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Abstract

We give several characterizations for a domain Ω ⊂ IRn to be a Sobolev
extension domain. In particular, we show that, for p > 1, there is a bounded
linear extension operator for W 1,p(Ω) if and only if every function in W 1,p(Ω) is
the restriction of a function in W 1,p(IRn) to Ω. In the course of the proof, we show
that extension domains, for all 1 ≤ p < ∞, satisfy a uniform measure density
condition. We apply our results to study complemented subspaces in W 1,p. Our
techniques also allow us to show that the extension property is invariant under
bi-Lipschitz mappings.

1 Introduction

In this paper, we study various properties and characterizations of Sobolev extension
domains. For a domain Ω ⊂ IRn and 1 ≤ p ≤ ∞, the Sobolev space W 1,p(Ω) consists
of all functions in Lp(Ω) whose first order partial derivatives belong to Lp(Ω). It is a
Banach space with respect to the norm ‖u‖1,p = ‖u‖p + ‖∇u‖p. We say that a domain
Ω ⊂ IRn is a W 1,p-extension domain if there is a bounded linear operator

E : W 1,p(Ω) → W 1,p(IRn) such that Eu(x) = u(x) for x ∈ Ω. (1)

According to a theorem of Jones, [11], uniform domains are W 1,p-extension domains.
Domains with Lipschitz boundary are uniform, but the boundary of a uniform domain
can be very irregular, with Hausdorff dimension strictly larger than n − 1 (it can be
arbitrarily close to n, but always strictly less than n). The class of extension domains is,
however, larger than the class of uniform domains and there is no geometric description
of it. The following theorem is a part of one of the main results of the paper, Theorem 9.
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Theorem 1 Let Ω ⊂ IRn be an arbitrary domain and let 1 < p ≤ ∞. Then there
is a bounded linear extension operator E : W 1,p(Ω) → W 1,p(IRn) if and only if every
function u ∈ W 1,p(Ω) admits an extension to W 1,p(IRn).

This result is a far reaching generalization of a result of HajÃlasz and Martio [9,
Theorem 10], who proved the same claim under the corkscrew condition: there is 0 <
c < 1 such that for every x ∈ Ω and every 0 < r < diam Ω the intersection Ω ∩
B(x, r) contains a ball of radius cr. This geometric condition was crucial both for the
construction and the estimates for the extension operator. It was a surprise for us that
Theorem 1 can be proven without any additional conditions on the domain Ω.

Theorem 1 motivates the following open problem that we wish state for the inter-
ested readers.

Question 1. Is Theorem 1 true for p = 1?

Extension operators are closely related to the restriction operator, called also the
trace operator

T : W 1,p(IRn) → W 1,p(Ω), T u = u|Ω. (2)

Namely, if E is an extension operator, then T ◦ E is the identity on W 1,p(Ω). Actually,
the fact that every function u ∈ W 1,p(Ω) admits an extension to W 1,p(IRn) is obviously
equivalent to the statement that the trace operator (2) is surjective. Therefore Theo-
rem 1 can be reformulated as follows: for an arbitrary domain in a Euclidean space and
1 < p ≤ ∞ there exists a bounded linear extension operator (1) if and only if the trace
operator (2) is onto.

There are two cases when Theorem 1 is very easy, p = ∞ and p = 2. For an arbitrary
closed set F ⊂ IRn, let Lip∞(F ) = Lip (F )∩L∞(F ) be the space of bounded Lipschitz
functions on F . It is a Banach space with the norm

‖f‖L = ‖f‖∞ + Lip (f) = ‖f‖∞ + sup
x6=y

|f(x)− f(y)|
|x− y| .

Every bounded Lipschitz function on a domain Ω ⊂ IRn uniquely extends to a bounded
Lipschitz function on the closure, so we can consider Lip∞(Ω) to be equal to Lip∞(Ω). It
is well known that W 1,∞(IRn) = Lip∞(IRn) and for an arbitrary domain Ω, Lip∞(Ω) ⊂
W 1,∞(Ω) is a linear subspace. As a restriction of a Lipschitz function to Ω is Lipschitz
we conclude that

T : W 1,∞(IRn) → Lip∞(Ω) ⊂ W 1,∞(Ω).

Accordingly, if the operator (2) for p = ∞ is surjective onto W 1,∞(Ω), we conclude
that Lip∞(Ω) = W 1,∞(Ω) as sets, and hence the norms are equivalent by the Banach
open mapping theorem. Since it is well known that there is a bounded linear extension
operator E : Lip∞(F ) → Lip∞(IRn), see Lemma 20,1 the case p = ∞ of Theorem 1
follows immediately.

1The familiar way to extend a Lipschitz function f : IRn ⊃ F → IR to a Lipschitz function on IRn

is by the way of McShane’s formula f̃(x) = infy∈E{f(y) + Lip (f)|x − y|}. Note, however, that this
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If p = 2, Theorem 1 is easy as well, but for a reason different than in the case
p = ∞. In this case, Theorem 1 is a direct consequence of the Hilbert structure of
the space W 1,2. Indeed, if we knew that the trace operator (2) were surjective, then
T |(kerT )⊥ : (ker T )⊥ → W 1,2(Ω) would be an isomorphism and hence we could define
the extension E as

E =
(T |(ker T )⊥

)−1
: W 1,2(Ω) → (ker T )⊥ ⊂ W 1,2(IRn).

This argument cannot be applied for p 6= 2 as not every subspace of W 1,p for p 6= 2 is
complemented. Recall that a closed subspace Y of a Banach space X is complemented
if there is another closed subspace Z of X such that X = Y ⊕Z. That is, Y ∩Z = {0}
and every element x ∈ X can be written as x = y + z, with y ∈ Y and z ∈ Z.

Proposition 2 Let Ω ⊂ IRn be a domain such that, for some 1 ≤ p ≤ ∞, every
u ∈ W 1,p(Ω) admits an extension to W 1,p(IRn). Then there exists a bounded linear
extension operator (1) if and only if the subspace ker T is complemented in W 1,p(IRn).

Proof. The first condition means that the trace operator is surjective. If ker T is
complemented in W 1,p(IRn), i.e. W 1,p(IRn) = ker T ⊕ Y for some closed subspace
Y ⊂ W 1,p(IRn), then the operator

E = (T |Y )−1 : W 1,p(Ω) → Y ⊂ W 1,p(IRn)

is a bounded extension operator. To prove the opposite implication, suppose that E
is a bounded linear extension operator. Note that E(W 1,p(Ω)) ⊂ W 1,p(IRn) is a closed
subspace. This easily follows from the obvious inequality ‖E(u)‖1,p;IRn ≥ ‖u‖1,p;Ω. Every
element u ∈ W 1,p(IRn) can be written as u = (u − E(T (u)) + E(T (u)). Since u −
E(T (u)) ∈ ker T , E(T (u)) ∈ E(W 1,p(Ω)), and ker T ∩ E(W 1,p(Ω)) = {0}, we conclude
that W 1,p(IRn) = ker T ⊕E(W 1,p(Ω)) and hence the space ker T is complemented. The
proof is complete.

Using Proposition 2, Theorem 1 can be equivalently formulated as follows.

Theorem 3 Let Ω ⊂ IRn be a domain and 1 < p ≤ ∞. If the trace operator (2) is
surjective, then the subspace ker T is complemented in W 1,p(IRn).

