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Abstract. We prove that a locally compact metric space that supports a
doubling measure and a weak p-Poincaré inequality for some 1 ≤ p < ∞ is a
MECp-space. The methods developed for this purpose include measurability
considerations and lead to interesting consequences. For example, we verify
that each extended real valued function having a p-integrable upper gradient
is locally p-integrable.

1. Introduction and main results

From the analytical point of view, the concept of a rectifiable path connected
set is crucial in the study of metric spaces. It is well known that if the gradient
of a Sobolev function in Rn equals zero almost everywhere, then the function is
constant. This is not valid in general metric spaces with the notation of upper
gradient given below in Definition 1.1. Indeed, it is evident from Definition
1.1 that if there are no rectifiable paths in the metric space, then 0 is an upper
gradient of any function - even if the function is not constant. However, as stated
in [17], it turns out that the MECp-property of a metric space (see Definition 1.3),
guaranteeing that almost all points of the space belong to the same rectifiable
path connected component, implies that each function which has 0 as an upper
gradient, or more generally as a p-weak upper gradient (see [17, Definition 2.3]),
is constant. This leads us to the natural question of which metric spaces admit
the MECp-property.

For the purpose of studying quasi-conformal maps in certain metric spaces,
Heinonen and Koskela [9] considered the following notion of an upper gradient.

Definition 1.1. Given a metric space (X, d) with a Borel measure µ, let u be
an extended real valued function defined on X. A non-negative Borel function ρ
is said to be an upper gradient of u if for all compact rectifiable paths γ : I → X
(I ⊂ R is compact) the following inequality holds:

|u(x)− u(y)| ≤
∫

γ

ρ ds,
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where x and y denote the endpoints of the path γ. Note that the right hand
side of the above inequality should be infinite whenever at least one of |u(x)| and
|u(y)| is infinite.

Remark 1.2. Throughout this paper we will consider only outer measures and
simply refer to them as measures. So a measure is defined on the power set and
not just only on some σ-algebra. For more information on this simplification, see
[12, p. 8].

If the function ρ defines a metric in X, that is, if the expression

dρ(x, y) = inf
γ

∫
γ

ρ ds,

where the infimum is taken over all compact rectifiable paths γ connecting x to
y, gives a metric on X, then Definition 1.1 can be re-interpreted to state that u
is a 1-Lipschitz mapping with respect to the metric dρ.

In the theory of Sobolev spaces one usually restricts attention to Lp-functions.
Hence it is useful to know when it is true that every non-negative Borel measur-
able ρ ∈ Lp(X) defines a dρ-quasi metric in a set Xρ ⊂ X with µ(X \Xρ) = 0.
Metric spaces satisfying this condition are said to admit the MECp-property (see
Definition 1.3). It is evident from Definitions 1.1 and 1.3 that if X satisfies the
MECp-property, then whenever ρ ∈ Lp(X) is an upper gradient of a function u
on X, the set of points where u is infinite must be contained in the exceptional
set X \Xρ. Such a set is very small from the point of view of potential theory.

Throughout, (X, d) is a metric space with a σ-finite Borel measure µ. A path
γ : I → X is said to be compact if I ⊂ R is a compact set. Given x, y ∈ X,
let Γxy be the set of all compact rectifiable paths in X connecting x to y. Note
that a constant path is also a compact rectifiable path. The length of a path γ
is denoted by `(γ).

Definition 1.3. A Borel function ρ : X → [0,∞] defines an equivalence relation
∼ρ as follows: For x, y ∈ X we have x ∼ρ y if there is γ ∈ Γxy such that∫

γ
ρ ds < ∞. We use the notation [x]ρ = {y ∈ X : y ∼ρ x} to denote the

equivalence classes of x ∈ X. Let 1 ≤ p < ∞. A metric space X is said to admit
the main equivalence class property with respect to p, abbreviated as MECp-
property, if for each non-negative Borel function ρ ∈ Lp(X) there is a point
x ∈ X such that µ(X \ [x]ρ) = 0. We call this equivalence class [x]ρ the main
equivalence class of ρ.

The fact that all Euclidean domains have the MECp-property for all p ≥ 1
was first noticed by Ohtsuka [13]. Clearly, the work of Ohtsuka also shows
that smooth Riemann manifolds admit the MECp-property for all p ≥ 1. This
property was abstracted to the metric space setting by Shanmugalingam in [15,
16].
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In this note we address the question of how generally the MECp-property is
valid in metric spaces. It appears that all metric spaces that support a doubling
measure (see Definition 1.4) and satisfy an analytic property called a weak p-
Poincaré inequality for some 1 ≤ p < ∞ (see Definition 1.5) have the MECp-
property. This is the content of one of our main results, Theorem 1.6. As an
immediate consequence of it we see that Heisenberg groups and the metric spaces
constructed by Bourdon and Pajot [2] as well as Laakso [11] admit the MECp-
property. As far as we know, this has been unknown until now.

Definition 1.4. We say that the measure µ on X is doubling if there is a positive
constant Cµ such that

µ(B(x, 2r)) ≤ Cµµ(B(x, r))

for every x ∈ X and r > 0. Here B(x, r) is an open ball with center at x and
with radius r > 0.

Definition 1.5. Let 1 ≤ p < ∞. We say that the metric space X supports a
weak p-Poincaré inequality if there exist constants τ ≥ 1 and Cp ≥ 1 such that
for all r > 0 and x ∈ X, for all µ-measurable functions f ∈ L1(B(x, r)) defined
on X, and for all upper gradients ρ of f we have

1

µ(B(x, r))

∫
B(x,r)

|f − fB(x,r)| dµ ≤ Cpr

(
1

µ(B(x, τr))

∫
B(x,τr)

ρp dµ

) 1
p

,

where fB(x,r) = 1
µ(B(x,r))

∫
B(x,r)

f dµ is the integral average of f on the ball B(x, r).

