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Abstract

We study the covering properties of mappings of bounded and expo-
nentially integrable distortion on the unit ball. We extend the results
of Eremenko [2] by proving Bloch-type theorems for mappings of ex-
ponentially integrable distortion. In the case of mappings of bounded
distortion, we formulate and prove Bloch’s theorem in its most natural
form.
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1 Introduction

We call a mapping f ∈ W 1,1
loc (Ω, Rn) a mapping of finite distortion if it

satisfies

(1.1) |Df(x)|n ≤ K(x, f)J(x, f) a.e.,

where 1 ≤ K(x, f) < ∞, and if also J(·, f) ∈ L1
loc(Ω). Here |Df(x)| is

the operator norm of the differential of f at x, and J(x, f) the Jacobian
determinant of Df(x). When K(x, f) ≤ K < ∞ a.e., f is called a K-
quasiregular mapping, or a mapping of bounded distortion.

The systematic study of quasiregular mappings was started in the 1960s
by Reshetnyak, who proved that non-constant quasiregular mappings are
continuous, discrete and open. By now, a rich theory of quasiregular map-
pings has been developed, see the monographs [16] and [18]. This theory
extends geometric function theory to higher dimensions.
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Recently, Reshetnyak’s results mentioned above have been extended to
include a more general class of mappings, see [4], [5], [6], [7], [8], [11]. In
particular, continuity, discreteness and openness have been proved for non-
constant mappings of finite distortion satisfying

(1.2) exp(λK(·, f)) ∈ L1
loc(Ω)

for some λ > 0. In fact, a sharp Orlicz-condition for these properties is now
known, see [8].

In this paper we study issues that are related to two classical results
in function theory: the theorems of Picard and Bloch. Recall that Picard’s
theorem says that an entire, non-constant analytic function can omit at most
one finite point, while Bloch’s theorem says that an analytic function f on
the unit disc with |f ′(0)| = 1 univalently covers a ball of radius C, where C
is a universal constant.

One of the main achievements in the theory of quasiregular mappings
is the value distribution theory, mainly developed by Rickman (see [18],
Chapters IV and V). This theory includes a version of Picard’s theorem,
as well as a deep example [17] showing that Picard’s theorem is not true
in dimension three in the same form as in the plane. Recently, by using a
normal family method, Eremenko [2] showed that also Bloch’s theorem ad-
mits a generalization to higher dimensions, so that there exists a version for
K-quasiregular mappings on the unit ball, as well as for entire quasimero-
morphic mappings. Eremenko’s method of proof was indirect, and it did not
give any quantitative bounds for the corresponding Bloch radii. Therefore,
he asked for a direct quantitative proof. Such a proof was given in [14] in the
case of entire quasimeromorphic mappings. Below we will give such a proof
for mappings on the ball. Bloch’s theorem in connection with quasiregular
holomorphic mappings in several complex variables has also been studied,
cf. [1] and the references therein.

Recently, Koskela and Onninen [9] established a path family inequality
for mappings of exponentially integrable distortion, that allows one to gen-
eralize the techniques used in the value distribution theory of quasiregular
mappings. However, the covering properties of mappings of exponentially
integrable distortion are still not understood. In particular, it is not known
if there exists a reasonable generalization of the Rickman-Picard theorem.
Naturally, understanding the nature of Bloch’s theorem also helps to under-
stand the problem of omitted values better.

The main theorem of this paper reads as follows.
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Theorem 1.1. Let f : B(0, 1) → Rn, n ≥ 2, be a mapping of finite distor-
tion. Moreover, assume that there exist constants λ, K > 0 so that

(1.3)
∫

B(0,1)
exp(λK(x, f)) dx ≤ K.

Then there exist y ∈ Rn and a constant C > 0, only depending on n, K and
λ, so that

B(y, C diam f(B(0, 1/2))) ⊂ f(B(0, 1)).

Here and below we are using normalization based on the diameter of
the image of B(0, 1/2). This is natural since, unlike in the case of ana-
lytic functions, assuming |Df(0)| = a does not give any information on
the global behavior of a mapping of finite or bounded distortion f . Of
course, the constant C > 0 in Theorem 1.1 depends on K; for every ε > 0
there exists a K(ε)-quasiconformal homeomorphism f on the unit ball, with
diam f(B(0, 1/2)) = 1, so that f(B(0, 1)) does not cover any balls of radius
ε.