Note that, for 1 < p < ∞, the space W 1,p(IRn) is isomorphic to Lp(IRn), [24, Chapter
5]. Accordingly, Theorem 3 is not obvious because not every subspace of Lp(IRn), p 6= 2,
is complemented. Actually, the property of being complemented is rather rare. Here are
some examples. Sobczyk, [23], seems to be the first to provide examples of subspaces
of Lp that are not complemented. Lindenstrauss and Tzafriri, [16], proved that a real
Banach space, in which every closed subspace is complemented, is isomorphic to a

does not give a linear extension. To obtain a linear one, we need to use e.g. the Whitney extension,
see Lemma 20.
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Hilbert space. Kadec and Mitjagin, [12], extend the result of Lindenstrauss and Tzafriri.
Their paper is also a concise survey of concrete examples of uncomplemented subspaces.
Bennett, Dor, Goodman, Johnson, and Newman, [2], proved that for every 1 < p < 2
there is a subspace of Lp[0, 1], linearly isomorphic to a Hilbert space, which is not
complemented. This extends a result of Rosenthal [22] who proved the case 1 < p <
4/3. If p > 2, then every subspace in Lp[0, 1] linearly isomorphic to Hilbert space is
complemented by a theorem of Kadec and PeÃlczyński [13]. Randrianantoanina, [21]
proved that for 1 ≤ p < ∞, not an even integer, if X and Y are subspaces of Lp

such that X is complemented and Y is isometric to X, then Y is also complemented.
However if p ≥ 4 is an even integer, Randrianantoanina constructs isometric subspaces
X and Y of Lp such that X is complemented while Y is not.

Theorem 3 suggests the following question.

Question 2. Suppose Ω ⊂ IRn is a domain and 1 ≤ p ≤ ∞. Is ker T necessarily
complemented in W 1,p(IRn)?

The answer is obviously in the positive if p = 2. This is also the case if p = ∞.
Indeed, for an arbitrary domain Ω the image of the trace is Lip∞(Ω). Since there is
a bounded linear extension operator from Lip∞(Ω), the argument from the proof of
Proposition 2 applies. If 1 ≤ p < ∞, p 6= 2 and Ω is arbitrary we do not know the
answer. However we can prove the following.

Theorem 4 If Ω ⊂ IRn is a domain that satisfies the measure density condition (3)
below, and 1 < p ≤ ∞, then ker T is complemented in W 1,p(IRn).

We say that an open set Ω ⊂ IRn satisfies the measure density condition if there
exists a constant C > 0 such that for all x ∈ Ω and all 0 < r ≤ 1

|B(x, r) ∩ Ω| ≥ Crn. (3)

Question 3. Is Theorem 4 true for p = 1?

This question is weaker than the case p = 1 of Question 2 as we now assume the
measure density condition. However, the positive answer to Question 3 would imply
the positive answer to Question 1, see the remark following Theorem 5.

Note that, in general, even if a domain satisfies the measure density condition (3),
the image of the trace need not be a closed subspace of W 1,p(Ω). This makes the
situation even more difficult: there is no obvious candidate for the space that would
complement ker T in W 1,p(IRn). There are many examples of domains satisfying (3)
such that the image of the trace operator is not closed in W 1,p(Ω). Indeed, Lewis [15]
proved that if Ω ⊂ IR2 is a bounded Jordan domain, then functions in C∞(IR2) are
dense in W 1,p(Ω) for each 1 < p < ∞. Hence the image of the trace (2) is dense in
W 1,p(Ω). Now, if Ω is not an extension domain, then the image of the trace is a proper
subset of W 1,p(Ω) and hence not closed. As a corollary we have: If Ω ⊂ IR2 is a bounded
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Jordan domain, and 1 < p < ∞ then it is a W 1,p-extension domain if and only if the
image of the trace (2) is closed in W 1,p(Ω). Maz’ya [18, Theorem 1.5.2] has constructed
an example of a bounded Jordan domain in IR2 such that a bounded extension operator
E : W 1,p(Ω) → W 1,p(IRn) exists if and only if 1 ≤ p < 2. As a corollary we obtain that
in this case the image of the trace (2) is closed for 1 ≤ p < 2 and is not closed for p > 2.

The phenomenon that the existence of an individual extension for every function
does not imply the existence of a bounded linear extension is quite typical in functional
analysis. Abstractly, if X ⊂ Y is a closed subspace of a Banach space Y , every functional
on X can be extended to a functional on Y by the Hahn-Banach Theorem. However,
there is a bounded linear extension of functionals on X to functionals on Y if and
only if {y∗ ∈ Y ∗ : y∗|X = 0} is complemented in Y ∗. This is an abstract version of
Proposition 2. Proof is the same with π : Y ∗ → X∗, π(y∗) = y∗|X playing the role of
the trace. There are also more concrete examples. One such, particularly relevant in
our context, is due to Peetre [19]. According to a theorem of Gagliardo, [3], there is
a bounded and surjective trace operator T : W 1,1(IRn) → L1(IRn−1), and hence every
u ∈ L1(IRn−1) admits an extension to W 1,1(IRn). However, as was proven by Peetre,
[19] (cf. [20]), there is no bounded linear extension operator E : L1(IRn−1) → W 1,1(IRn).

Cusps are often used as examples of domains that are not W 1,p-extension domains. It
turns out, however, that extension domains must satisfy the measure density condition
(3) which is clearly not satisfied by cusps. This observation immediately gives a much
bigger class of examples.

Theorem 5 If Ω ⊂ IRn is a domain such that the trace operator (2) is surjective for
some 1 ≤ p < ∞, then Ω satisfies the measure density condition (3).2

In particular, W 1,p-extension domains for 1 ≤ p < ∞ satisfy (3). This fact was previ-
ously known for W 1,p-extension domains for p > n− 1 (cf. [14] and references therein).
Notice that, the measure density condition along with the Lebesgue differentiation the-
orem imply that the boundary of a W 1,p-extension domain is necessarily of volume
zero. This answers the separate inquiries by Markus Biegert, Dagmar Medkova and
Bill Ziemer.

The boundary of an extension domain can nevertheless be of Hausdorff dimension
n. To see this, it suffices to consider the complement of a compact set E of Hausdorff
dimension n, constructed as the n-fold product of a suitable compact set of dimension
one but with vanishing length. Indeed, it easily follows by integrating by parts that
then each function u ∈ W 1,p(IRn \ E) belongs to W 1,p(IRn).

Notice that Theorem 3 (and hence also Theorem 1) is a direct corollary of The-
orems 5 and 4 for 1 < p < ∞, and the case p = ∞ was proved earlier. Also notice

2This theorem is not true for p = ∞, see Theorem 10 and the comment following it.
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that, for the same reason, if the answer to Question 3 were positive, then the answer
to Question 1 would be positive as well.

Actually, we can prove that not only the extension property implies (3) but that a
suitable Sobolev embedding for each function u ∈ W 1,p(Ω) is sufficient for (3).

The classical Sobolev embedding theorem says that if 1 ≤ p < n, then W 1,p(IRn) ⊂
Lp∗(IRn), where p∗ = np/(n− p); if p > n, then W 1,p(IRn) ⊂ C0,1−n/p(IRn), and in each
case the embedding is continuous. The embedding in the limiting case p = n is more
delicate as it is given in a local form of the Trudinger inequality.3

Lemma 6 (Trudinger inequality) There exist positive constants c1(n) and c2(n)
such that if u ∈ W 1,n(B), where B ⊂ IRn is an arbitrary ball, then

∫

B

exp

(
c1(n)|u− uB|
‖∇u‖n;B

)n/(n−1)

≤ c2(n)|B|.

For a proof see e.g. [25], [4], [1].

Suppose now that Ω ⊂ IRn is an arbitrary domain and that u ∈ W 1,n(Ω) admits an
extension to W 1,n(IRn), i.e. there is v ∈ W 1,n(IRn) such that v|Ω = u. Then for any ball
B we have

c2(n)|B| ≥
∫

B

exp

(
c1(n)|v − vB|
‖∇v‖n;B

)n/(n−1)

≥
∫

B∩Ω

exp

(
c1(n)|u− vB|
‖∇v‖n;IRn

)n/(n−1)

≥ inf
γ∈IR

∫

B∩Ω

exp (α|u− γ|)n/(n−1) ,

where α = c1(n)‖∇v‖−1
n;IRn depends on u, but does not depend on the ball B. We proved

the following result.

Corollary 7 There is a constant c(n) > 0 such that for an arbitrary domain Ω ⊂ IRn,
and an arbitrary u ∈ W 1,n(Ω) that admits an extension to W 1,n(IRn), there exists a
constant α > 0 such that for every ball B ⊂ IRn

inf
γ∈IR

∫

B∩Ω

exp (α|u− γ|)n/(n−1) ≤ c(n)|B|.

