imply the bounded overlapping property.

Example 6.1. The standard Cantor 1
3
-set E can be defined as the invariant set

of the similitude IFS formed by the mappings

ϕ0(x) = 1
3
x,

ϕ1(x) = 1
3
x + 2

3

on R. We have P (t) = 0 for t = log 2/ log 3 and it is well known that Ht(E) =
1, see [7, Theorem 1.14]. Consider now the CMC {ϕi(X) : i ∈ I∗}, where
X = [0, 3] and I = {0, 1}. The positivity of Ht(E) implies the uniform finite
clustering property for this tractable CMC by Theorem 3.9. However, using
the facts 1 ∈ ϕ0(X) and ϕ1(1) = 1, we infer by induction that 1 ∈ ϕ1k0(X)
for every k ∈ N, where 1k = (1, . . . , 1) ∈ Ik for each k. Since the infinite
set {1k0 : k ∈ N} is incomparable, we conclude that the bounded overlapping
property is not satisfied.

Example 6.2. In this example, we give a CMC which shows that the assumption
concerning the relative positions of the sets Xi in the last claim of Proposition
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3.2 is indispensable. Besides this, it is also an example of a nontractable CMC.
Using the mappings ϕi, i ∈ I∗, from the previous example, set

X0 = [0, 1] × [0, 1],

X1 = [0, 1] × [−1, 0]

and for j ∈ I and i ∈ I∗

Xji =

{

ϕi([0, 1]) × [0, 3−|i|], if j = 0

ϕi([0, 1]) × [−3−|i|, 0], if j = 1.

The CMC determined by these squares obviously has the limit E = Ex × {0} ⊂
R2, where Ex ⊂ R is the standard Cantor 1

3
-set. It is equally obvious that the

uniform ball condition is satisfied, which, according to Theorems 3.7 and 3.5 and
Remark 3.8, implies that the measure m of Proposition 3.2 is proportional to
Ht|E, where t = log 2/ log 3 as in the previous example. Consequently, m(J) > 0
whenever J is one of the line segments ϕi([0, 1]) × {0}, i ∈ I∗. Especially,

m(Xi ∩ Xj) > 0

for incomparable symbols i and j satisfying i|1 6= j|1 and σ(i) = σ(j). We have
hereby shown that the measure m is not t-semiconformal. On the other hand,
Lemma 3.6 implies that the bounded overlapping property is satisfied, noting
that clearly Xi ∩ E = π([i]) for each i ∈ I∗. Therefore, an extra assumption in
Proposition 3.2 is really needed.

Furthermore, this CMC is not tractable. This can be deduced from the fact
that

dist(X0i, X1i) = 0

but

dist(X00i, X01i) ≥ dist(X00, X01) = 1
3

for every i ∈ I∗.

Example 6.3. Suppose I is a finite set and for each i ∈ I there is a mapping
ϕi : R2 → R2 such that

ϕi(x, y) = (aix + ci, biy + di),

where 0 < bi ≤ ai < 1 and ci, di ≥ 0. Denoting L = 1 + maxi∈I{ci, di}/(1 −
maxi∈I ai) and X = [0, L]2, we have ϕi(X) ⊂ X for every i ∈ I. Since aiL ≤
diam

(

ϕi(X)
)

≤
√

2aiL, where i = (i1, . . . , in) ∈ In, ai = ai1 · · ·ain , and n ∈ N,
the collection {ϕi(X) : i ∈ I∗} is a CMC and hence tractable by Lemma 5.1.

According to Theorem 3.5, Remark 3.8, and 3.9, this CMC satisfies the uniform
ball condition if and only if 0 < Ht(E) < ∞, where E is the limit set and
∑

i∈I at
i = 1.
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Example 6.4. Suppose I = {0, 1} and there are mappings ϕ0, ϕ1 : R2 → R2 such
that

ϕ0(x, y) = (ax, by + d),

ϕ1(x, y) = (ax + c, by),

where 0 < b ≤ a ≤ 1
2
, c > 0, and d ≥ 0. Let L = 1 + max{c, d}/(1 − a) and

X = [0, L]2. As in Example 6.3, we notice that the collection {ϕi(X) : i ∈ I∗}
is a tractable CMC.

Let us examine the distances between the points projx
(

ϕi(0, 0)
)

as |i| = k.
Here projx denotes the orthogonal projection onto the x-axis. If k = 1, there is
just one distance, c. If k = 2 then there are six possible distances, but it suffices
to notice that from the two first level sets it can be found the first level distance d
multiplied by a and that projx

(

ϕ2,1(0, 0)
)

−projx
(

ϕ1,2(0, 0)
)

= c−ca > 0. Hence,
the six possible distances are bounded below by λ2 = min{ca, c−ca}. Similarly, if
k = 3, the possible distances are bounded below by λ3 = min{aλ2, c−ca−ca2} >
0 and if k = 4, they are bounded by λ4 = min{aλ3, c − ca − ca2 − ca3} > 0.
Continuing in this manner, we find that for k ∈ N the possible distances are
bounded below by λk = min{cak, cak−1 − cak, . . . , c − ca − · · · − cak−1 − cak}.
Noting that 1 − a − a2 − · · · − ak ≥ ak for every k ∈ N by 0 < a ≤ 1

2
, we get

λk = cak. Hence the collection of balls
{

B
(

ϕi(0, 0), cak/3
)

: i ∈ Ik
}

is disjoint
for each k ∈ N. This implies the uniform ball condition.