As a corollary we have a covering theorem for entire mappings of finite
distortion.

Corollary 1.2. Let f : Rn → Rn be a non-constant mapping of finite
distortion. Moreover, assume that there exist constants λ, K > 0 so that

(1.4) lim inf
R→∞

|B(0, R)|−1

∫
B(0,R)

exp(λK(x, f)) dx ≤ K.

Then f(Rn) contains balls of arbitrarily large radius.

Rickman’s theorem [18], Chapter IV, Theorem 2.1 says that an entire
non-constant K-quasiregular mapping f : Rn → Rn can omit at most
C(n, K) points. In [15] it is proved that this result remains valid when “K-
quasiregular” is replaced by (1.4) and the assumption that the map should
not grow too fast, i.e. the map should be of finite lower order. Earlier,
Koskela and Onninen [9] proved that, under an assumption slightly weaker
than (1.4), the set of omitted values is of zero conformal modulus. It is an
important problem to find out if Rickman’s theorem remains true under the
assumptions of Corollary 1.2. In the plane this is the case, which can be
seen by using factorization results, cf. [5], Theorem 11.9.2.

In Theorem 1.1 the conclusion is that a large ball is covered by the image
of f . The complete version of Bloch’s theorem would replace “covered” by
“univalently covered”. We do not know if such a result is true under the
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assumptions of Theorem 1.1. Below we give assumptions that guarantee
the complete version. Again, in the plane the complete version remains
valid, which follows from the factorization results mentioned above, and
some simple distortion estimates.

For completeness, we first note that Bloch’s theorem is true under the
assumption that the branch set should be empty. This is a rather straight-
forward consequence of the injectivity theorem in [10]. Now let f : B(0, 1) →
Rn be a continuous, discrete and open mapping. We denote by Bf the supre-
mum of all radii r > 0 so that there exists a domain U ⊂ B(0, 1) so that the
restriction of f to U is one-to-one and maps onto a ball B(y, r).

Theorem 1.3. Let f : B(0, 1) → Rn, n ≥ 2, be a local homeomorphism
satisfying the assumptions of Theorem 1.1. Then Bf ≥ C diam f(B(0, 1/2)),
where C > 0 only depends on n, K and λ.

Bloch’s theorem also remains valid under a boundedness condition.

Theorem 1.4. Let f : B(0, 1) → Rn, n ≥ 2, be a mapping satisfying the
assumptions of Theorem 1.1. Moreover, assume that

(1.5) diam f(B(0, 1)) ≤ α diam f(B(0, 1/2)).

Then Bf ≥ C diam f(B(0, 1/2)), where C > 0 only depends on n, K, λ and
α.

In the case of quasiregular mappings one can reduce the general situation
to the situation where assumption (1.5) holds true. Therefore, a quantitative
version of Eremenko’s theorem mentioned above follows from Theorem 1.4

Theorem 1.5. Let f : B(0, 1) → Rn, n ≥ 2, be a K-quasiregular mapping.
Then Bf ≥ C diam f(B(0, 1/2)), where C > 0 only depends on n and K.

We have not calculated any estimates for C here, since the expressions
are quite complicated, compare [14]. Finally, we note that some of the results
of this paper remain valid when the exponential integrability assumption is
replaced by a slightly weaker subexponential integrability assumption, and
that this assumption is the weakest possible in a certain sense, see [8]. We
have chosen the exponential integrability assumption here in order to have
simpler estimates.

4



2 Weighted conformal modulus

We will use methods that originate from the value distribution theory of
quasiregular mappings, see [18], Chapter IV. In order to apply these meth-
ods in the case of unbounded distortion we use the modulus inequality estab-
lished in [9], as well as estimates similar to ones given in [9] and [15]. In these
estimates the familiar conformal modulus is replaced by a suitable weighted
modulus, and the corresponding estimates are more complicated than the
classical ones. In order to prove the existence of a univalent covering, we
use a method established in [14].

Let Γ be a path family in a domain Ω. We call a Borel function ρ : Ω →
[0,∞] admissible for Γ, if∫

γ
ρ ds ≥ 1 for all locally rectifiable γ ∈ Γ.