3Although this is a well-known theorem, we name it a lemma as we keep the name theorem only
for the new results proved in the paper. There are global versions of the Trudinger inequality, but they
are more complicated [1].
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One may, however, expect that for some domains a weaker Trudinger type inequality
is satisfied with an exponent n/(n− 1) replaced by some other, smaller, exponent s.

If Ω ⊂ IRn is a domain such that every function u ∈ W 1,p(Ω) admits an extension
to W 1,p(IRn), then the assumptions formulated in cases (a), (b) and (c) of the theo-
rem below are satisfied. Hence Theorem 5 is a direct consequence of the more general
Theorem 8 which is one of the two main results in the paper (Theorem 9 is the other
one).

Theorem 8 Let Ω ⊂ IRn be a domain.

(a) If 1 ≤ p < n and every function u ∈ W 1,p(Ω) belongs to Lp∗(Ω), p∗ = np/(n− p),
then Ω satisfies (3).

(b) If p = n and there are constants M > 0 and s > 0 such that for every function
u ∈ W 1,n(Ω) there is a constant α > 0 such that for every x ∈ Ω and every
0 < r ≤ 1

inf
γ∈IR

∫

B(x,r)∩Ω

exp (α|u− γ|)s ≤ Mrn, (4)

then Ω satisfies (3).

(c) If n < p < ∞ and every function u ∈ W 1,p(Ω) is uniformly locally Hölder contin-
uous with the exponent 1− n/p, i.e.

|u(x)− u(y)| ≤ M |x− y|1−n/p, (5)

whenever x, y ∈ Ω satisfy |x − y| ≤ r0, where M, r0 are allowed to depend on u,
then Ω satisfies (3).

Remark. Although we assume that every function u in W 1,p(Ω) belongs to the space
that appears in the Sobolev embedding theorem, we do not require any estimates. Thus
our conditions are weaker than the corresponding Sobolev embeddings.

If we combine the results discussed above with the results from Section 3, we arrive
at the following theorem, one of the two main results of the paper.

Theorem 9 Let Ω ⊂ IRn be a domain and let 1 < p < ∞. Then the following condi-
tions are equivalent:

1. For every u ∈ W 1,p(Ω) there exists v ∈ W 1,p(IRn), such that v|Ω = u.

2. The trace operator (2) is surjective.

3. There exists a bounded linear extension operator (1).
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4. The operator E∗ : W 1,p(Ω) → W 1,p(IRn) defined by (34) is bounded.

5. Ω satisfies the measure density condition (3) and W 1,p(Ω) = M1,p(Ω, | · |,Ln).

See Section 3 for the definition of the space M1,p. Theorem 9 is a far reaching
generalization of an analogous result in [9, Theorem 10], where the domain Ω in question
was required to satisfy the corkscrew condition; here we prove it for all domains. See
also a remark that follows Theorem 1.

There is also a counterpart of Theorem 9 for p = ∞, Theorem 10, but as in this
case the space W 1,∞ is closely related to the space of bounded Lipschitz functions,
the result is easy and could be regarded as a mathematical folklore (cf. [28], [10], [30,
Proposition 2]).

Theorem 10 Let Ω ⊂ IRn be an arbitrary domain. Then the following conditions are
equivalent:

1. For every u ∈ W 1,∞(Ω) there exists v ∈ W 1,∞(IRn), such that v|Ω = u.

2. The trace operator (2) is surjective for p = ∞.

3. There exists a bounded linear extension operator (1) for p = ∞.

4. The operator E ′ : W 1,∞(Ω) → W 1,∞(IRn) defined by (33) is bounded.

5. W 1,∞(Ω) = Lip∞(Ω).

6. Ω is uniformly locally quasiconvex.

We say that a domain Ω ⊂ IRn is uniformly locally quasiconvex if there are constants
C > 0 and R > 0 such that for every x, y ∈ Ω satisfying |x−y| < R there is a rectifiable
curve γ connecting x and y in Ω such that the length of γ is bounded from above by
C|x− y|.

Note that the measure density condition does not appear in Theorem 10. In fact,
there are obvious examples of quasiconvex domains that do not satisfy (3). Hence the
existence of a bounded extension operator for p = ∞ does not imply (3), contrary to
the case 1 ≤ p < ∞.

Since Theorem 10 is easy we will prove it now and postpone the proof of Theorem 9
until the end of Section 3.

Proof of Theorem 10. We have already proved Theorem 1 for p = ∞, which gives the
equivalence between conditions (1), (2), and (3). The implication from (4) to (3) is
obvious; the implication from (5) to (4) follows from Lemma 20 and the implication
from (2) to (5) was established in the proof of Theorem 1 for p = ∞. This completes
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the proof of the equivalence of the conditions (1), (2), (3), (4) and (5). To prove the
implication from (6) to (5) we need to show that W 1,∞(Ω) ⊂ Lip∞(Ω). Let f ∈
W 1,∞(Ω). If |x− y| < R and γ is as in the definition of a uniformly locally quasiconvex
domain, then |f(x) − f(y)| ≤ ∫

γ
‖∇f‖∞ ≤ C‖∇f‖∞|x − y|. If |x − y| > R, then

|f(x) − f(y)| ≤ 2‖f‖∞R−1|x − y| and hence f ∈ Lip∞(Ω). To complete the proof, it
suffices to verify the implication from (3) to (6). For x, y ∈ Ω, let ϕx(y) be the infimum
of lengths of curves that join x and y in Ω. Note that ϕ̃x = min{ϕx, 1} ∈ W 1,∞(Ω)
with ‖∇ϕ̃x‖∞ = 1. Now (3) yields that {Eϕ̃x}x∈Ω is a bounded family of functions in
Lip∞(IRn) and hence ϕ̃x(y) = |ϕ̃x(x)−ϕ̃x(y)| = |Eϕ̃x(x)−Eϕ̃x(y)| ≤ C|x−y|, whenever
x, y ∈ Ω. Now if |x − y| ≤ R = C−1 we have that 1 ≥ C|x − y| ≥ ϕ̃x(y) = ϕx(y) and
hence (6) follows. The proof is complete.

Theorem 11 Let Ω, G ⊂ IRn be two domains that are bi-Lipschitz homeomorphic.
Then Ω is a W 1,p-extension domain for some 1 < p ≤ ∞ if and only if G is a W 1,p-
extension domain.

If p = ∞, the claim easily follows from Theorem 10, but if 1 < p < ∞ this is far from
being obvious. If we knew that there were a bi-Lipschitz homeomorphism T : IRn → IRn

such that T (Ω) = G, the claim would easily follow even for p = 1. However, in general,
a bi-Lipschitz homeomorphism T : Ω → G cannot be extended beyond Ω (cf. [26],[27]).

Question 4. Is Theorem 11 true for p = 1?

Proof of Theorem 11. We may assume that 1 < p < ∞. Let T : Ω → G be a bi-Lipschitz
homeomorphism. Suppose that one of the domains, say Ω, is a W 1,p-extension domain.
By Theorem 9, Ω satisfies (3) and W 1,p(Ω) = M1,p(Ω, | · |,Ln). Now G satisfies (3) as
bi-Lipschitz homeomorphisms preserve the measure density condition. Moreover, the
transformation Φ(u) = u ◦ T induces isomorphisms of spaces, Φ : W 1,p(G) → W 1,p(Ω),
and Φ : M1,p(G, | · |,Ln) → M1,p(Ω, | · |,Ln). Therefore W 1,p(G) = M1,p(G, | · |,Ln) and
again we can apply Theorem 9. The proof is complete.

The paper is organized as follows. In Section 2, we prove Theorem 8. This will also
complete the proof of Theorem 5 as it is a direct corollary of Theorem 8. In Section 3 we
prove Theorem 4. This will be a direct consequence of a stronger Theorem 18 (see the
first remark following Theorem 18). Actually, Theorem 18 provides an exact description
of traces of functions in W 1,p(IRn) on Ω when 1 < p < ∞ and Ω satisfies the measure
density condition. Now Theorems 5 and 4 immediately imply Theorem 3 and, as we
know, this theorem is equivalent with Theorem 1. Finally, Theorem 9 will be proven at
the end of Section 3.