Our main result concerning MECp-spaces is as follows:

Theorem 1.6. Let X be a locally compact metric space that supports a doubling
Borel measure µ which is non-trivial and finite on balls. If X supports a weak
p-Poincaré inequality for some 1 ≤ p < ∞, then X is a MECp-space.

In [17, Theorem 2.17] a similar result was first claimed, but the proof given
there is not complete because it failed to prove that the equivalence classes are
measurable. This problem is rectified by Theorem 1.8 of this paper.

Remark 1.7. Given a complete separable metric space Z, a set A ⊂ Z is said to
be analytic if there exist a complete separable metric space Y and a continuous
function f : Y → Z such that f(Y ) = A. Hence the continuous image of
an analytic set is analytic. In particular, a continuous image of a Borel set is
analytic, since Borel sets are analytic ([10, Theorem 14.2]). By Lusin’s theorem
(see [10, Theorem 21.10]), analytic subsets of Z are ν-measurable for any σ-finite
Borel measure ν on Z. Countable unions and countable intersections of analytic
sets are analytic.

Theorem 1.8. Let X be a complete separable metric space equipped with a σ-
finite Borel measure µ. If ρ : X → [0,∞] is a Borel function, then [x]ρ is analytic
for all x ∈ X. In particular, [x]ρ is µ-measurable for all x ∈ X.
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With the choice ρ ≡ 1 we have an immediate consequence:

Corollary 1.9. Let X be a complete separable metric space equipped with a σ-
finite Borel measure µ. Then the rectifiable path connected components of X are
µ-measurable.

Furthermore, the proof of Theorem 1.8 yields the following corollary:

Corollary 1.10. Let X be a complete separable metric space equipped with a
σ-finite Borel measure µ, and let ρ : X → [0,∞] be a Borel function. Then for
each x0 ∈ X, the function u : X → [0,∞], defined for all x ∈ X by

u(x) = inf
{∫

γ

ρ ds : γ ∈ Γx0x

}
,

is measurable with respect to the σ-algebra generated by analytic sets, and there-
fore, it is µ-measurable.

Weaker versions of Corollary 1.10 have appeared earlier in the literature. For
example, in [9] it is stated that u is continuous if X is quasi-convex and ρ is
bounded.

It should be noted that not all metric spaces admit the MECp-property. For
example, the metric space, obtained by gluing two planar triangular regions at
one vertex point and using the length metric obtained from the Euclidean metric
of the two triangular regions, is not a MECp-space when 1 ≤ p ≤ 2. It should
be also noted that the converse of Theorem 1.6 is not true. Indeed, the metric
space X obtained by removing a radial slit from the unit disc D in the plane,
that is, X = D \ [0, 1] ⊂ R2, is easily seen to be a MECp-space whenever p ≥ 1,
but never supports a weak p-Poincaré inequality. While this is not a complete
metric space, one can modify it to obtain a complete metric space that admits
the MECp-property whenever p ≥ 1 but does not support a weak p-Poincaré
inequality for certain values of p. For example, let X be the metric space achieved
by considering the length metric induced by the Euclidean distance metric on
the set obtained by removing the two open disks B((−1, 0), 1) and B((1, 0), 1)
from R2. Such a space has MECp-property whenever p ≥ 1, but fails to have a
weak p-Poincaré inequality whenever 1 ≤ p ≤ 2.

The methods from the proofs of Proposition 3.2 and Theorem 1.6 turn out
to be quite powerful for other purposes as well. Indeed, they give the following
surprising result according to which, under the assumptions of Theorem 1.6, all
we need to know to conclude that a function belongs to Lp

loc(X) is that it has
an upper gradient in Lp(X). Recall that u ∈ Lp

loc(X) if and only if for all x ∈ X
there is a neighborhood Vx of x such that u ∈ Lp(Vx).

Theorem 1.11. Let X be a complete metric space that supports a doubling Borel
measure µ which is non-trivial and finite on balls. Assume that X supports a weak
p-Poincaré inequality for some 1 ≤ p < ∞. If an extended real valued function
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u : X → [−∞,∞] has a p-integrable upper gradient, then u is measurable and
locally p-integrable.

This paper is organized as follows: In the next section we state and verify three
auxiliary results whereas Section 3 contains the proofs of the results introduced
in this section. For the convenience of the reader, a version of a quasi-convexity
result, needed in the proofs of Proposition 3.2 and Theorem 1.6, is included as
an appendix. Indeed, in Section 4 we show that if a locally compact metric
space supports a doubling measure and a weak p-Poincaré inequality, then it is
quasi-convex.

Acknowledgement: EJ, MJ, and SR acknowledge the support of the Acad-
emy of Finland (projects #208637, #205806, and #203970), NS was partially
supported by the NSF grant DMS-0355027. Part of the research for this paper
was done while N.S. was visiting University of Jyväskylä in the spring of 2005;
she wishes to thank the department for it’s kind hospitality.