Now let ω : Ω → [0,∞] be a measurable function. The weighted p-modulus
Mp,ω(Γ) of Γ is defined by

Mp,ω(Γ) = inf
{∫

Rn

ρp(x) ω(x) dx : ρ : Ω → [0,∞) is admissible for Γ
}

.

When ω = 1, we recover the usual p-modulus Mp. Also, Mn,ω is called the
conformal modulus (with weight w), and we will denote it simply by Mω.

When A ⊂ Rn is a Borel set and f : A → Rn a mapping, we use
the notation N(y, f, A) = card{x ∈ A : f(x) = y}. In what follows, we
will denote by Γf the family of all locally rectifiable paths in A having a
closed subpath on which f is not absolutely continuous. The so-called KO-
inequality for mappings of finite distortion will be used.

Theorem 2.1 ([15], Theorem 2.1). Let f : Ω → Rn be a mapping of
finite distortion satisfying (1.2). Let A ⊂ Ω be a Borel set with

sup
y∈Rn

N(y, f, A) < ∞.

Moreover, let Γ be a family of paths in A. If a function ρ is admissible for
f(Γ \ Γf ), then

MK−1(·,f)(Γ \ Γf ) ≤
∫

Rn

ρn(y)N(y, f, A) dy.

Moreover, Mp(Γf ) = 0 for all 1 < p < n.
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We need a lower bound for the K−1(·, f)-modulus of certain path fami-
lies. The following theorem extends a standard conformal modulus estimate
(cf. [19], Theorem 10.12) to the current setting. A result like this was
proved in [15], Theorem 2.5, and the next result is proved by using the same
method. However, here we need estimates that are more general than the
one given in [15]. Also see [3] and [12] for related estimates.

Theorem 2.2. Let f : B(0, 1) → Rn be as in Theorem 1.1. Let E and
F be two sets in B(0, 1). Assume that there exists a point a ∈ B(0, 1)
so that Sn−1(a, t) intersects both E and F for all 0 < r < t < R. If
B(a,R) ⊂ B(0, 1) and if Γ is the family of all paths joining E and F in
B(a,R) \ B(a, r), then there exist constants C1, C2 > 0, only depending on
n, so that

(2.1) MK−1(·,f)(Γ \ Γf ) ≥ L(R,R/r),

where

L(R,R/r) =


C1λ log R

r
log(C2K(R−r)−1R1−n)

, log R
r ≤ 1000 log(C2KR−n),

C1λ log
(

log R
r

log(C2KR−n)

)
, log R

r > 1000 log(C2KR−n).

In what follows, we will frequently use the notation L(R,R/r). This
function also depends on n, K and λ, but we will consider them fixed.

Proof. In this proof C > 0 will be a constant that only depends on n but
may vary from line to line. We first assume that R < 10r. Let ρ be an
admissible function for MK−1(·,f)(Γ \ Γf ), so that ρnK−1(·, f) is integrable.
Moreover, fix p ∈ (n − 1, n). As in the proof of [15], Theorem 2.5, we see
that, for almost every t ∈ (r, R),

(2.2) 1 ≤ Ctp+1−n

∫
Sn−1(a,t)

ρp(x) dS(x)

(Lemma 2.3 of [12] gets used here). Here dS means integration against the
surface measure. By integrating over t, we have

(2.3) (R− r) essinft∈(r,R)

∫
Sn−1(a,t)

ρp(x) dS(x) ≤
∫

B(a,R)\B(a,r)
ρp(x) dx.

We denote E = B(a,R) \ B(a, r). Then |E| is bounded from above and
below by dimensional constants times (R − r)Rn−1. Combining (2.2) and
(2.3) gives

(2.4) 1 ≤ Cr
(
|E|−1

∫
E

ρp(x) dx
) 1

p
.
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By writing ρp(x) = ρp(x)K−p/n(x, f)Kp/n(x, f) and using Hölder’s inequal-
ity, we see that the right hand side of (2.4) is smaller than

(2.5) Cr
(
|E|−1

∫
E

ρn(x)K−1(x, f) dx
) 1

n
(
|E|−1

∫
E

K
p

n−p (x, f) dx
)n−p

np
.