Some of the results of the paper can be generalized to the setting of Sobolev spaces
on metric spaces. This will be the subject of a forthcoming paper [8] (see also the third
remark following Theorem 18).
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Notation. Symbols C or c will be used to designate general constants; the same symbol
can be used for different constants even within one string of estimates. Writing e.g.,
c(n, p) we will emphasize that the constant depends on n and p only. The Lebesgue
measure of a set A ⊂ IRn will be denoted either by Ln(A) of by |A|. If u is an integrable
function defined on a measurable set of positive measure, then

uA =

∫

A

u dx =
1

|A|
∫

A

u dx

will denote the average value of u over A. The Lp-norm and the Sobolev norm of u
over a domain Ω will be denoted by ‖u‖p and ‖u‖1,p, respectively. In case of need for
emphasizing over which domain the norm is evaluated, we write ‖u‖p;Ω and ‖u‖1,p;Ω,
respectively. We say that a function u : Ω → IR is uniformly locally Hölder continuous
with exponent λ if there are r0 > 0 and C > 0 such that |u(x)− u(y)| ≤ C|x− y|λ for
all x, y ∈ Ω with |x − y| < r0. The oscillation of a function u over a set E is defined
by osc E u = supx,y∈E |u(x) − u(y)|. The volume of the unit ball in IRn is denoted by
ωn. If x is given and 0 < r < R, then A(R, r) = B(x,R) \ B(x, r) will denote the
corresponding annulus.

Acknowledgement. The authors wish to thank Christopher Lennard and PrzemysÃlaw
Wojtaszczyk for helpful comments regarding complemented subspaces.

2 Proof of Theorem 8

First we treat the cases 1 ≤ p < n and p > n. The case p = n is treated as the last,
most difficult case.

Case 1 ≤ p < n. For x ∈ Ω and 0 < r ≤ 1, there exists a unique 0 < r̃ < r such that

|B(x, r̃) ∩ Ω| = |A(r, r̃) ∩ Ω| =
1

2
|B(x, r) ∩ Ω|, (6)

where
A(r, r̃) = B(x, r) \B(x, r̃).

Lemma 12 There is a constant c > 0 such that

r − r̃ ≤ c|B(x, r) ∩ Ω|1/n (7)

for all x ∈ Ω and all 0 < r ≤ 1.

Before proving the lemma, let us show that it implies (3). Let x ∈ Ω and 0 < r ≤ 1.
Define a sequence r0 > r1 > r2 > . . . > 0 by induction:

r0 = r, rj+1 = r̃j.
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Clearly |B(x, rj) ∩ Ω| = 2−j|B(x, r) ∩ Ω|. Hence rj → 0 and

rj − rj+1 ≤ c2−j/n|B(x, r) ∩ Ω|1/n

by (7). This in turn yields

r =
∞∑

j=0

(rj − rj+1) ≤ C

( ∞∑
j=0

2−j/n

)
|B(x, r) ∩ Ω|1/n

≤ C ′|B(x, r) ∩ Ω|1/n,

which implies the measure density condition (3).

Proof of the lemma. By contradiction, suppose that there exist xi ∈ Ω and 0 < ri ≤ 1
for i = 1, 2, 3, . . . such that4

ri − r̃i ≥ 4i|B(x, ri) ∩ Ω|1/n. (8)

Let

ui(y) =





1 for y ∈ B(xi, r̃i) ∩ Ω,

ri−|xi−y|
ri−r̃i

for y ∈ A(ri, r̃i) ∩ Ω,

0 for y ∈ Ω \B(xi, ri).

Clearly, ui is a Lipschitz function bounded by 1 and

|∇ui| =
1

ri − r̃i

χA(ri,r̃i)∩Ω.

Let ki > 0 be defined by the equality

‖ui‖p∗ = ki(‖ui‖p + ‖∇ui‖p).

Then

|B(xi, r̃i) ∩ Ω|1/p∗ ≤ ‖ui‖p∗ = ki(‖ui‖p + ‖∇ui‖p)

≤ ki

(
|B(xi, ri) ∩ Ω|1/p +

|A(ri, r̃i) ∩ Ω|1/p

ri − r̃i

)

= ki

(
21/p +

1

ri − r̃i

)
|A(ri, r̃i) ∩ Ω|1/p

≤ ki(2
1/p + 1)

1

ri − r̃i

|B(xi, r̃i) ∩ Ω|1/p.

4Here the sequence {ri} is not the same as the sequence {rj} constructed earlier. Just a coincidence
of the notation.
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We employed (6) and the obvious inequality 21/p ≤ 21/p/(ri−r̃i). Since 1/p−1/p∗ = 1/n,
we conclude

ri − r̃i ≤ kic(p)|B(xi, r̃i) ∩ Ω|1/n,

which together with (8) and (6) yields ki ≥ c4i. Let

ai = 2−i (‖ui‖p + ‖∇ui‖p)−1 .

We have
‖aiui‖p∗ = 2−iki ≥ c2i and ‖aiui‖1,p = 2−i.

Now we define

u =
∞∑
i=1

aiui. (9)

Since
∑∞

i=1 ‖aiui‖1,p < ∞, the series (9) converges to some u ∈ W 1,p(Ω). On the other
hand, aiui ≥ 0, and hence

‖u‖p∗ ≥ ‖aiui‖p∗ ≥ c2i, for i = 1, 2, 3, . . .

and thus ‖u‖p∗ = ∞. This contradicts the assumption on the Lp∗-integrability of func-
tions in W 1,p(Ω). The proof of the lemma and hence that for the case 1 ≤ p < n is
complete.

Case n < p < ∞. Suppose that the measure density condition (3) is not satisfied.
Given ε > 0 and a positive integer k, we can find x ∈ Ω and 0 < r ≤ 1 satisfying
|B(x, r) ∩ Ω| < ε2−knrn. Hence |B(x, r̂) ∩ Ω| < εr̂n, for r̂ = r/2k. This implies that,
when violating (3), we may require that the radius of the ball be arbitrarily small. This
is to say that there are sequences xi ∈ Ω and 0 < ri → 0 such that

|B(xi, ri) ∩ Ω| < 4−iprn
i .

We may assume that Ω \ B(xi, ri) 6= ∅, since ri → 0 and we will only be interested in
sufficiently large i. Given i we define

ui(y) =





1− |xi−y|
ri

for y ∈ B(xi, ri) ∩ Ω,

0 for y ∈ Ω \B(xi, ri).

Clearly, ui is a Lipschitz function bounded by 1 and

|∇ui| =
1

ri

χB(xi,ri)∩Ω.

Since Ω \B(xi, ri) 6= ∅, we have osc B(xi,ri)∩Ω ui = 1. Moreover,

‖2ir
1−n/p
i ui‖1,p = 2ir

1−n/p
i (‖ui‖p + ‖∇ui‖p)

≤ 2ir
1−n/p
i

(
|B(xi, ri) ∩ Ω|1/p +

|B(xi, ri) ∩ Ω|1/p

ri

)

≤ 2ir
1−n/p
i · 2r−1

i · (4−iprn
i )1/p = 2 · 2−i. (10)
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Each of the functions vi = 2ir
1−n/p
i ui is Lipschitz-continuous and hence Hölder-

continuous with the exponent 1 − n/p. However, it is easily seen that the constant
in the Hölder-continuity estimate for vi has to blow up as i →∞. Indeed

|vi(x)− vi(y)| ≤ 2i+n/p|x− y|1−n/p for x, y ∈ Ω,

but, on the other hand, for x ∈ B(xi, ri/4) ∩ Ω and y ∈ A(ri, 3ri/4) ∩ Ω, we have

|vi(x)− vi(y)| ≥ 2i−2+n/p|x− y|1−n/p.