We conclude that 0 < Ht(E) < ∞, where t = − log 2/ log a.

Example 6.5. Suppose I = {0, 1} and there are mappings ϕ0, ϕ1 : R2 → R2 such
that

ϕ0(x, y) = (ax, by + d),

ϕ1(x, y) = (ax, by),

where 0 < b < a < 1 and d ≥ 0. Let L = 1 + d/(1 − a) and X = [0, L]2. As in
Example 6.3, we notice that the collection {ϕi(X) : i ∈ I∗} is a tractable CMC.

We show that the uniform ball condition does not hold in this setting. Then
Corollary 3.10 guarantees that the ball condition does not hold either. Recalling
Theorem 3.5, it suffices to state that for each N ∈ N there is x ∈ E and r > 0
such that #Z(x, r) ≥ N . Let N ∈ N, x ∈ E, and j ∈ I∞ such that π(j) = x.
Take n ≥ (log b/ log a − 1)−1 log 2N/ log 2, n log b/ log a − 1 ≤ m < n log b/ log a,
and choose amL ≤ r < am−1L. Notice that if i ∈ Z(r), we have a|i|L ≤
diam

(

ϕi(X)
)

< r < am−1L, giving |i| ≥ m. Since r ≥ amL > bnL, it holds,
recalling the choice of the mappings, that B(x, r) ∩ ϕi(X) 6= ∅ whenever i ∈
Im ∩ [j|n]. Now

#Z(x, r) ≥ #{i ∈ Im : i ∈ [j|n]} = 2m−n ≥ N.

We conclude that in this case P (t) = 0 implies Ht(E) = 0. It is also worthwhile
to notice that the IFS {ϕi : i ∈ I} satisfies the OSC provided that 0 < b ≤ 1

2
and
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d > 0. To see this, recall the calculation in Example 6.4 and consult Theorem
5.5.

Example 6.6. In this example, we identify R2 and C for notational reasons and
set η = 1

2
+ i

2
. Let I = {0, 1} and ϕ0, ϕ1 be the similitudes given by the equations

ϕ0(z) = ηz,

ϕ1(z) = ηz + η,

where z ∈ C and η = 1
2
− i

2
is the complex conjugate of η. Notice that the

Lipschitz constant of both mappings is 1√
2
. Hence, choosing any compact set X

with positive diameter satisfying ϕi(X) ⊂ X for each i ∈ I, we have P (2) = 0
by Lemma 5.2, the defining equation (3.1), and noting that diam

(

ϕi(X)
)

is

proportional to ( 1√
2
)|i| for every i ∈ I∗. The invariant set E of the IFS {ϕ0, ϕ1}

is known as Lévy’s dragon, see [19]. We shall show that this IFS satisfies the
uniform ball condition and hence, Theorems 3.5, 3.7, 5.5 and Propositions 5.4,
5.6 lead to the conclusion that E is the closure of its interior. Observe that in
this example, the feasible set is virtually impossible to find.

We begin by setting H = Z + iZ, N = [0, 1]2, 4 = conv{0, 1, η}, and
4′ = conv{0, 1, η}. The triangles 4 and 4′ have now Lebesgue measure 1

4
.

A straightforward calculation shows that

ϕi(H) = {η|i|h : h ∈ H}
for each i ∈ I∗, implying that whenever i ∈ I∗ and j ∈ I∗ have the same length,
we have either ϕi(N) = ϕj(N) or int

(

ϕi(N)
)

∩ int
(

ϕj(N)
)

= ∅. Here with the
notation int(A), we mean the interior of a given set A. Since ϕi(4) has one
side common with ϕi(N) while the other two sides lie on the diagonals of ϕi(N)
intersecting at ϕi(η), we conclude that if |i| = |j| and ϕi

(

int(4)
)

∩ϕj

(

int(4)
)

6=
∅ then ϕi(4) = ϕj(4).