2. Auxiliary results

Given any metric space (X, d), we use the notation (X̂, d̂) for the completion of
X which is complete and unique up to an isometry. Note that (X, d) is a subspace

of (X̂, d̂) and X is dense in X̂. For our purposes, the crucial observation is that

the essential features of X are inherited by X̂. Indeed, supposing that there is
a doubling Borel measure on X which is non-trivial and finite on balls, we may

extend it to X̂ such that X̂ \X has zero measure and the extended measure has
the same properties as the original one. Also, if X supports a weak p-Poincaré

inequality for some 1 ≤ p < ∞, then X̂ does too, see for example [1, Proposition
7.1].

We proceed by stating a series of lemmas which will be needed in the next
section.

Remark 2.1. In the following lemma, we consider all paths, not only rectifiable
ones. The reason is that in the proof of Theorem 1.8 and in Remark 3.1 we need
to study a complete metric space of paths and the space of rectifiable paths is
not complete under the supremum norm.

The integral of a Borel function ρ over a rectifiable path γ : I → X is usually

defined via the path length parametrization γ0, that is,
∫

γ
ρ ds =

∫ `(γ)

0
ρ◦γ0(t) dt.

There is an alternative definition of path integrals that extends to non-rectifiable
paths as well. Namely if γ : I → X is a path, let F be the set of all closed
subintervals C ⊂ I. Define ζ : F → [0,∞] by setting ζ([a, b]) = `(γ|[a,b]). The
usual Carathéodory construction now yields a Borel regular measure µγ defined
on I. The measure has the property that µγ([a, b]) = `(γ|[a,b]). Define

∫
γ
ρ ds =∫

I
ρ ◦ γ(t) dµγ(t). If γ is a rectifiable path, then this definition of path integral

coincides with the previous definition. Observe also that when ρ is continuous
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the path integral defined in this way may be calculated as the supremum of lower
Riemannian sums.

Lemma 2.2. Let γi : [0, 1] → X be a sequence of paths such that γi → γ uni-
formly. Then for each lower semicontinuous function ρ : X → [0,∞] we have∫

γ

ρ ds ≤ lim inf
i→∞

∫
γi

ρ ds.

Proof. If ρ is continuous, then the claim follows from the definition of the path
integral and the compactness of γ([0, 1]). If ρ is lower semicontinuous, there
exists a sequence (gj) of continuous functions such that gj ↗ ρ as j → ∞. By
the monotone convergence theorem we have∫

γ

ρ ds = lim inf
j→∞

∫
γ

gj ds ≤ lim inf
j→∞

lim inf
i→∞

∫
γi

gj ds ≤ lim inf
i→∞

∫
γi

ρ ds.

�

The following lemma is a version of the Vitali-Carathéodory theorem tailored
for our purposes. Having been unable to find a reference in the literature, we
will give an outline of the proof. The difference between the Vitali-Carathéodory
theorem and the following lemma is that we do not assume that the function f
is everywhere finite.

Lemma 2.3. Let X be a locally compact metric space that supports a Borel
measure µ which is non-trivial and finite on balls. Assume that f ∈ Lp(X) is a
non-negative extended real valued Borel function. Then for every ε > 0 there is
a lower semicontinuous function g ∈ Lp(X) such that g(x) ≥ f(x) for all x ∈ X
and ||g − f ||p ≤ ε.

Proof. Suppose first that µ(X) < ∞, and set A = f−1(∞). Then A is a Borel set
with µ(A) = 0. Note that, even though f ∈ Lp(X), we want to avoid modifying
f in the set A of zero measure since in the forthcoming applications of Lemma
2.3 we will consider path integrals.

Fix ε > 0. For each n ∈ N, define disjoint Borel sets Aε
n = f−1([(n− 1)ε, nε)).

Since Aε
n and A are Borel sets and µ is a Borel measure, there exist open sets V ε

n

and U ε
n such that A ⊂ V ε

n , Aε
n ⊂ U ε

n, and

µ(V ε
n ) ≤

( ε

2n

)p

and µ(U ε
n \ Aε

n) ≤
( 1

n2n

)p

(see the note after [12, Theorem 1.10]). Define gε : X → [0,∞] by

gε(x) =
∞∑

n=1

nεχUε
n
(x) +

∞∑
n=1

χV ε
n
(x)

for all x ∈ X. Here χU is the characteristic function of a set U . Clearly, gε

is lower semicontinuous and gε(x) ≥ f(x) for all x ∈ X. The norm estimate
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||gε − f ||p ≤ Cε, where C is a constant, follows from the Minkowski inequality
and from the fact that for all x ∈ X \ A

gε(x)− f(x) ≤
∞∑

n=1

nεχUε
n
(x)−

∞∑
n=1

(n− 1)ε χAε
n
(x) +

∞∑
n=1

χV ε
n
(x)

≤
∞∑

n=1

nεχUε
n\Aε

n
(x) + ε +

∞∑
n=1

χV ε
n
(x).

If µ(X) = ∞, then we apply the above method to the representation

X = B(x0, r1) ∪
∞⋃
i=1

(B(x0, ri+1) \B(x0, ri)) ∪N

where x0 ∈ X is fixed, (ri) is an increasing sequence of real numbers tending to
infinity chosen such that the set N =

⋃∞
i=1 S(x0, ri) has zero µ-measure. This

kind of decomposition exists since all balls have finite measure and thus there
are only countably many concentric spheres with positive measure. �

The last result of this section serves as a base of our measurability considera-
tions in the next section. It is a modification of [10, Theorem 11.6].

Lemma 2.4. Let X be a metric space and let Y be a class of functions g : X →
[0,∞] such that the following properties are valid:

(a) If g : X → [0,∞] is continuous, then g ∈ Y.
(b) If (gi) is an increasing sequence of functions in Y converging up to g,

then g ∈ Y.
(c) If r, s ∈ R+ and g, f ∈ Y, then rg + sf ∈ Y.
(d) If g ∈ Y and 0 ≤ g ≤ 1, then 1− g ∈ Y.