Estimate (10) implies that the series
∑∞

i=1 vi converges to some function ũ ∈ W 1,p(Ω)
and one might expect that the lack of the uniform Hölder estimate for the functions vi

would imply that the function ũ not be in the class C0,1−n/p, not even locally. There is,
however, one technical difficulty: the supports of the functions vi need not be disjoint
and perhaps this can cause some cancellation phenomenon. To overcome this problem,
we choose a suitable subsequence {ij}j and define our function by the series (11).
Correct choice of {ij}j guarantees that vij+1

has so bad a Hölder-continuity constant

that it cannot be overtaken by the Hölder-continuity estimate of the function
∑j

k=1 vik .
On the other hand, the total measure of the supports of the functions vik for k ≥ j + 2
is so tiny that the function

∑∞
k=j+2 vik changes

∑j+1
k=1 vik on a very small set and hence

it cannot destroy the bad Hölder-continuity estimate of
∑j+1

k=1 vik . Although for many
of the readers this idea would be sufficient, we prefer to provide a detailed construction
with rigorous arguments. Since the construction is quite technical, the reader should
keep in mind the idea to see what is really being done.

Since |B(xi, ri) ∩Ω| → 0 as i →∞, we can choose a subsequence {ij}∞j=1 such that

Ej =
(
B(xij ,

rij

4
) ∩ Ω

)
\

∞⋃

k=j+1

(B(xik , rik) ∩ Ω) 6= ∅

and also

Fj =

(
A(rij ,

3

4
rij ) ∩ Ω

)
\

∞⋃

k=j+1

(B(xik , rik) ∩ Ω) 6= ∅

for j = 1, 2, 3, . . . We may also require that

2n/p

(
2ij+1−2 −

j∑

k=1

2ik

)
≥ j.

Define

u =
∞∑

j=1

vij =
∞∑

j=1

2ijr
1−n/p
ij

uij . (11)

It follows from (10) that the series converges to some u ∈ W 1,p(Ω). Now it remains to
prove that u is not uniformly locally Hölder continuous with the exponent 1− n/p. By
contradiction, suppose that there is R > 0 and M > 0 such that

|u(x)− u(y)| ≤ M |x− y|1−n/p for all x, y ∈ Ω with |x− y| ≤ R. (12)
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Let x ∈ Ej+1 and y ∈ Fj+1. Then

u(x) =

j+1∑

k=1

vik(x) and u(y) =

j+1∑

k=1

vik(y).

This is because the definitions of Ej+1 and Fj+1 give vik(x) = 0 for k ≥ j + 2 and
vik(y) = 0 for k ≥ j + 2. Thus

|u(x)− u(y)| ≥ |vij+1
(x)− vij+1

(y)| −
j∑

k=1

|vik(x)− vik(y)|

≥ 2ij+1−2+n/p|x− y|1−n/p −
(

j∑

k=1

2ik+n/p

)
|x− y|1−n/p

= 2n/p

(
2ij+1−2 −

j∑

k=1

2ik

)
|x− y|1−n/p

≥ j|x− y|1−n/p.

Since x, y ∈ B(xij+1
, rij+1

), taking sufficiently large j, we can guarantee that |x− y| <
2rij+1

< R and j > M . This is a contradiction with (12). The proof for the case
n < p < ∞ is complete.

Case p = n. For x ∈ Ω and 0 < r ≤ 1, we choose 0 < ˜̃r < r̃ < r such that

|B(x, ˜̃r) ∩ Ω| =
1

2
|B(x, r̃) ∩ Ω| =

1

4
|B(x, r) ∩ Ω|. (13)

Note that

|A(r̃, ˜̃r) ∩ Ω| = |B(x, ˜̃r) ∩ Ω| and |A(r, r̃) ∩ Ω| = |B(x, r̃) ∩ Ω|. (14)

We define

u(y) =





(r̃ − ˜̃r)|A(r̃, ˜̃r) ∩ Ω|−1/n/4 for y ∈ B(x, ˜̃r) ∩ Ω,

(r̃ − |x− y|)|A(r̃, ˜̃r) ∩ Ω|−1/n/4 for y ∈ A(r̃, ˜̃r) ∩ Ω,

0 for y ∈ Ω \B(x, r̃).

(15)

We have

|∇u| =
χA(r̃,˜̃r)∩Ω

4|A(r̃, ˜̃r) ∩ Ω|1/n
and |u| ≤ r̃ − ˜̃r

4|A(r̃, ˜̃r) ∩ Ω|1/n
χB(x,r̃)∩Ω.

Hence (∫

Ω

|∇u|n
)1/n

≤ 1/4
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and

(∫

Ω

|u|n
)1/n

≤ r̃ − ˜̃r

4|A(r̃, ˜̃r) ∩ Ω|1/n
|B(x, r̃) ∩ Ω|1/n = (r̃ − ˜̃r)21/n/4 < 1/2,

because r̃ − ˜̃r < 1. Combining these two inequalities yields ‖u‖1,n < 1.

Lemma 13 There is a constant β > 0 depending on Ω, M and s, such that for every
x ∈ Ω and every 0 < r ≤ 1 the function u defined by (15) satisfies

inf
γ∈IR

∫

B(x,r)∩Ω

exp(β|u− γ|)s ≤ (M + ωn)rn. (16)

Remark. The assumption of the theorem yields that for each x and all 0 < r < 1, the
function u defined by (15) satisfies (16) with a constant β = α depending on u. The
lemma says that (16) holds for all functions defined by (15) with the same constant
independent of u.

Proof of the lemma. Suppose the claim of the lemma is not true. Then there are se-
quences xi ∈ Ω and 0 < ri ≤ 1, such that

inf
γ∈IR

∫

B(xi,ri)∩Ω

exp(4−i|ui − γ|)s > (M + ωn)rn
i ,

where ui is defined by (15) with x and r replaced by xi and ri.

Since
∑∞

i=1 ‖2−iui‖1,n <
∑∞

i=1 2−i < ∞, for every subsequence {uij}j, we have

u =
∞∑

j=1

2−ijuij ∈ W 1,n(Ω). (17)

Our aim is to show that the function u defined by (17) for a subsequence {uij}j that
will be specified later, cannot satisfy (4) with any choice of α.

For γ = 0 we have

(M + ωn)rn
i < |B(xi, ri) ∩ Ω| exp

(
4−i r̃i − ˜̃ri

4|A(r̃i, ˜̃ri) ∩ Ω|1/n

)s

(18)

≤ ωnr
n
i exp

(
4−i r̃i − ˜̃ri

4|A(r̃i, ˜̃ri) ∩ Ω|1/n

)s

.

Hence

2i

(
ln

(
1 +

M

ωn

))1/s

≤ 2−i r̃i − ˜̃ri

4|A(r̃i, ˜̃ri) ∩ Ω|1/n
.
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This, in turn, yields

2−i r̃i − ˜̃ri

4|A(r̃i, ˜̃ri) ∩ Ω|1/n
→∞ as i →∞. (19)

Since

|B(xi, ˜̃ri) ∩ Ω|1/n

(
2−i r̃i − ˜̃ri

4|A(r̃i, ˜̃ri) ∩ Ω|1/n

)
≤ ‖2−iui‖n < 2−i → 0 as i →∞,

(19) and (13) imply that

|B(xi, ri) ∩ Ω| → 0 as i →∞. (20)

Because each function ui is bounded, (19) implies that we can choose a subsequence
uij such that

1

2
2−ij

r̃ij − ˜̃rij

8|A(r̃ij , ˜̃rij ) ∩ Ω|1/n
>

j−1∑

k=1

2−ikuik (21)

for all j ≥ 2. Condition (20) implies that, in addition to (21), we may assume that

∣∣∣∣∣

{
x :

∞∑

k=j+1

2−ikuik(x) 6= 0

}∣∣∣∣∣ <

∞∑

k=j+1

|B(xik , rik) ∩ Ω| < 1

8
|B(xij , rij ) ∩ Ω| (22)

for all j ≥ 1.

For a subsequence uij , satisfying (21) and (22), we define u by formula (17). By the
assumption of the theorem, there is α > 0 such that, for every x ∈ Ω and 0 < r ≤ 1,
inequality (4) is satisfied.