In order to estimate the second integral in (2.5), we notice that the function
t 7→ exp(λt(n−p)/p) is convex for large enough t. Since we may, if necessary,
assume that K(·, f) is bounded from below by a fixed constant, we may use
Jensen’s inequality. Thus we have(
|E|−1

∫
E

K
p

n−p (x, f) dx
)n−p

np ≤
(
λ−1 log

(
|E|−1

∫
E

exp(λK(x, f)) dx
)) 1

n

≤
(
λ−1 log(|E|−1K)

) 1
n(2.6)

Combining (2.4), (2.5) and (2.6) gives

MK−1(·,f)(Γ \ Γf ) ≥ Cλ
R− r

r
log−1(C−1K(R− r)−1R1−n)

≥
Cλ log R

r

log(C−1K(R− r)−1R1−n)
.(2.7)

Now we assume that R > 10r. Denote by k the largest integer smaller
than log R

r . Then

(2.8) MK−1(·,f)(Γ \ Γf ) ≥
k∑

i=1

MK−1(·,f)(Γi \ Γf ),

where Γi is the family of all paths joining E and F in B(a, e−i+1R) \
B(a, e−iR). Hence, by (2.7) and (2.8),

(2.9) MK−1(·,f)(Γ \ Γf ) ≥ Cλ
k∑

i=1

1
i + log(C−1KR−n)

.

When k ≤ log R
r ≤ 1000 log(C−1KR−n), the right hand term of (2.9) is

larger than
Cλ log R

r

log(C−1KR−n)
.

On the other hand, if we assume that log R
r > 1000 log(C−1KR−n), and

denote by L the smallest integer larger than log(C−1KR−n), we have

MK−1(·,f)(Γ \ Γf ) ≥ Cλ

k∑
L

i−1 ≥ Cλ log
k

L
≥ Cλ log

( log R
r

log(C−1KR−n)

)
.
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The proof is complete.

We will also use comparison results for the counting function. These
results are proved by using the modulus estimates of [9], and the methods
used in the case of quasiregular mappings, see [18], Chapter IV. In what
follows, the following term will repeateadly appear:

(2.10) C3λ
1−n log1−n

( log(C4Kr−n)
log(C4KR−n)

)
=: U(R,R/r).

If we assume that R ≥ 2r, then C3, C4 > 0 only depend on n. In what
follows, we will frequently use the notation U(R,R/r). This term is an upper
bound for the Kn−1(·, f)-modulus of a spherical ring, see [9], Theorem 5.3.

For a mapping of finite distortion f : Ω → Rn and a Borel set E ⊂ Ω,
define the counting function n(E, y) by

n(E, y) =
∑

x∈f−1(y)∩E

i(x, f),

where i(x, f) is the local index, see [18], Chapter I, Section 4. For an (n−1)-
dimensional sphere Sn−1(y, t) ⊂ Rn, define the average ν(E, y, t) of the
counting function n(E, ·) over the sphere Sn−1(y, t) by

ν(E, y, t) =
1

ωn−1

∫
Sn−1

n(E, y + tx) dx,

where Sn−1 is the unit sphere and ωn−1 its surface measure. We shall use
the notation ν(a, r, y, t) if E = B(a, r). The following comparison results for
the counting function are proved in [15], Lemmas 2.6 and 2.7.

Lemma 2.3. Let f : B(0, 1) → Rn be as in Theorem 1.1. Suppose that
B(a, θr) ⊂⊂ B(0, 1), θ ≥ 2. Moreover, let y ∈ Rn and s, t > 0. Then

ν(a, θr, y, s) ≥ ν(a, r, y, t)− ω−1
n−1U(θr, θ)| log(t/s)|n−1.

Lemma 2.4. Let f : B(0, 1) → Rn be as in Theorem 1.1. Moreover, let
E and F be two disjoint continua in B(a, r) so that f(E) ⊂ B(z, s) and
f(F ) ⊂ Rn \ B(z, t), s < t. Let θ ≥ 2, and suppose B(a, θr) ⊂⊂ B(0, 1).
Then

ν(a, θr, z, t) ≥ ω−1
n−1

(
log

t

s

)n−1(
MK−1(·,f)(Γ \ Γf )− U(θr, θ)

)
,

where Γ is the family of all paths joining E and F in B(a, r).