Then Y contains all Borel functions g : X → [0,∞].

Proof. The proof is a simplified version of that of [10, Theorem 11.6]. Using (a)
and (b), one first verifies that the characteristic functions of open sets belong to
Y . Note that finite intersections of open sets are open. Let S be the collection of
all subsets of X whose characteristic functions belong to Y . Then by (d) the fam-
ily S is closed under complements, and by (b) it is closed under countable disjoint
unions, and as we have noted, open sets belong to S; therefore by [10, Theorem
10.1(iii)] (also called the π–λ theorem and states that the smallest collection of
subsets of X that contains all open sets and is closed under complementation
and countable disjoint unions is the Borel class), we see that S contains all Borel
subsets of X. Thus the characteristic functions of Borel sets are in Y . Finally,
an application of (b) and (c) completes the proof. �



8 E. AND M. JÄRVENPÄÄ, K. AND S. ROGOVIN, AND N. SHANMUGALINGAM

3. Proofs of main results

In this section we prove the results of Section 1. We proceed in a slightly
different order here because, when verifying Proposition 3.2 and Theorem 1.6,
we need the measurability result, Theorem 1.8.

Proof of Theorem 1.8. Let ρ : X → [0,∞] be a Borel function and fix x0 ∈ X.
The space

Y = {γ : [0, 1] → X : γ is a path with γ(0) = x0}
equipped with the metric

d∞(γ, γ̃) = sup
t∈[0,1]

d(γ(t), γ̃(t))

is a complete separable metric space. This follows from [10, Theorem 4.19]
combined with the fact that every subset of a separable metric space is separable.

Consider the mapping ϕg : Y → [0,∞] defined by

ϕg(γ) =

∫
γ

g ds.

If g is continuous, then Lemma 2.2 implies that ϕg is lower semicontinuous, and
therefore a Borel function. Thus choosing g ≡ 1 we have that Y0 = ϕ−1

1 ([0,∞))
is a Borel set. We proceed by checking that the assumptions (a)-(d) of Lemma
2.4 are valid for the class

Y = {g : X → [0,∞] : ϕg : Y0 → [0,∞] is a Borel map}.
We already saw that (a) is valid. Letting γ ∈ Y and gi ∈ Y be such that gi ↗ g
pointwise, we obtain by the monotone convergence theorem

ϕg(γ) =

∫
γ

g ds = lim
i→∞

∫
γ

gi ds = lim
i→∞

ϕgi
(γ).

Hence, ϕg is a Borel function, since it is a limit of Borel functions, and (b) is
satisfied. The items (c) and (d) follow from the linearity of the integral operator.

Thus the assumptions of Lemma 2.4 are satisfied, and it follows that Y con-
tains all non-negative Borel functions. In particular, ϕρ : Y0 → [0,∞] is a Borel
function. Defining π : Y → X as π(γ) = γ(1) for all γ ∈ Y , the choice for metric
in Y guarantees that π is continuous. Therefore, [x0]ρ = π(ϕ−1

ρ ([0,∞))) is an
analytic set by Remark 1.7. �

Remark 3.1. In Theorem 1.8, the metric space X does not need to be complete.
It is sufficient to assume that X is separable and an open subset of the completion

X̂ of X. Indeed, fix x0 ∈ X, and define

Y = {γ : [0, 1] → X : γ is a path with γ(0) = x0}
and

Ŷ = {γ : [0, 1] → X̂ : γ is a path with γ(0) = x0}.
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Since X̂ is complete and separable the set Ŷ has the same properties. Moreover,

the openness of X guarantees that Y is an open subset of Ŷ . Given a Borel

function ρ : X → [0,∞], define a Borel map ρ̂ : X̂ → [0,∞] by ρ̂(x) = ρ(x) if

x ∈ X, and ρ̂(x) = 0 otherwise. Letting ϕ1+bρ : Ŷ → [0,∞] be as in the proof

of Theorem 1.8, we see that ϕ−1
1+bρ([0,∞)) is a Borel subset of Ŷ which, in turn,

implies that ϕ−1
1+bρ([0,∞))∩Y is a Borel set since Y is open. Finally, if π : Ŷ → X̂

is defined by π(γ) = γ(1) for all γ ∈ Ŷ , then we conclude, similarly as in the
proof of Theorem 1.8, that [x0]ρ = π(ϕ−1

1+bρ([0,∞)) ∩ Y ) is analytic.

Proof of Corollary 1.10. Let P be the set of all compact paths in X equipped
with the same metric as Y in the proof of Theorem 1.8. Let Px0 ⊂ P be the
set of all paths starting from x0. By Lemma 2.2 the function Φ: P → [0,∞],
Φ(γ) = `(γ), is lower semicontinuous, and therefore

G = ∪x∈XΓx0x = Φ−1([0,∞)) ∩ Px0

is a Borel set. Letting ρ : X → [0,∞] be a Borel map and defining functions ϕρ

and π as in the proof of Theorem 1.8, gives u−1([0, a)) = π(ϕ−1
ρ ([0, a)) ∩ G) for

all real numbers a > 0. From the above consideration we know that ϕρ is a Borel
map and π is continuous. The claim follows since π(ϕ−1

ρ ([0, a)) ∩G) is analytic,
as verified in the proof of Theorem 1.8. �

Before giving the proof of Theorem 1.6, we will prove a corresponding result
with slightly stronger assumptions. Observe that in a complete metric space
X the existence of a doubling Borel measure which is non-trivial and finite on
balls implies that X is separable, and closed bounded subsets of X are compact,
in particular, X is locally compact. The reason for stating Proposition 3.2 as
a separate result is that we need the methods from its proof when verifying
Theorem 1.6.