Now (19) implies that there is i0 (depending on α) such that

1

8
exp

(
α2−i r̃i − ˜̃ri

16|A(r̃i, ˜̃ri) ∩ Ω|1/n

)s

≥ exp

(
4−i r̃i − ˜̃ri

4|A(r̃i, ˜̃ri) ∩ Ω|1/n

)s

(23)

for all i ≥ i0.

Inequality (4) yields in particular that, for every j with ij ≥ i0, there is γ ∈ IR such
that

(
M +

ωn

2

)
rn
ij

≥
∫

B(xij
,rij

)∩Ω

exp(α|u− γ|)s

≥
∫

B(xij
,rij

)∩Ω

exp

∣∣∣∣∣α|2
−ijuij − γ| − α

∑

k 6=j

2−ikuik

∣∣∣∣∣

s

= ♥.
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We employed here the elementary inequality:
∣∣∣∣∣a +

∞∑
n=1

bn

∣∣∣∣∣ ≥
∣∣∣∣∣|a| −

∞∑
n=1

bn

∣∣∣∣∣ for a ∈ IR and bn ≥ 0.

Obviously

|2−ijuij − γ| ≥ 2−ij
r̃ij − ˜̃rij

8|A(r̃ij , ˜̃rij ) ∩ Ω|1/n

on at least one of the sets

B(xij , ˜̃rij ) ∩ Ω and A(rij , r̃ij ) ∩ Ω.

Since each of the sets has measure greater than or equal to |B(xij , rij )∩Ω|/4, (21) and
(22) yield

α|2−ijuij − γ| − α
∑

k 6=j

2−ikuik ≥ α2−ij
r̃ij − ˜̃rij

16|A(r̃ij , ˜̃rij ) ∩ Ω|1/n

on a subset of B(xij , rij ) ∩ Ω that has measure no less than |B(xij , rij ) ∩ Ω|/8. Thus
(23) and (18) imply

♥ ≥ 1

8
|B(xij , rij ) ∩ Ω| exp

(
α2−ij

r̃ij − ˜̃rij

16|A(r̃ij , ˜̃rij ) ∩ Ω|1/n

)s

≥ |B(xij , rij ) ∩ Ω| exp

(
4−ij

r̃ij − ˜̃rij

4|A(r̃ij , ˜̃rij ) ∩ Ω|1/n

)s

> (M + ωn)rn
ij
,

provided ij ≥ i0, which is a contradiction with the left-hand side on the above sequence
of inequalities. The proof of the lemma is complete.

Lemma 14 There exist constants c1 > 0 and c2 > ωn depending on Ω, M and s such
that for every x ∈ Ω and 0 < r ≤ 1 we have

r̃ − ˜̃r ≤ c1|B(x, r̃) ∩ Ω|1/n

(
ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))1/s

. (24)

Remark. Condition c2 > ωn is used to guarantee that the logarithm in (24) is positive.

Proof of the lemma. According to Lemma 13

inf
γ∈IR

∫

B(x,r)∩Ω

exp(β|u− γ|)s ≤ (M + ωn)rn, (25)

where u is defined by (15). For every γ ∈ IR

|u− γ| ≥ r̃ − ˜̃r

8|A(r̃, ˜̃r) ∩ Ω|1/n
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for all points in the set B(x, ˜̃r)∩Ω or for all points in the set A(r, r̃)∩Ω. Since each of
these sets has measure greater than or equal to |B(x, r̃) ∩ Ω|/2, inequality (25) yields

1

2
|B(x, r̃) ∩ Ω| exp

(
β

8

r̃ − ˜̃r

|A(r̃, ˜̃r) ∩ Ω|1/n

)s

≤ (M + ωn)rn.

Hence

r̃ − ˜̃r ≤ 8

β
|A(r̃, ˜̃r) ∩ Ω|1/n

(
ln

(
2(M + ωn)rn

|B(x, r̃) ∩ Ω|
))1/s

and now (14) and (13) yield the desired estimate. The proof of the lemma is complete.

Lemma 15 If the measure density condition (3) holds for all x ∈ Ω and all r ≤ 1 such
that r ≤ 10r̃, where r̃ is defined by (13), then (3) holds for all x ∈ Ω and all r ≤ 1.5

Proof. Let r ≤ 1. If Ω ⊂ B(x, r), then

|B(x, r) ∩ Ω| ≥ |Ω| ≥ |Ω|rn

and hence (3) is satisfied. If r ≤ 10r̃, then (3) is also satisfied. Thus we may assume
that Ω\B(x, r) 6= ∅ and that r > 10r̃. Take x′ ∈ B(x, r)∩Ω such that |x−x′| = r̃+r/5.
Such an x′ exists because Ω \ B(x, r) 6= ∅ and Ω is connected. Let R = 2r̃ + r/5. We
have

B(x, r̃) ⊂ B(x′, R) ⊂ B(x, r)

and
B(x′, R/2) ⊂ B(x′, r/5) ⊂ A(r, r̃).

Hence B(x, r̃) and B(x′, R/2) are disjoint subsets of B(x′, R) and thus

|B(x′, R/2) ∩ Ω| ≤ 1

2
(|A(r, r̃) ∩ Ω|+ |B(x′, R/2) ∩ Ω|)

=
1

2
(|B(x, r̃) ∩ Ω|+ |B(x′, R/2) ∩ Ω|)

≤ 1

2
|B(x′, R) ∩ Ω|.

This, in turn, implies that R̃ ≥ R/2, and so the measure density condition is satisfied
by the ball B(x′, R) and hence

|B(x, r) ∩ Ω| ≥ |B(x′, R) ∩ Ω| ≥ CRn ≥ 5−nCrn.

The proof of the lemma is complete.

5Perhaps with a different constant C.
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Now we are ready to complete the proof of the theorem. We need to prove (3) for
all x ∈ Ω and all 0 < r ≤ 1. According to Lemma 15 we may assume that r ≤ 10r̃.
Define a sequence by setting

r0 = r, rj+1 = r̃j.

Lemma 14 yields

rj+1 − rj+2 ≤ c1|B(x, rj+1) ∩ Ω|1/n

(
ln

(
c2r

n
j

|B(x, rj+1) ∩ Ω|
))1/s

.

Since
|B(x, rj+1) ∩ Ω| = 2−j|B(x, r̃) ∩ Ω|, (26)

we conclude

rj+1 − rj+2 ≤ c12
−j/n|B(x, r̃) ∩ Ω|1/n

(
ln

(
c22

jrn
j

|B(x, r̃) ∩ Ω|
))1/s

.

It follows from (26) that rj → 0 as j →∞, and hence

r̃ =
∞∑

j=0

(rj+1 − rj+2) ≤ c1|B(x, r̃) ∩ Ω|1/n

∞∑
j=0

2−j/n

(
ln

(
c22

jrn

|B(x, r̃) ∩ Ω|
))1/s

.

The sum on the right-hand side is bounded (up to a constant factor depending on s
only) by

∞∑
j=0

2−j/nj1/s(ln 2)1/s +

( ∞∑
j=0

2−j/n

)(
ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))1/s

.

These sums converge to some constants depending on n and s only, and hence we obtain

r̃ ≤ c|B(x, r̃) ∩ Ω|1/n

(
1 +

(
ln

(
c2r

n

|B(x, r̃) ∩ Ω|
))1/s

)
. (27)

Denote
|B(x, r̃) ∩ Ω| = εr̃n.

Since
|B(x, r) ∩ Ω| = 2|B(x, r̃) ∩ Ω| = 2εr̃n ≥ 2 · 10−nεrn,

it suffices to show that ε is bounded from below by some positive constant depending
on Ω, M and s only. Inequality (27) gives

cε1/n
(

1 +
(
ln(c210nε−1)

)1/s
)
≥ 1.