8



We will also use the following simple lemma.

Lemma 2.5. Let f : B(a, r) → Rn be a continuous map. Then, for each
M ∈ N there exists a ball B(b, r/M) ⊂ B(a, r) so that

diam f(B(b, r/M)) ≥ diam f(B(a, r))/M.

Proof. Let x1, x2 ∈ B(a, r) be points so that

diam f(B(a, r)) = |f(x1)− f(x2)|.

Moreover, let I be a line segment with endpoints x1 and x2. Since l(I), the
length of I, does not exceed 2r, I can be covered by M balls Bj ⊂ B(a, r)
of radius r/M . Then

diam f(B(a, r)) ≤ l(f(I)) ≤
∑

j

diam f(Bj) ≤ M max
j

diam f(Bj).

3 Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Without loss of generality, diam f(B(0, 1/2)) = 1.
By considering, if necessary, B(0, 1− ε) with small ε > 0 instead of B(0, 1),
we may assume that f is bounded. We fix positive numbers

B = exp((2ωn−1C3)1/(n−1)λ−1), B′ = exp((2C3)1/(n−1)λ−1),

b = exp((C1λ)−1) and k = 2(BB′ − 1)(1 + nb) + 2nb.

Here and in what follows, the constants C1, C2, C3 and C4 are as in Theorem
2.2 and (2.10).

Next we define a continuous function

ρ : B(0, 1) → Rn, ρ(x) = (1− |x|)k diam f(B(x, (1− |x|)/2)).

Then, since diam f(B(0, 1/2)) = 1 and since f is bounded,

1 ≤ sup
x∈B(0,1)

ρ(x) ≤ L < ∞.

We choose x ∈ B(0, 1) so that ρ(x) ≥ L/2, and denote

(1− |x|)/2 = R.
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Then we have

(3.1) (2R)−k ≤ diam f(B(x, 3R/2)) ≤ C(n, k) diam f(B(x,R)).

Now we choose numbers M1 > M2 > M3 > 10 as follows:

M3 = (C4KR−n)
B−1

n 2B, M2 = (C4KR−n)
B′−1

n MB′
3

and
M1 = (C2KR−n)bM1+nb

2 .

Then

(3.2) M1 = C(n, K, λ)R
−k
2 .

Moreover, without loss of generality we may assume that M1 is an integer.
The choices of Mi:s are made in order to have the following:

U(M−1
3 R,M2/M3) =

1
2

(3.3)

U(2−1R,M3/2) =
1

2ωn−1
,

L(M−1
2 R,M1/M2) ≥ 1.

By Lemma 2.5, there exists a ball B(y, M−1
1 R) ⊂ B(x,R) so that

(3.4) diam f(B(y, M−1
1 R)) ≥ diam f(B(x,R))/M1.

We denote by r the largest radius so that U = U(y, f, r), the y-component
of f−1(B(f(y), r)), lies inside B(y, M−1

2 R). Then, by [18], I Lemma 4.7,

f(U(y, f, r)) = B(f(y), r).

Our goal is to give a lower bound for r. By our choice of M1, (3.1) and (3.4),

T =: diam f(B(y, M−1
1 R))/2 ≥ C(n, K, λ),

and thus we may assume that r < T . Now there exists a point

z ∈ Sn−1(y, M−1
1 R)

so that
|f(z)− f(y)| ≥ T.
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Hence there exists a ray γ connecting f(z) and ∞ outside B(f(y), T ), and
a lift γ′ of γ connecting z and Sn−1(0, 1). Then, in particular, both U and
γ′ intersect Sn−1(y, t) for all t ∈ (M−1

1 R,M−1
2 R). Hence, if we denote by

Γ the family of all paths joining U and γ′ in B(y, M−1
2 R) \ B(y, M−1

1 R),
Theorem 2.2 and (3.3) yield

(3.5) MK−1(·,f)(Γ \ Γf ) ≥ L(M−1
2 R,M1/M2) ≥ 1.