Proposition 3.2. Let X be a complete metric space that supports a doubling
Borel measure µ which is non-trivial and finite on balls. If X supports a weak
p-Poincaré inequality for some 1 ≤ p < ∞, then X is a MECp-space.

Proof. Let ρ̃ ∈ Lp(X) be a non-negative Borel function. In order to verify the
MECp-property we have to show the existence of x ∈ X such that µ(X\[x]ρ̃) = 0.
By Lemma 2.3, there is a lower semicontinuous function ρ ∈ Lp(X) such that
ρ ≥ ρ̃ everywhere. Noticing that [x]ρ ⊂ [x]ρ̃ for every x ∈ X, it suffices to prove
that there exists x ∈ X such that µ(X \ [x]ρ) = 0.

For m ∈ N, define

Sm = {x ∈ X : M(ρp)(x) ≤ mp}.
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Here M is the non-centered maximal function operator defined for f ∈ L1
loc(X)

as

Mf(x) = sup
{ 1

µ(B)

∫
B

|f | dµ : B is a ball containing x
}

.

Since ρp ∈ L1(X), [7, Theorem 2.2] implies that µ(X \ ∪mSm) = 0. Let m0 be
the smallest integer for which Sm0 6= ∅. Fix x0 ∈ Sm0 . We will verify that for
every y ∈ ∪m≥m0Sm there is γ ∈ Γx0y with the property

∫
γ
ρ ds < ∞. This shows

that ∪m≥m0Sm ⊂ [x0]ρ, and by the choice of m0, we have µ(X \ ∪m≥m0Sm) = 0
which, in turn, will imply the claim.

Defining for all k ∈ N a lower semicontinuous function ρk = min{ρ, k}, set

uk(x) = inf
{

`(γ) +

∫
γ

ρk ds : γ ∈ Γx0x

}
and

u(x) = inf
{

`(γ) +

∫
γ

ρ ds : γ ∈ Γx0x

}
with the interpretation that the infimum of an empty set is infinite. Our claim is
that u(y) < ∞ for every y ∈ ∪m≥m0Sm. Note that u is measurable by Corollary
1.10, but nothing else is known about it. A priori it could be infinite in a set of
positive measure. Trying directly to prove that u is finite almost everywhere is
therefore difficult and that is why we use the functions uk.

Since the complete metric space X supports a doubling measure and a weak
p-Poincaré inequality, it is quasi-convex with a constant Cq which only depends
on constants associated with the measure and the Poincaré inequality (see Ap-
pendix: Lemma 4.1). Recall that quasi-convexity means that for every pair of
points z, y ∈ X there is γ ∈ Γzy such that `(γ) ≤ Cqd(z, y).

Take z, y ∈ X and let ε > 0. By quasi-convexity uk(z), uk(y) < ∞, and we
may assume that uk(z) ≥ uk(y). By the definition of uk, for all ε > 0 there is a
path γy ∈ Γx0y such that

uk(y) ≥ `(γy) +

∫
γy

ρk ds− ε.

Thus noticing that

uk(z) ≤ `(γy ∪ γyz) +

∫
γy∪γyz

ρk ds

for all γyz ∈ Γyz, we obtain

|uk(z)− uk(y)| ≤ uk(z)− `(γy)−
∫

γy

ρk ds + ε ≤ `(γyz) +

∫
γyz

ρk ds + ε.

By choosing γyz ∈ Γyz so that `(γ) ≤ Cqd(z, y) and remembering that ρk ≤ k,
we see that uk is a Cq(k + 1)-Lipschitz function.
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Next we will show that the restriction of uk to Sm is a C(m + 1)-Lipschitz
function, where C does not depend on k. From the above calculation we deduce
that for each γ ∈ Γyz we have

|uk(z)− uk(y)| ≤
∫

γ

(ρk + 1) ds ≤
∫

γ

(ρ + 1) ds.

This shows that ρ + 1 is an upper gradient for uk. Fix z, y ∈ Sm. For i ∈ Z, set
Bi = B(z, 2−id(z, y)) when i ≥ 1, B0 = B(z, 2d(z, y)), and Bi = B(y, 2id(z, y))
when i ≤ −1. In what follows we use the notation τB(x, r) = B(x, τr). In
the first inequality of the following estimation we use the fact that, since uk is
continuous, all points are its Lebesgue points. Combining the weak p-Poincaré
inequality with the doubling condition gives the third inequality. Finally, the
fourth one comes from the Minkowski inequality whereas the fifth one follows
from the definition of Sm:

|uk(z)− uk(y)| ≤
∑
i∈Z

|(uk)Bi
− (uk)Bi+1

|

≤
∑
i∈Z

1

µ(Bi)

∫
Bi

|(uk)− (uk)Bi+1
| dµ

≤ CµCpd(z, y)
∑
i∈Z

2−|i|
(

1

µ(τBi)

∫
τBi

(ρ + 1)p dµ

) 1
p

(3.1)

≤ CµCpd(z, y)
∑
i∈Z

2−|i|

(
1 +

(
1

µ(τBi)

∫
τBi

ρp dµ

) 1
p

)
≤ CµCpd(z, y)(1 + m)

∑
i∈Z

2−|i|

≤ C(m + 1)d(z, y),

where C is a constant depending only on Cµ and Cp. Hence on Sm, uk is a
C(m + 1)-Lipschitz function for all k. Notice that uk ≤ uk+1 and therefore we
may define

v(x) = sup
k

uk(x) = lim
k→∞

uk(x).