We shall now show that if |i| = |j| and i 6= j then

ϕi

(

int(4)
)

∩ ϕj

(

int(4)
)

= ∅, (6.1)

which, in turn, implies the uniform ball condition. See [6, p. 222] for an il-
lustration. Observe that for each i ∈ I∗, ϕi(4′) is the only triangle such that
ϕi(4) ∪ ϕi(4′) is a square and hence, if ϕi(4) = ϕj(4) then also ϕi(4′) =
ϕj(4′). On the other hand,

ϕi

(

int(4′)
)

⊂ ϕi−

(

int(4)
)

(6.2)

for each i ∈ I∗. Suppose contrarily that there exist k ∈ N and i, j ∈ Ik such
that i 6= j and ϕi

(

int(4)
)

∩ ϕj

(

int(4)
)

6= ∅. Letting k ≥ 2 be minimal with
this respect, we get

ϕi−

(

int(4)
)

∩ ϕj−

(

int(4)
)

= ∅.
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As we now have ϕi(4) = ϕj(4) and consequently ϕi(4′) = ϕj(4′), we in fact
have, using (6.2),

ϕi

(

int(4′)
)

= ϕi

(

int(4′)
)

∩ ϕj

(

int(4′)
)

⊂ ϕi−

(

int(4)
)

∩ ϕj−

(

int(4)
)

= ∅.
This contradiction finishes the proof of (6.1).

Observe that our method gives also a lower bound for the two dimensional
Lebesgue measure L2 of E. Using (6.1), we see that

L2

(

⋃

i∈Im

ϕi(4)

)

= 1
4

whenever m ∈ N, giving L2(E) ≥ 1
4

since

E =
⋂

k∈N

⋃

m≥k

⋃

i∈Im

ϕi(4).

Here with the notation A, we mean the closure of a given set A.

Example 6.7. We set D′ ⊂ [0, 1]2 to be the graph of a nondecreasing continuous
function F : [0, 1] → [0, 1] satisfying F (0) = 0 and F (1) = 1. A well known
nondifferentiable example of this kind of function is x 7→ Ht|E([0, x]), where E is
the standard 1

3
-Cantor set and t = log 2/ log 3. In this case, the set D′ is known

as Devil’s stairs. We set D = D′ ∪ {(x, x) : |x| > 1}, L = {(x, x) : x ∈ R},
and projL to be the orthogonal projection onto L. Now for the mapping f =
(projL |D)−1 : L → D, we clearly have

|x − y| ≤ |f(x) − f(y)| ≤
√

2|x − y|
whenever x, y ∈ L and defining a mapping g : R2 → R2 by setting g(x) =
f
(

projL(x)
)

+ x − projL(x) for each x ∈ R2, the reader can easily see that
g|L = f and √

8
−1|x − y| ≤ |g(x) − g(y)| ≤ (

√
2 + 2)|x − y|

whenever x, y ∈ R
2.

Since the set L∩ [0, 1]2 is clearly an invariant set of a similitude IFS satisfying
the uniform ball condition, the set D′ is an invariant set of a congruent IFS
satisfying the uniform ball condition.

Example 6.8. Suppose I is a finite set and for each i ∈ I there is a contractive
conformal mapping ϕi : Ω → Ω defined on an open set Ω ⊂ Rd, d ≥ 2. Assuming
there exists a closed and nonempty X ⊂ Ω satisfying

⋃

i∈I

ϕi(X) ⊂ X,

the collection {ϕi : i ∈ I} is an IFS and we call it a conformal IFS. Since confor-
mal mappings are C∞, we deduce from [23, Remark 2.3] that each conformal IFS
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is congruent. Observe that the converse does not necessarily hold. In [15, Exam-
ple 2.1], it is constructed a congruent IFS, which is not conformal. Also Devil’s
stairs in Example 6.7 provides the reader with such an IFS, see [13, Theorem
2.1].

Example 6.9. Defining for A ⊂ Rd, x ∈ Rd, and r > 0

por(A, x, r) = sup{% ≥ 0 : there is z ∈ R
d such that

B(z, %r) ⊂ B(x, r) \ A},
we say that a bounded set A ⊂ Rd is uniformly porous if there are % > 0 and
r0 > 0 such that por(A, x, r) ≥ % for all x ∈ A and 0 < r < r0. The notation
of porosity has arisen from the study of dimensional estimates related to the
boundary behavior of various mappings.

Following the proof of [16, Theorem 4.1], we notice that a uniformly porous
set is contained in a limit set of a CMC satisfying the uniform ball condition
such that dimM(E) ≤ d − c%d, see Theorem 3.7.
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[23] R. D. Mauldin and M. Urbański. Dimensions and measures in infinite iterated function

systems. Proc. London Math. Soc., 73(3):105–154, 1996.
[24] M. Morán. Dynamical boundary of a self-similar set. Fund. Math., 160(1):1–14, 1999.
[25] P. A. P. Moran. Additive functions of intervals and Hausdorff measure. Proc. Cambridge

Philos. Soc., 42:15–23, 1946.
[26] M. E. Munroe. Introduction to Measure and Integration. Addison-Wesley Publishing Com-

pany, Inc., Cambridge, Mass., 1953.
[27] Y. Peres, M. Rams, K. Simon, and B. Solomyak. Equivalence of positive Hausdorff measure

and the open set condition for self-conformal sets. Proc. Amer. Math. Soc., 129(9):2689–
2699, 2001.

[28] A. Schief. Separation properties for self-similar sets. Proc. Amer. Math. Soc., 122(1):111–
115, 1994.
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