Now it suffices to observe that the expression on the left hand side converges to 0 if
ε → 0, and since it is bounded from below by a positive constant, ε must also be
bounded from below by a positive constant. This ends the proof of the theorem.
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3 M 1,p spaces and the proof of Theorems 1 and 9

The proof of Theorem 4 employs Sobolev spaces on metric spaces introduced by HajÃlasz
[7] (cf. [9], [5]). If X is a metric space equipped with a Borel measure µ, then, for
a measurable function u on X, we define D(u) as the collection of all non-negative
measurable functions g on X such that

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)), a.e. (28)

Then for 1 ≤ p < ∞ we define

M1,p(X, d, µ) = {u ∈ Lp(µ) : D(u) ∩ Lp(µ) 6= ∅}.

This is a Banach space with respect to the norm

‖u‖M1,p = ‖u‖p + inf
g∈D(u)

‖g‖p.

If X = IRn, | · | denotes the Euclidean metric, and Ln is the Lebesgue measure, then
we have the following result.

Lemma 16 ([7]) If 1 < p < ∞, then M1,p(IRn, | · |,Ln) = W 1,p(IRn) in the sense that
the spaces are equal as sets and the norms are equivalent.

Lemma 17 ([9], Lemma 6) If Ω ⊂ IRn is an arbitrary domain and 1 ≤ p < ∞, then
for u ∈ M1,p(Ω, | · |,Ln), ‖u‖1,p;Ω ≤ c(n)‖u‖M1,p(Ω). In particular, M1,p(Ω, | · |,Ln) ⊂
W 1,p(Ω) is a linear subspace.

Note that Lemma 17 holds for p ≥ 1, while Lemma 16 is not true when p = 1, see [6,
Example 3].

The two lemmas imply that if 1 < p < ∞ and u ∈ W 1,p(IRn) = M1,p(IRn, | · |,Ln),
then the restriction of u to Ω belongs to M1,p(Ω, | · |,Ln). Thus, for an arbitrary domain
Ω and 1 < p < n, we have

T : W 1,p(IRn) = M1,p(IRn, | · |,Ln) → M1,p(Ω, | · |,Ln) ⊂ W 1,p(Ω). (29)

Hence it is natural to consider bounded linear extension operators

E : M1,p(Ω, | · |,Ln) → M1,p(IRn, | · |,Ln). (30)

We will prove the following result.

Theorem 18 If Ω ⊂ IRn is a domain that satisfies the measure density condition (3),
then, for every 1 < p < ∞, there is a bounded linear extension operator (30).
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Remarks. (1) Let us note that the theorem easily implies Theorem 4 by an obvious
modification to the proof of Proposition 2.

(2) Theorem 18 shows that the space M1,p(Ω, | · |,Ln) gives the exact description of
the space of traces of functions in W 1,p(IRn), whenever 1 < p < ∞ and the domain Ω
satisfies the measure density condition.

(3) The proof of Theorem 18 relies heavily on the boundedness of the maximal operator
in Lp, and hence this argument cannot be applied to the case p = 1. It turns out,
however, that the theorem is also true for p = 1, but the proof is substantially more
difficult, see the forthcoming paper [8]. Actually, Theorem 18 holds for all 1 ≤ p < ∞
in the general setting of metric spaces, see [8]. We would like to emphasize that the
space M1,1(Ω, | · |,Ln) does not describe traces of W 1,1(IRn) functions because not every
function in W 1,1 belongs to M1,1. The case p = 1 of the theorem is still not enough for
the positive answer to Question 1, but at least gives some hope that the answer could
be in the positive.

In the proof of Theorem 18, we will not only prove the existence of an extension
operator, but we will construct such an operator explicitly. Even more than that: we
construct an extension operator for M1,p(F, | · |,Ln), where F ⊂ IRn is an arbitrary
closed set that satisfies the measure density condition similar to (3)

|F ∩B(x, r)| ≥ Crn for all x ∈ F and 0 < r ≤ 1. (31)

Note that, since the boundary of Ω in Theorem 18 has measure zero (by the Lebesgue
differentiation theorem), the space M1,p(Ω, | · |,Ln) is the same as the space M1,p(F, | ·
|,Ln), where F = Ω.

Actually it would be easier to prove the estimates on the extension operator if we
could use (31) for all r > 0. To get such a condition we need a trick. Let

F2 = {x ∈ IRn : dist (x, F ) ≥ 2} and F1 = {x ∈ IRn : dist (x, F2) ≤ 1}.

Lemma 19 If a closed set F satisfies (31), then there is a constant C > 0 such that

|(F ∪ F1) ∩B(x, r)| ≥ Crn (32)

for all x ∈ F ∪ F1 and all r > 0.

Proof. If x ∈ F and r ≤ 3, then (32) is obvious. If x ∈ F1 and r ≤ 3 then there is y ∈ F2

with |x− y| ≤ 1. Since B(y, 1) ⊂ F1, it easily follows that B(x, r) ∩ F1 contains a ball
of radius r/6 and hence (32) is satisfied. Now suppose that x ∈ F ∪ F1 and r ≥ 3. The
ball B(x, r) contains a family of pairwise disjoint balls of radius 3, consisting of at least
C(n)rn balls. Take one such a ball B(a, 3) ⊂ B(x, r) from the family. If B(a, 2)∩F = ∅,
then B(a, 1) ⊂ F1 and hence

|(F ∪ F1) ∩B(a, 3)| ≥ |B(a, 1)| = ωn.
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If y ∈ B(a, 2) ∩ F 6= ∅, then B(y, 1) ⊂ B(a, 3), and hence

|(F ∪ F1) ∩B(a, 3)| ≥ |B(y, 1) ∩ F | ≥ C

by (31). Adding up the estimates over all balls from the disjointed family in B(x, r),
we arrive at (32). The proof is complete.

If u is a measurable function defined in F , then we extend it first to F1 by 0 and then
extend this new function from F ∪ F1 to a function in IRn using (32) for all r > 0. To
construct the extension operator from F ∪F1 we will need the Whitney decomposition
of an open set into cubes and an associated partition of unity.

For a closed set E ⊂ IRn, the open set IRn \ E has the Whitney decomposition into
cubes IRn \ E =

⋃
i∈I Qi, where all the cubes Qi are dyadic and have pairwise disjoint

interiors. There is also an associated Lipschitz partition of unity {ϕi}i∈I , 0 ≤ ϕi ≤ 1,
so that the following properties are satisfied:

1. dist (2Qi, E) ≤ diam 2Qi ≤ 4dist (2Qi, E);

2. Every point of IRn \ E is covered by at most 4n different cubes 2Qi;

3. For each i ∈ I, supp ϕi ⊂ 2Qi ⊂ IRn \ E;

4.
∑

i∈I ϕi(x) ≡ 1 on IRn \ E, and, for every i ∈ I, the Lipschitz constant of ϕi is
bounded by C(n)(diam Qi)

−1.

Here 2Q denotes the cube with the same center as Q, with parallel sides, and with the
diameter twice that of Q.

Actually, Whitney needed the above construction for the proof of the celebrated
Whitney extension theorem, [29], [17], that we describe next in the simplest possible
setting.

Let F ⊂ IRn be a closed set. Let {Qi}i∈I and {ϕi}i∈I be the Whitney decomposition
and the associated Lipschitz partition of unity constructed for E = F ∪ F1.

For each i ∈ I, let ai ∈ E be a closest point to Qi, that is ri := dist (ai, Qi) =
dist (Qi, E). For a Lipschitz function u on F, we first define ũ(x) to be equal to u(x)
for x ∈ F and 0 for x ∈ F1 and then we set

E ′u(x) =

{
ũ(x) for x ∈ F ∪ F1,∑

i∈I ϕi(x)ũ(ai) for x ∈ IRn \ (F ∪ F1).
(33)

Note that E ′u(x) = 0 for x ∈ IRn with dist (x, F ) ≥ 2.

Lemma 20 For an arbitrary closed set F ⊂ IRn, E ′ : Lip∞(F ) → Lip∞(IRn) is a
bounded linear extension operator.
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Let us emphasize that in Lemma 20 we do not assume (31). The lemma is a special
case of a well known theorem of Whitney. One can easily prove Lemma 20 using the
proof of the more difficult Theorem 21 as a hint. The steps will be similar but the proof
easier. We leave details to the reader as an exercise.