Thus v is a C(m + 1)-Lipschitz function on Sm. Since v(x0) = 0 and x0 ∈ Sm

when m ≥ m0, we have that v(x) < ∞ for every x ∈ ∪m≥m0Sm.
Our claim reduces to showing that u(x) ≤ v(x) for x ∈ ∪m≥m0Sm. For this,

fix m ≥ m0 and x ∈ Sm. For each k there is γk ∈ Γx0x such that

`(γk) +

∫
γk

ρk ds ≤ uk(x) +
1

k
≤ C(m + 1)d(x, x0) +

1

k
.

This implies that `(γk) ≤ C(m + 1)d(x, x0) + 1 =: M for every k. Thus,
by reparametrization, we may assume that γk is an M -Lipschitz function and
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γk : [0, 1] → B(x0, M) for all k. Since X is complete and doubling, and therefore
proper (that is, closed balls are compact), we may use the Ascoli-Arzela theorem
to obtain a subsequence (γk) (which we denote by the same subscripts as the
original one) and γ : [0, 1] → X such that γk → γ uniformly.

For each k0, the function 1+ρk0 is lower semicontinuous, and therefore Lemma 2.2
and the fact that (ρk) is an increasing sequence of functions imply

`(γ) +

∫
γ

ρk0 ds =

∫
γ

(1 + ρk0) ds ≤ lim inf
k→∞

∫
γk

(1 + ρk0) ds

≤ lim inf
k→∞

∫
γk

(1 + ρk) ds.

Using the monotone convergence theorem on the left hand side and letting k0

tend to infinity yields

`(γ) +

∫
γ

ρ ds ≤ lim inf
k→∞

∫
γk

(1 + ρk) ds.

Since γ ∈ Γx0x we have

u(x) ≤ `(γ) +

∫
γ

ρ ds ≤ lim inf
k→∞

∫
γk

(1 + ρk) ds

≤ lim inf
k→∞

(uk(x) +
1

k
) ≤ v(x)

completing the proof. �

Similar methods serve as the base of the verification of Theorem 1.6.

Proof of Theorem 1.6. Let X̂ be the completion of X. We extend the measure

µ to X̂ according to the discussion at the beginning of Section 2. The exten-
sion will still be denoted by µ. Note that the claim does not follow directly
from Proposition 3.2 since there might be paths connecting different equivalence

classes of X via X̂ \X.
First we will show that there is x0 such that µ([x0]ρ) > 0. For this let ρ ∈ Lp(X)

be a non-negative Borel function. Extend ρ by zero to X̂ \ X. Let ρ̃ ∈ Lp(X̂)
be a lower semicontinuous function given by Lemma 2.3 such that ‖ρ̃− ρ‖p < 1

and ρ̃(x) ≥ ρ(x) for all x ∈ X̂. Setting for all m ∈ N

S̃m = {x ∈ X̂ : M(ρ̃p)(x) ≤ mp},

we obtain, similarly as in the proof of Proposition 3.2, that µ(X̂ \ (∪mS̃m)) = 0.

For m ∈ N, define Sm = S̃m ∩X . Since µ is non-trivial and µ(X̂ \X) = 0 we
may pick m0 such that µ(Sm0) > 0.

Let x0 ∈ Sm0 be a point of density for Sm0 . As before, define for all x ∈ X̂

u(x) = inf
{

`(γ) +

∫
γ

ρ̃ ds : γ ∈ Γx0x(X̂)
}

,
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where Γx0x(X̂) is the set of all rectifiable paths in X̂ connecting x0 to x. Recall
that Γx0x is the set of corresponding paths in X. From the proof of Proposition 3.2

we see that u is a C1(m0 +1)-Lipschitz function on S̃m0 , and therefore, on Sm0 as
well. (Observe that, using the notation of the proof of Proposition 3.2, we have
u(x) = v(x) for all x ∈ Sm0 .)

Since x0 is a point of density of Sm0 we have that µ(Sm0 ∩ B(x0, r)) > 0 for
all r > 0. Furthermore, X is locally compact, and therefore there exists r0 such
that B(x0, r0) ⊂ X. Setting r = (3C1(m0 + 1))−1r0, we obtain

u(y) = |u(y)− u(x0)| ≤ C1(m0 + 1)d(y, x0)

for all y ∈ Sm0 ∩B(x0, r). Thus there is γ ∈ Γx0y(X̂) such that `(γ) ≤ 2C1(m0 +
1)r ≤ 2

3
r0. This gives γ ⊂ B(x0, r0) ⊂ X, and so γ ∈ Γx0y. Moreover,

∫
γ
ρ̃ ds <

∞, implying that Sm0 ∩ B(x0, r) ⊂ [x0]ρ̃ ⊂ [x0]ρ, where the equivalence classes
are defined in X. Thus µ([x0]ρ) > 0.