On the other hand, by Lemma 2.4,

MK−1(·,f)(Γ \ Γf ) ≤ ωn−1ν(y, M−1
3 R, f(y), T )

(
log

T

r

)1−n

+ U(M−1
3 R,M2/M3).(3.6)

Since U(M−1
3 R,M2/M3) = 1/2 by (3.3), combining (3.5) and (3.6) gives

(3.7)
(

log
T

r

)n−1
≤ 2ωn−1ν(y, M−1

3 R, f(y), T ).

By applying Lemma 2.3, we have

ν(y, M−1
3 R, f(y), T ) ≤ ν(y, R/2, f(y),diam f(B(y, R/2)))

+ U(R/2,M3/2)
(

log
diam f(B(y, R/2))

T

)n−1
.(3.8)

We have
ν(y, R/2, f(y),diam f(B(y, R/2))) = 0,

and by (3.1), (3.3) and (3.4),

U(R/2,M3/2)
(

log
diam f(B(y, R/2))

T

)n−1
≤ (2ωn−1)−1 logn−1(M1C(n, K, λ)).

Hence, (
log

T

r

)n−1
≤ logn−1(M1C(n, K, λ)),

which yields, when combined with (3.1), (3.2) and (3.4),

r ≥ C(n, K, λ)M−2
1 R−k ≥ C(n, K, λ).

The proof is complete.

Proof of Corollary 1.2. By (1.4), we find a sequence of radii Ri so that Ri →
∞, and so that the map

fi : B(0, 1) → Rn, fi(x) = f(Rix),

satisfies the assumptions of Theorem 1.1, with K and λ independent of i. By
[9], Corollary 1.3, diam f(B(0, Ri/2)) →∞ as Ri →∞. Applying Theorem
1.1 to each fi gives the claim.
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4 Proof of Theorem 1.3

As noted in the introduction, this result in the case n = 2 easily follows
from known results. Hence it suffices to consider the case n ≥ 3. Without
loss of generality, diam f(B(0, 1/2)) = 1. Now, by [10], there exists an
integer C−1

1 > 0, only depending on n, K and λ, so that f restricted to
B(a,C1) is one-to-one for all a ∈ B(0, 1/2). Now, by Lemma 2.5, there exists
y ∈ B(0, 1/2) so that diam f(B(y, C1/2)) ≥ C1 and so that the restriction
of f to B(y, C1) is one-to-one.

Denote by Γ the family of all paths joining

(f|B(y,C1))
−1(Rn \B(f(y), R))

and
(f|B(y,C1))

−1(B(f(y), r))

in B(y, C1), where R and r are the smallest and largest radii, respectively,
so that

B(f(y), r) ⊂ f(B(y, C1/2)) ⊂ B(f(y), R).

By Theorem 2.2 and [10], Lemma 3.1, we have

MK−1(·,f)(Γ \ Γf ) ≥ L(
√

3C1/4,
√

3).

On the other hand, since R ≥ diam f(B(y, C1/2))/2, we have

Mf(Γ) ≤ ωn−1 log1−n diam f(B(y, C1/2))
2r

≤ ωn−1 log1−n C1

2r
.

Since Bf ≥ r and MK−1(·,f)(Γ \ Γf ) ≤ Mf(Γ) by Theorem 2.1, we have

Bf ≥
C1

2
exp(−(L(

√
3C1/4,

√
3)/ωn−1)1/(1−n)).

The proof is complete.

5 Proofs of Theorem 1.4 and Theorem 1.5

Proof of Theorem 1.4. The first part of the proof is similar to the proof of
Theorem 1.1. However, since the parameters have to be chosen in a different
way here, we will give full details.

Without loss of generality, diam f(B(0, 1/2)) = 1. We fix an integer
M > 2, to be chosen later. By Lemma 2.5, there exists a ball B(y, M−1) ⊂
B(0, 1/2) so that diam f(B(y, M−1)) ≥ 2M−1.
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Next, we denote by r the largest radius so that the y-component U =
U(y, f, r) of f−1(B(f(y), r)) lies inside B(y, 2−4). We will give a lower bound
for r. First, we may assume that r < 1/M . Since diam f(B(y, M−1)) ≥
2M−1, there exists a point z ∈ Sn−1(y, M−1) so that |f(z)− f(y)| ≥ M−1.
Then, for a ray γ connecting f(z) and ∞ outside B(f(y),M−1), there exists
a lift γ′ connecting z and Sn−1(0, 1). Then, in particular, both U and γ′

intersect Sn−1(y, t) for all t ∈ (M−1, 2−4). Hence, if we denote by Γ the
family of all paths joining U and γ′ in B(y, 2−4) \B(y, M−1), Theorem 2.2
yields

(5.1) MK−1(·,f)(Γ \ Γf ) ≥ L(2−4, 2−4M).