For a measurable function u defined on F, we cannot use (33) as u might not be
defined at every point of F . A natural suggestion is to take averages of u instead of
values of u at single points. This leads to the formula

E∗u(x) =

{
ũ(x) for x ∈ F ∪ F1,∑

i∈I ϕi(x)ũBi∩(F∪F1) for x ∈ IRn \ (F ∪ F1),
(34)

where Bi = B(ai, ri). To be more precise, we need to assume that u is locally integrable
with respect to the Lebesgue measure restricted to F and that the intersection of F
with an arbitrary ball centered at F has positive measure, as otherwise ũBi∩(F∪F1) would
not make sense.

Now, if Ω ⊂ IRn is an open set whose boundary has measure zero, Ln(∂Ω) = 0,
then measurable functions on Ω are equal a.e. to measurable functions on F = Ω, and
hence (34) can be applied to measurable functions on Ω as well. In particular, it can
be applied in domains satisfying the measure density condition.

For a measurable function g, defined on a closed set F ⊂ IRn, we define the Hardy–
Littlewood maximal function by

MF g(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)∩F

|g(z)| dz, for x ∈ IRn.

If F = IRn, then we simply write Mg without using IRn as a subscript. By the classical
theorem of Hardy–Littlewood, the maximal function is a bounded operator in Lp for
1 < p < ∞, that is, ‖MF g‖p;IRn ≤ C(n, p)‖g‖p;F , see [24].

We will prove the following result which is a slight improvement on Theorem 18.

Theorem 21 If F ⊂ IRn is a closed set that satisfies the measure density condition
(31), then, for 1 < p < ∞, the operator E∗ : M1,p(F, | · |,Ln) → M1,p(IRn, | · |,Ln)
defined by (34) is bounded.

Proof. First note that the function ũ belongs to M1,p(F ∪F1, | · |,Ln) and that the M1,p

norm of ũ on F ∪ F1 is bounded (up to a constant factor) by the M1,p norm of u on
F . Indeed, it is easy to see that if g ∈ D(u) ∩ Lp(F ), then the function h defined as
g(x) + |u(x)| for x ∈ F and 0 for x ∈ F1, belongs to D(ũ) ∩ Lp(F ∪ F1).

Therefore, replacing F by F ∪ F1, u by ũ and applying Lemma 19, we may assume
that the set F satisfies the condition

|F ∩B(x, r)| ≥ Crn for all x ∈ F and all r > 0. (35)
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The operator E∗ is given by

E∗u(x) =

{
u(x) for x ∈ F ,∑

i∈I ϕi(x)uBi∩F for x ∈ IRn \ F ,

where now the Whitney decomposition is applied to IRn \ F .

It suffices to prove two facts. The first one is that E∗u ∈ Lp(IRn) with

‖E∗u‖Lp(IRn) ≤ C‖u‖Lp(F ). (36)

The second one is that, for every g ∈ D(u) ∩ Lp(F ), the inequality

|E∗u(x)− E∗u(y)| ≤ C|x− y|(h(x) + h(y)), (37)

where

h(x) =

{ |u(x)|+MF g(x) for x ∈ F ,
MF g(x) for x ∈ IRn \ F ,

holds for a.e. x, y ∈ IRn. Then the claim will easily follow from the Hardy–Littlewood
theorem. Before we proceed to prove the above two claims, let us introduce some
notation and make some auxiliary observations. For x ∈ IRn \F let x ∈ F be such that
|x− x| = dist (x, F ). Let also Ix = {i ∈ I : x ∈ 2Qi}. There is a constant C depending
on n only such that

Bi ⊂ B(x,C|x− x|) for all i ∈ Ix.

Write Bx = B(x,C|x− x|). Note that

∫

Bi∩F

|u| ≤ CMF u(x) for every i ∈ Ix.

This follows from the estimate
∫

Bi∩F

|u| ≤ |Bx|
|Bi ∩ F |

(
1

|Bx|
∫

Bx∩F

|u|
)
≤ CMF u(x) (38)

along with the estimate (35). Using the same argument, we can prove the inequality

∫

Bi∩F

g(w) dw +

∫

Bx∩F

g(z) dz ≤ CMF g(x) (39)

for all i ∈ Ix.

Note also that if i 6∈ Ix, then ϕi(x) = 0, and hence

E∗u(x) =
∑
i∈I

ϕi(x)uBi∩F =
∑
i∈Ix

ϕi(x)uBi∩F .
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Now we can prove the above two claims. The first one is easy. Indeed, for x ∈ IRn\F,
(38) yields

|E∗u(x)| =

∣∣∣∣∣
∑
i∈Ix

ϕi(x)uBi∩F

∣∣∣∣∣ ≤
∑
i∈Ix

∫

Bi∩F

|u| ≤ CMF u(x), (40)

because the number of elements in Ix is bounded by 4n. Now (36) follows from the
Hardy–Littlewood maximal theorem.

We split the proof of (37) into four cases.

Case 1: x, y ∈ F . We have

|E∗u(x)− E∗u(y)| = |u(x)− u(y)| ≤ |x− y|(MF g(x) +MF g(y)),

because g(x) ≤MF g(x) whenever x is a Lebesgue point of g.

Case 2: x ∈ IRn \ F and y ∈ F . Since
∑

i∈Ix
ϕi(x) = 1, we have

|E∗u(x)− uBx∩F | =

∣∣∣∣∣
∑
i∈Ix

ϕi(x)(uBi∩F − uBx∩F )

∣∣∣∣∣

≤
∑
i∈Ix

∫

Bi∩F

∫

Bx∩F

|u(w)− u(z)| dwdz

≤ C|x− x|
∑
i∈Ix

∫

Bi∩F

∫

Bx∩F

(g(w) + g(z)) dwdz

≤ C|x− x|MF g(x). (41)

The last inequality follows from (39). Hence

|E∗u(x)− E∗u(y)| = |E∗u(x)− u(y)| ≤ |E∗u(x)− uBx∩F |+ |uBx∩F − u(y)| = A + B.

The first term A is estimated by (41) and, for the second term, we have

B ≤
∫

Bx∩F

|u(z)−u(y)| dz ≤
∫

Bx∩F

|z− y|(g(z) + g(y)) dz ≤ C|x− y|(g(y) +MF g(x)).

Here we used the observation that |z − y| ≤ C|x− y| whenever z ∈ Bx ∩ F and again
inequality (39).

Case 3: x, y ∈ IRn \F and |x−y| ≥ min{dist (x, F ), dist (y, F )}. The argument is very
similar to that in the Case 2 and is left to the reader (we need to use both x and y).
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Case 4: x, y ∈ IRn\F and |x−y| < min{dist (x, F ), dist (y, F )}. Since
∑

i∈Ix∪Iy
(ϕi(x)−

ϕi(y)) = 0, we have

|E∗u(x)− E∗u(y)| =

∣∣∣∣∣∣
∑

i∈Ix∪Iy

(ϕi(x)− ϕi(y))(uBi∩F − uBx∩F )

∣∣∣∣∣∣

≤ C
∑

i∈Ix∪Iy

|x− y|
|x− x|

∫

Bi∩F

∫

Bx∩F

|u(w)− u(z)| dwdz

≤ C|x− y|MF g(x).

In the last but one inequality we employed the fact that all the functions ϕi, for i ∈
Ix ∪ Iy, are Lipschitz continuous with the Lipschitz constant bounded by C|x − x|−1,
and the proof of the last inequality follows from estimates very similar to those in (41).
This completes the proof of the theorem.

Proof of Theorem 9. Conditions (1) and (2) are obviously equivalent. The equivalence
between (2) and (3) follows from Theorem 1. The implication from (4) to (3) is obvious.
To prove the implication from (2) to (5), note that (29) gives (5) as equality of sets
and the equivalence of norms follows from the Banach open mapping theorem. The
measure density condition follows from Theorem 5. Finally, the implication from (5)
to (4) follows from Theorem 21 applied to F = Ω (cf. the remark following (31)) along
with Lemma 16. The proof is complete.
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tuheli@maths.jyu.fi

28