It remains to prove that µ(X \ [x0]ρ) = 0. Assume to the contrary that µ(X \
[x0]ρ) > 0. Since X is locally compact and µ is a doubling Borel measure which is

non-trivial and finite on balls, the space X is separable and an open subset of X̂.
From Remark 3.1 we know that [x0]ρ is µ-measurable. Moreover, for all ε > 0,
the mapping ερ is an upper gradient of the characteristic function χ[x0]ρ of the
set [x0]ρ. Choosing R > 0 sufficiently large so that both µ(B(x0, R) ∩ [x0]ρ) > 0
and µ(B(x0, R) \ [x0]ρ) > 0 and applying the weak p-Poincaré inequality to the
function-weak upper gradient pair (χ[x0]ρ , ερ) gives a contradiction since the left
hand side of the inequality is positive whereas the right hand side tends to zero
as ε → 0. Therefore X \ [x0]ρ must be of zero measure, and the proof is done. �

The proof of the following result employs similar techniques to that of Propo-
sition 3.2.

Proof of Theorem 1.11. Let ρ be a p-integrable upper gradient of u. As in the
proof of Proposition 3.2, apply Lemma 2.3 to produce a lower semicontinuous
function ρ̃ ∈ Lp such that ρ̃ ≥ ρ pointwise. Define

f(x, y) = inf
{

l(γ) +

∫
γ

ρ̃ ds : γ ∈ Γxy

}
.

As before, we see that for x, y ∈ Sm = {x ∈ X : M(ρ̃p)(x) ≤ mp} we have

f(x, y) ≤ C(m + 1)d(x, y).

Moreover, for x, y ∈ Sm,

|u(x)− u(y)| ≤ inf
{∫

γ

ρ ds : γ ∈ Γxy

}
≤ inf

{
`(γ) +

∫
γ

ρ̃ ds : γ ∈ Γxy

}
(3.2)

= f(x, y) ≤ C(m + 1)d(x, y).
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Hence, u : Sm → [−∞,∞] is a Lipschitz function, and therefore a Borel function.
Thus u : ∪m Sm → [−∞,∞] is a Borel function, and since µ(X \∪mSm) = 0, we
see that u is measurable.

To prove the local p-integrability of u, we first observe that under our assump-
tions there exist constants λ ≥ 1 and C̃p ≥ 1 such that for all r > 0 and x ∈ X,
for all µ-measurable functions f ∈ L1(B(x, r)) defined on X, and for all upper
gradients ρ of f we have
(3.3)(

1

µ(B(x, r))

∫
B(x,r)

|f − fB(x,r)|p dµ

) 1
p

≤ C̃pr

(
1

µ(B(x, λr))

∫
B(x,λr)

ρp dµ

) 1
p

by arguments in [5] and [6].
Next fix x0 ∈ Sm0 , where m0 is the smallest integer such that Sm0 6= ∅. Notice

that |u(x0)| < ∞ (see the definition of the upper gradient and (3.2)). As in
the proof of Proposition 3.2, for all k ∈ N consider the lower semicontinuous
functions ρ̃k = min{ρ̃, k}, and set

vk(x) = inf
{

`(γ) +

∫
γ

ρ̃k ds : γ ∈ Γx0x

}
and

v(x) = inf
{

`(γ) +

∫
γ

ρ̃ ds : γ ∈ Γx0x

}
.

By the proof of Proposition 3.2, we have v(x) = supk vk(x) = limk vk(x) for all
x ∈ ∪mSm. Let r > 0 and set Bi = Bi(x0, 2

−ir) for i = 0, 1, . . . . Since vk is
continuous at x0 and vk(x0) = 0, by an argument similar to the one that led to
the chain of inequalities (3.1) we can obtain

1

µ(B(x0, r))

∫
B(x0,r)

vk dµ ≤
∞∑
i=0

|(vk)Bi
− (vk)Bi+1

|

≤ CpCµ

∞∑
i=0

2−ir

(
1 +

(
1

µ(τBi)

∫
τBi

ρ̃p dµ

) 1
p

)
(3.4)

≤ CpCµr
(
1 + (Mρ̃p(x0))

1
p

)
< ∞,
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since x0 ∈ Sm0 . Using equations (3.3) and (3.4) and the fact (a+b)p ≤ 2p(ap+bp)
for any positive numbers a and b, we get

1

µ(B(x0, r))

∫
B(x0,r)

vp
k dµ ≤ 2p

µ(B(x0, r))

∫
B(x0,r)

|vk − (vk)B(x0,r)|p dµ

+2p(vk)
p
B(x0,r)

≤ 2pC̃p
pr

p 1

µ(B(x0, λr))

∫
B(x0,λr)

(ρ̃ + 1)p dµ

+2p
(
CpCµr

(
1 + (Mρ̃p(x0))

1
p

))p

< ∞.

Notice that the upper bound for the mean values of vp
k’s does not depend on k.

By the monotone convergence theorem we see that(
1

µ(B(x0, r))

∫
B(x0,r)

|u|p dµ

) 1
p

≤
(

1

µ(B(x0, r))

∫
B(x0,r)

|u− u(x0)|p dµ

) 1
p

+|u(x0)|

≤
(

1

µ(B(x0, r))

∫
B(x0,r)

vp dµ

) 1
p

+ |u(x0)|

= lim
k→∞

(
1

µ(B(x0, r))

∫
B(x0,r)

vp
k dµ

) 1
p

+ |u(x0)|.

The above calculations imply that the first term is finite and we know that
|u(x0)| < ∞. Hence we get that u ∈ Lp(B(x0, r)). Since r > 0 was arbitrary, we
obtain the claim. �

4. Appendix: quasi-convexity

It is folklore that if a metric measure space admits a weak Poincaré inequality
and possesses additional miscellaneous properties, then it is quasi-convex. The
proof of this fact can be found in [3], [6], and [18]. For the convenience of the
reader we include one form of this folklore.