On the other hand, by Lemma 2.4,
(5.2)

MK−1(·,f)(Γ \ Γf ) ≤ ωn−1ν(y, 2−3, f(y),M−1)
(

log
1

Mr

)1−n
+ U(2−3, 2).

Now we choose M to be large enough, so that

U(2−3, 2) <
1
2
L(2−4, 2−4M).

Then, combining (5.1) and (5.2) yields

(5.3)
(

log
1

Mr

)n−1
≤ 2ωn−1L(2−4, 2−4M)−1ν(y, 2−3, f(y),M−1).

Since
sup

x∈B(y,2−3)

|f(x)− f(y)| ≤ sup
x∈B(0,1)

|f(x)− f(y)| ≤ α,

Lemma 2.3 yields
(5.4)

ν(y, 2−3, f(y),M−1) ≤ ν(y, 2−2, f(y), α) + ω−1
n−1U(2−2, 2) logn−1(αM).

Since ν(y, 2−2, f(y), α) = 0, (5.3) and (5.4) give(
log

1
Mr

)n−1
≤ 2L(2−4, 2−4M)−1U(2−2, 2) logn−1(αM) =: An−1,

i.e.

(5.5) r ≥ M−1 exp(−A) =: r0.

We conclude that U(y, f, r0) is a normal domain. Now, when we apply
Lemma 2.3 again for r0/2 and α, we have

ν(y, 2−4, f(y), r0/2) ≤ ν(y, 2−3, f(y), α) + ω−1
n−1U(2−3, 2)

(
log

2α

r0

)n−1
.

13



Again, since ν(y, 2−3, f(y), α) = 0, we conclude that there exists a point
p ∈ B(f(y), r0) so that

µ(p, f, U(y, f, r0)) ≤ ω−1
n−1U(2−3, 2)

(
log

2α

r0

)n−1
=: m0.

Here µ denotes the topological degree, see [18], Chapter I, Section 4. Since
the topological degree is constant in the normal domain U(y, f, r0), we have

(5.6) µ(f, U(y, f, r0)) ≤ m0.

In order to establish a lower bound for Bf by using (5.5) and (5.6), we
proceed inductively. The method we are going to use allows us to calculate
an explicit expression for the lower bound. However, since the calculations
that are needed are rather complicated, we will not worry about explicit
constants. The essential point is that they only depend on n, K, λ and α.
We will need the following topological result from [13]. A mapping is proper
if the preimage of an arbitrary compact set is compact.

Lemma 5.1 ([13], Theorem 2). Let G be an open, connected, relatively
compact subset of Rn and Y an n-dimensional manifold (possibly with bound-
ary). If f : G 7→ Y is a continuous, proper, finite-to-one open mapping which
is not a homeomorphism,

f−1(∂Y ) ⊆ (G \G), D = max{d(x,G \G) : x ∈ G},

and
C = max{diam(f−1(f(x))) : x ∈ G \G},

then D ≤ C.

We assume that there exist yk ∈ B(y, 2−4) and rk, mk, only depending
on n, K, λ, α and k, so that 1 ≤ mk < mk−1 < . . . < m0, U(yk, f, rk) ⊂
B(y0, 2−3) and

(5.7) µ(f, U(yk, f, rk)) ≤ mk.

The assumption for k = 0 holds true by (5.5) and (5.6). In order to finish the
proof of Theorem 1.4, it suffices to show the existence of rk+1 and mk+1; since
mk+1 < mk < . . . < m0, after L ≤ m0 steps we have µ(f, U(yL, f, rL)) = 1.
This means that f|U(yL,f,rL) is one-to-one and onto B(f(yL), rL).