Lemma 4.1. Let (X, d) be a locally compact metric space with a doubling Borel
measure µ that is non-trivial and finite on balls and admits a weak p-Poincaré
inequality for some 1 ≤ p < ∞. Then there exists C > 0, depending only on the
constants of the Poincaré inequality and the doubling condition, so that for each
pair of points x, y ∈ X there exists γ ∈ Γxy with `(γ) ≤ Cd(x, y).

Proof. Since X admits a weak p-Poincaré inequality, it is connected. We first
consider the case where X is complete. For each ε > 0, consider the equivalence
relation ∼ε given by x ∼ε y if and only if there exists a finite ε-chain connecting
x to y, i.e. a finite sequence x0, x1, . . . , xn of points so that x0 = x, xn = y, and
d(xi, xi+1) < ε for each i. Then the equivalence classes are open, and since X is



16 E. AND M. JÄRVENPÄÄ, K. AND S. ROGOVIN, AND N. SHANMUGALINGAM

connected there is only one equivalence class, X itself. This means that every
pair of points in X can be connected with a finite ε-chain. Hence, for a fixed
point x0 ∈ X and for each ε > 0, we can define the function

fε(x) = inf
{ n∑

i=1

d(xi, xi−1) : x0, . . . , xn is a finite ε-chain connecting x0 to x
}
.

When d(x, y) < ε, we see that |fε(x)− fε(y)| ≤ d(x, y). Hence, fε is a locally
1-Lipschitz function, in particular, every point is a Lebesgue point of fε and the
function ρ = 1 is an upper gradient of fε. A similar argument as in the proof
of Proposition 3.2 (see (3.1)) then gives us that for each ε > 0, fε is a globally
C-Lipschitz function where C depends only on the data of X. Moreover, for each
ε > 0, fε(x0) = 0. Hence the function

f(x) = sup
ε>0

fε(x) = lim
ε↓0

fε(x)

is also a C-Lipschitz function with f(x0) = 0.
We now claim that if f(x) < M , then there exists a 1-Lipschitz path γ :

[0, M ] → X so that γ(0) = x0 and γ(M) = x. Indeed, let x be such that
f(x) < M . For each i ∈ N, let εi = 1

2i . Then for each i, there exists a finite
εi-chain xi

0, x
i
1, . . . , x

i
mi

connecting x0 to x so that

mi∑
j=1

d(xi
j−1, x

i
j) ≤ M.

Let

Ti =

mi∑
j=1

d(xi
j−1, x

i
j).

View X as a subset of

B(X) = {f : X → R : f is bounded}
via the isometric embedding ι(y) = gy where gy(z) = d(z, y) − d(z, x0). Here
B(X) is equipped with the sup-norm. To simplify the notation, we omit the
embedding ι from now on. Since X is complete, we may view X as a closed
subset of the Banach space B(X). For each i, define γi : [0, Ti] → B(X) as the
1-Lipschitz path that connects the successive points x0 = xi

0, x
i
1, . . . , x

i
mi

= x via
line segments. Extend γi : [0, M ] → B(X) by setting γ(t) = x for t ≥ Ti. Then
for each i, γi is a 1-Lipschitz function. Note that for each i and each 0 ≤ t ≤ M ,
d(γi(t), x0) ≤ M , γi(0) = x0 and γi(M) = x. Let

Y =
(⋃

i

γi([0, M ])
)
∪ ι(B(x0, M)).

Since X is locally compact and closed (in B(X)), ι(B(x0, M)) is compact. Thus
it is a straightforward task to see that Y is compact. Apply the Ascoli-Arzela
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theorem to the sequence (γi) to produce a subsequence (γij) which converges
uniformly to a 1-Lipschitz path γ : [0, M ] → Y . Clearly, γ(0) = x0 and γ(M) =
x. Finally, γ([0, M ]) ⊂ X, since X is closed and dist(X, γi(t)) ≤ εi for all
0 ≤ t ≤ M and i ∈ N.

Tying this together, we see that if f(x) < M , then there exists a rectifiable
path in X connecting x0 to x with length no more than M . Now f(x0) = 0
and f is a C-Lipschitz function. Thus for each x there exists γ ∈ Γx0x such that
`(γ) ≤ Cd(x, x0). As x0 was arbitrary, we conclude that X is quasi-convex.

We now handle the situation where X is only locally compact. Let X̂ be the

completion of X and view X as a subset of X̂. Since X is locally compact we see

that X is an open subset of X̂. Extend the measure µ to X̂ by setting µ(X̂ \X) =

0. Then X̂ equipped with the doubling measure µ admits a weak p-Poincaré

inequality. In particular, X̂ is quasi-convex. Since X is locally compact and

hence is an open subset of X̂, X is locally quasi-convex. Create the equivalence
relation on X via x ∼ y if and only if there exists γ ∈ Γxy. Since X is locally
quasi-convex, the equivalence classes are open. That X is connected implies that
there is only one equivalence class. Hence X is rectifiably path connected.

Fix x0 ∈ X. Define the function

g(x) = inf {`(γ) : γ ∈ Γx0x} .

Since X is locally quasi-convex, we see as in the proof of Proposition 3.2 that g
is a locally Lipschitz function. Hence every point in X is a Lebesgue point of g.
It follows from the definition of g that the function ρ = 1 is an upper gradient
of g. As before in the proof of Proposition 3.2 we see that g is a C-Lipschitz
function with C depending only on the constants of the Poincaré inequality and
the doubling condition. In particular, for each x ∈ X there exists γ ∈ Γx0x with
`(γ) ≤ Cd(x, x0). As x0 was arbitrary we conclude that X is quasi-convex. �
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