By Lemma 5.1, we find a point p ∈ Sn−1(f(yk), rk/2), so that

diam f−1(p) ∩ ∂U(yk, f, rk/2) ≥ D = max
x∈U(yk,f,rk/2)

d(x, ∂U(yk, f, rk/2)).
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By [9], Corollary 5.5, we have the continuity estimate

rk/2 = |f(z)− f(yk)| ≤ ϕ(n, K, λ, α, |z − yk|)

for all z ∈ ∂U(yk, f, rk/2), where ϕ(n, K, λ, α, t) → 0 as t → 0. Hence we
have

(5.8) D ≥ Ck+1,

where Ck+1 > 0 only depends on n, K, λ, α and rk. Now fix a radius r <
rk/2, and consider

Vk+1 = f−1(B(p, r)) ∩ U(yk, f, rk).

Then, by (5.7), we know that if Vk+1 consists of more than one component,
then we can choose one of them, Uk+1, so that µ(f, Uk+1) ≤ mk+1 < mk.
Hence, in order to complete the proof it suffices to show that Vk+1 consists
of more than one component when r < C and C > 0 only depends on n, K,
λ, α and rk.

Assume that Vk+1 consists of one component. Then, by (5.8), diam Vk+1 ≥
Ck+1. Consider the family Γ of all paths joining Vk+1 and ∂U(yk, f, rk).
Then fΓ ⊂ Γ′, where Γ′ is the family of all paths joining B(p, r) and
B(yk, rk). By Theorem 2.1 and (5.7),

(5.9) MK−1(·,f)(Γ \ Γf ) ≤ mkM(Γ′).

Moreover, by Theorem 2.2,

(5.10) MK−1(·,f)(Γ \ Γf ) ≥ L(2−3, 2−3C−1
k+1),

while

(5.11) M(Γ′) ≤ ωn−1

(
log

rk

2r

)1−n
.

By combining (5.9), (5.10) and (5.11), we have

r ≥ C(n, K, λ, α, rk),

and we may choose rk+1 = C(n, K, λ, α, rk)/2, and any yk+1 ∈ f−1(p) ∩
U(yk, f, rk). The proof is complete.
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Proof of Theorem 1.5. Without loss of generality, diam f(B(0, 1/2)) = 1.
By considering, if necessary, B(0, 1 − ε) for small ε > 0 instead of B(0, 1),
we may assume that f is bounded. We define

ρ : B(0, 1) → [0,∞), ρ(x) = diam f(B(x, (1− |x|)/2)).

Then, since diam f(B(0, 1/2)) = 1, and since f is bounded,

1 ≤ sup
x∈B(0,1)

ρ(x) =: L < ∞.

We choose x0 ∈ B(0, 1) so that ρ(x0) ≥ L/2. Now B(x0, 3(1 − |x0|)/4) ⊂
B(0, 1), and

diam f(B(x0, 3(1− |x0|)/4)) ≤ CL,

where C > 0 only depends on n. By Lemma 2.5, we find a ball B(y, (1 −
|x0|)/8) ⊂ B(x0, (1− |x0|)/2) so that

A1 ≤ diam f(B(y, (1− |x0|)/4)) ≤ A2 diam f(B(y, (1− |x0|)/8)),

where A1, A2 > 0 only depend on n. Now

g : B(0, 1) → Rn, g(x) = f(y + (1− |x0|)x/4))

is a K-quasiregular map, diam g(B(0, 1/2)) ≥ A1/A2 diam f(B(0, 1/2)) =
A1/A2,

diam g(B(0, 1))/ diam g(B(0, 1/2)) ≤ A2

and Bg ≤ Bf . Hence the claim follows from Theorem 1.4.

Remark 5.2. 1. The proofs of Theorems 1.4 and 1.5 show that the K-
quasiregularity assumption in Theorem 1.5 can be relaxed by requiring
that

|B|−1

∫
B

exp(λK(x, f)) dx ≤ K

for all balls B ⊂ B(0, 1) whose radius equals the distance of B to
Sn−1(0, 1).

2. The method used to prove univalency from the information that one
has a normal domain with bounded topological degree does not give all
that sharp estimates. In particular, in the case of unbounded distortion
one would like to have a simpler criterion for univalency, especially
when trying to prove Theorem 1.5 in the setting of Theorem 1.1.
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